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16 APPLICATIONS OF PHYSICAL OPTICS

16.1 INTRODUCTION

16.1.1.1 Restatement of principles. In instruments for purposes of interferometry, the problems of
geometrical optical designs are.usually simple, However, since such instruments depend upon the interfer-
ence of light waves for their proper functioning, a knowledge of the principles of interference is necessary
for proper design. These principles have been already presented. A brief recapitulation of these principles
is now presented, followed by detailed examples of their application to the design of several typical instru-
ments of this class. ‘

16.1:1.2 As stated in Section 3, the instantaneous magnitude of a plane-polarized light- wave will be equivale'nt

"to the instantaneous magnitude of the electric vector and can be specified by the trigonometric function

E(z,t) = acos (knz + ¢ = wt) ny -
where
z = distance measured along ¢ = phase angle . ]
t = time . . n = refractive index. It can be a function .
k = 2a/x : of z for variable media.
w = 2x/T a = amplitude of the wave. Itisan
A = wavelength exponential decreasing function
" T .= ‘period for one complete vibration of z for absorbing media.

It is-also shown that the time-averaged ene_rg'y density for a single wave over a single period T of oscillation
will be proportional to the square of the amplitude, that is,

W-a %2 | @ -

16.1.ii3 K interference phenomena of two or more waves are considered, the time-averaged energy density .

"W, will be the sum of the instantaneous energies of the electric vectors, the average over a single period of

T of the square of the sum of the instantaneous magnitudes of the electric vectors:
Thus,, for two collinear waves, ’ .

W = .;_ [:ai + 2a; ag cos ($y - ¢2)+a§] @

where

$1, 92 = phase angles of each electric vector
- ¢1- 9o = fixed phase difference, 0.

16.1.1.4 Referring again to Section 3, the conditions of Equation (3) depend on the direction of.propagation
and the source of radiation. Collinear, coherent waves will reinforce each other when the phase difference
is zero or an even multiple of # and oppose each other when the phase difference is an odd multiple of 7.
For collinear, non-coherent waves, this reinforcement or opposition does not apply, but the time-averaged
energy densities will add according to

.1 2 2 '
W‘?-E‘l+a;}' . ] (4)

16.1.1,5 If the waves are non-collinear and coherenf, as if Figure 16.1, their phases &;and 52 will be given
by : , '

&y = knz + ¢1 ;

®, = kn(xsin 0 + zcos 0} + ¢2 (5)
Wheré

¢1 = phase angle of the wave propagated along OZ,

¢ 5, = phase angle of the wave propagated along OP.
The difference in phase angles will then be

$y; - ®3=1901 - $3 -knxsin0 + knz (1 - cos9). (6)
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Letting ¢, - ¢, = &6 and using Equation (3),, the time-averaged energy density will be

2 2 .
2W =a, +a, + 2ay azcos[a -knxsin6+knz!(1—c.ose)]

where a3 and ap are the amplitudes of the ihterferin%}vaves at the point {0, y, 0). By choosing # to be
. If observation is to be made in the Xy plane near

suitably small, we can set sin 6= 6 and 1 -cos 8= 0
Zz = 0, the z term can be neglected and Equation (7) becomes

. |
.2 2 . 2mnx
2W =a; +a, +2a1a2cos(6~—T)

which is the usual interference formula,

WAVE FRONT FOR E,

X ‘ wz\

4 \;/"]P

0 } . A -z

Wy

-
WAVE FRONT FOR E,

Figure 16,1 - Interference between two plane wavefronts Wi and W, that are propégatéd
along different directions. '
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16,2 THE FIZEAU INTERFEROSCOPE

16.2.1 Principles of operation. .

16.2.1.1 A group of interferometers known as Fizeau interferoscopes or Fizeau double beam interferometers
have been devised around afore mentioned principles for the purpose of testing the flatness and parallelism of
the surfaces S pand S,, Figure 16.2, of a plane parallel plate or for testing the flatness of a surface against
an optical flat. The essential charactenstlcs of these interferometers are illustrated in Figure 16.2 in

which either of the surfaces S; or S, may be the optically flat surface of reference. Monochromatic light
issues from a pinhole H and emerges from the collimator L, as-plane waves. By a slight angular adjust- -
ment (not shown) of the upper plate surface, S, can be made to reflect ray’ HA approximately back upon
itself. We take this direction as the OZ-direction. Surface S; now reflects ray HAB alonga direction BR
such that angle 8 = 2a where a is the indicated angle between surfaces S; and S, . We choose the di- °
rection OP parallel to BR. The coordinate line OX falls in the wave front reflected by S, . Lines OP,

OX and OZ together with the angle are now corresponding elements in Figures 16.1 and 16.2. Equa.tmn
(7) or (8) may therefore be applied to determine the energy densities at any point (x,z). I both surfaces

S, and S, areflat, 0 is constant; but we must take ¢ = o (x) when both surfaces are not flat: - In the
interests of simplicity, we shall suppose at first that surfaces S; and S, are {lat.

16.2.1.2 When S; and Sy are uncoated surfaces of glass, the two waves formed by reflection at and 5, will

have amplitudes a 1 and a, so nearly alike that one may set a =8, =2 and write Equation (7

W = a2 {1'+cos[6-knxsiné)+knz’(1-cos())]}. ,(_9) B

Furthermore, 6 = 7 for optically flat surfaces of glass since the phase changes due to reflection at A and B
differ by 1807, Thus, '

W = a? {1—coskn[xsine-z(l-cés\e)]} o (10) -
if the surfaces S; and S, are optically flat surfaces of glass,
16.2.1.3 Lens L; and L, are invariably arranged so that the plane z = 0 or a neighboring plane is focused
upon the retina or upon the photographic emulsion, i.e.,one arranges to observe the energy density W in the
interference fringes in a plane for which z is either zero or small, Also,the angle & is very small.in actual
practice. Thus both z and 1 - cos 6 become so small that one will ordma.nly be justified in neglectmg the
term z (1 - cos 6) in Equation (10), and in writing

w

a® [1 - cos kx6]= 2a? sin? ( l:i)

2a? sin? (-L—‘”fa ) (11)

‘whien the space between S, and 8, is air,

16.2.1,41 The actual energy density W is. of little interest in practical interferometry. Interest centers, rather,
upon the fringe-width, the distance from one fringe to the next similar interference fringe, The fringe system
is repeated, according to Equation (11), whenever x is altered by the amount Ax such that 2ra Ax /x = m,
i. e, whenever .

= jax| = A (12)

'where h denotes fringe-width and « is the angle in radians between surfaces 8, and S,. Equation (12) can be
" used to measure a. ‘I a = 0, the fringe-width is infinite, and conversely.

16.2.1.5 It will be seen from Figure 16. 2 that -
d = xa ' o (13)-

where d is the thickness of the air gap at point x. Equation (11) can therefore be written in the highly instruc-
tive form

- 2% s (21 ) - (14)

Hence W is constant for those loci along which the separation d of the surfaces is constant. W is, of course,
constant along an interference fringe, Therefore, each interference fringe is the locus of points for which the
separation d of the surfaces is constant, This statement holds throughout interferometry with very few excep-
tions or qualifications. With respect to Equation (14), we note that W_has the period d = A/2. This means
that in the Fizeau interferoscope the separation d changes by A/2 in going, say, from one bright fringe to the
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FIGURE 16, 2 -Notation with respect to the Eizeaﬁ Interferoscope or Interferome&er.
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next. More generally, ‘it is the optical path nd that changes by A/2.
16.2.1.6 The use of the Fizeau interferoscope for examining parallelism of plates amounts to considei'ing the

gap between surfaces S, and S,, Figure 16.2, as the plate. The refractive index of the gap is now that of the
plate,

16.2.2 The Fizeau interferoscope in testing for optical flatness.

16.2.2.1 The separation d of surfaces S, and S, , Figure 16.2 can be large. Consequently the risk of scratch=
ing a surface during testing for flatness isavoided. Moreover, the reference flat is not subjected to wear by
frequent rubbing, etc, ’

16.2.2.2 As can be expected, the interference fringes will not be straight unless the test surface is also an
optical flat, ‘ “ '

16.2.2.3 In paragraph 16.2.1.2 we saw that 6 =  for optically flat, uncoated surfaces S,and S,of glass, '
The main effect of a small departure of the test surface from a plane is to introduce a local irregularity. in'the

separation d, Figure 16.2, over the range of x at which the departure occurs. It is natural, then, to consider-
6 in the form ) '

8 =7 - 2kn D(x) - ' (15) -
where D(x) shall express the phase difference introduced between the two interfering waves on account of the
departure of the reflecting surfaces from a plane. We suppose, as in the argument leading to Equation (11),"
that the term knz (1 - cos 6 ) is negligible in Equation ( 9) and introduce & from Equation (15). The result is -

W=a2[1—cosk(2D(x)+x9)];n=1; : (18)
where 0 is so ‘sm.all that one can set sin 6 = 6, Since 6 = 2a, -

W = a? [l-cos ék(D(x) + xa)] = 2a% sin® [ZT"(D(X).+XC!)] | (17)

The exact physical significance of _D(x) is now clear. Since xa = 4, the separation between surfaces 8; and
S, (see Figure 16.2) at point x, D(x) must be the increase in separation due to a local bulge in one of the
reflecting surfaces, D(x) >0 when the bulge increases the separation between the two surfaces. -

16.2.2.4 Xt should be observed from Equation (1'7) that W = constant whenever '
D(x) + xa = D{x) + d = constant, (18)

Since D{x) + d is the actual separation of the surfaces at peint x, it follows that an interference fringe is the
locus of those points x for which the separation of the interferometer surfaces is a constant. H the surfaces

.are plane, D{x) = 0 and the fringes are straight.

16.2.2.5 Suppose one of the interferometer flats is pressed or moved so as to decrease d by a small amount.
Since each fringe is the locus of equal separations D(x) + d, the whole family of fringes will move in the posi-
tive x - direction of Figure 16.2 wherever D(x) = 0. In localities where D(x) = 0, each fringe will move in a
slightly more complex manner so as to find the location where D{(x) + d remains constant.

16.3 THE TWYMAN-GREEN INTERFEROMETER

»

16. 3. 1 Principles of operation. ' .
16.3.1.1 The essential characteristics of the Twyman Green interferometer are shown in Figure 16.3. The
physical principles utilized in the TwymanGreen interferometer and in the Fizeau interferoscopeare so similar
that the corresponding elements of Figures 16.2 and 16.3 are recognized easily. These corresponding elements
are denoted by the same symbols. A small pinhole H, illuminated by monochromatic light, is located at the
first focal plane of the collimator L; so that a plane wave front is reflected by surfaces S; and S, of the end-
mirrors. A telescope is added to produce an image of the pinhole H at H;. The surface S; appears to be
located at_Sl'. If S; makes theangle o with S,, the ray reflected from S; will appear to be a ray BR such
that BR makes the angle 8 = 2a with the ray AQ reflected from S,. We take QZ parallel to AQ and OP
parallel to BR. The coordinate OX falls in the wave front reflected by S,.. This time, to complement Figure
16.2, we show the passage of ray BR to the vicinity of the eye lens where 2 second image H, of the pinhole H
is formed. The width of the interference fringes is increased by decreasing the separation H; H, of the images
of the pinhole by tilting mirror S, in the direction for decreasing angles o and a.
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16.3.1.2 One major use of the Twyman Green interferometer is to examine the optical quality of glass
plates, prisms, etc. The sample to be examined is placed in one arm of the interferometer and the effect of
the sample upon the fringes noted. It is usually necessary to readjust the angular setting of at least one of the
mirrors S; and S, and to alter the length arm AQ so as to obtain best contrast in the fringes. We shall not
be concerned here with the details of the many applications of the Twyman Green interferometer but, rather,
with the principles involved.

16.3.1.3 The beam splitter is usually an optically parallel plate, one of whose surfaces is coated with a uni-
form film of silver or aluminum., Whereas it is not necessary that the transmittance and reflectance of the
filmed surface shall be alike, they should not be ma.rkedly dissimilar. Where uimost contrast in the fringes
is desired, the second surface of the beam splitter should be rendered low reflecting. Henceforth, it will be
supposed that, the beam splitter consists, in effect, of a single surface as in Flgure 16.3.

16.3.1.4 The amplitudes a,and a, of the two, plane, interfering waves that enter the telescope Lg are not
likely to be as nearly equa. ﬁ as in the Fizeau interferoscope. However, these amplitudes will be nearly ahke
provided that the end mirrors S; and S, have practically equal reflectances and provided that the test sample
transmits well. It is, of course, possible to compensate the effects of the sample in one arm by placmg a-
suitable absorbing plate in the second arm.

16.3.1.5 We saw that the phase difference & between the two interfering waves will be 7 in the Fizeau
interferoscope. The phase changes on reflection at the surfaces $; and S, of the Twyman Green interfer-
ometer are likely to be nearly alike to that & can be sensibly zero. However, one cannot always be certam
that 6 is sensibly zero or that a, and a, are sensibly alike.

16. 3.1.6' The product knz (1 - cos 6) of Equation (7) will usually be negligible in the Twyman Green interfer-
ometer for the same reason that applies to the Fizeau interferoscope. We introduce this approximation mto
Equation (7). Instead of writing & as in Equation (15), we set & = §, - 2kh D(x). The reSult is

2W = a2 +a§+2a azcos[ﬁo-Zk(xa+D(x)):I (19j

" since sin 8 — 0 and 8 = 2a.

Equatmns (17) and (19) differ mainly in that the fringe system is shifted slightly with respect to x and in that
the fringe contrast obtained from (19) will be inferior to the constrast obtained from (17) except when

a; = a, = 2, l.e., except when the amplitudes of the two interfering waves are made substantially- alike in
the Twyman Green interferometer.

16.4 EFFECT OF MONOCHROMATICITY ON FRINGE CONTRAST

.16.4,1 Discussion of problem.

16.4.1.1 Fringes obtained with Fizeau interferoscopes or with Twyman Green interferometers ""wash out” .

.when the path difference d, Figures 16.2 and 16.3, becomes too great relative to the spectral purity of the

monochromatic source. It can be shown that the effect of the presence of many different wavelengths

(k = 21/)) in Equation (19) is to reduce the average value of the cosine term to zero as the spread of wave-
lengths-is increased. The physical circumstances become similar to those which cause Equation (3) to
degenerate to Equation { 4). We may say that the source of light becomes incoherent. An insight into the
nature and magnitude of the difficulty can be obtained from the following simplified cons1deratxons.
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16.4.1.2 With respect to Equation(19), suppose for convenience of argument that D(x) = 0 and suppose that the
source contains wavelengths from A, - [AA] to A, + |aAA] where |AM| is small. X [AX] is too large, an
interference maximum for A = X _ will fall at the same point xa T d as the first interference minimum due
F ' ‘

to the wavelength A = A, - |AA] . Thus, if

. 6, =v 2r;pan integer; (20)
and vo

fﬁ-ﬂ-ﬁo=v 21 + ;3 : | 5 @1
then since lé( Xo - [Ax] )= 1/xg + |AX]/ A?, , it follows by subtraction of Equation (20) from (21) that
4xa |ax] /X5 = 1. When, therefore, . : - .

