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6 FIRST ORDER OPTICS

6.1 GENERAL

6.1.1 First order optics and paraxial rays. In Séction 5.11.2 it was pointed out that when the sine of the
angle is replaced by the angle, the resulting equations belong to the field of first order optics. In general,

if any trigonometric function is replaced by its first approximation, we get first order equations, in the

field of optics. In Sections 5.9.1 and 5.9.2 we defined a paraxial ray as one differentially displaced from

the optical axis. Because of this definition we must use the first approximation to the trigonometric functions
in the equations for a differentially traced ray. "The resulting paraxial ray equations are hence identical to
the first order equations.

6.1.2 Preliminary layout and graphical ray trace. The method of tracing paraxial rays graphically was
explained inl Section 5.10. Graphical ray tracing is extremely useful in the preliminary design stage, par-
ticularly for complicated systems, which cannot be visualized easily. The designer can thereby get a "feel”
for the system, which a mere array of numbers often hides. Graphical ray tracing, however, is limited to
an accuracy of about one percent. For additional accuracy, which is absolutely necessary in the calculation .
of aberrations, we must resort to numerical paraxial ray tracing. The methods and results of this type of
ray tracing in the realm of first order optics will be discussed in Section 6. ' '

6.2 NUMERICAL TRACING OF PARAXIAL RAYS

6.2.1 Importance of paraxial ray tracing. The accurate numerical tracing of paraxial rays is used exten-
sively in the design of optical systems for three main reasons:

(1) Tracing paraxial rays through the system is a simple mathematical procedure.
(2) Images formed by paraxial rays provide very convenient reference planes.

(3) Data obtained in paraxial ray calculations can be used to calculate the first
approximation to image aberration.

For these reasons, a systematic method of numerical ray tracing of paraxial rays is a necessary tool for the
designer, even today when large automatic computers are readily available. In this section such a method
will be described; and it will be used extensively in the following sections to illustrate the vast amount of
information made available by paraxial ray tracing.

6.2.2 Ray trace format.

6.2.2.1 The first step in tracing a paraxial ray is to lay out the system dataina form as shown in the top
of Table 5.1, Then the two constants, c¢(n_; - n ) and t7/n, are computed for each surface and
space respectively. ( See Table 6.1). With these constants filled in, the paraxial ray may be traced by
applying Equations (56) and (57) of Section 5.

6.2.2.2 As one uses this representation, its value becomes evident. These equations, and the way the data

SURFACE 0 1 2 3 etc.
c €o Cy Co i C3
t to I\X t to
n Ilo—’ - n l’lz
t ‘ ) 1
cn_y-n o 1 PALS N
(n_,-n) [ cy(alnp) | eqfng-ny) |
t/n to/lno. t,/n, fx t/n,
¥ st ERE
nu nouo nl ul_- =.>n2 UZ

Table 6.1 - Recommended format for tracing paraxial rays through an optical system.
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are laid out, make almost a perfect match with the requirements of a desk calculator. A few of these
features are: \

(1) In calculating c{(n-3 - n) one obtains the d?ata. from a triangle of numbers, __;L
| ! | H
(2) Intracing the ray, both equations are computed in the same way. First a number is
multiplied by a number directly above it, then the product added to the number below the double line on the
left, and the result written in the space on the right. This is indicated by the lines shown in the figure that
appear as 4 and “ -
| | | i
(3) Many times, problems are worked backwards. For example, suppose n_; u_; , nu,
and y are given, and the problem is to find ¢, The question is: how to remember what to do first, i.e.,
divide y by (nu - n_; u_; ), or vice versa? It turns out that the correct method is always the easiest
one to do on the calculating machine. Dividing (nu - n_; Uy ) by ¥ can be done without writing down
(nu - n_y u.y ). However, to calculate y/{(nu - n.; u_j ), the difference must be written down; there-
fore, we know that to calculate ¢, the result mustbe (nu - n_; u -1)/y dividedby (n_; - n). As-
another example, suppose a value of Y1, V3 , and n;- u; aregiven, what t; / n; is needed ? The

formula can be remembered in the following way: first compute Y2 - ¥Yp , and then divide by n,; uy .
Therefore the formula is t; /n; = ( Yo - V1 Mny uy .

2 / ‘ ‘

N |

i | o | |

. . | ;
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Object n, m Image
| .

jr 3

; | 1 . !
Fipure 6.1 - Relation betwéen in\lage a[nd object points.
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6.2.3 Algebraic example. Table 6.1 may also be used to derive algebraic expressions useful in optics. One
can very readily work out the equation for image and object distances for a single refracting surface. K a
surface of radius r, separates two media of index n, and n; , an object point will be imaged at a dis-
tance t; from the surface ( see Figure 6.1). What is the relation between t, and t, ? Thisisa
three surface problem, the object surface, 0, the refracting surface, . 1, and the image surface, ' 2.
A paraxial rayat y, = 0 will be imaged at ¥9 = 0. It is therefore possible to fill out the calcula- -
tions of Table 6.1 to the following extent. { See Table 6.2 ).

S

|
SURFACE OBJECT 1 IMAGE

c 0 ¢y ' 0
t to t1
n no ny
c(n_jy -n) 0 | cy(n, -ny) | 0
t/n to/ng ty/ny
y 0 0
nu 1

| | |

s i | ' i
Table 6.2-Single refracting surface, axial object and image points .
‘ |

i
i

|
i
i
|
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Now, as pointed out in Sections 5.9.3 and 5.10. 1, the angle used to trace a paraxial ray does not affect the
image position. Since the choice of y on the lens is arbitrary, let it be y; - The calculations to this
point are shown in Table 6. 3.

e(n_, -n) 0 Icl(n0 -ny) l 0
t/ln to/no tl/nl
y 0 ¥y 0
nu noluo “%“l

Table 6. 3 ~ Continuation of Table 6. 2.
Withy, (=0) and y; (arbitrary) known, n, uy, = (y; - 0)/(t,/n, ).
With' ng u, and y; known, m uy =ng upo +y;3 ¢; (ng - m ).

Withn, w, , y; and y, (=0) known, t,/n, = (0-y,)/n u

1-
Therefore t,/n, = -y;/n; u; , or

Ill ny ug -no \10 °

T v, T Vi - ¢y (no—nl)—— £, +c1(n1-no).
This equation becomes the familiar refraction equation, derived in Paragraph 5.9.3. 2,

n n .

1 =
—+ -2 =c1p(n -n ). 1)
t1 to

Notice how the y. has dropped out of the equation indicating that any value ¥1 could have been used.
The calculations will be finally filled out in Table 6. 4 as follows: s

y 0 ' 0

nu ne/ty ¥ Nesto

+ Yy eilng-ny)
i

Table 6. 4—-Conclusion of Table 6. 3.

6.2.4 Numerical example. Equation (1) was given to show how the ray trace table can be used to derive
a classical formula. Actually one will find very little occasion to use Equation (1) to caleculate a numerical
result, because problems can be solved much more readily usmg the format of Table 6.1. For example,
suppose one is given the problem ¢y =010,n, =1, ny =1.5, t, = 10. Rather thanre-
member any special formula, go directly to the format as shown in Table 6.5.

SURFACE OBJECT 1 IMAGE
c 0 0.10 )
t 10 tl
1 1.5 .
N t t (0.05) —1 + 1 = 0
c(n_y -n) 0 l —0.05 | 0 . 1.5
t/n 10 t,/1.5 tp -1
| - iz = ._6—5_ = =20
¥ 0 [ 1 | 0 .
nu 0.10 o.ols t; = (1.5) (-~20) —30
|

Table 6. 5-Numerical example of a single refracting surface.
6.2.5 Ray trace for three element lens. Table 6.6 shows the data and ray trace results for a three element
lens. All the material above the lowest double line has been discussed earlier in this chapter The last two
lines, involving ¥ and nu, and the calculations of m ( lateral magnification ), ' (focal length ), and
® ( optical invariant ) will be discussed in the following sections.
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SURFACE | OBJECT IMAGE'
0 1 2 3 4 5 6 7
c 0 0. 25285 ~0.01474 -0, 19942 0. 25973 0. 05065 ' -0. 24588 0
t 25. 00000 0. 60000 1.06541 0. 15000 1. 13691 0. 60000 14. 05015
n 1. 00000 1.62000 1.00000 1.62100 1. 00000 1. 62000 1. 00000
cn_; - n) -0. 15677 -0.00914 0.12384| 0.16129 | -0.03140 -0. 15245
t/n 25. 00000 0. 3'{037 1.06541 0.09254 1.13691 0.37037 14,05015
y 0 1. 25000 1.19594 1.02872 1. 02606 1.18070 1. 21734' 0
nu 0. 05000 ~-0. 14596 -0. 15689 ~0.02948 0.13601 0.09894 -0. 08664
y -10. 00000 ~0. 75000 -0.56942 -0. 04440 0. 00069 0.55481 0 72887 5.77084
nt 0.37000 0.48758 0.49278 0.48728 0.48739 0.46997 0.35886
- L
m o% - _0.57708 = Y7 & = -0.50000
66 7
F=- 0.5 = 10. 000
O (T 4, ug) 1 {0.05 % 0. 35886 +0.37 x 0. 08664

Table 6.6 Sample calcula’uon of paramal rays through a three element lens, usmg Equatlons 5-(56) and 5~ (57)

|
6.2.6 Ray trace procedure for calculation of aberrations. Another way to trace paraxxai rays is to use the

following equations:

Y = Vel + tejua

VRV | [(n.l/n) -i_]

This ray trace involves the new quantity, i, whichis the 11m1tmg value of the angle of 1nmdence, I, as
the ray approaches the axis in the paraxial region. Equation (2) is merely Equation 5- (56) simplified. Equa-
tion (3) comes from Equation 5-(35), written for small angles, with the substitution i’

latter is the law of refraction for small angles. Now from Figure 5.11,
But for small angles this is y/r

r and the optical axis.

i = yc +u_y

6.2.7 Numerical example.

1

|

i

I'

-U =

!

3

(2
(3)

= ing,

/ n; the .

the acute angle between
= y c. Hence, using Equatlon 5-(35) we have, -

|

It will be shown later ( Sectmn 8 ) how the th1rd order aberratmns may be calculated from parax1a1 ray data.
For these calculations it is easier to use Equatlons (2),(3) and (4) than Equatlons 5-(56) ‘and 5- (57)
|

| @

|
6.2.7.1 To illustrate these equations, Table 6.7 includes parax1a1 rays traced through the same lens as
used in Table 6.6. In this example, a different set of rays are traced through the lens. Below the lowest

double line there are entries used in the calculatlon of chromatlc aberratlon.

explained in Section 6.10,

These calculattons will be

SURFACE OBJECT IMAGE
0 1 2 3 4 5 6 7
ya
c 0 0.252850 | -0.014740] -0.199420| 0.259730 | 0.050650 | -0.245880
t © 0.600000  1.065410  0.150000  1.136910  0.600000  8.279369
n 1.000000  1.620000  1.000000  1.621000  1.000000  1.620000  1.000000
(o, / 1) -1 -0.382716 | 0.620000 | -0.383097| 0.621000 | -0.382716 0. 620000
y 0 1.500000 | 1.412907 | 1.148619] 1.138827 | 1.227353 1. 241918 0
u 0 -0.145155  -0.248063 -0.065279 , 0.077866  0.024274  -0.150001
i 0.379275 | -0.165981 | -0.477120| o0.230508 | 0.140031 | -0.281089
dn/n 0 0. 006370 0 0.010586 , 0 0. 006370
TAch = -0.0029
A(dn/n) 0.006370 | -0.006370 | 0.010586| -0.010586 | 0.006370 | -0.006370
o= -yny 1890 -0.00362 | -0.00242 0.00580 | 0.00450 | -0.00109 -0.00360 |ZA = ~0-00042

; ‘ ‘ ! | ' '
Table 6.7 - A paraxial ray is traced through the same lens as used in Table 6. 6. ﬁln this case

Equations (2), (3), and (4) are used. . ‘
64 i
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6.2.%.2 For use with a large computing machine there is no preference for either of these methods. For
hand computipg, unless aberrations are calculated, the method cutlined in Table 6.1 is simpler. Therefore,
all the paraxial ray theory given in Section 6.3-6.9 will be based on Equations 5-(56) and 5-(57).

6.3 THE OPTICAL INVARIANT

6.3.1 Axial and oblique rays. In Section 6.2 it was shown how images may be located along the axis of the
optical system. The procedure is to trace a paraxial ray from ‘where the object surface crosses. the optical
axis (y, = 0 ). Such a ray is called an axial paraxial ray. An image surface is formed wherever this
paraxial ray crosses the optical axis. By tracing a second ray from the object at a value of y, £ 0 itis
possible also to determine the size of the image. Such a ray is called an obligue paraxial ray. The. data for
this second ray will be identified by writing y and u. Table 6.6 shows a second ray traced through the
lens. The second ray is commonly referred to as the oblique paraxial ray because it passes from an off-axis
object point obliquely through the optical system to the image. If this ray passes through the center of the
aperture stop it is called a chief ray. Intracing the oblique paraxial and the axial paraxial ray through the"
system, the following equatlons have been applied for each surface:

nu = n  ouwu, +yc ( n,; -n ) for the axial paraxial ray refraction. 5-(57a)

nu = ny u, + yc(n_ -n) for the oblique paraxial ray refraction. 5-(57b)’

y = vy + ta (n; uy ) for the axial paraxial ray transfer, 5- (56a)
n-1 - -

— - t — L

y = y1 * n;ll— (n_y wy ) for the oblique paraxial ray transfer. 5-(56b)

6.3.2 The optical invariant and its importance. We will use the last four equations, involving axial and
oblique paraxial rays, to derive an expression called the optical invariant. This quantity, as its name
1mphes, is a constant; as such it may be calculated in several ways and its value for a given system can be
used in the calculation of various guantities. This invariant has a meaning for an optical system simijlar to
momentum or energy for an isolated mechanical system.

6.3.3 The invariant for refraction. By transposition and division, using Equations 5-(57a) and 5-(57b), it
is possible to equate the common term ¢ (n.1 - n) giving

nu - n_; u, nu - ny; u_y

y y

By rearranging, this may be written

y(ng ug ) - y(ng uy) = y(nu) - y(nu) . _ (5)
The index and angle data on the left side of this equation refer to the space to the left of the surface, and
the corresponding data on the right side refer to the space to the right of the surface. This equation shows
that

y(nu) - y(nu) = & (6)

is an invariant for the refraction at any surface in the optical system. @ is called the optical invariant.

6.3.4 The invariant for transfer. In a similar way Equations 5-(56a) and 5-(56b) may be combmed to
give the relation

ya1 (n.g wg ) - yg3 (ng ug) = ylng uyg ) - y(ng uy).