Iar] = 2% /axa = g ey

a bright fringe due to A, will fall upon a dark fringe due to A = A, - |AX] . I the radiant fluxes of the two O
wavelengths are approximately equal and if the wavelengths A, and a, - |Ax] do.not differ appreciably‘in
color, the interference fringes will be practically pbliterated wheln IAA[ and the separation d are related as

in Equation (22). |

o , | | .
16.4.1.3 When ] Al is less than that given by Equation (22), one can expect that the fringes will be visible. In
fact, we must expect from Equation (22) that the condition for the appearance of interference fringes is

[ar] @ < % . , } (23)
i .
Contrast in the fringes is improved by choosing [AA| and the path' difference d so that their product is small.

.16.5 EFFECT OF PINHOLE SIZE ON CONTRAST |
16.5.1 Discussion of problem, . ;
16.5.1.1.As can be expected intuitively, the effect of opening the pinhole H too far is to reduce contrast in the
fringes even though the light is so monochromatic that one can set JAx] = 0. It can be shown that when the
pinhole size cannot be neglected, one obtains, instead of monochromatic law of Equation (19); the result .
2 2 J; (k2ys) | '

ZWT,=a1+a,z+2a1a2[2__1m_.]cos[!60—2k(xa+D(x))] (24)
in which Wy is the total energy density due to 2ll of the points in the illuminated pinhble H (see Figure 16.3),
2y is the angle subtended by the pinhole at the collimating lens Ly, 2s is the indicated separation of the
images H 1 and H 2 of the pinhole and J 1 is a Bessel function of first order and first kind.

| 16.5.1.2 The function 2J, (t) /t assumes its maximum value of unity at t = 0. Therefore, Equation (24) is

| identical to Equation (19) whenever the angle 2y subtended by the pinhole at the collimator is so small that
one can accept the approximation 2J; ( k2ys) /k2ys = 1. Contrast in the fringes is excellent provided that
the amplitudes a; and a, of the interfering beams are not too unlike. For a given value of 2y, the fringes
should show better contrast as they are broadened, i.e., as the separation s of the two pinhole images is

decreased. '

16.5.1.3 Thefunction Jy (t) /t has an infinite number of zeros the first of which occurs at t = 3.8317. When-
ever the product 2ys becomes so large that 27 2ys/ X = 3.8317 , J; (k2ys) /k2ys = 0. Hence Wy becomes
constant and should be independent of x and the fringes should vanish when )

\
2vs = _&%lla = 0.61x. \

Since J; (t) /t changes sign as t passes through any of the roots of J, ()/t = 0, the fringes should shift
abruptly by one half fringe width as 2ys passes through the value given by Equation (25). :

(25)

16. 5.1.4 Whereas it is the writer's experience that Equation (25) dqés not agree in an excellent quantitative
manner with observations in, say, the Twyman-Green interferometer, it does serve as semi-quantitative basis
for predicting the degree of contrast in the fringes. F ‘ :
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16.6 YOUNG'S PINHOLE INTERFEROMETER
16.6.1 Introduction.

15.6.1.1 The Fizeauand Twyman Green interferometers belong to a broad class of doubled pinhole interferometers
in which two actual pinholes are illuminated or in which the image of one illuminated pinhole is doubled by any
one of a variety of beam splitting devices. The rudimentary theory of formation of the interference fringes-is
essentially the same for this group of interferometers. I« the plane of observation is suificiently far from the
location of the pinholes, the two corresponding waves that arrive at the plane of observation are essentially
plane so that the theory of the foregoing paragraphs applies.

16.6.1.2 The following argument presents a second, very useful point of view that encroaches to’some extent
upon Huygens'principle. Let us consider the simplest of all double pinhole interferometers, namely Young's
famous interferometer of Figure 16.4. Monochromatic light is focused upon a small pinhole H. Coherent,
sphericalvwaves emanate from H and illuminate the small pinholes H, and H,, H H falls upon the Z-axis,
the light reaching H, and H, will be in phase. Otherwise, a phase difference 6, will be introduced, - Pairs
of coherent, spherical waves emerge from pinholes H; and H, and reach point (x, y) of the observatioh plane
after traversing paths r; and r, . I distance D is large relative to the separation 2s of the pinholes H, .
and H, and if point(x, y}is not too far from the Z-axis, the distances ry and r, will be so nearly alike-that
the two waves from H; and H, will arrive at point (x, y) with substantially equal amplitude provided that they
leave H; and H, with substantially equal amplitude. We shall suppose for sake of generality that the inter-
fering waves from H, and H, reach point(x, y)with the amplitudes a; and a, , respectively. (The amplitude
of one of the waves might be reduced, for example, by placing an absorbing glass plate over one of the pinholes
or by making the pinholes small but unlike in area).

From Figure 16. 4,

rf =D% + (x-5)%2 +y2; (26)

rz =D% + (x+s)® +y2. (2'_7)'
therefore ‘

.2 2 _ -

r, -T3 _(rz-rl)(r2+r1)-4xs (28) »
or .

To + T v l
r2 - I'l = %S(‘LZ——‘]’)- } (29)

It matters to a considerable extent which approximation one wishes to accept for (r; + ry )/2, the average
value of r; and r, . In case the point of observation(x, y), Figure 16.4, falls near the Z-axis, both r, and

ry differ only slightly from R = VD2 § sz, and the average value of r; and rg will fall nearer R than either
ryorry . Accordingly, we suppose that the point of observation(x, y),falls near the Z-axis and accept the
approximation '

r, -Tr, = e ) (30) .
' D” + s
—_Ss
Then from Figure 16,4, \/DZ +¢ = sin % . Since D is great relative to s,

6 8 __5 .
sing =3 = ‘[BZTS? ; k (31)
therefore,
r, - ry = %0 (32

in which @ is very nearly equal to the actual angle between the direction of propagation of the two waves that
reach point(x, y) from the pinholes H; and H, .

16.6.1.3 Wefind that the two coherent waves which interfere at point(x, y)have amplitudes a, and a, and the
phase difference ¢, - ¢, such that

b - by =0 +k(r; -1,) =08 - kxb ' | 33)

wherein the portion kx8 is due to the path difference r g~ T and wherein & specifies the phase difference

i
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between the two, interfering, non-collinear waves as they leave the pinholes H, and H, . The time-averaged
energy density W produced by interfering waves is given again by Equation (3).” Thus,from Equations (3) and
(33)

2W=af +a§ +2a, a,cos (5, - kxf) (34).
in which
k=21/A and 0 =2s/YVp2 2 . ' (35)

where 2s is the separation of the pinholes H, and H, , Figure 16.4.

16.6.1.4 Comparision of Equations (19) and (34) shows that they agree since 2¢ = 6 and since D(x), as defined in
Paragraph 16.3, is zero as applied to Young's pinhole interferometer. .o

16.6.1.5 Thefringesformed in Young's pinhole interferometer will not be straight, as predicted by the approxi-
mation of Equation (34), unless the point of observation is near the Z-axis of Figure 16.4. As the point of .ob-
servation is moved out to distances + Xi + y2 that become appreciable with respect to D, the average value
of ry and r, becomes a function of both x and y. It follows from Equations (29) and (33) that ¢, - ¢ will not
vary in a simple linear manner with x. The fringes become curved in a manner that is not difficult to ascertain
from a further study of Equations (26), (27),and (29).

16.6.1.6 Young's slit interferometeris obtained by replacing pinholes H, H 1 and H, by very narrow slits perpen-
dicular fo the plane of the paper. With this arrangement, the interference fringes seen at plane x y will remain
straight over a greatly increased portion of the xy plane provided that the slits are sufficiently long.

16.6.1.7 Young's interferometer is oothuseful and simple to construct. The difference in optical path, for exam-
ple, of two similar glass plates of nearly the same thickness can be ascertained by applying the following prin-

_ciples. We observe that if pinhole H is on the 7 -axis, Figure 16.4, a bright white fringe will be formed at O,

where x = 0, when H is illuminated with white light because the optical paths from H to O are equal. Con-
structive interference occurs at O for all wavelengths. If the pinhole H is not on the Z axis, the bright white -
fringe will be found at a location x 4 0. This location is called the white light position and determines a point
of reference at which the optical paths from H to O are equal. When monochromatic light is substituted for
white light, the fringes appear in best contrast about the white light position. Suppose that the optical path

H Hy O is increased by a slight amount 6, relative to the optical path H Hy O by the insertion at H, and Hjp
of glass plates that differ slightly in optical path. We see from Figure 16.4 that the ray H_ x must be inclined
toward larger x-values in order to equalize the optical path difference between the paths HZHI x and H Hyx.
Therefore, the white light fringe or any monochromatic fringe must move outward from the axis Z in the dir--
ection of that pinhole H, or H, over which has been placed the plate having the greater optical path. The mag-
nitude of &, can be found as follows from the measurement of the fringe shift produced by 6, .

16.6.1.8 First, thefringe width h is the increase in x for which k (x + h) 8 exceeds kx0 by 27 in Equation (34).
Thus

khe = 2r or h=-=. (36)

o| >

Secondly, a given interference fringe océupies that position x for which

5, - kx0 = constant = C. v 37

Suppose, for generality, that 5, has successively the values 6 4 and 6, . Denote the corresponding position
of a given fringe by x, and x,. Then from Equation (37)

o, - kxle =C
5, -kx,0=C | | : (38)
By subtraction of Equations (38) one finds that
- - 27
5, - 6 = k@ (xz—xl)- = 8 (x5 -xq) (39)

From Equations (37) and (39) we obtain the extremely useful result

b, -6, =27 X_Zl;_’il radians. _ @o0)
In other words, the phase change in the twoarms H H; x and H Hyx is given by the ratio of the fringe shift,
(x2 - X, ), to the fringe width, h.
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16.6.1.9 Difficulties. can appear whenf, - &; exceeds 2w; for then tlhe fringe shift, x4, - x{, exceeds the’
fringe width, h, by a number of fringes that may not be obvious. This ambiguity about the "fringe jump' can
be settled by considermg the shift of the white light position or by makmg measurements of the fringe loca.tions
at more than one wavelength,

16.7 LLOYD'S INTERFEROMETER.

I . - .
16.7.1 Description. Lloyd's double pinhole or double slit arrangement for obtaining interference fringes
ig illustrated in Figure 16.5. Corresponding elements are denoted by the same symbols in Figures 16. 4
and 18, 5 to emphasize their similarity. The interpretations of the interferometers due to Lloyd, Young,
Fizean, and Twyman Green are alike provided that the pinholes are small and provided that the distance D
is great. It should be observed that the virtual image Hg is a mirror image of H; . The relative loca- -
tions of the corresponding coherent points in the "images" H; and H, will therefore be significantly '
different in Lloyd's interferometer as compared with the Fizeau and Twyman Green interferometers. This -
mirror image relation between H; and H, is avoided by Fresnel's double mirror interferometer which

is illustrated in Figure 16.6. Both Hl and H2 are now virtual images whose separation 2s is governeci

by the angle a between the interferometer mirrors M; and° M2 .

ACTUAL PINHOLE OR SLIT, Hy
—_——

—=
VIRTUAL PINHOLE OR SLIT, Hz

| . J

W i |

FIGURE 16.5 - Lloyd's Interferometer
|
16.8 FRESNEL COEFFICIENTS FOR NORMAL INCIDENCE

16.8.1 Computing amplitude reflectance and transmittance. '

16.8.1,1 Let nand nK denote the optical constants of two media that ére in contact across a plane interface as in
Figure 16.7. Then for normal incidence upon the interface along the mdlcated direction, the amplitude reflectance

p is given by

p= My -M ] @1)
M, +M; ‘ ‘
and the amplitude transmittance 7 across the interface is given by 1
r= 3Mo (42)'
"M, + My ‘
where
My = ny (L+iKy); v=0, L * “3)
i
16-12 ’
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PINHOLE OR SLIT, H

—

FIGURE 16.6 - Fresnel's Mirror Interferometer.

no nl'

MEDIUM OF
INCIDENCE

FIGURE 16,7 -Transmittance and reflectance
’ at Translucent Interface
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16. 8.1.2 Suppose that neither medium absorbs so that K, = K; = 0. Then

= Do - M3, _ %o i
p n, +n,’ T= n+n1' | (44)

We see that 7 > 0, but the amplitude reﬂectance p is greater or less than zero accordmg as no is greater
than or less than n 1’ If we write p in the form i .

ng - N3

n, +n, | %9 ‘ (45),

i
we see that o, the phase change on reflecuon is zero when no> nj but is r when n,< nj. Further-
more, the phase change on transmission across an interface betweenltwo non-absorbing medla is always zero,

p:

16 8.1.3 Interferometers usually involve the splitting of a light beam at one or more interfaces between two
media. In order to compute or to estimate the amplitudes a; and a2 of the interfering waves thus produced,
knowledge of the Fresnel coefficients is essential, The Fresnel coefficients at normal incidence will suffice
for the purposes of the present text. The application of Fresnel's coeff1c1ents for normal incidence to cases -
involving oblique incidence can, however, be misleading. The reader who needs to compute the amplitudes "
a, and a, for oblique 1nc1dence should consult paragraph 24, 1. [

16.9 INTERFERENCE WITH PLANE PARALLEL PLATES AND DIS'Ir‘ANT LIGHT SOURCES

16.9.1 Discussion of Problem.

16.9.1.1 Aray AB from one point in a distant source of light is incidént upon a plate of thickness d with
refractive index n; . Reflected rays R;, Ry, Rj, etc., andtransmitted rays T3, T2, etc., are formed
in the manner indicated in Figure 16.8. We suppose that the plate is non-absorbing and that the reflectance of

its surfaces is so low that only rays R ; and R, need be considered in the reflected beam of rays. The prob-
lem is to find the optical path difference & between rays R and R runder the assumptmn that the surfaces of -

TELESCOPE
(NCIDENT RAY OR EYE
A
Ry
Ny
d n 1
Rg = N,
Ty T3

;

FIGURE 16,8 -The Dielectric Plate as an IntTrférometer.
E
\
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the plate are paraliel. Let line segment D; Dy be drawn perpendicular to rays R; and Ry . Then

6 =n,; (BC + CD, ) -ng BDy (46)
d
BC =CD, = —ggs 7

BD2 = 2d tan {'

BD1

Substitution of relations (47) into Equation (46) yields

1

BDzsin i = 2d tan i’ sin i. @

5 =29 (1-R sinisini) . ‘ “s)..
cos i’ ny ) s

Since no sini = my sin 1', it follows that the optical path difference § between rays R; and R ;".Fiéﬁrje
16. 8, is given by - "L