It is noted that the right hand side of this equation is equal to the left hand side of Equation (5), and hence is
&, the optical invariant. Moreover both y values on the left apply to the surface to the left of the space,
and both y values on the right refer to the surface to the right of the space. Therefore this equation shows
that the optical invariant is also an invariant as the ray is transferred from one surface to the next.

6.3.5 The invarijant for the entire system. We have shown above that there is a combinationof y, n, u,
y, and u , which has the same value on either side of a surface, that'is, it is invariant across a surface
between two spaces. We have also shown that this same combination of parameters is the same on either
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side of a space, that is, it ig invariant across a spaée betweeﬁ two
an invariant for an entire optical system. It is therefore possible to write down the optical invariant between
any two surfaces (or any two spaces). For example, between the object surface and the image surface we can

write

i

® =y, (ngu ) -y, (n u) =
\
The invariant may also be written in determinant form as

Yy nu
¢ = .
y nu
‘ . i ‘ ‘
6.3.6 Lateral magnification. f y_ = 0 on the object surface (the 0th surface), and ¥, = 0 onthe

image surface (the kth surface), then the next to the last equation becomes

| 1
® = 3;0 (nouo) gk(nk—l U1 ) -

This is illustrated in Figure 6. 2. ‘
|

Using the optical invariant then, it is possible to cal¢u1ate the heigh

height, Y, - The lateral magnification, m , is defined as
!

o

m = Y5 - _(mgu)
y (nyy we )

i ! ‘ ! .
This equation shows that the lateral magnification can be calculated by tracing a single paraxial ray from the
base of an object to the base of the image, and by taking the ratio given in Equation (7).. Physically, the
lateral magnification is the ratio of the height of the image to the height of the object, both heights being
measured perpendicularly to the optical axis. By defining lateral magnification by Equation (7), and remem-~
bering that y values of points below the optical axis have signs opposite to those above‘r we see that a posi-

o

Figure 6.2 - Diagram illustrating the data used to compute the optical i
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surfaces. Hence the optical invariant is
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tive value of m indicates an erect image. A negative value of m indicates an image inverted with respect
to the object.

6. 3.7 Angular magnification.

6.3.7.1 There are instruments which work with the object placed at a large distance t, from the first
surface of the lens or mirror. ¥ this distance is great enough to assume it is infinite, then the ray co-
ordinates on the first surface for the axial and oblique rays are:y; ;u, = O;y ;u_ . The optical
invariant, for the first surface (1) and the space to the left (0}, becomes

b = - Yl ( no EO ) .
In the image plane, YV = 0, so
- yl (no EO ) = —S;k (ﬁk—l uk;l ) ,7 i
and
- - Yl -
Yk = (no u, ) . (8)

(g uey)

In visual instruments, the image surface is usually at a great distance from the last optical surface (k -~ 1).
If the distance is assumed to be infinite, then u, ;, = 0, and

2= -y (g uey)-

When both the object and image surfaces are assumed to be at infinity we have a telescopic system and the
optical invariant is ‘

® = N '(nouo) = - ¥ (nk—l uk-l)'

The most familiar example of a telescopic system is a telescope for which both object and image surfaces
are at infinity; when so adjusted the telescope is said to be afocal. From the material to be presented in a

‘%
|

CObject Image

— O

Figure 6. 3 - Diagrams illustrating the use of the
Smith Helmholtz equatiops, Thin
positive lenses are represented by

the symbol i , thin negative lenses by Y .
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later section we can say that such a telescope has ijts foecal lejngths equal to infinity and both focal points at

infinity.

I i
6.3.7.2 The angular magnification, a , is defined as the ratio

magnification for a telescope in afocal adjustment is

|
!

uy g/, .

For a telescope, the angular magnification is called the magmfymg power (MP).
I

; :
Therefore the angular

(9)

6.3.8 The Smith-Helmholtz and the Lag ange equatmns. Equatlons {(7) and (8) can be rewritten as
l

and

-3

k

k1

Ve Prq Vg

Y

1

These equations are referred to as the Smith- Helmholtz equations by some optical wrlters and the LaGrange
equations by others. Through the use of these equatlons, it is p0551b1e to decide rapldly what is needed to set
up a given optical system. For example suppose we wish to form an erect image on surface k twice the size

of the object on surface 0. See Figure 6.3 (a) .

uy-y; must have the same sign. This is 111ustrated in Flgure 6.3 (b) for the case of n o = My

emerging from the base of the object at an angle u
below the optical axis at an angle u_ /2.

axis. At B a second positive lens refracts the rays to the fmal image.

Equation (7) shows that if m is to be + 2 then u, and

. A ray

must pass through the optical system and emerge from
As is shown in Figure 6.3 (c), this can be accomplished by any
number of methods. A positive lens may be placed at A and be adjusted to refract the rays to cross the

On the other hand two lenses could

be used at C and D if desired, in whlch case the ax1a1 rays would refract as shown by the dotted lines.

6.4 LINEARITY OF THE PARAXIAL RAY TRACING EQUATIONS

|

i

i

6.4.1 General. In Sections 5.9.3 and 5. 10 we have seen tha.t finite heights and angles can be used w1th the
paraxial ray trace equations. The basic reason for this is that these equations, 5-(56) and 5-(57), are
linear. Anocther result of this linearity is that if two rays are traced through an optlcal system, it is poss1-
ble to predict the path of any other paraxxal ray. The proof of th1slfact will be developed below

6.4.2 Proof of the theorem.

¢

'

6.4.2.1 In order to prove the statements given above, let y ‘and

rays on the j th surface, Corresponding to these two rays,

the equations
Ay+By =
and

Au+ Bu =

|l

=l

'

l

be the heights of iany two paraxial
u and @ are the angles between the rays
and the optical axis. If § and u are the height and slope angle of any third ray, we wish to show that

i (10a)

(10b)

g

are valid for the entire opncal system. We also must be able to calculate the values of A and B.

6.4.2.2 BEquation (10a) apphes to the jth surface. Using Equatlon 5-(56), we can show that an
equation similar to (10a) applies to the j * 1 surface. Subshtutmg Equation 5-(56) mto Equation (10a)

3
oAl (nu) + By,

gives
= t ==
y+1 - ; ( nu )

Collecting the terms involving
by Equation (10b) so that

<t

o T Ay

n

4+

Ay,

results in the expression t?( u - A u - Bu).

B y+1

P

.

n i
i

1
|

|

- B—t— nu.
n

Bfot this equalé Zero

1 | |
Hence Equation (10a) holds for the j + 1 surface, and therefore, Ly induction, for any and all surfaces.

.6-8
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6.4.2.3 Similarly, we show that Equation (10b) holds for all spaces. Substituting Equation 5-(57) into
Equation (10b), and collecting terms, we have

n = n
+H = +1
n +1

— n c{n -~ n = - .
k-2 cin - nyg) - -
Auy + 7 Buy + ( = 1) (5-A7-BYy).

By Equation (10a) the last term equals zero. Hence

U, = Au, + Bu,y,,

and Equation (10b) applies to any and all spaces.

6.4.2.4 We have shown that Equations (10a) and (10b) apply to all surfaces and all spaces respectlvely and
hence to the entire optical system. Solving these equations for A and B gives

el

Ju-

y — =
A = ————— =n(yu-uy)/?
yu-uy
and
yi-uy e
B = — - = n(yu -uy)/e.
yuw - uy

These equations hold for any surface and the space to the right of that surface. In particular, we will use the
expression for A for the object surface, and that for B for surface number 1. ’

6.4.3 Two particular rays.

6.4.3.1 Because the theorem proved in fection 6. 4. 2 holds for any three rays, we can choose these rays in

sl

¥
[=]

=l

_ ¥y
Yo
g g
v
Yo t, 1
Surface 0 Surface 1

Figure 6.4 - Rays used to find simple expressions
for A and B. .
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such a way as to simplify the calculation of A and B. The two
from the center of the object surface (x, = y,
which intersects the axis at the center of the first surface (x 1

and any third ray, are shown in Figure 6.4. Using y, = ¥,

Using Figure 6.4,

and therefore

ond ray ( irk
|

6.5 THE CARDINAL POINTS OF AN OPTiCAL SYS

6.5.1 General.

. . | |
6.5.1.2 The cardinal points, and the letters used to designate the
: : ‘ 1

(a) The first and second focal points, F; and Fz .

k
|
i
|
|
|

particular rays we us
0),_and (2) any ray from the object (¥

S | W

. i
6.4.3.2 The two particular rays chosen are often specified more stringently. In order to get some idea as
to the necessary diameters of the elements, the ray from the axial object (y,
of u, soas to pass through the edge of the aperture stop. Sucha ray is called a rim ray, or marginal ray;
the value of u, determines the energy passing through the system. The other ray is taken as coming from
the top of the object. This gives some idea as to the diameters of the elements necessary to attain the de-

sired field of view. We will specify later that this

FIRST ORDER OPTICS

e are:v (1) any ray

These two particular rays,
the expressions for A and B re-

0 ) is taken at a value

_# 0) be the chief ray.

|

6.4.3.3 The above two paragraphs have specified the two particular rays ( Vo =
chosien so as to easily evaluate A and B from the known data and, the initial third ray data, ~ (It should be
emphasized that this is not necessary; any two rays and the initial third ray data will suffice to determine
A and B). Instead of choosing particular values of Yo
and u3 , for example 0. This would result in A
correspondence between these and the equations in Ifaragraph

and y, , we could have chosen particular values
i, / u," . Note the -

6.4.3.1.

|

6.5.1.1 We have already seen, in Sections 5.9.3, 5.10, and 6.4, some important consequences of the
linearity of the paraxial ray trace equations. Another consequence, to be discussed in Section 6.5, is the
presence of certain special points which exist in any optical system. Six of these points, all lying on the
optical axis and known as the cardinal points, are of great usefulness in analyzing an optical system. The
reason why the linearity of the paraxial ray equations lead to the existence of the cardinal points will not be
developed in detail. It may be mentioned here, however, that the equations which we will develop from the
concept of the cardinal points can be derived directly from the ray

trace equations. One such equation, for

example, was derived in Paragraph 6.2.3 . The fact that both the paraxial ray equations and the assump-
tion of the existence of cardinal points lead to the same equations is indicative of the connection between
Sections 6.4 and 6. 5.

m, are as follows:

and P

(b) The first and second principal points, P
(c) The first and second nodal points, N

Sometimes the words first and second are replaced by primarsr and
respectively.

6.5.2 The second focal pdint and the second focal le:ngth. In
the axial ray is traced from an infinitely distant object, t
through the optical system and eventually cross the axis at whal

i

ﬁhe sample calculation sh
o and u,

secondary, or by object and image,

(f)wn in Table 6.6, if
0 . This ray will pass
t is called F, , the second focal point. (See
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Figure 6.5 - Location of second focal pointy second principal point, and second focal length.

Figure 6.5) . The second focal point is, therefore, the intersection (in image space) of the optical axis and a
ray which (in object space) was initially parallel to the optical axis. This cardinal point can also be considered
as the axial image of an infinitely distant axial object. This is why it is sometimes referred to as the image
focal point. Because the height of the axial ray, y, , is arbitrary, all rays parallel to the optical axis,
coming from an object surface, intersect at the second focal point. We can think of an image surface,
intersecting the axis at F, . This is the second focal surface, which for paraxial rays becomes the second
focal plane. Then y; = 0, and Equation (8) applies,

M/ u,/(nyy uypy)-

The second focal length is defined as,

ffo= - Y1 /uk~1 . (13)

Physically, the second focal length is the distance between the second focal point and the second principal
point, defined below. The reason a telescope in afocal adjustment (see Paragraph 6.3.7.1) has an infinite
(second) focal length is that u, , = 0. Hence the final axial ray is parallel to the axis, and F 5 isat
infinity.

6.5.3 The second principal point. The second principal point is located by erecting a plane perpendicular

to the optical axis at the point of intersection of the forward-extended entering ray and the backward-extended
exit ray. The intersection of this plane (the second principal plane) with the optical axis is the second princi-
pal point, P, . From Figure 6.5 it can be seen that

T
ff= P, F, .
If the second principal point is to the left of the second focal point, f' is positive; otherwise it is negative.

6.5.4 The second nodal point. The second nodal point, N 9 is also an axial point, as are ‘F, and P 5 -
It is a point such that the distance

N,
Dg-1

N2 F2 = (PZ FZ)

6-11
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With this expression Equation (8) can then be written

—_ - t 1’10 uo no uo _ | —
T PRSP T N s NaFp
. | ! ! ‘
I n, = Ny » then P, F, and N, F, are equal and the principal point P2 and the nodal point

Ny coincide. ‘

1

: | ]
6.5.5.1 With similar arguments one can find a first focal point, ¥; , such that rays entering the system
from F; will emerge from the last surface traveling parallel to the axis. For such an object point,

6.5.5 The first focal, principal and nodal points.

Y, = 0, and U ., = 0 . Therefore from the optical invariarrt equation,
- - i !
= n u
yo = - yk k—l k-l
n, u,

The first focal length f is now defined as,

= Yx _ |
fo= oo = Fu Py | (14)
Fipally using F; N; = (F; P;) 2kl | we have
n, .
, . | i
- n u L n u) :
= - k—l k'l - k—l k—]_ _ —_—
yO f __E:__ = - Fl Pl T - = Fl Nl uk_l -

!

[ )

I
6.5.5.2 The physical meanings of the first focal and principal points, and the first focal length, correspond

to those discussed in Sections 6.5.2 and 6.5.3. The first focal point (see Figure 6. 6) is the intersection of

the optical axis and a ray which will be parallel to the axis when it leaves the system. It is also the axial
object whose axial image is infinitely distant. All rays parall?l to the optical axis after emerging from the
. ‘ | | i :

-

Do Dg-1

: oo ! - i '
Figure 6.6 - Location of first focal point, first prinf:ipal point, and first focal length.

|
1
|
6‘-1‘2
1
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system have passed through the first focal point. The plane perpendicular to the axis at F,; is the first focal
plane,

6.5.5.3 The first principal plane is a plane perpendicular to the optical axis passing through the intersection
of the forward-extended ray through F, and the backward-extended ray emerging irom the system parallel
to the axis. The intersection of this plane with the axis is the first principal point. The first focal length is
the distance between the first focal point and the first principal point, and is positive if F1 lies to the left
o P, .

1

6.5.6 Object and image positions with respect to focal and principal poinis.

6.5.6.1 The previous sections, in connection with Figures 6.5 and 6.6,have explained the meaning of the
focal and principal points, and the principal planes, from a graphical point of view. First, these ideas will
be used to derive some well known relations between object and image positions., These relations will then'
be used to indicate additional characteristics of principal planes and nodal points. .