6 = 2n; d cos {' ’ @9)

where n; and d are, respectively, the refractive index and thickness of the plate, and t' is the ind‘igatéd_
angle of refraction. Equation (49) is of great importance to the interpretation of interferometry with films and
plates. -

16.9.1.2 Let us suppose that the plate is immersed in a single medium. Then n3 = no . " It follows from thie
principles of the preceding section that the phase changes on reflection at B and C, Figure 16,8, differ by =
radians. Thus, . :

A= .2.%'. 2n; d cos i’ + 7 radians (50) .

where A is the total phase difference introduced between rays Ry and Rp due to the optical path difference
5 and the phase changes on reflection. We have supposed tacitly that the angle i' is not so large that it is
essential to distinguish sharply between normal and oblique incidence. . '

'16.9.1.3 The optical path difference between the transmitted rays Ty and Ty is also given by o as in Equation .
(49). More generally, the optical path difference between any two, consecutive reflected or transmitted rays,
suchas Ry, and Ry , is givenby 5. o

16.9.1.4 According to paragraph 16.8, the amplitude a of the wave reflected at points B in the first surface,,
Figure 16,8 will be
| no - m1}

44 = mpt+m (1)

The wave corresponding to rays Ry is transmitted twice through the first surface in opposite directions and is .
reflected at points C. Hence, from Equations (44),
2n In, -n} 2n, _ 4ngnginy -ng

a_z = O - (52)
By + 13 ny+0y Do +Dy (ny+ nl);

If, for example, no =1 and n; =1.5, then a; = 0.2 and ag = 0.192 so that a; and ay are substantially

alike. These two collinear waves interfere to produce the time-averaged energy density or illumination at O,

Figure 16.8, proportional to W as given by Equation (3) with 6. From Equations (3) and (50)

oW = ai -2a, a, cos (fﬂ‘il_f_l_ cosi>.+ az . - (53)

The illumination produced by interference in the reflected beam can therefore be varied .by changing any one of
the following parameters:

{a) The optical thickness end of the plate

(b) The angle of refraction, i’
{c) The wavelength, X.
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The illumination at point O, Figure 16.8, is minimum when

4m, d ST -y 25 y =0, 1,2 3, et | (54)
|
On the other hand, this illumination is maximum when i
{

4m_d 9%'— = M 7; K an odd integer. : (55)

|
The minima will be quite dark since a, and a, are substantially alike,

| ‘ ' \ '
16,9.1.5 It is emphasized that with distant sources of light, the eye or telescope is focused for iofinity, as

illustrated in Figure 16.8, in order to observe the phenomena discussed in this section.

, .
16.10 INTERFERENCE WITH PLANE PARALLEL PLATES AND NEARBY LIGHT SOURCES
16.10,1 Discussion of Problem.

16.10.1.1 The manner in which interference phenomena can be ooservéjd:with nearvy light sources'is illustrated * - - ’

in Figure 16.9, Consider the coherent spherical wave that enamates from point S in the source. Suppose that.
the eye or camera is focused upon the upper surface of the plate and that the distances SD, and SB are large -
compared to the thickness @ of the plate. A pair of rays SBR 2 and SD 2 CBR1 leaves point S and reaches
point O in the manner indicated. : .

16.10.1.2 Withpoint S as center and SD, as radius,draw arc D, D;. I the distance SD, is large and if the
thickness d is relatively small, the arc D, D; will be practically straight and perpendicular to SB. More-
over, the difference between angles i; and i, will be so small that either i 1 OT i, or an intermediate angle,

suchas i, canbe regarded as the angle of incidence together with i' as the angle of refraction. The optical

path difference 6 between rays SD,CBO and SBO is ‘ '

‘
|

5 = n, (BC +CD,) - n BD,. o ~ (66)
i
|

i

S, POINT IN SOURCE

PLANE IMAGE

i EYE OR CAMERA

*
ny d
+

Ny =Ny
: ;
FIGURE 16.9 - The Parallel Plate Interferometer with nearby light sources.

f
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Comparison of Equations (56) and (46) shows that they are alike. Moreover, comparison of points; B, C, Dy,
and D1 in Figures 16.9 and 16.8 shows that they play similar roles. Hence:

6 = 2n;decost (5')

as in Equation (49), and what has been said in the preceding section applies with excellent approximation to
iltumination with nearby sources provided that the thickness d of the plate is small as compared to the dis-
tance from the plate to the source. )

18.11 HAIDINGER'S INTERFERENCE FRINGES

16.11.1 Interpretation of Haidinger's Fringes.,

16.11.1.1 A simple arrangement for ooserving Haidinger's fringes is shown in Figure'iG. 10. The eye is preferal;ly-
focused at infinity, where fringe contrast is best, but can be focused when desired on any suitable plane B.

16.11.1.2 The discussions in paragraphs 18.9 and 15,10. apply directly to the interpretation of Haidinger's fringes.
In the interests of simplicity, let us accept the approximation a,=a,=2a in writing the energy density ‘W of
Equation (563) so that N

IW = a2[2-2cos (ﬂ“l%ﬁ’—s—‘—)]

Therefore, the energy density in the observed fringes is proportional to

W - az[l_cos {é_m_gc_o&” | (58)
with
sini= n, sini’. _(59)

1

Dark fringes or bright fringes are seen at angles i, Figure 16.10, for which cos i' obeys Equations (54) or
(55), respectively. Since the angles i1 or i' are constant on circles about the axis AO, Haidinger's fringes
are observed ag circular fringes about an axis AO that moves with the observer's eye. ’ .

16.11.1.3 Suppose, forexample, that ny = 1.5, d = 1.8mm, and X = 0.54 x 1073 pm, Then 2n1d/}g = 104.
Therefore, from Equation (54), v = 10 when i = 0. The order number v = 10 is the highest possible
order - and for it the central fringe is black. The next black fringe occurs when v = 9999, i.e., when
9999 .
cosi' = 2nmyd = 0.9999 or i = 0.81°.

Since sini= n, sini’, theangle iA subtended at the observer by the radius of the first dark ringis 1. 21°,

Because the angular resolving power of the eye is approximately one minute of arc, plates much thicker than
1. 8mm can be inspected for parallelism with the unaided eye by moving the plate along the arrow direction Q
of Figure 16. 10, :

16.11.1.4 In applying Haidinger'sfringes to the inspection of parallelism of plates, the distance from the eye to

the plate should be made three feet, or so. The point O, Figure 16,10, can then be in the plate itself, i.e.,

one can focus his eye approximately upon the plate. Even though the plate may not be plane parallel, substan- -
tially circular Haidinger's fringes will be seen. The central Haidinger fringe will oscillate in brightness a

humber of times that depend upon the departure of the surfaces of the plate from parallelism as the plate is

moved across the field of view in the Q-direction of Figure 16.10. At the central fringe, cos i’ = 1, Equation
(54) now shows that when » changes by unity {that is, as the central fringe changes from one state of blackness .
to the next), the corresponding change Ad in thickness is given by 2n lAd/ A=1 orby

n!Ad_gl
X B

(60)

This means that each time the central fringe passes through one cycle, the optical path through the plate has
changed (as could be expected without the aid of the theory) by one-half wavelength. Counting the number of
blinks of the central Haidinger fringe forms a sensitive and simple method for measuring the amount of depar-
ture from parallelism of a plate. ‘

16.11.1.5 L is worth noting that Haidinger's fringes are essentially fringes of equal inclination, Each fringe cor-
responds to a definite angle i' of inclination. Changes in i' (rather than changes in X or n, d) govern the
observed changes in the fringes. #
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EYE
EXTENDED
MONOCHROMATIC
SOURCE
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s ‘
\ i
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+ BEAMSPLITTER
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A
/ § m
u ' ‘ BLACK SURFACE
[ e t———— ervrem—— F—— ——

|

ll

’ |
i P

FIGURE 16, 10-Arrangement for observing Haidinger's Fringes,
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16.12 FIZEAU FRINGES
16.12.1 Introduction.

- 16.12.1.1 The fringes seen withthe arrangement shown in Figure 16,11 under illumination from an extended

and fairly monochromatic source are often talled Fizeau fringes or Fizeau bands. These fringes are similar
in formation to those obtained in Michelson's interferometer of Figure 16, 12, The method of Figure 16. 11 is
used widely for testing one polished surface against another for flatness or for sphericity. The reference sur-
face, S;, may be flat or spherical.

16, 12.1.2 Owing to the presence of dust, surfaces S, and 8, will ordinarily be inclined so that the space between
them is approximated by an air wedge whose angle 8 is constant only when both surfaces are plane. Figure

16. 13 illustrates how the Fizeau fringes can appear localized in a. chosen plane containing point P. Note that.
each point P receives coherent light from a corresponding point S in the source., Each point P is, in effect,
illuminated by a different point in the source. An extended source becomes necessary for viewing fringes over
an extended surface 31 . . i

16.12.1.3 It will be observed that Figures16.13 and16, 9 are so similar that they become identical when 8 = 0.
The argument leading to Equation (57) for the optical path difference & between rays SPP' and SQPP' .
applies again with excellent approximation provided that one takes for d the thickness of the wedge at point

P as indicated in Figure 16, 13. Equations (54) and (55) govern the location of the fringes. Minima occur where

2n1 decosi' = var; v =0,1, 2, 3, etc,, (.6’1)'
and maxima occur where
4n1 dcosi = px; p an odd integer. ' (62)

Since the space between S, and S, is usually air,

=i ' (63)

where i is the angle of incidence,

16.12.1.4 The advantage of simplicity obtained through the use of Fizeau fringes rests upon the fact that varia-
tions in the angle of incidence i, Figure 16. 11, have negligibly small effects upon the location of the fringes be-
cause the separations d between S and Sy are small, Suppose, for example, that d = 10 A The maxi-
mum value of v occursat i' = 0, andhere v = 20 from Equation (61) since ny = i, ¥ d and A remain
constant as point P moves away from point O, the next dark fringe occurs at » = 19 so that cosi' = cosi=
19/20. Correspondingly, i = 18.19°. Let the distance AO from the eye to the test plate be made so large
relative to the lateral dimension of the test plate that the maximum value of i cannot exceed 4 0. The varia-
tion of 4% is obviously small compared to the amount 18. 19° required for decreasing dcosi' by the amount
3/2. Infactwhen 0 < i & 49, 0.9976 < cos i < 1. Hence, 102 > dcosy 2 9.976x. This means
that d cos i' cannot change by more than 0,034 wavelengths due to any variation of the angle of incidence when
i nax 18 constrained to 49.by the choice of the distance AO, Ii, therefore, one arranges to observe the Fizeau
fringes at normat incidence, he is justified in setting cos i = 1 in Equations (61) and (62) and accepting the
well known approximation that the separation d changes by the amount /2 in passing, for example, from one
pright fringe to the next, Eachfringe may be regarded as the locus of points for which the separation of the
surfaces S; and S, , Figure 16. 11, is constant. : :

16.13 NEWTON'S RINGS AND NEWTON'S FRINGES'

16.13. 1 Interpretation of Newton's Fringes. .

16.13.1.1 An experimental arrangement for observing Newton's rings or fringes is illustrated in Figure 16,14
In honor of Sir Isaac Newton, the colored circular fringes seen around the point O with white light sources
are called Newton's rings. The central fringe is black at O when S; and Sy are substantially in contact
because there is a phase difference of one-half vibration between the reflections at S, and S,. 1t is preferable
for most purposes to view the interference bands with monochromatic sources. These circular bands arel
often called Newton's Fringes. Comparison of Figures 16. 11 and 16. 14 shows that Fizeau's and Newton's
fringes can become practically identical. '

16.13.1.2 Itwas seen in the previous sectionthata Fizeaufringe can be regarded with good approximation as the
locus of points for which the separation of the surfaces S1 and 82 is constant. - We may take the view that
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FIGURE 16. 11~ Method for obtaining Fizeau Fringes.
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FIGURE 16, 12-Michelson's Interferpmeter.
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FIGURE 16. 13 -Construction showing how the Fizeau Fringes can appear localized
at points, P, near the reflecting surfaces S; and S,
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FIGURE 16. 14- Arrangement for obtaining Newton's Rings or Newton's Eringes.
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Newton’s fringes are Fizeau fringes along which the sagitta s of F1gure 16. 14 is constant such that dark frmge.s .

occur when

s=v 53 v=0,1,23, et., : ' (64)
and such that bright fringes occur when ‘
i i . .
s=u;}; p=1,3,5, etc. | - (69)
2 |

The sagitta s obeys the relation x“ = 2Rs - s2 s Where R is the radius of the surface. By neglecting g2
in comparison with 2Rs, one obtains the approximation ‘

x= ViRs . E ‘ (66)

| |

Thus, from Equations (64), (65),and (66) . ' A
Xp= VPRA ; w= 0,1, 2 3, etc., 67

i

where xp are the radii of the dark fringes and !

x, = YuR N2 ; p=1, 3,5, ete. . E
where the x,, are the radii of the bright fringes. The radius R of .the surface can be computed from the '
measured values of the radii x, or x,. |

16.13.1.3 The adoptionof the theory of Fizeau fringes to Newton's fringes is, in itself, an approximation. The
method of the sagitta should be regarded merely as a first approximation to the mterpretatwn of Newton's
fringes with extended sources of light. More critical investigations reveal that the chmce of observation plane
matters, as does also the location of the eye with respect to the points X, or x,.