6.5.6.2 Consider Figure 6.7 which indicates an object of height y at an arbitrary position. It should be
emphasized here that Figure 6.7 indicates a general optical system, without reference to specific positions
of refracting or reflecting surfaces. (Figures 6.5and 6.6 show two refracting surfaces merely for con-
creteness; the ideas involved in those figures apply to the general system, as does the whole of Section 6.5).
Of the infinite number of rays that come from the top of the object, we choose two whose course through the
system we know from Figures 6.5 and 6.6. An entering ray, parallel to the optical axis, passes through

F, , and canbe considered to be deviated only once, at the second principal plane. Slmllarly, a ray through
F, exits parallel to the optical axis, and can be considered as having been deviated only once, at the first
principal plane.

6.5.6.3 Four new distances are shown, Z , Z', S, and S'. Sign conventions are then established such

that all these distances shown, as wellas §f and f', are positive. K any pair of points at the ends of the
double arrows are reversed, the distance is negative. For example if the object is tothe right of Fy , 2

—_— ]

1

___2,4\

Figure 6.7 - Diagram showing object and image relations.

wn

Sl
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| l

| I

1 |

| ol

will be negative. From similar triangles, remembering that Yy is negative,
i |
| t

- P

;;k _ A _ f
A f z |
Using the definition of lateral magnification, m = ?k / ?0 , we have
i : ¢
z' f _ :
I : | (15)

| ]
, | SN |
272 = ff. » o . . (1)
Equations (15) and (16) are in the Newtoman form, m which object and image pos1t1ons are measured from the
focal points, F, and F, , respectively.

Rearranging there follows

| ! .
6.5.6.4 Another form of expressing these relations is the Gaussmn form of these equatlons, 'm which object
and, image positions are measured from the principal points, P1 and P, , respectively. From Figure 6.7

3

Z = 8 - fand Z2' = 8§ - §f'. Substituting these expressmn[s into (15) and (16) gwes
s - f f .
m = - = - X
f S-f |
and .

(s-§)(s -f) = f§. ‘ | ,
‘ | b ;
Expanding the last equation and dividing by S8S', we have .

| |

t
& -1 ' : )
; 1 3 f ‘
and using (17), the lateral magnification becomes | :
s | | ‘
m = - f' . ‘ ; ' (18)

Equations (18) and (17) are in the Gaussian form and correspond to Equations (15) and (16) Whereas the
latter palr does not involve 8 or 8', and the former pair does not involve Z or Z', we may eliminate

f and ' from Equation (16) by substrtutmg f =8-12 and fo= 8 -z, The result is
Z z
s 5 = 1. ,
And using this with Equation (15), we have ! ) _
' i i
—_ __—Z'S ' i
mszZs o :

; ! !

! | ‘ |
6.5.6.5 It may be well to summarize here the specmc meanings of the six distances used in the equations
of Paragraphs 6.5.6.3 and 6.5.6.4. The sign conventions are included below if it is remembered that a
distance measured to the right is positive. o
‘ | |

f is measured from F, to P, . ‘

' is measured from P, to F, . | j

Z is measured from the ok;)j‘ect plane to F1 .1 | I
. ! - I

Z'  is measured from F, ;to the image plane. | [ :

s is measured from the opject plane to P, . | |

§*  is measured from P, tothe image plane.
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6.5.7 Additional characteristics of principal planes. Suppose the ob]ect is placed at the first principal plane.

This means that Z = - F , and Equation (16) gives Z' = - f'. But this also means that the image is at
the second principal plane; the two principal planes are therefore conjugate planes and P; and P, are con-
jugate points. (Equation (17) could have been used, with § = 0, giving 8 = 0, whichagain locates the
image at P, ). Using Equation (15) we find for this case m = 1. The two principa.l planes are therefore

planes of umt positive magnification. This fact is very useful since it allows us to say that any point on the
plane through P; is imaged at the same height on the plane through P, . Therefore any other ray (see
Figure 6.7), entering the system so that it intersects the first principal plane at H 1» exits from the system
as if it came from H, , at the same distance from the axis.

6.5.8 Additional characteristics of nodal points.

6.5.8.1 There is an important relation between the focal lengths of any optical system, and the refract1ve
indices of object and image space. Equation (7) can be rewritten, using Figure 6.7, to give

m = n o u o = nQ (_ %) .
D1 Yk M1
Comparing this with Equation (18) we have
f/n, = £/, - (19)

6.5.8.2 Equation (19) can be used to indicate a useful property of the nodal points. Using the expressions
for Ny Fo, and F; Nj given in Sections 6.5,4 and 6.5.5, in connection with Figure 6.8, we have

- - Dk _ 5 _ .
Py Ny = Fy Ny - Fy Pl‘f(—n‘_‘o—'l) “no(“k—l ng )
and ’
' o ). I )
P, N, = P, F, - N, F, = f(l - “k-1) - o (M o)
Yk
Up _ﬁ,o
/Fl Fé

Figure 6.8 -Graphical construction to locate positions of nodal points,
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Because of Equation (19), the following relations hold between the cardinal points.

P, N; = P, N,, |
P; P, = N; N,, ;
Fi1 Np = f' , : :
N, F, = f. | o
And for object and image media the same, n, = n k;l , f ; ' I, and the principal and nodal points

coincide, P1 with N1 , and P2 with N, . [ t

| ! { .
6.5.8.3 Because P; Py = N; Ny, two parallel lines, one through each nodal point, will intersect the
principal planes in points equidistant from the axis. Hence these two rays are conjugate rays, and we have
the important fact that any ray in object space which is heading toward N; will emerge from the system in
the same direction from N, . This gives us a graphical method for locating the nodal points, shown in
Figure 6.8. A ray is shown entering the system at an angle u, headed towards F, until it intersects the
plane at P, ., It then emerges from the plane at P, parallel to the axis at the image height Yy - A ray
then traced backwards at an angle u, with the axis must emerge anti-parallel to the entering ray as shown
in the illustration, because all rays leaving a point on the focal plane are parallel to each other after emerging
from the system. The two points N ; and N, are the intersections with the axis of the two segments of this
backwards traced ray. ‘ i ;

, | ! i

6.5.9 Numerical example. A numerical example, represented in Figure 6.9, shows the location of the
cardinal points of a lens with water on one side and air on the other. Given the three indi¢es, two curva- -
tures, and lens thickness, all other numerical values can be found using the equations alréady developed.
An axial ray is traced through the system at u, = 0 and y, arbitrary. t, can be found, using
¥z = 0. Therefore F, is located with respect to the second surface of the lens. A corresponding trace
locates F; . Equations (13) and (19) give f' and f respectively. The principal points and nodal points can
now be located. o ‘ l

|

|

|

|
! |

AR | WATER
=1 l n = 1. 33
g F' » | f —p

i

n=1 33
Nl s Nz
F2
/Rl
|
0. 206 '
0.283 ——p l
| — 1. 511
g f=10 > [« f =13.30 >
|
|
]
i

i i .
| i

Figure 6, 9~ Numerical example showing location of the cardinal p[oints for a lens with water
on one side,

i
|
i
|
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6.6 CALCULATION OF THE FOCAL LENGTH FROM FINITE CONJUGATE DATA

6.6.1 General. X an optical system is to be used at infinite conjugate, that is either the object or image or
both are at infinity, then the entering axial ray is tracedat u, = 0, ¥y arbitrary. (For systems having the
image at infinity for a finite object, the design is considered as if the rays went backwards through the system.
Systems are therefore designed with the infinite conjugate as object, whether or not this agrees with the physi-
cal situation. The justification for this is that an optical system is reversible in the sense that rays traverse
the same path in either direction). The ray trace automatically gives the focal length, f', by using Equation
(13).