16,13.1.4 In viewing both Fizeau and Newton's frmges the tendency and prachce is to focus upon the thin film be-
tween the mterferometer surfaces S and S
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16.13.1.5 For increased accuracy in usingthe sagitta method for determining the radius R, itis preferable
to choose as the reference surface S a spherical surface of known radius R, that depazrts only slightlngrom
Ry . The "gffective sagitta™ s, Figure 16é 15, is now givenby s = s; - Sy inwhich x" = 2R, 8; - 87 =
2{12.32 - s5 . By neglecting s% and s3 in comparison with 2R1 Sy and 2R, s, , respectively, one
obtains

2 2
s=§_.(i-i)=x_<5_2:_§l). (68)
Z \R; R, 2 \R, R,
Thus, from Equations (68) and (64), dark fringes occur at radii x, for which ‘
Xy = (——1—-R Rz )")‘ s (69) .
Ry-Ry

a result that reduces to Equation (67) when Ry = . If R; and Ry are nearly alike, one may set- )
R, R,= Rg . Within the validity of this approximation, » S

RZ-RI = _2...) vV X. (70) ’
X, . : .
15.13.1.6 Systematic error of interpretation of Newton's fringes due to inadequacies of the sagitta method.can be

avoided or minimized, as will now be shown, by replacing one of the end-mirrors of the Tyman Green interfer-
ometer by the spherical surface S1 as illustrated in Figure 16, 16, T

16.13.1.7 We suppose that the end-mirror S; has a large radius R and seek to compute R from the radii of the
circular fringes seen about point O when the eye lens and telescope focus the plane z = 0 upon the retina. We
may suppose for simplicity that pinhole H and the center C of spherical surface S fall upon the axis of the
instrument, We take plane z = 0 through point O as the plane of reference. The plane wave reflected from
S, appears to return to the observer as a plane wave along the direction OZ . The wave reflected from 54
appears (apart from spherical aberration produced on reflection) as a spherical wave that expands from point

F located at distance R/2 behind point O, We suppose that the distances x are small enough that spherical
aberration on reflection can be ignored. . :

FIGURE 16, 15--The Sagitta Method when the Reference Surface 8, 1is a sphere.
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FIGURE 16, 16~ qumatibn of Newton's Fringes with a Tyman Green Interferometer,
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16,13.1.8 The plane wave returned to the observer has the form
E, =a, cos (60 + kz - wt) (71)

where a, denotes the amplitude and 5, has been added in order to account for the difference in phase change
on reflection. The spherical wave returned to the observer has the form

R .2 1/2
E, = a, cos {6:1 +k[r2+(z-—2-—)] -wt} ‘ (72)
in which .
r= (x2+y2)1/2 (7,3)l

On the circle x2 + y2 = r2 in the plane of observation z = 0 the phase difference ¢; - ¢, between E; and
E2 is given by :
Rr2 1/2

q?l - ¢, = 8, -8, +k(r2+T) . ‘(7:1).

But at point O, where x =y = z = 0, ¢, - ¢ , must equal -5, because the separation of S, and Sy is
zero. Hence, with respect to the undetermined value of 6, , :

_ R _ _ R
o, =-kg =-7-%
so that ‘
_ MR 2r [ 2. RZ]V2
¢1-¢2—-60-—x+—x—[r+—3—] : - m

The time-averaged energy density on circles of radii r theplane z = 0 is given by Equation (3) wherein '

¢, - $ 5 obeys Equation (75). It follows from Equations (3) and (75) that the fringes display maximum bright-
ness at r-values for which :

- 241/2
-60-’—5'-1--2%[!‘5 +%—] =V21r;v=0,1,2,3,f3tc.,. (76)
and minimum brightness at r-values for which
21/2
_50-__.”54..2%.'“[1‘& +54.] =pw; =1, 3, 5, etc, (77)

Equations (76) and (77) enable one to compute both §, and R from measured values of r, and r, incases
where 60 is not known,

16.13.1.9 Either the Twyman Green interferometer or the Fizeau interferoscope of Figure 16. 2 may be used. With
Fizeau interferoscopes, 6 = 7 in Equations (76) and (77). With Twyman-Green interferometers, .6, =0 .
when the end-mirrors are unsilvered or equally silvered surfaces of glass, -

16.13;1 .10 The exact form of Equations (76)and (77) will rarely be required. The following excellent approxi-
mation leads to a much simpler pair of working relations. 2We write

[r,? +_1,2'2]1/2 =%—[ L 4r ), ° ]%

It will be impractical to utilize either the TyymanGreen or Fizeauinterferometers unless the radius R of the
test surface is so great that 1 >> 4rZ / Rl_ and that

, 4 2 = 2r, 2 2 ' .
$o o AR o
R RrR2 R
By combining Equations (76) and (77) with Equation (78), one obtains the simplified results
2
-8, * 2:;” = p27; (bright fringes) : (79) .
6 27l s (dark fringes) ' : (80)
-6, + S = pw; rk fringes).
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I, for example, & = 7 as in the Fizeau interferoscope, :

27’1',,1._2/>\R= (v + 1) v so that r,f‘.—. AR EOL+1)/2.

Consequently, for circular dark fringes i
ry= VAR@+ 1)/2 . :

(81)

| ‘ )
Since p is an odd integer, (£ + 1) is an even integer, and @ + 1)/2 generates the integers 0, 1, 2, 3, etc.
(To obtain the zero-value, one takes p = - 1.) [ ' . ‘

16.13.1.11 Comparision of Equations (81) and (67) shows that they agree. This means that the sagitta method is
more reliable as applied to measuring R in the Twyman-Green or the Fizeau interferometers than it is likely
to be as applied to methods based upon Fizeau fringes or Newton's fringes. This conclusion is not surprising

because the Fizeau and Twyman-Green interferometers utilize small sources of light and are constructedso that -

the observer is forced to view the fringes under conditions of normal]‘ incidence.

16.14 COMPLEX NUMBERS
16.14.1 Introduction. '

. i .
16.14.1.1 Many of thefollowing discussions areboth shorter and more readily understood by employing complex

!
i
'

numbers instead of the trigonometric functions. Only the most elementary properties of complex numbers will

be needed.
16,14. 1.2 One well known method of expressing a complex numoer Z is illustrated by the equation

Z=a+ib | ; (82)
wherein a and b are real numbersand i = v-1. The real numbers a and b are often called the real and
imaginary parts, respectively, The so-called complex conjugate 7 ?f Z is defined by the relation

Z=a-ib. | ; (83)
It follows at once that | v
|
Z .

a = Z ; =z R.(Z), therealpartof Z (84)
and that ‘ |

b = Z-2 (Z) , the imagi tof Z . (85

= 5 s by, (Z) , the imaginary part o Z | : o (85)
Furthermore, 1

l2,2= z_z"=a2+b2 H (iz =I-1) o ,l (86)

‘ .
where IZI is the absolute value or amplitude of Z, i.e., the lengthof Z as illustirated in Figure 16. 17

|
16.14.1,3 For our purposes the exponential form of Z is much to be preferred. Thus,

Z = et o (&7
16.14.1.4 By definition, | :
1z e® = 2| (cos 6 + 1isine) | | (89

where the angle 8, illustrated in Figure 16, 17, is called the argumeni of Z and written arg(Z). It follows by
comparison of Equations (82) and (83) that , ) ‘,

i

a= |Z] cosf; b= |Z sinb; ‘

(89)
consequently, '

b . .
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— 1

b=7% sin 6 e

a=|Z|cos @

FIGURE 16. 17- Representation of complex numbers in the complex Z - plane for whichZ = X'+'i Y.

16.14.1.5 That Equation (88) is a reasonable definition can be seen from the following considerations. From the
series . ’

2 4 6
X X
cosx= 1- = + - +. ..
° 21 * IT T Bl
and
. x3 x° x?
sih X = X - m‘ + .Eﬁ‘ - 7T + .
we obtain
i202 i393

cos B +isinf = 1 +1i60 + 5T * 5Tt -

which is in the form of .
2 3
X . X X
e 1+x+ 3T 5 37 +. ..

wherein =x =16, and &* = ell,
15.14.1.8 Giventwo complex numbers Z1 and Z2 in exponential form, their product Z is given by
_ 16 0, _ (0, +6,) ,
Z=|Z,| e 1|zz|ez-,|zl| |zz|e 1772 (91)

The rule for multiplying two complex numbers is to multiply their amplitﬁdes and to add their arguments.
Similarly with respect to division,

ER R T - R (92)
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16,14,1.7 Finally, if Z = |z| e

APPLICATIONS OF PHYSICAL OPTICS |

-ie
= |z] e (93)
Congider, for example, the statement ‘
t
E= a‘”’ w)—acos(¢-wt)+1sm(¢-wt) ‘ ‘ (94)

We see that the wave form of Equation (1) is the real part of E as expressed by the complex form of Equation

(94). This means that, when desired, the instantaneous value of E can be computed as the real part, R (E),

of E as given by Equa’uon (94).

density. From Equation (94)

E)]2= EE = a%.

By comparing Equations (95) and (2), we find that

where W is the time-averaged density.

W= [E?=EE

'
'
i

However, one's chief interests center fmally upon the time-averaged energy

(95)

(96)

This property of the complex wave form is of great convenience,.

16.14,1.8 Suppose that the complex wavetraverses a medium whose amplitude transmlttance is 7 and Whose
pbase transmittance (optical path) is nd. We can write the transmittance of this medium in the complex form

T = 7

(97

If E is given by Equation (94) upon entry mto the medium, then if E denotes the value of E as the Wave
leaves the medium

E' = TE=Taei(¢+nd—wt)

(98)

Similarly, if the wave corresponding to Equation (94) is reflected from an interface between two media

in which p =

flection,

t

E = pE = ‘plei(¢+tp-wt)

16. 15 TRANSMITTANCE OF PLANFE PARALLEL PLATES
16. 15.1 Introduction.

16.15.1.1 The simplified treatment of paragraph 16,9 applies with excellent approximation to plates whose sur-
faces have low reflectance. As the reflectance of the surfaces mcreases the effects of the inter-reflected
beams ultimately dominate and exert, as we shall see, profound effects upon the distribution of energy density

in the observed fringes, The most conspicuous of these effects is a pronounced sharpening of ‘the fringes to the

|

|

(99)

|r| e"p wherein p denotes amplitude reflectance and Y denotes the phase change upon re-

point where they can appear as narrow bright lines on a dark background in transmitted light. These narrow

fringes can be utilized to obtain more accurate measurements of surface 1rregulant1es, ete., than is possible
with the sinusoidal fringes that are produced by double beam interferometers such as the Michelson interfer-
ometer or the Fizeau interferoscope.

16.15.1.2 The theory of this paragraph applies directly to the Fabry-k’erot and related multiple beam interfer-
omefers.

16.15.1.3 With respect to Figure 16.18:

ny

ny

[ T N O LI 1 O 1

refractive index of the plate

refractive index of medium of incidence
refractive index of last medium

thickness of the plate

angle of incidence

angle of refraction

internal amplitude transmittance of the

plate

amplitude transmlttance from the Oth into the 15t
medium

16-28
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amplitude reflectance from the 15t
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phase change on reflection associated
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amplitude transmittance from 15t into
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amplitude reflectance from the 15t
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phase change on reflection associated
with r1,2
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| FIRST SURFACE

‘ /\"1,0; 610

.
0,1
\f"l,z; 61,2

SECOND SURFACE - -

FIGURE 16. 18-Convention with respect to the transmitted beam in a plate or Fabry-Perot interferometer.

i6 ié ‘
16.15.1.4 We bear in mind that7y 3, P1,0 = T1 oe 7, T1.g and py g= T3 g€ 12 are Fresnel co-

0 * 3
efficients that depend in general upon i and upon whether the incident E-Vector vibrates in, or perpendicular
to the plane of the paper. ‘
n, sini = n; sini} = n, siniy . (160)

The optical path difference between any two rays Tj and T, will be 2n1 d cos i'1 (see paragi-aph 5.10).

Let jv1

o .
a = .Tl d cos 'li + 61’0 + 61’2 (101)

and let B be the optical path for the directly transmitted beam T1 . Then,under the supposition that the in-
cident beam has the amplitude unity,

B

i
T, = 1'0,1 T, "1,2e

) ip ia
Ty = Toa 3 1,2 Fy,2 T1,0 ©

i8 2 _i2e,
3 = To1 T 7,28 (g5 59" 7 etc.

]
]
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" ; .
I we consider N inter-reflections so that there are N emergent rays T, the emergent wave is now de-
termined from the scalar quantity ; ‘

. o |
E = glot g Ty =7, T3 Ty teiﬁ};e_l‘"t ), AY e 1@ (102)
v=1 ! ’ ‘ v=0 ‘ :
where ‘
A=T Tior T12 T b - oy
But i
N : N+l i@ (N+1)
Z AV i@ _ 1-A e’
L Ao (104)
Therefore, } : '
o i('B_wt)l-AN'*'l id(N-i—l) .l
E = 10,1 s T1 s 1-1,2 e — em . (105)

16.15.1.5 Thetime~-averaged energy density 2W is proportional to |E |2 = E E. Itis obtainedina straight-'.
forward manner from Equation (105). The result is ]

1 -2 AN ¢og I_-(N;+ 1)e + Az(N+1):1_ :
2 7 (106)
1 -2Acosa + A .

}
,/‘
\

wherein o« and A are given by Equations (101) and (103), respectively.

oW = (70’1 , T

2
1? 71,2)

16.15.1.6 In athickplate the number N of inter-reflections is restricted by the length of the incident wave train
or by the tendency of each successive reflection to "walk" the beam out through the ends of the plate. However,
with thin films, such as soap {ilms, or with evaporated films one is usually justified in setting N = ©. When-
ever one can accept the approximation N = «, the time-averaged energy density W in the transmitted beam

is given by the simpler expression l

oW = (9173, 71,202 . (o7
1 -2Acosa+ A% ‘ ‘

16.15,1.7 Withrespect toboth Equations (106) and (107), major max{;ma ocecur in the transmitted fringes when

; 4 :
a=v2r; v=0,1, 2, 3, etc. ‘ (108)

This result can be expected intuitively; for it requires that all rays Tj of Figure 16, 18 shall emerge in phase.
|

16.15.1.8 Ths'.= integers v are often called spectral orders.

1 ; v :
16.15.1.9 Equation (106) for N transmitted rays T; differs from Equation (107) in that it predicts the existence
of N + 1 subsidiary maxima between any two cox?secutive spectra} orders v and » + L.

. \ ,
16.15.1.10 WhenA = 72 r becomes small in Equations (106) and (107),

r
1 1,0 1,2

2 .
aw - (T3 Ty Tia) (75, T, 7, ;)% (L+2A cosa) . (109)
1 -2Acosa ? P , ‘ .

This means that the transmitted fringes assume the sinusoidal dist?ributions typical of double beam interfer-
ometers when A becomes small due to reduction of the internal transmittance 7, of the plate or of the amp-
litude reflectances ry o, and r; o of its surfaces. Contrastin the 'transmitted1 fringes will be poor when A
is so small that Equation (109) is an acceptable approximation to Equation (107).