6.6.2 Finite conjugates. However, if the system images a finite conjugate object, and an axial ray and an
oblique paraxial have been traced, Equation (13) does not apply. It is possible, nevertheless, from the data
obtained from these two rays, to calculate the focal length. If two rays have been traced as shown in Figure
6.4 and in the presentation of Table 6.6, then

A =75,/ _io
and
B =-¥%, u,/y, u, » this latter being Equation (12).

With these constants known, it is possible to predict the final “k for a ray enterlng the lens parallél to
the axis. For then u, = 0 and y, (= yl ) are the initial cond1t10ns for the third ray.

Now writing Equation (10b) for the final angle,

._30 i l"o
_ = Uiy - ————O
k-1 Yo k-1

1]

k-1 -

From this equation, and Equation (13) written for the third ray, we bave

- e
no (W ey - Uo ;)

(20)

where & = y_, (n, u,) from Paragraph 6.3.6.

6.7 SYSTEMS OF THIN LENSES IN AIR

6.7.1 Concept of the thin lens.

6.7.1.1 None of the basic material presented so far presupposes any specific form of the optical system
other than that it is a centered system. We now want to specialize the system somewhat and consider a
single lens, an example of which is shown in Figure 6.9. In that example, n, # n, , sothat § # f.

If no, = ng = 1, thelensisinair, and § = §'. The nodal and principal points coincide as explained
in Paragraph 6.5.8.2. Because of the equality of the two focal lengths, Equations (15) through (18) can be
simplified.

6.7.1.2 An additional simplification can be attained by assuming that the axial lens thickness, t, in the
above example, is small compared with t, and t, . H t; can be neglected, the lens is called a thin lens.
Since the two deviations of the ray are considered tzo occur at one point, for a thin lens, both principal planes
coincide with the lens of zero thickness. For this case, S and S§' are the distances measured to the inter-
section of the lens with the optical axis, and Equations (17) and (18) take the familiar form for a thin lens in
air. The two nodal points also coincide with the lens; hence a ray directed towards the lens center will
emerge from the same point in the same direction. In some special cases, such as high curvature meniscus
lenses (highly warped lenses), the thickness may be small, but not completely negligible. In these cases the
lens may be "thin" for certain applications (for example, caleulation of focal length), but not "thin" for others
(for example, calculation of principal points positions). In such intermediate cases, where the lens is neither
completely thick or completely thin, the principal and nodal points do not necessarily coincide with the center
of the lens.

6.7.2 Focal length and power of a thin lens in air. Many optical systems are made up of individual two-
surface lenses separated by air. Paraxial rays can, of course, be traced through any system of this type

by using Equations 5-(56) and 5-(57), but considerable simplification can be made if it can be assumed that
the individual lenses are thin. In the layout shown in Table 6.8, an axial paraxial ray and an oblique paraxial
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; i
| | } } i
| ! |

. | |
ray are traced through a thin, two-surface element in ‘air. For the axial paraxial ray, we have

! N - )
i ! S e )

u = v/t | { |
‘ b \ !
u, = y/to + y(l-n)e +y(n-1)c, , :
| |
; 1 |
and ‘
| \ | i
u = ug - y{n-1)(¢ —02 ). . (21)
The focal length may be calculated from Equatlon (20) using @ = Yo (no up). K numerical calcula-
tions are made, the data are found in a table sxmxlar t? Table 6. 8 T|herefore,
t - -— @ = tO uO Ug
f no (uzuo-uouz) (uouo-ﬁouz) ’
; | !
or : f |
' - ._19___‘10_ - 1 :
f Uy ~ ug (n-1)(ey - ¢co ) |
and ' .
/§ = (n-1)(c; -cy ) = ¢. ' (22)

I
Equation (22) is the well known formula for the focal length of a thin lens in air. I is mo}e convenient to use
it in the latter form, where ¢ is called the power of the thin lens. .

| ] N

SURFACE | Object 1 2 3
c c, cq c, Cg
t to 0 tg
n 1 n 1
(n_y -n)c 0 (1-n)cy (n-1)cy
t/n to 0 ty!
y 0 l y y 0
nu v/t, y(l-njc;  yla-L)c,
+ y/to +y(1-n)cy
+ Y/to
v 'toﬁo 0 0 i )
mT io ﬁll ﬁz' ﬁoz ﬁl=ﬁ2
l |

Table 6. 8- Paraxlal rays traced through a thin lens

\

|

\ i
1

‘ N

6.7.3 Ray trace equations for thin lens systems in air.

| !

! i i

6.7.3.1 Bquation (21) can be written
u, = u, - vo.

The similarity between this and Equation 5-(57) is now apparent Equatmn 5-(56) can be used to transfer
between lenses. We have then the transfer and refraction equations for thin lens systems. These equations,
(23) and (24) , are written for a general thin lens j .

|
| o | o ! '
y o=y, +t,ou,, - | (23)
|

Lo+ v(-9). | ey

1

u

]
=

; o i | ;
Table 6.9 illustrates a method using Equations (23) and (24) for (Talculating the familiar e>lcpressipn for the
R

.

\
6-*8f
|
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focal length of a dialyte, i.e., two thin lenses separated by the distance d.

SURFACE LENS (a) LENS (b) IMAGE

-¢ -pa -¢b

d d

y v, (1-dga)y,

u 0 -9y, (-ga-gbrddash)y;
1 Ug-1

-F-=¢=- - = ¢a + ¢b - d¢a ¢b

Table 6.9 - Tracing a paraxial ray, u, = 0 and

y; arbitrary through two thin lenses.

6.7.3.2 The tracing of paraxial rays through thin lens systems is probably the one remaining calculation
that lens designers do on desk calculators. In optical design work, a great deal of time and thought must
necessarily go into the preliminary layout work. The designer must decide where to place the lenses, and
what focal lengths are to be used. He needs to know approximately the sizes of lenses needed, and the
approximate path of rays as they pass through the system. All these calculations can be made assuming
thin lenses, and it is a problem so varied that it does not lend itself well to a large computer. Experiénce
shows that desk calculators or slide rules are preferred at this stage of the design.

6.8 OPTICAL SYSTEMS INVOLVING MIRRORS

6.8.1 Sign conventions. It was pointed out in Section 2. 3.3 that the equation of refraction could be used for
reflection by merely writing ’ N

Ny = - 1n.

If this is done in all the refraction equations, they can be used for reflection. If a mirror is inserted in an
optical system, it reflects the ray backwards so that if the light was originally traveling from left to right,
it will travel from right to left after reflection. It is possible to treat reflecting surfaces in exactly the same
way as refraction surfaces by adopting the following rules:

(1) Write all the curvaturés with the usual sign convention. If a single surface is en-
countered several times in a reflecting system, the radius is always considered to
have the same sign.

(2) Whenever the light travels from right to left, insert the index and thickness with a
negative sign.

6.8.2 A mirror system and its ray tracing format. A typical mirror and lens system is shown in Figure 6. 10.
The proper way to lay out the data for ray tracing is shown in Table 6.10. Actual rays as well as paraxial rays
can then be traced through this system exactly as though it were only a refracting lens. If the light travels
from right to left in the jth space one must remember that the index of refraction ( 0§ )} is negative.