16.15.1.11 Itis more difficult to demonstrate that Equations (107) and (106) predict the appearance of sharp fringes
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as A approaches unity. Let the energy density W be plotted against o asin Figure 16. 19, At a = v2a >

2
B

W = Wmax =TA-A)Z (110)
in which B = 1 1Az We wish to find the neighboring value of @ for which W = Wmax' /2. Set

a=v2w+ Aa (111)
and suppose that Ae is go small that cgs @ = cos 27 cos Aa = 1~ (Ag) 2/2. Then for W = W, 2
from Equation (107), Bg/ [1-20+A%+ A (a0 J=B Q/ [2 (1 -A)‘fj so that A (Aa)2 = (1 '1’“2’3{.
Hence, . . : ’

Aa = 1 -A

YA ‘ (1_12) .

where A a is the increment that must be addedto a@ = v 2 7 inorder to drop W from Wpyx to -‘Wma‘;_ /2.
If o isincreased by 2.7, the next fringe for which W = Wy, is obtained. In other words, the fringe-width
is 2% intermsof a. We define . .

w = Ao _ 1 1-A i
77 Ir VA (113)

and call it the optical balf-width of the Fabry-Perot fringes. We see that this optical hali-width decreases .
rapidly as A approaches unity. I, for example, A = 0.9, 2w = 0,032, This means that the width 2w,
Figure 16, 19, is approximately 0.03 times the width from one bright fringe to the next. The fringes become
exceedingly sharp as A approaches unity. A-values of 0. 9 are obtained easily by silvering the two surfaces

»1h SPECTRAL ORDER

N
«»ﬁ—

.

r

1 - a
' Aa (v+1)onx
var rT 2r >
Pl
| 129 = aa
T

FIGURE 16. 19- The Sharpness Quality of Multiple Beam Interference Fringes,
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| |
of the plate. ‘

16.15.1.12 The limiting sharpness of the multiple beam fringes depends ultimately upon freedom from absorption.
As a high reflecting coating, silver has remarkably low absorption: It is not difficult to obtain evaporated films-
of silver that have absorptions less than 5 per cent even when the film is practically opaque. Whereas much
lower absorptions are possible with silver, the use of high reflecting, multi-layered films is becoming more
common when the narrowest half-widths are required. :

16.15. 1.13 Two methodsfor viewing the multiple beam interference fringes that are transmitted by a plate are
illustrated in Figures 16. 20 and 16, 21, Sharp, circular fringes will be seen provided that the surfaces of the
plate are sufficiently parallel and silvered. Since ny , d,and A are fixed, it follows at once from Equation
(101) that the sharp bright fringes are fringes of equal inclination, ;i. e., the angle of refraction 1i is constant
along each fringe. When the thickness d of the plate or film is large, the number of eircular fringes becomes
so great that the determination of their spectral order » is diffic\{ﬂt. : g '

{
16.16 REFLECTANCE FROM PLANE PARALLEL PLATES
16.16.1 Introduction,

16.16.1,1 Thedark fringes usually appear sharp inthe reflected fanhily. However, it is not necessarily true
that a dark fringe must appear in the reflected family of fringes at values of a for which a bright fringe occurs
in the transmitted family. ‘ ‘ . :

t

|
|

16.16.1.2 Withrespect to Figure 16. 18, let r 0,1 and &, ; denote amplitude reflectance and phase change on '
reflection for a beam incident from the 0'! niedium. Then, .

i6

R = 0,1
0o " %o ¢ e o)
a -
- 2 1,0
Ry =741 T1,0 T1 T12° (25 )
i{2a -
= 4 2 1,0
Ry " 70,0 T10 T1 T2 1,0 © (0 . )
' i(3a -6
6 3 2 .ot 1,07 ‘
R3‘= To Tio 71 T Tigce | 5 ete. (114)
Therefore, k ,
. i6 i
0,1 (@ -0y )02 i
R = i R'=1 . e +Ce 1!""2 AV eV v (L15)
v==0 ? i v=0 .

in which @ and A are defined by Equations (101) and (103), R is a complex number that determines the amp-

litude and phase of the reflected beam and |

l : S
= 2
C = To,1 Ti,0 T3 Ti,2° 7 (116)

r - ib
Comparison of Equations (102) and (115) shows that Equation (115) contains the additional term r 0.1 © 0.1

due fo the first reflection R, of Figure 16, 18, It is the presence of this extra term that complicates the: nature
and the interpretation of the reflected fringes. |

16.16. 1.3 Supposethat a has ani one of the values »2 ¥ of Equation (108), the condition for bfight fringes in the
transmitted beam. Then from Equation (115)

6 -6,  N-1
_ 0,1 1,0 v
R=1,, e +Ce L A
.” = 0 . . |
i6 -i(6, + 6 . )N-1
=r, e ™ 1ice LU 0LTYav (117)
0’1 v=90 .

|

We see that |R| will be minimum when @ = p 2, provided that with respect to the phase changes 6, , and
& on reflection at the first surface of the plate ’
. . ) |

1,0 ‘
61,0 + 60’1 = B | j A(118)

where p iS an odd integer. In other words, dark reflected fringes will occur at the same @ - values as bright
transmitted fringes, provided that the sum of the phase changes on reflection for incidence from opposite direc-
tions upon the first surface, Figure 16. 18, is an odd number of half-wavelengths. This condition is rarely ful-
filled. Consequently, one has to expect that the reflected fringes will be darkest at a - values that differ suit-
ably from @ = v 27 where » is an integer. However, this complication does not detract from the utility of

|
632
g
|
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YE FOCUSED
AT INFINITY
EXTENDED
MONOCHROMATIC SILVERED
SOURCE

FIGURE 16, 20-Simple Parallel Plate Interferometer. .

COLLIMATOR TELESCOPE

A /'y
———
P!

1 P
| EXTENDED
| MONOCHROMATIC
| SOURCE

v  J

) | PLANE OF

SILVERED CIRCULAR

FRINGES

FIGURE 16. 21- The Fabry-Perot Interferometer.
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| ‘
the reflected fringes, except in those cases in which it leads to frmges that are only slightly darker than the
background, !
| .
16,16.1.4 Sharp reflected fringes canbe observed, for example, by replacing the elements bearing surfaces S,
and S, of Figure 16. 1l by a plane parallel plate whose major surf?.ces are suitably silvered, aluminized, etc.
The eye is preferably focused for infinity.

16.17 MULTIPLE BEAM INTERFERENCE FRINGES FROM SLIGHTLY INCLINED SURFACES

16.1'1 1 General. g

i6,17.1.1 Leta wavefront V be incident upon the wedge formed between two reﬂecting surfaces that have the
small included angle « as illustrated in Figure 16, 22, Wavefronts' V,, Vy, V,, etc.,inclined at the angles

0, 2a, 4, etc., will emerge from the wedge after an appropriate number of inter-reflections within the wedge.

The corresponding emergent rays are indicated by T,, Ty, Tg, etc. A series of coherent, ‘plane waves are
formed in this manner by inter-reflections within the wedge. \

|
16.17.1.2 Let !

amplitude transmittance of surface Sj;

t; =

t; = amplitude transmittance of surface S,;
r, = amplitude reflectance of surface S;;

T, = amplitude reflectance of surface S,;

6, = phase change on reflection at surface Sy}
by = phase change on reflection at surface S,,

| .
16.17.1.3 We choose theX-axis along OP and the Z-axis parallel to PT, and suppose that the amplitude of the

incident wavefront is unity. We note that such phase changes as may occur upon transmission through surfaces
S, and S, canbe ignored since they alter all of the emergent waves equally. The space between Sy and S P

is aassumed to be nonabsorbing. |

16.17.1.4 The emergent wave propagatedalong PT,, i.e., along Zj’ has the complex form

T = t. t. e lknzg-iwt
[ 2
The wave emergent along PT, has the form !
1(6,+8,) ikn [x sin 2a + z cos 2d] - i
ot 1Te) i b Beos i et

T1 = t1 t2 r, T, )
Similarly, ) ‘
Tz - tl \ (rl r, )2 12(' 5,+6, )eikn[x sin 4a *‘z°034‘1]e-1wt
3 13(8, +8,) ikn[x sin 62 + zcos 6a] _ ./
T, = t, t, c; ry) 2 . “e 5
ete.,

\
’ |
16.17.1.56 Introduce ’

12 ‘
T = i‘.1 t2 H ]
$ = 8, +5,. E (119)
Then E !
T - % - - it § ikn [ sin (2va) + z cos (2va )] (120)

where T specifies the amplitude and phase determined by the intex“ference of the emergent waves

» +»++,Ty. Thefringes described by Equation (120) are of a type far more general than those
ordinargly used We obtain the conventional type multiple beam fringes formedby awedge by supposing that the
angle a of the wedge is so small that

sin @va)~2va; 05y SN ’ (121)
cos Qva) -~ 1 ; 0§V§N. |
|
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I FIGURE 16. 22- Multiple Reflections in two reflecting surfaces S; and S; .
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From Equations (120) and (121)

- i N i anx: ‘
T =7 e W P gyl (o+ “3) (122)
v=_0

‘ I
Applying Equation (104) to Equation (122), we obtain ‘

—iwteiknz 1 - p¥1 ei(N+~1)(¢+2knxa)

T=r7e 1-R e (97 2knxa) " (123)
16,17.1.6 Thetime-averaged energy density WT in the fringes seen Ln transmission is given by
2w, = A 2R cos [(N;— 1)(¢ + 2knx._q:)j + RZOV)
1 - 2R cos (¢ + 2 knxe') + R? (124)
in which } | ' .
T =t t,; R zoxror,; ¢ =5 4:-52 ; (119) -

k = 2#/x; and n is the refractive index of the medium within tl:le wedge. ¢ is the sum of the phase changes
on reflection at the surfaces S; and S, of the wedge. « is the angle of the wedge. The result of Equation -
(124) is independent of z -(which suggests most strongly that the fringes are not necessarily localized within the
wedge). However, it should be remembered that the requirement of Equation (121) is unlikely to be met in actu~-
al practice when the included number of inter-reflections N is high. Dependence of the fringe system upon the
plane z of observation must be expected from Equation (120) when one is not entitled to set cos v 8) = 1.

‘ | : : . .
16.17.1.7 A common method for obtaining and viewing transmitted multiplte beam fringes in a wedge is illustrated
in Figure 16, 23, The rays PT, , PT; , PT;, etc., of Figure 16, 22 form images H, , H, , Hy , Hy, etc., .

of the pinhole H at the second focal plane of the objective. The number N of inter-reflections is frequently

restricted by the diaphragm stop D of the objective, i.e., by the r:xumerical aperture of the objective. In Fig-

urel6, 23 rays from the zera order( v = 0) pass through H_ ; rays from the 15t order (v = 1) pass through
| ' _

"LIMITING DIA-

PHRAGM, D,
OF THE OBJECTIVE
OBJECTIVE ‘
A . A
5, 8,
loje
<~ I~
~ ~
\\
 H ~ 2a| 4al6a | etc,
PIN- ~. ;
HOLE \\ H\O\
ILLUM- ~J1yN
INATED S22 ~
~
BY -~
MONO-  J WEDGE ' ~
CHEOMATIC COLLIMATOR ~ : ~
LIGHT ~~
~
S
RN

IMAGE PLANE
OF FRINGES

' '
i

FIGURE 16. 23- Method of producing and viewing Transmitted, Multiple Beam ininges in a-wedge. ‘
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H, , etc. Rays belonging to the seventhorder (v = 7) are interrupted by the diaphragm, Thus, with re-
spect to Equation (124), one would have Vmax = N = 6. Apart from restricting the possible number of spec-
tral orders N that get to the image plane, the objective may be regarded as a means of observing the object
plane which is usually selected at, or within,.the wedge where z approaches zero. The pinhole images H,,
that correspond to the spectral orders v, are easily seen by viewing the back of the objective, provided the
system is in proper adjustment and that ¢ is neither too small nor too large. The image plane is frequently
viewed with an eyepiece. A microscope forms an excellent means for viewing the transmitted fringes. One
has only to replace the conventional substage condensor by a more suitable lens to act as collimator. The
selected pinhole H should be small enough so that it does not reduce the sharpness of the multiple beam
fringes as determined experimentally,

16.17.1.8 We now.return to coinplete our interpretation of Equation (124), Comparison of Equations (106)
and (107) for multiple beam fringes with plane parallel plates shows that they are very similar to Equation

(124). Most of the conclusions drawn in paragraph 16. 15:apply again with minor modifications or qualifications.
For example, we may conclude at once that bright fringes will occur when S

o+ 4T' ma= v 27, . (IZS)A
It will be seen from Figure 16, 22 that
xa = d (126)

where d is the thickness of the wedge at the point P under observation. Hence, we may rewrite Equation
(125) in the well known form

A
2nd = v - 7.‘%‘ (127)

in which ¢, expressed in radians, is the sum of the phase changes on reflection at the surfaces S, and S,
of the wedge. ¢ is in general a function of the wavelength. Again we observe that each fringe is the locus of
points x for which the optical path nd is constant. The fringe width [Ax| = h must be, according to
Equation (125), that value of |Ax| for which 4 7ne |Ax] /A = 2 7. Therefore,the fringe width h is given
by .

A

h = |ax] - 2na

. ' - (128) |

Comparison of Equation (128) with Equation (12) shows that when the refractive indices n of the space between
the reflecting surfaces are alike, the fringe widths are the same, whether one is using a Fizeau type interfer-
ometer or the multiple beam interferometer.

16.17.1.9 Withrespect to Figure 16.22, reflected plane waves emerge from the wedge and are propagated along
the negative Z-direction. Corresponding to Equation (120), a series R for the reflected fringes is obtained.
As in Equation (115) for parallel plates (case a = 0 ), the series for R is complicated by the term R, that
corresponds to direct reflectionfrom the first surface of the wedge. In general, the remarks and conclusions of .
paragraph 16. 16 also apply to the multiple beam fringes formed by reflection from a wedge for which « £ 0.

The narrow reflected fringes are likely to be dark. A useful method for observing reflected multiple beam
fringes is illustrated in Figure 16. 24, The pinhole is placed at the first focal plane of the objective. The images
H, , Hy,.. ., Hy of the pinhole H formed by the light belonging to the spectral orders » fall along a
straight line. When an undue amount of parasitic light is present at the plane of H, , Hy,.. . , Hy , con-
trast in the fringes can be improved markedly by inserting at this plane a diaphragm with a slit which is
oriented to pass the spectral orders, It is possible also to block the spectral order » = 0 by blocking the

light in the image H, . When this is done, the reflected fringes have the appearance of the transmitted

fringes — in fact, these narrow, bright, reflected fringes now obey Equation (125).

" 16.18 MEASUREMENTS WITH MONOCHROMATIC LIGHT

16.18.1 Introduction.

16.18.1.1 The effects of thinfilms uponthephase change introduced into a wave that traverses the optical system
are being considered by some designers as an integral portion of the optical design of complex, high quality
systems that contain many coated elements. The multiple beam interferometer is used frequently for measur-
ing the thickness of thin films. The following principles belong to a method that has been applied to many dif-
ferent types of thickness measurements notably by S. Tolansky.
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FIGURE 16, 24-Microscope for viewing reflected fringe:s under fertica,l illumination.
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16.18.1.1 The preferred arrangement for measuring thicknesses of thin films utilizes multiple beam fringes that
are formed by reflection as illustrated in Figure 16. 24. A micrometer eyepiece, containing any suitable reti-
cule, is needed for measuring fringe widths and the fringe shifts that occur at the edge of a film that has been
deposited upon surface Sy and covered with a uniform coating of, say, silver as illusirated in Figure 16, 25.
Evaporated coatings of silver and other metals produce a sharp step, whose height is equal to that of the film,
The evaporated overcoating must be sufficiently opaque so that the phase changes on reflectionat S, are not
changed by the presence of the substrate or the film, The optically flat surface S; must be placed in close
contact with surface Sz in order to obtain reliable measurements of the thickness of the film. The usual
practice is to lay plate P; directly upon plate P, , Figure 16, 24, after making certain that no large dust
particles are present to increase the separation between the silvered surfaces. It is good practice to make the
fringes approximately perpendicular to the edge AB as in Figure 16. 26. '

16.18.1.2 Let t denote the thickness of the film. We shall now show that

= 1 Ax .

A o 29
where Ax and h are respectively, the fringe shift and fringe width determined with the aid of the microm-
eter eyepiece (see Figure 16, 26). It is presumed that t is so small that the fringe shift is less than one fringe .
width, (This method is not well suited to measure thicknesses for which the fringe shifts Ax exceed. the
fringe width.) We have seen that a fringe is the locus of points Ax for which the separation d of the reflect-
ing surfaces is constant. If then, a fringe is located at the point x in the absence of the film, it will move to
a point X + AX on the film so as to keep d constant in the manner illustrated in Figure 16. 27. Since the angle
a between S1 and S2 is to be small,

t = a Ax. ' (130)

But from Fquation (128), « = /2 nh, Substitution of this value of a into Equation (130) gives Equation
(129) directly. The wedge between surfaces S; and S, is ordinarily air so that n = 1. This simple argu-
ment leading to Equation (129) applies to both the reflected and the transmitted fringes. -

UNIFORM, SUBSTANTIALLY OPAQUE
COATING OF SILVER, ETC.

HEIGHT OF

FILM FILM TO BE

MEASURED

\ SUBSTRATE

"Figure 16. 25- The usual method of preparing the sample film for
thickness measurement in the Multiple Beam Inter-
ferometer.
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16,18.1.3 One soonfinds that the attainable precision is restricted by the roughness of the polished glass surfaces
that ordinarily serve as the reflectors. These surfaces present, so to speak, a mountainous terrain whose"
peaks and valleys range between 10 and 60 Angstroms in height and depth. Correspondingly, the sharp fringes
will not remain straight under increasing magnification but become so wiggly that one has difficulty in estima-
ting their "center of gravity.”” These wiggly fringes are valuable for comparing different methods of polishing
and molding the surfaces of optical elements, The method is so sensitive that the height of a2 molecule of mica
has been determined with an accuracy that compares favorably with the result obtained from x-rays.

16.19 THE METHOD OF CHANNELED SPECTRA

16.19.1 General,

16.19, 1.1 The conventional method for observing channeled spectra (also called the FECObands, i,e., fringes
of equal chromatic order) is illustrated in Figure 16. 28 for the case in which the FECO bands are formed by
transmission at the interferometer. Collimated white light passes through the interferometer. The image of
the wedge is focused upon the entrance slit of a wavelength monochromator. One may view or photograph the
FECO bands that appear at the exit pupil of the wavelength monochromator. ¥ the surfaces S; 'and S, of the

- interferometer are plane, the interference bands seen at the eyepiece will be straight, of different wavelength,

and of consecutive spectral order v as indicated. In this method, the surfaces S; and S, are preferahly’
paratliel. Since it is an accidental matter to achieve parallelism by pressing surface S, against surface Sy
the practical compromise is to alter the relative inclination of surfaces S; and S, to the point at which the
interference bands formed at the eyepiece of the wavelength monochromator are parallel to the image of the
entrance slit. :

16.19.1.2 The arrangement illustrated in Figure 16.26 allows white light to pass through the interferometer plates..
Consequently, a relatively large amount of light flux is available to disturb the thermal equilibrium of the inter-
ferometer plates, The observed wavelengths of the interference bands can drift for hours before reliable read-
ings can be taken, A more satisfactory arrangement that minimizes drifts due to thermal causes has been de-
scribed by H. Osterberg andD. LaMarre.* Their arrangement, as applied to obtaining multiple beam fringes

by reflection, is illustrated in Figure 16. 29. Monochromatic light of measured, variable wavelength illuminatées

‘the interferometer. The interference fringes seen at the eyepiece of the mlcroscope are of the same wavelength

for a given setting of the wavelength drum and differ consecutwely, as indicated, in order number, Indeed, the
fringes resemble those of Figure 16. 26 and could be measured as discussed in paragraph 16.18 with the aid of an
eyepiece micrometer for determining the thickness of a film. To do so would defeat several advantages of this
arrangement. Instead, advantage is taken of the fact that the fringes move as the wavelength drum is turned,

In this way, consecutlve fringes from each side of the step can be brought into coincidence with a fixed pointer
or marker on the reticule and the corresponding wavelength recorded. With this arrangement the surfaces S
and So should not be parallel but should be preferably (although not necessarily) inclined so that the multiple
beam fringes are approximately perpendicular to the image of the step that marks the edge of the film whose
thickness is to be measured. This step is imaged sharply upon the plane of the reticule. Consequently, each
wavelength determination is made across a definite, localized, and selected area at the edge of the film, This
area is that portion of the surface S, which is projected upon the pointer at the plane of the reticule, It fol-
lows that slight or even marked departures of the test surfaces from flatness have secondary effects upon the
accuracy of this method of channeled spectra. One looks for a spot at which the fringe runs quite straight a-
cross the edge of the film and makes his measurements here,

16.19.1.3 The main advantage of the method of channeled spectra over the direct method of multiple beam fringes
discussed in paragraph 16,18 isithat the flatness of the surfaces S; and Sz is much less critical for the pur-
pose of making thickness measurements. A second advantage consists of the fact that channeled spectra enable
one to measure either thin or thick films without ambiguity relative to whether the fringe Shlft exceeds or does
not exceed a suspected number of fringe widths.

16. 20 INTERPRETATION OF MEASUREMENTS WITH CHANNELED SPECTRA

' 16.20.1 Introduction.

16.20.1.1 Examination of the theory of multiple beam interferometry stated in paragraphs 16..15 through 16.:17
shows that whether one is dealing with fringes obtained in either reflection or transmission from paraltel
plates or from wedges, the analytic condition for the appearance of the sharp fringes is of the form

vix=2d+ af; n=1; (131)
where v is an integer, d is the separation of the interferometer surfaces, X is the wavélength, and f isa

function related to the phase changes that take place on reflection at the coated surfaces of the reflecting sur-
faces. The function f can vary with wavelength and will be different for the transmitted and reflected fringes.

*H. Osterberg and D. LaMarre, J. Opt. Soc. Amer., 46, 777-778 (1956).
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16.20.1.2 Withregard tothe transmitted fringes, it has been customa.fry to take f = 0 and to state that each
bright fringe occurs at those wavelengths A = X for which d = v (A0 / 2). Interpretations based upon this
simplified view are, however, inadequate. v ’ ‘

, : ? '
16.20.1.3 Let £ be expanded as a function of wavelength about the wa}relength Ao such that

2
f=1,+bA-2g + cla-2) + ..., (132)
. ’ | ‘
Experience has shown that with silver coatings or with high reflecting multilayers, there will exist an extended
range for which » A is, with good approximation, a linear function of A about an appropriately chosen 2,
in the visible region. For this range of wavelengths the first two terms of Taylor's expansion of » A about the
point A = A, from Equations (131) and (132) yield the approximation

f

2
vr=2d -br, + S5 X i : (133)

in which ;
8, = f, + bA,. | o C o (134)

16.20.1.4 Withrespect to Figure 16. 28,consider two nearby spectral orders v and v + p where p = 0, £ 1,
£ 2, = 3, etc. Let A, and X, , pbe the central wavelengths of these spectral bands. We have seen that )

channeled spectra are obtained from a single localized area for which the separation d of the interferometer
mirrors is constant. Since bA; is constant, it follows from Equz}tion (133) that

i

2 ; ' :
x, (v -s;) = 2d - by, = constant = A'V%J,p(u +P -5 ). (135)
Hence, ‘ 1
v -5 = p 2D ; | - (136)

Av-Apap .
As will be seen from Figure 16, 28, determining p is simply a matter of counting bands from the band whose
order number is labelled v . Since p, X,, and 1, ., pare known, ‘one can compute » - s, from Equation
(136). It is good practice to compute » - S, . for at least three values of 'p] when enough bands are available.
If the values v - s, thus obfained are not alike within a range corresponding to one's experimental error. in
reading the wavelengths, the separation d of the interferometer mirrors is changing or |p| has been chosen
so large that X, , pfalls outside of the range for which v A is adequately linear in A.

16.20.1.5 Thevalues v - s, will fall in the range 10 to 70 when the interferometer mirrors are laid one upon the
other except when great precaution is taken to avoid dust particles. The corresponding separation of the inter-
ferometer mirrors falls in the range 5 to 35 wavelengths. This explains why the separation can vary with tem-
perature, etc. When v - s, has been determined, the separation[ d is given by

2d = (v - 85) Ay+ bAZ . ; : s7"
Unfortunately, one needs to know bhi in order to compute d acc{xrately. One may, of course, accept
2d = (v - s, ) A, as his approximation and expect that this will be a beiter approximation than obtained by
asserting that 2d = v . ; . ‘ .
16.20.1.6 Onthe other hand, a knowledge of blg is not required in grder to determine accurately the thickness
t of a film. With respect to the interference bands v + p and p + p seen on each side of the step formed at
the edge of the film (see Figure 16.29),one determines » - s, and p - s, from the wavelengths a,, A, +p
and Ay, Ay 4p for which the interference bands are brought into coincidence with the marker on the reticule
by turning the wavelength drum. The "non-integral spectral orders” v - s, and p - So become known on
each side of the step at the film. Then, from Equation (137) ‘

|
2t = 2(di-dg) = (» -85 ) Ay - (- 5g) A . (138)

If the film is thin enough, one finds automatically that v - s, = p - Sp or that p = p. In such cases
Equation (138) reduces to

t=5 0 -5) Op-1) (139)
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16.20.1.7 Let us consider the sensitivity and accuracy of the method of channeled spectra in, for example,
the measurement of the thickness t of the thin films to which Equation (139) applies. If the error in reading
the wavelengths A, and A; is 60X and if 6t is the corresponding error in t, then for estimating 0t, we
observe from Equation (139)that

5t§ (..v_z_ﬂ))z |6),| < (v -s,) oA} - . (140)

It becomes clear that the error |6t} is reduced by making measurements at low values of » - s, , i.e.,
at low separations d of the interferometer mirrors. Reducing v - s, to values in the neighborhood of 1 or
2 causes the spectral bands to broaden and to become excessively wiggly when polished surfaces are em-
ployed. The added difficulty of setting upon the center of gravity of the interference bands now appears.
With the use of diffraction gratings, such as monochromators, and of photographic methods involving micro-
densitometry, errors |6t] of 0.1 Angstrom or less may become possible. To carry the method to.such
extremes is however costly, cumbersome, and tedious. A typical example of the actual error obtained by
making routine visual settings with a prism monochromator has been cited by Osterbergand LaMarre.: " They
found that the visual settings with a Hilger Barfit monochromator are reproducible to about one Angstrom.
With » - s, = 35, the corresponding maximum error §t in the thickness t of the film is 35 Angstroms. The
actual computed values of t from a series of spectral orders v + p and p + p agree to about 10 Angstroms,

16.20.1.8 One shouldnot form the impression that the method of channeled spectra is restricted to analysis of
fringes produced by multiple beam interferometry. We have seen, for example, that order numbers "v are
associated with Fizeau fringes as in Equation (61). By projecting Fizeau fringes formed in white light upon the
slit of a wavelength monochromator as shown in Figure 16, 29 or by adapting the modification illustrated in Fig-
ure 16. 29, a series of bands will be seen at the eyepiece. Comparison of Equations (61) and (131) shows that
one deals With the simpler case f = 0 in applying the method of channeled spectra to Fizeau fringes.’

16.21 HUYGENS' PRINCIPLE

16.21.1 Introduction. Although Huygens' principle is less general than, for example, Kirchhoff's law, its
applications are far simpler to follow and yield predictions that are in resonable close accord with exper1ment
with respect to the phenomena that we shall consider.

16, 21. 1. 1 Huygens' principle supposesthatas a wavetravelsthrougha homogeneous, isotropic space, eachpoint
in the space is excited as the wave passes through it and serves as origin for a spherical wave that expands with
the velocity of light in the medium. Requirements such as conservation of energy require that the amplitude of
the spherical wave decrease as 1/r where the distance r is measured from the point of expansion. Further-
more, the principle supposes that the propagation of the wave itself through space is a consequence of the inter-
ference effects that take place between the infinite set of expanding spherical wavelets. Close examination of
this interference process shows, for example, that the reconstructed wave thus obtained from an assumed

plane wave travelling to the right is, in turn, a plane wave that travels to the right. The wave that tends to.
travel to the left is destroyed, in effect, by destructive interference. The development of a wavefront as the
envelope of the sphérical wavelets that expand from the original wavefront at z = z, is illustrated in Figure

16. 30 : :

16.21.1.2 The construction of Figure 16.31 enables one to deduce Snell's la tﬁ' of refraction from Huygen's pa:mci—

ple. ¥ t, is the time required for light to travel from C to B inthe 0" medium,
c
CB =v, tg = —to .
Ty

The spherical wave starting from A travels the distance AD in time t, such that '
ct

= —_ 0]
AD = Vl tO = T .
1
But
sm1=g§ ; sml'——é—-12
AB AB
Hence,
sin i CB 1

This demonstration shows that the most basic law of geometrical optics can be explained by diffraction.
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FIGURE 16. 30- Propagation of a plane wave in accordance
with Huygens' Principle.
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FIGURE 16, 31- Construction for obtaining Snell's Law of Refraction from Huygens' Principle.
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16.21.1.3 We shall need an analytical statement of Huygens' principle. The amplitude and phase variation of the
electric vector of a spherical wave that expands from any pomt O in a space whose refractive index is n is
given by

1 (knr -wt)

where k = 21/x ; w 2 27/T ;. and r is distance measured from point O. The physical meanirig of Equation
(141) is, of course, in doubt at the point r = 0 - but not elsewhere.

16.22 FRAUNHOFER DIFFRACTION

16. 22.1 Discussion of theory.

16. 22.1.1 Fortunately, thetheory and interpretation of diffraction phenomena become much simpler When these
phenomena are considered at relatively large distances from the diffracting aperture or obstacle. When a lens
is placed between the aperture and the plane at infinity, the diffraction phenomena at infinity are brought into
the focal plane of the lens. This consideration leads one to suspect that diffraction phenomena that occur at the
focal plane of lenses are likely to be Fraunhofer diffraction phenomena. Since diffraction effects associated
with focal planes belong to the classification known as Fraunhofer diffraction phenomena, these dlffractlon phe-
nomena are of primary fundamental interest to the designer of optical (or radar) instruments,

16, 22,1.2 Simplified arguments based upon Huygens' construction can be used to locate maxima and minima in the
energy densities associated with Fraunhofer diffraction effects, but such arguments do not predict the distribu-
tion of energy density. The following diffraction integrals become so simple and direct that we shall omit the
elementary and less instructive theory. The diffraction 1ntegra1 governing Fraunhofer diffraction is easily inte~
grated or applied to a large number of practical cases.