6.8.3 First order imagery in a mirror.

6.8.3.1 By using the above procedure it is now possible to readily work out the first order optics of a single
mirror. The problem is illustrated in Figure 6.11, and worked out in the presentation shown in Table 6. 11.
From the table, it is apparent, by applying Equation 5-(56), that

’ 1
y2=0=1+(—t1)(t-;—+2(:).
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2 3
‘b
1
4
5 6 |
Optical P ! .
Axis 3 o |
rg= ~-10
| |
| :
| |
[ i
| | |
Figure 6.10 - The path of rays through a mirror system. :
| i |
| |
| E
| | |
‘ | |
? | :
SURFACE OBJECT 1 2 3 4 5 6
c 0 ~0. 500 -0.330 -0.100 -0. 330 -0. 500 -0. 330
t © 1.000 3.000 -3.000 ~1.000 1.000
n 1.000 1.500 1. 000 -1.000 - =1. 500 1. 500 ~1.000
cny - n) 0 0. 250 -0.165 -0. 200 -0. 165 1.500 -0.165
t/n elo 0.6’67 3.0?0 3.000 o.sle'z 0.6|67

Table 6. 10 - Computihg sheet format for mirror system illustfated above. Only the lens
constants are included in the above table. The calculations, which are not
given, are carried out as in Table 6. 6.
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Figure 6,11 - Imaging an object in a concave mirror.

SURFACE OBJECT 1 IMAGE
c 0 c 0
t to tq
n 1 -1
c(n_, -n) 0 2c 0
t -t
t/n ; o 1
y o | 1 0
nu 1/t, 1/t +2c
v . T | T T 1- g2
nu 0 2lc

* Ray traced parallel to axis to calculate focal length directly.

Table 6.11 ~ Ray tracing through a single mirror system.
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A
Therefore o | ;
| | |
1 1 1 2 :
= = —— + 2¢c = — + 2, : (25)
ty te to T } ‘ _
' I i i i . .
For a numerical example assume r = - 10 and t, = 20. Then t; = - 20/3. The minus sign

indicates that the image surface lies to the left of the mirror surface, as shown in Figure 6, 1L The same
equation could have been derived using Equation (1),

|
i
! \
\

n; No
-—= + — = -'¢; (ny - n, ) ;
t1 to 1 1 0 ‘ 1
and setting | ‘
|
ng = - Ny . l

The magnification for the mirror may be found from Equation (7),
. I !

Ny U, 1/t,
m = = - ty /to -
n; uy (1/to) + 2¢ | 1 /o | ‘
‘ |
The same equation could have been derived from Equation (18), remembering that }f' = - § because
n = - Ng . ;
n, o

| B |
6.8.3.2 The focal length of the mirror may be found by tracing a paraxial ray through the mirror at
¥1 = 1 and W, = 0 as noted in the lower two lines in Table 6.| 11. Equation (13) can be written

. \ ‘ !
o= - TL‘lk_—;_T !
Dp; Uy, ’ o ;

and used with the ray at T4, = 0.

Figure 6.12 - The location of the principal points,
‘ focal points, and nodal points for
a sinfgle mirror system.
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Since n, = - n 4 s ?1 = 1, and ( ny_y @, ;) = 2c, wehave,
' = Do . L
f 2c flo 7
¥ r is negative as it is in Figure 6. 11, ff s negative indicating that F, lies tothe left of P, .

The equation P, F, n, = np; N, F, shows that for the mirror,
P, F, = - N, F, .

Since P, F, is negative for the example shown in Figure 6.11, then N F, is positive. The locétion
of P, ,N;, ¥, , Py, Ny and F, are shown in Figure 6.12. The no&al points are at the center of
curvature.

6.9 DIFFERENTIAL CHANGES IN FIRST ORDER OPTICS
6.9.1 General.

6.9.1.1 The various steps followed in the design of an optical system are discussed in Section 9. The first
two steps of the procedure are (1) selection of type of element for each part of the system, and (2) calcula-
tion of a first order thin lens solution. Step (2) involves the calculation of the focal lengths and separations
of the individual elements, as well as first order aberrations which will be discussed in Section 6.10. The
basic procedure for tracing paraxial rays, and therefore for determining focal lengths and spacings, have
already been outlined in Section 6.

6.9.1.2 After the completion of step (2) the designer may feel that some changes are necessary so that the
system meets more closely the required specifications. For example, he may have to change the focal
length of the system. At the present stage of the system design (thin lens, paraxial rays), the designer can
vary only the curvatures, the separations, and the indices of refraction. It therefore becomes important to
know how changes in these three parameters affect the first order solution. In the remainder of Section 6.9
formulae will be given for computing the effects on first order optics for differential changes in the lens
parameters.

6.9.2 Determination of the differential coefficients.

6.9.2.1 A change of any parameter, such as thickness, index of refraction, or curvature of a surface, will
result in the paraxial ray changing its path to the next surface. Specifically, changes in t will change

¥+1 » andchanges in n or c¢ will change both u and y,; . These changes will, in turn, cause changes
on each surface up to and including the final image. The final changes, dy, and du,_; , which result
from a change of any parameter associated with the jth surface, is certainly a function of changes dyj 1
and du; o If the changes can be assumed to be differentials, it is possible.to write

dyg = \3y,, ) dv,, + \%u j du (26)
and
auk_l ‘auk_l
o () e () e

6.9.2.2 The partial derivatives in the above equations are called differential coefficients. ¥ we trace two
differential rays through the system, we have two values each for dy,; and du (initial ray data) and
two values each for dy, and duy_; (result of ray trace). Therefore, by tracing two differential rays
near a given ray, it should be possible to determine the respective differential coefficients. It was shown
in Section 5.9 that a paraxial ray is a differential ray traced near the optical axis. Therefore, we will use
the axial paraxial ray and the oblique paraxial ray as the two differentially traced rays near the optical axis,
taken as the given ray. I is possible then to evaluate the differential coefficients for changes in y, and
ug_.; , by making the following substitutions in Equations (26) and (27):

]
[

dygy = ¥ ¥y T Yy du = u du k-1

dyy = ¥ dy,; = Vi du = u duy_, Uy

1l
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R |
Two sets of simultaneous equations are thereby obtainéd. These equations, when solved for the derivatives,
give: ‘ ‘ ‘
‘ |

3y,  (y w-y ¥)  n(y u-y u) e
Y41 (Vo1 u - yuq @) @ ’ _
' | o !
Oy, _ (Ve ¥y - ¥ Y ) only Ve - Vg Vi ) _ (29)
= : = = ‘ . , ‘
2u (?+1 u -y, u ) | | 33 X
g A .
duy_, (ug-3 u - ug-q u) n(ug.;y u - ug; u) G0
2y,, (Voy w-yy §) x 3 ’
1 ‘ |
and ‘ ‘ |
. _ . o 1 i o
duy._y - (Vi1 wpy - ¥y wp, ) - n(y, wp, - Yiq- uk‘l) (31)
du (S’-;»l u - Vi1 T ) @

| I
‘ i ) g
6.9.3.1 The change in focal length, df , dueto ‘changes in curvature, thickness, and indgx is given by

6.9.3 Effect of curvature change on focal length.

. (of 2§ o |

df = (a—c- dc + 3t dt + an dn .

: | !

If the differential coefficients are known, then df can be found for any small change in the system para-
meters. It will now be assumedthat t and n are beld constant.

'

'

!
|
6.9.3.2 Combining the transfer equation

: t i
i b
I t

Yy = ¥ + tu, L ‘ !
with the above substitutions we have, for the case of = co;nstant_,
| | | - !
dy,, = tdu.