16.22.1.3 We suppose that the aperture or obstaclefrom which diffraction occurs is located at the {n plane of
Figure 16. 32 and that the observation plane xy is located at distance D from the {5 plane. Huygens wavelets
leave each element of area df dn of the {» plane and arrive at pomt P of the plane of observation after trav-
ersing the distance r where

r = KX—§)2+(Y-77)2+D2] 1/2 - . (142)

n Y

A, ‘F(X "

P X

FIGURE 16. 32 -Convention with respect to the integral statement of Huygens' Principle.
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@ ?
These Huygens wavelets expand from point (¢, n) as described by Equations (141) and (142). Our problem is
to sum the Huygens wavelets that leave all points (¢, 5 ) of the plane of the aperture and arrive at point P.

16.22.1.4 Toformulate the problem a bit more generally without adding unduly to the complexity of presenting
the problem, we can suppose that f ({, ) d{ dy is a complex number that specifies the amplitude dand phase
of the coherent Huygens wavelets that leave the area d¢ dp. (We shall deal mainly with the simple cases in
which £ (¢, ) =1.) According to Equation (141), the Huygens wavelets that leave the area d¢ dip with the
amplitude and phase expressed by f (£, n ) d¢ dy arrive at point P ;with the amplitude and phase given by

£(8, n) dgay & T

i

\ .
Let F (x, y) be the complex number that denotes the sum of all of the interfering Huygens wavelets that
arrive at the point of observation P of Figure 16. 32. From the theory of integral calculus this sum is given at
once by the integral f '
_ iknr ‘
F(xy)=e"' [ [1(t, 9) & da : \ (143)

{
i

in which the integration extends over the illuminated area of the ¢ plane and in which r is given by Equat‘i'd‘nl
(142). ‘_
, | : ‘ .
16.22.1.5 Before passing ontothe Fraunhofer form of the integral given in Equation (143), we remark that the:
term_Fresnel diffraction (as distinguished from Fraunhoffer diffraction) is applied to the cases in which the
distance D from the plane of the aperture to the plane of observation is relatively small. Equation (143) is
the most general statement of Huygens' principle. It includes Fresnel and Fraunhofer diffraction as special

cases, i

16.22.1.6 The Fraunhofer specializationdiffraction integral is obtained in the following way from the integral of
Equation (143) and the supposition that D is large. By expanding the ‘_squares in Equation (142) and defining

S = E)z+ x2+y2:|1/2 , : ‘ . (144)
| - ﬁ
one finds that 1
1/2 S
r:s[1+ﬁiﬂf_.2_(§§.1m)_]/ L. (145)
: s2 s2 ,

| | . .
in which S has the geometrical meaning illustrated in Figure 16. 32, We suppose that D becomes great but that
the aperture opening at the {5 plane remains finite. Equivalently, but somewhat more generally, we may siy
that £( ¢, n) = 0 when (&% + 52 )1/2 exceeds some finite value and that D can approach infinity. Under
these circumstances, the quantity ({2 + »2) /82 in Equation (145) 'is surely negligible, Since x and y can
become infinite at D = o , the quantity 2 ( x{ +_yp ) /S“ is not entirely negligible. Because { and y will be
small in comparisonto 8, 1>> 2(xt +yp)/ sZ . Hence, with exc:iellent approximation,. ’

1/2_ xt + f ‘
(102 (g
Therefore, % .
r=S - }ﬁ_im_ - (147)

|

| :
16.22.1.7 Upon introducing r from Equation (147) into Equation (143), it will suffice to set r = S in the denomi-
nator since (x¢ +yn) /S will be very small. However, the quantity ( xt + yn )/ S is multiplied by the large
factor k = 21/ X in the exponent. We now introduce r = S in the denominator of Equation (143) and r from
Equation (147) into the exponent and thus obtain

F(x y)=elt &% [ f(r g) e taXgll  grq, (148)
in which : » ' |

s;(zn/2+x2+y2)1/2 b - (149)

k=2n/x

w=21/T.

" .
f( ¢, n) specifies the amplitude and phase of the disturbance as it leaves the plane of the aperture. The inte-
gration extends over the plane of the aperture. In case the aperture consists, for example, of an opaque screen
- ' | |
16-48 '
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with a hole in it, the integration with respect to df dn extends over the area of the hole. ¥ (x, y) is a com-
plex number that specifies the amplitude and phase of the so-called Fraunhofer region.

16.22.1.8 The energy density, W (x, y), is proportional to IF(xy )['2 . Since |e‘i“’t~l 2_ 1 and
|reknS | 2= 1, it follows from Equation (148) that

W(x,y)=%2 IE, (x, y)]° (150)

where
. i x§+y . .
Fo(x,5)= [][ £(t, q) €78 o gcdn. (151)

over plane of aperture

. 1t suffices therefore to compute the slightly simpler integral, Fo (X, y), of Equation (151) when one Wi'shés to

determine the time-averaged distribution W ( %, y) of energy density produced at point (x, y) by the radi-
ation in a coherent wave that illuminates the {n plane of the aperture. ) e T

16.23 FRAUNHOFER DIFFRACTION FROM A RECTANGULAR APERTURE

16.23.1 Discussion of principles. : :
16.23.1.1 We suppose for simplicity that the rectangular aperture is illuminated as in Figure 16. 32 by a plane
wave at normal incidence. It suffices to set . :

£(¢, n) = constant = 1. (152)

Then, from Equation (151), .
-iknx{ -ikny
Lres S agdy

Fo (X, Y) = U, e
—iknxt -ikny
= faae .S de j"b e S""l dT]
iknxa -iknyb iknxa -iknyb
_ (~] § - S e S —e S
- (iknx) / 8 i “(kny) / S
iz -
Since k = 2r /x and sinz = (e i -eiz. Y/ 21,
E (% - 4ap | sin( 2ranx / SA) [ sin { 27bny / SA) . 153
o (% 7) [ 27anx / S\ 27bny / SX (153)

From Equations (152) and (150), the corresponding time-averaged distribution of energy density in the observa-
tion plane is given by : :

2.2 . 2 . 2
Wi(x y) = 16a" b [sm(znanx/sx) ] [s1n(21rbny/s7t)] . (154)
g2 27anx / SA 27bny / Sx
Along, for example, the line y =0,
2F o 2 ‘
w 0) =W - AZ[ sin(2manx/SA) 185
(x,0) = W(x)= A [ sinl2mnsss (159)

because (sinu)/u=1 when u=0. A= 4ab is the area of the rectangular aperture, We cantake S £ D
for most purposes. W { x) assumes its greatest value W = Az/ s?at x = 0. W{(x)decreasesas 1/ x2 .
The energy density is zero whenever ( 2ranx ) / SA = vn where v is an integer. Hence, the zeros of W (x)
occur at the points x for which : :

Xy . 28
ry = sin 8, = -—— {156)
where v = + 1, x 2, + 3, etc.; 2a is the width of the rectangular aperture along the x-direction; n is the re-

fractive index of the space; and 8, is the angle 6 (Figure 18, 33) that corresponds to X, along the line y = 0.

16.23.1.2 Similiar conclusions holdalongthe line x = 0. One has only to substitute y for x and b for a in
Equationis (155) and (156). The width of the aperture along the y-direction is 2b.
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t
I

| r
| | z
FIGURE 16.33-Notation with respect to diffraction from a rectangular ‘Tiperture illuminate ] at normal incidence.

|
|
16.24 FRAUNHOFER DIFFRACTION FROM CIRCULAR APERTURES .
16.24.1 Discussion of principles. :

16.24.1.1 We suppose thata plane wave is incident normally uponthe circular aperture so that f (¢,n) =1. .'It
is convenient to replace {, 7 and X, y by polar coordinates because ﬁhe aperture is circular, Let

g

X

ucos$ ; np=usging ; [ ‘ (157)
r cos a ; Yy=rsina ; ‘ ‘ © (158)
. ‘ '

in which the geometrical meanings of u, ¢, r, and @ are illustrated in Figure 16, 34. Upon introducing Equa-
tions (157) and (158) into Equation (151) and setting £ (¢, 7) = 1, one obtains

-  ~iknru -
. ~ ‘a 2% cos{¢-a)
F, (%,y) =F, (r) = ‘[)' £ e S udu d¢ - (159)
|
in which |
S=(D%+x24y2)l/2 _ (D2, r2)1/2 : ~ {160)

1

16,24.1.2 One can provethat F, (r) must be independent of a because the integrand of Equation (159) is peri-

odic in the angle ¢ . However, it is clear fromFigure 16, 34'that ¥, (r) should be independent of the angle «
because the system has complete axial symmetry. Hence, we can set

x=0 ; ‘ (163

]

16.24.1.3 Now one finds from almost all text books treating the elementary theory of Bessel functions that
j.21r tizcos ¢ '
e

in Equation (159).

¢ = 273, (2) 1 , | (162)
(o] : :
where J, (z) is a Bessel function of zero order and first kind. From Equations (159) and :(162)
E, (r) = 27 faq, (k—"sﬂ‘.> udu. ! (163)
o ‘ . .
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CIRCULAR
APERTURE

FIGURE 16, 34- Notation with respect to Fraunhofer Diffraction from circular apertures.

Introduce the change of variable

= knru =_5S i
vESSS o us n v : : (}6.4)
Then, .
2 knra
- S ” o
F, (r) = Zw(—s——) ! v 3o (v)dv . (165)

It is another elementary proposition in Bessel Functions that
fz v Jo(v) dv = 2 J1 (2) . (166)
5 . .

where J, (z) is a Bessel function of first order and first kind, Since J; (z) =0 atz =0, one finds directly‘ -
from Equations (165) and (166) that ' :

2
= S ) kora Xknra
Fo(r)—Z'n(] ) S Jl( S ).
Whence ‘
J. ( 2mma r/28)
2 7
F, =2 . 67) -
°‘(r) i (2mar )/ A8 (167
16, 24.1.4 We note from Figure 16.34 that
sing=r/8S . ‘ (168)

Alternatively, one may therefore write
J. (2rna sin 6 / 2 “
F, (6) = 2ma”® L ( /) , (169)
2rna sin 6 / 2

The energy density in the Fraunhofer diffraction image or pattern from a circular apertur'e.of radius a is now
given by Equation (150) in which one introduces F, from Equation (167) or from Equation (169).
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16.24.1.5 The function [Jl (z)]/z is 1/2 at z = 0 and assumes its first zero at z = 3. 8317. Therefore, the
energy density in the Fraunhofer diffraction pattern has its first zero minimum at (2mna sin 6; ) / x = 3.8317
or at

\

o _ T1_ 0.61A _ 1.29x
sinfy =g = Tt T Tham (170)

in which 2a is the diameter of the aperture. It is instructive to compare Equations (170) and (156) at the first
zero where v = 1. We see that the central maximum in the diffraction pattern is 22 per cent larger in linear
dimension for the circular aperture than for the rectangular aperture whose width is equal to the diameter of
the circular aperture. The Bessel function J l(z) oscillates with increasing z in such a way that successive
maxima and minima of J; (z) decrease numerically. Hence, the energy density ' "

_ 4g2% [ Iy (27mar / Sa)q2 }
Wir) = s2 [ 27nar / Sx ]

(171)

f

in the diffraction pattern produced by a circular aperture decreases considerably faster with increasing _dis-—' ‘
tance r from the diffraction head than does the energy density W (x) produced by a rectangular aperture. - .
(Compare Equations (155) and (171).) One must expect that circular apertures are preferable to rectangular
apertures for lenses because the diffraction images produced by circular apertures are, on the whole, more
concentrated.

16.25 DIFFRACTION FROM SPHERICAL WAVEFRONTS

16.25.1 General. Whereas the methods of paragraphs 16. 23 and 16. 24 can be utilized as a basis for discuss-
ing the diffraction images produced by lenses, the adaptation of these methods is a bit too artificial and leads,
awkwardly, to the predictions that resolving power is related to the tangent of certain axial angles rather than
to the sine of these angles. . -

16.25.1.1 It is the purpose of a well corrected lens to convert a spherical wave that diverges from an object point
into 2 spherical wave that converges upon the conjugate image point as in Figure 16. 34. ‘We suppose for '

|
|
i

|

CONVERGING
WAVEFRONT

¢ f | Y
' f'y

] (X, Y, Z)
X

.DIVERGING
WAVEFRONT

OBJECTIVE ¥

'

FIGURE 16. 35- Convention with respect to the formation of a diffraction image, O’, of O by a lens system,

i
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simplicity of presentation that the object point O is located upon the axis. Let V be the optical path from O
to O' . We draw a reference sphere of radius R about the point O' such that this sphere touches the tangent
plane t7 at point Q on the axis. The optical path from O to Q is now V - nR where n is the refractive index

- of the image space. Similarly, the optical path from point O to any point P on the {7 plane from point O to

any point P on the {7 plane is
V-noP=V-n(R2+¢24q2)V/2 (172)

in the absence of spherical aberration. The Huygens wavelets now leave the ¢n plane with an amplitude-phase_

. distribution given by

W ko @+ 07 72
(R + %+ nH)/2

£(¢,m) = = (173)

16.25.1.2 We choose the origin of the coordinates X, Y, Z at the point Q' with O' conjugate to O . Thus, the
plane z = 0 is the sharply focused image plane, The problem is to find the amplitude-phase distribution - -
F (x, y, z) produced by all the Huygens wavelets that leave the {» plane. From Eguations (143) and (173);
- iwt  ikV -ikn R% + ¢2 + gA/2 fknry : o
‘ € . L 4y
e 3 5175 L d¢ dn (174)

F(x,y,2) = e —
(R7+ ¢ + 1)

where the distance r; of Figure 16. 33.is

r, = (x-0)2+(y-m?%+(Rez)? V2 (175)
However, one finds after slight rearrangement that
2. .2 1/2|I+x2+y2+zz-2(x§+y —Rz—)}l/2 X
r, = (R?+¢%+ 99 B AR A SR L ©(176)
. "R+ 8 +n

16.25.1.3 Inoxder to obtain the approximation to r, that leads to the conventional diffraction intezgral for lenses,
we have to suppose that the field of view is so small that one can afford to neglect the term {x?+ yz +z°)y/
(R°+ ¢ 772-) in Equation (176). This means that the following theory holds best for small fields of view. We
have to suppose also that the dimensions of the aperture at the {7 plane and the out-of-focus distance z are
small enough for us to be willing to accept the approximation : -

Ry | 1/2 _ ‘
L2 X€2+ Ynz RZZ) - XC2+ ynz Rz2 .
- R°+C%+ 1 R%+E87+7n
Under these approximations,
r, = (RE+g24n?)Y? o Hayn-Re . . (178)

(R%+ ¢%+1?)

16.25.1.4 Upon substituting r; from Equation (178) into the integral (174) it suffices to set r; = (R%2+ £ 2s nz )1/ 2
in the denominator. Our approximation for F (x, y, z) becomes ’
-ikn xC +yp - Rz

VR + §2 + 'r;2

R2+ §2+ nz

4 k
F(x,y,2) =e“ ™V [f e acdn (179

in which the integration extends over the aperture of the objective, Figure 16. 35. .

16.25.1.5 Since F[(x, vy, z)|2 is independent of wt and V, it is convenient to drop the external exponentials in
Equation (179) and to write again o
Zikn xC+yp - Rz :

f§2+§2+172

Fo(x,v,2) = [f eRz R d¢ dn . (180)
+E%

The time-averaged energy density in the diffraction image of an object point located upon the axis is
2 2 :
Wi(x y,2) = IF(x, v,2f = |F, (%2} . (181)

The plane z = 0 is the sharply focused image plane.
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16,26 PRIMARY DIFFRACTION INTEGRALS WITH OBJECTIVES HTAVING CIRCULAR APERTURES

i
16.26.1 Introduction. We shall call the integral F, (x,y, z) of Equation

and shall refer to the correspondingdistribution of energydensity W (x,7, 2) as the primary diffraction image.
Thesetwo quantities are of fundamental importance to the diffraction'theory

section, the primarydiffraction integral will be specialized tothe great class of objectives that have circular

apertures. Thus far, the objective has been assumed free of sphefri;cal aberration.

16.26.1.1 Corresponding elements of Figures 16. 35 and 16. 36 are labeled alike. One notes from Figure 16.. 36 that

¢ =RtanUcos ¢ ; 7 = RtanU sin ¢

cos ‘¢ ;

du d¢ = dt dy

wherein { and 7 are given by Equation (182)

g dy = Rz-c-%i%y— au d¢

sv U

and that
cosU =R /VR2 §2+ 712
.Hence,
—_— sinU
v 2 - 2 3
"+ 77+ R
18.26.1.2 It is .convenient to change the variables of inteération from
&K o
au v
dA =
8L o
a9 ag

—
Ver, B, pf
2:!-7]2+R2

§ and 7.to U and ¢ . Since

(180) the primarydiffraction integral

of optical instruments. In this

(182)

(183)

= s_inU sin ¢ . (i84)

(185)

Cn
A A Rtan U
B ( 3 Tl) ¢ }
|
3 ' S | .
— ¢ '
¢ U
(o]
OBJECT a R t
POINT
Y
OBJECTIVE

|
\
i

FIGURE 16. 36--Notation with respect to objectives that have axial symmetry and circular apertures of

radius a.,
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Upon substituting from Equations (183), (184), and (185) into Equation (180), one obtains the result

S in ¢ )1- v :
F (%, y,2) = [0 [He i cos gy sind)]-2 03V giny gy g4 (186)
o ° cosU

in whichU,, is the largest value of U in the cone of axial rays that pass from the object point O to the conjugate
point O' . Equation (186) is the Luneburg-Debye statement of the primary diffraction integral.

16.26.1.3 Achange of variable from U to the zonal numerical apertures p where

p =sinU ; py, = sinU , ; _ (187)
renders both the form and the physical interpretation of the primary diffraction integral somewhat simpler.
One obtains from Equations (186) and (187) the result : .

Pn .27 iknz Y 2 -iknp (X cos ¢ + y sin ¢ ) . ‘

m 1- P y

F,(x,v,2)=f [ e e e dp d (188) .
0 0 1 - p R
Equation (188) is known to hold well for the image space of microscope objectives, telescopes, etc.,. m which.
Py, is so small that one can set 1 - p2= 1 in the denominator. For example, with microscope objectives
p.. = 3/150 = 0.02 so that p? < 0.0004, a quantity that can be ignored in the denominator of (188) but not in
the exponential of the numerator except when z = 0 , i.e., except when one focuses upon the plane which is con-
jugate to the object point. In computing F,(x, y, 0) = F, (%, y) for the conjugate plane z = 0, one obtains
the Fraunhofer type of diffraction integral ’
P 2% _iknp (xcos ¢ +ysin¢)
Fo(xy)=["[ e p dp d¢ (189)
[+ [+

upon neglecting p2 in the denominator.

16.26.1.4 Typicalof diffraction integrals of the Fraunhofer type, the integral (189) is easily integrated. Intro-
duce polar coordinates r, a such that

X=rcose ; y=rsina . (190)

Then from Equation (189)
P 27 —iknpr cos (¢ -'a) ] "
F, (x,¥) = F, (r) = { mfo e pdpds . (191)

As in the integral (159), E; (r) is independent of @ . Furthermore, from Equations (162) and (191)

p
m .
Fo(r) =271 [ = J, (knpr) p dp . (192)
' [
Comparison of Equations (192) and (163) shows that the integral (192) is obtained from the integral (163) by .
setting S = 1 and 2 = p_ . Hence, we conclude at once from Egquation (157) that

F, (r) = 27 p2
0 (r) Pm 2mp,r/ X

wherein r is the distance from the diffraction head, and
npy, = n sinUpy (194)
is the zonal numerical aperture of the objective with respect to its image space of. refractive index n. We see

that F, (r) is a real number when it is evaluated at the sharply focused image plane z = 0 for objectives that
have negligible spherical aberration. The time-averaged-energy density WwW(r) = IFO (r )|2 . Thus,

a2 4 Jy(2mpr/ A) 2
W(r) = 47 pm[ 12unpmn3/x ] . (195)

a result that should be compared with that of Equation (171).

16.26.1.5 The primarydiffraction integrals (191), (192), and (193) are called the Airy type, ‘and the corresponding,
idealized objectives are distinguished as the Airy type of objective. As in the discussion leading to Equation
(170), the first zero of W(r) occurs at (2wnp r) /A = 3.8317 or at

r=r1=____._13‘831 L:.Q-_SD_S-&A_
2mnp np,

r, is the distance from'the diffraction head (where W (r) = W (0) = -nzpn‘f , its maximum value) to the first

- (196)
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| |

zero of W (r) in the image space. The distance ry is frequently utilized as unit distance and is called the Airy
unit with respect to the image space. The quantity npy, = n sinU,, is the numerical aperture of the objective
with respect to its image space. ‘ ' ‘

i
[
i
i
I

16.27 RESOLUTION WITH CIRCULAR APERTURES

16.27.1 General. It is notpossible to specify a universal limit of resolution that appliesto all kinds of details in an
object field. Resolving power varies with the type of details thatare to be resolved, with the manner in which the

i

objectis illuminated, with the wavelength utilized for illumination, with the numerical aperture of the objective,
and with the degree of correction of the objective. . Resolution can depend upon the type of optical system. For
example, it can be shown theoretically that an ordinary microscope canmnot resolve two nonabsorbing particles,

irrespective of their separation, when the optical path difference A between the particle and its surround be-

comes 50 small that sin A can be replaced by A. The chief reason for this peculiarity is that with such par- -

ticles, contrast in the image becomes so poor that one cannot actually observe the particles. When the ordi-
nary microscope is replaced by a phase microscope, contrast in the image is increased enormously. Conse-
quently, the phase microscope can exhibit resolving power when the ordinary microscope does not. Finally,. .
resolving power depends upon the criterion that one is willing to accept in concluding from the observation of
the image that the details in question are distinct, i. e.,are resolved.

; :
16.27.1.1 We shallrestrictour considerations of resolving power to the resolution of two self-luminous parti-
cles whose dimensions are neglibible. Let one particle be located at point O on the axis as in Figure 16, 37
According to Rayleigh's criterion of resolution, two object points O and P will be resolved provided their
separation equals or exceeds the separation r, for which the maximum energy density in the diffraction
image of one particle falls upon the first minimum in the diffraction image of the second particle as illus-
trated in .Tahle 16. 1. We have seen in the previous section that the distance r; from the central maximum
to the first minimum is given by Equation (196) for objectives of the Airy type. Hence, the linear limit of
resolution is r, (or one Airy unit) in the image space where ' ‘ :

0. 6098
NPy,

r; = AL l (197)

Therefore,

ry 0. 6098 S
I = = A : 198) . -
° " m] [Mnpg, ‘ : : ( . )
is the linear limit of resolution in the object space where M denotes the magnification fatio. If the objective
obeys the Abbe sine condition, . | ‘

M| np = |M] n sin U, =ngsinU, o, = Ni. A, (199)
where N. A, denotes the numerical aperture of the objective with fe%pect to its object space. Therefore,

rp = 222008 (200)

The linear limit of resolution, r, , for two self-luminous object points is one Airy unit with respect to the
object space of the objectives that approximate the Airy type. ’ !

16.27.1.2 The corresponding angular limit of resolution, 6y, is given by

0.6098 A !
= : 201
npy V | , (201)
| , ‘
in which V is the image distance, Figure 16, 37. When U, is small as in the image space of telescopes and
microscope objectives i :

r

91-’-"—

tan U = i% ~smU, =p . (202)
Hence ' . . ‘
_ (2) (0.6098 A) _ 1.221 E o
b = nD ) | ; (203)

i .
where D is the diameter of the objective and n is the refractive index of the image space.
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FIGURE 16. 37- Notation with respect to the resolution of two self-luminous object points
by objectives having circular apertures.

ENERGY DENSITY
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TABLE 16. 1- Physical situation at the limit of resolution based on Rayleigh's criterion. O' and P' are the
curves of the energy densities in the image of two, like, self-luminous particies, O and P,
respectively. The solid curve is the sum of the energy densities due to the two particles. This
solid curve displays an easily seen dip at 0.5 Airy Unit, the mid-point between the geometrical
images of the two particles.
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16.27.1.3 The limit of resoluﬁon obtained from Rayleigh's criterion is a conservative limit with highly corrected
objectives. The Sparrow * or physical limit of resolution is 0. 78 Airy units for Airy type objectives. In prin-

ciple, this limit can be approached but not realized. Many observations have indicated that resolutions near
0.81 Airy units have been achieved with highly corrected objectives, ‘

16.28 OUT-OF~FOCUS ABERRATION
16,28.1 General.

16.28.1.1 The out-of-focus aberrationsifor axial object points are included in Equation (188) in which the system

is out-of-focus by the amount z. The integration with respect to d¢. can be carried out just as in the argument

leading to the integral (192) even when z # 0. One obtains instead of (192) the integral
prn iknz vy _ p2 i
Fo(r)y=27 [ "e J, (knrp) pdp (204)
° ‘ . :
when ,o2 is ignored in the denominator of the primary diffraction inteigral (188).

16.28.1.2 Inthe presence of spherical aberration and out-of-focus aberration, one finds in general that Fo (r

is of the form ; - 1 S

H
[
i
|

P ‘ :
Fo(r) = 27 { P(p) J, (knrp) p dp : : (205

for axial object points where P (p) is called the pupil function. We éee that the pupil function P, (p) corre-
sponding to out-of-focus aberration is o

P, (p) = e ¥ Y1 -p? | | ' (206)
Whenever p2 << 1, it is usual to accept the approximation : .

“1-p2=1--?ZLZ , - (207)
and to write » | N :

F, (r) = 2= o [)pme imnzp® /0 Jo (knrp) pdp (208)

. |
a result that follows from Equations (205), (206), and (207). ‘
16.28.1.3 Thefollowing is oneof the simplest methods for estimating the maximum tolerable amount z that an'-
objective of given numerical aperture np,, can be out-of-focus. Equation (208) is easily integrated for any
axial image point r = 0 because J, (0) = 1. Thus

inznp-

iknz 2
o
F°(0)=2we !me x pdp

. iknz iﬂnzp;;':l k
=27 e l:e A -1} / A=oz,

ol -~ (209)
The corresponding énergy density W(0) = |F, (O)I2 is now !
2 N 2
_ 2 ‘inanm ~imznp, nznzzz
W(0) = 47 (e s -1)( e — -1)/7
' 222 |
W(0) =87r2|:1-cos(1rznp§1/x)]/ —"——ﬁ—;— I, or
| .
. 2/9 2 ;
W(0) = 472 p;’;[ Sm(”zrz‘pm/ ) , (210)
TZNph- /21 ‘

| ‘ |
where W(0) is the energy density at the diffraction head when the objective is out-of-focus by the amount z .
np,, is the numerical aperture of the objective with respect to its image space.

: i

r :
| |

W(0) 2 W, = 4mpd L (21

16.28.1.4 Whenz = 0,

* See H. Osterburg, Microscope Imagary and Interpretation, J.Opt. Soc. Amer,, 40, 299 (1950).
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a result that agrees, as it should, with W(0) from Equation (195) . Let

W (0) _ [ sin ( wznp]i /22) ] 2 (212)

K = W,

nznpa / 2 A

where K is the ratio of the energy density at the diffraction head when the objective is out-of-focus by the
amount z to the energy density at the diffraction head when the objective is in focus. The ratio K is, we note,
an even function of z when no spherical aberration is present. The assigned value of K becomes a criterion
for the maximum tolerable out-of-focus distance z.

16.28,1.5 Supposethat

2 < |
alzln p2 /X =7/2 . (213)

This means (see Equation (208) ) that the phase aberration due to being out of focus shall not exceed one-
fourth wavelength. By introducing ( 7znp2)/ 2 x = 7 / 4 into Equation (212) , one finds that K = 0. 8106. .
Hence, the criterion ‘

> N
' K =0.8106 : (214) .
is equivalent to the criterion*of Equation (213). We learn from Equations (213) and (214) that if
<1 A ’
|z} = n (215) .
2 o) .

the central energy density in the out-of-focus image of a self-luminous object point located upon the axis of the .
objective will not fall below 81.06 per cent of the maximum central energy density which occurs at the state of
sharpest focus z = 0. np_  is the numerical aperture of the objective with respect to its image space. Con-
sider, for example, the case in which the refractiv% index n of the image space is unity and in which

Py =8inU = 0.1. From Equation (215),, [z] = 0.5x/0.01 = 50 wavelengths.

16.28.1.6 This diffractiontheory for out-of-focus images will become less reliable as py, becomes large; but
within the range of applicability of the theory, the depth of focus should vary inversely as the square of the
numerical aperture of the objective and directly as the wavelength. This conclusion is quite different from -
that based upon the more elementary notions of geometrical optics. ’ L

16.28.1.7 The reader who wishes to examine the applications of the more general primary difiraction integral
(205) to cases in which the pupil function P(p) includes spherical aberration and in which r # 0 may consult
an excellent, detailed publication**%y Guy Lansraux.

*This criterion is known as Rayleigh's criterion for phase aberrations.

**Guy Lansraux, '"Calcul des Figures de Diffraction des Pupilles de Revolution, " Revue D' Optique,
26, 24-45 (1947). : ’
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