' | ' i -
‘ L I ? -
Using this and Equations (28) to (31), Equations (26) and (27) bgcomcle

| i
n — —_
dy, = & (yk Y - % y) du, (32)

and

n — L - ‘ '
dup.; = 3 (yuk__1 - yuk_l) du. ' (33)
‘ ! i [
6.9.3.3 Equation (13), defining the second focal length, assumes that the axial paraxial ray was traced at
u, = 0. Differentiating this equation, remembering that ¥, is arbitrary and hence independent of c ,
we have A ; \ ! N ’

| i
. ' :

) ()6 B 8

Differentiating 5-(57) it follows that

du y{n; - n)

de n * ' .

Therefore, using Equation (33), | | }

af ['f'( Y Ugog - ¥ Uy )] [Y( n_1‘—r‘y )] |
dc N o ‘I’LIk_]? .

[
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6.9.4 Effect of curvature change on final angle. In Table 6.12 a calculation is shown for a change in curva-
ture made on the fourth surface of the example given in Table 6.6. Comparing the new ug with the original
one in Table 6.6 we have Au; = 0.00469. Now we will compare this value with a calculated value using
the equations for the differential coefficients. Since we are making a change in the curvature only, keeping the
thickness and index constant, we calculate

dugy  du, du
de - du dc

From Equation (32), and data from Table 6.6, the following calculation may be made,

dug _ ysg (n3 - ng) = e T
des = 3 (Y4 Ug Y4 Yy )
- . 1.026 > -621 4 00069 x 0.08664 - 1.02606 X 0.35886)
= 0.469.
We have then that
. Jdug - -
Aug = ge& M, = (0.469)(0.01) = 0.00469.

This is in exact agreement with the result from Table 6.12.

6.9.5 Effect of thickness change on final angle. It is also possible to compute the change in the final angle
from a change in any thickness t. I t is changed, then, '

dy+ 1 = udt.
SURFACE ‘ 4 .5 6 7
c 0.26973 0.05065 | -0.24588
t 1.13691 0.6 14.9709
n 1.621 1 1.620 1
cn_; -n) 0.16750 -0.03140 | -0.15245
t/n 1.13691 0.37037 14,9709
1.02606 1.18794 1.22686
nu -0 .ozle4s 0.14238 0 .101508 -0.08195

Table 6.12 - Calculations showing the effect on u; _;

1
4

Aug= -0.08195 ~ ( -0.08664) = 0.00469

of a change of Acy= 0,01 in the
data in Table 6.6
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ﬂ I i
Therefore, using Equation (27) with du = 0, and Equation (30),
| ! |
du, _ du,,_ dy
'S B W A
dt dy,, 4t :
and ‘ ‘
| i
duy. " nu — —
—"E%—1=T,—[“k—1“"uk—1u]’

.

| | !

)
| ! !

6.10.1 The meaning of chromatic aberration. The variation of refractive indices with ivavelength Was dis-

6.10 CHROMATIC ABERRATION

cussed under the topic of dispersion in Section 2.6. The method of differential coefficients described in Section

6.9 can be used to calculate the effect of such a change in the index of refraction of the lenses. This change in
index affects the refraction of each ray so that rays of different wavelengths pass through the system in slightly
different paths. Generally these rays of different wavelengths give rise to more than a single image, a
phenomenon called chromatic aberration. If the images are at different positions along the optical axis, the
system exhibits longitudinal or axial chromatic aberration. If the images are of different lateral magnification,
the system exhibits fransverse or lateral chromatic aberration. Axial and lateral chromatic aberrations are
sometimes referred to as axial color and lateral color, respectively.

| !

6.10.2 Surface contributions. [ |
6.10.2.1 As mentioned above, each surface introduces a certain amount of chromatic aberration appearing
in the final image. The amount due to a particular surface is called the surface contribution. The general
approach used to calculate first and third order aberrations is (1) determine the surface contribution, and
(2) sum the contributions for all surfaces to find the total aberration. The individual contributions may be
positive, negative, or zero. Hence the sum may be either positive, negative, or zero. In the last case
the system would be free of this particular aberratiox‘l. ‘ ] [

1 ) ‘ . i | .
6.10.2.2 The first order chromatic aberration contribution of any surface may be found by differentiating
Equation 5-(57), assuming that du -1 = 0. This assumption means that the ray betweenthe j - 1
and jth surfaces is unaberrated; hence we are considering only the contribution of the jth surface.
The assumption du_; = 0 alsoleadsto dy = 0, because the ray to the left of the jth surface
retains its original path. We then have, ; { ‘ |

t

‘ : 1 ;
ndu + udn = u_; dn_; + ye(dn_ - dn) .
. | |

]

! ! . i
This can be put into a form more suitable for caleulation. From Equation 5-(35), written for small angles,
and Equation 6-(4), we have ‘ | i

‘ ;

P i | . s '
Using this equation, Equation 2-(1) for small angles, and Equation 6-(4), it is possible to derive the ex-
pression ;

= yc +u. - (33a)

i

i

e (5 ()]

| ! b
; ‘ ! !

| | - i :
6.10.2.3 Here, dn and dn_; represent infinitesimal changes in index due to an infinitesimal change
in wavelength A . The change in u, due to a change of dn_; and. dn, willthus cause the rayto
take a deviated path to the image. The change dyy , inthe ﬁnal image, may then be qalculated from

1
t
}
i
{

\ i
| ]
! ‘ r
! ‘ §
| ]
| ;

1
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Equation (32), Since y, = 0 for the axial ray, the value of dy, is:
y S;k n_, i dn_, dn .
) ¢ ( ﬂ-1) ) (T) ’
. yn, i dn_; _ (dn .
Wk = (ny_3uyy) ( oS} ) (T) ’

g1 [ & 4] /(nk_1 g )5k (38)

- a/(nk_1 uy

1}

dyk

I

dyk
or

dy, a ) -

The above derivation could have been equally well carried out for the oblique paraxial ray giving

dy, = yng 1 [A _dn_n]/ (g vy ) = ~b/(ng 0, ) @5

i

6.10.3 Total chromatic aberration. Equation (34) gives the amount by which the image of an axial object
point is displaced from the optical axis due to the jth surface. Similarly Equation (35) applies to the

image of an object point off the axis. Both these equations give the fransverse displacement in the final
paraxial image plane due to changes dn_; and dn. Now, if these changes are due to a change of wave-
length dx, changes dn and dn_; occur at every surface in the lens. Each surface then contributes
a dy, anda d 'ik , and since they are all différentials, they are directly additive. The totals are :

j = k-1
totaldy, = TAch = T__‘_l__ Y a, - 67
ny g Uy, ) j o= 1
and
— -1 i = k-1
totaldy, = Tech = m j ~Z1 b, (38)-

where a and b are the chromatic surface coefficients. Note that Equation (34) has i while Eqguation (35)
has T . Inall other terms the equations are identical. The symbols TAch and Tch have replaced ay,
and d¥, as descriptive terms to indicate the total transverse chromatic effects. TAch is the abbrevia-
tion for transverse axial chromatic aberration. Tch is the abbreviation for transverse chromatic aberra-
tion. A sample calculation for TAch is included in Table 6.7. S S

6.10.4 Particular wavelengths used to calculate chromatic aberration.

6.10.4.1 The first order chromatic aberration, strictly speaking, is the infinitesimal change, dy, , re-
sulting from a change dn which is due to a change d . Therefore, in order to calculate the infinitesi-
mals, TAch and Tch, it is necessary to know the index at all wavelengths. As was discussed in Sec-
tion 2.6.3, indices are measured at only certain standard wavelengths. It is possible to interpolate between
standard wavelengths, using an appropriate dispersion formula, in order to calculate the index, and hence
the chromatic aberration, at any wavelength.

6.10.4.2 However, in order to obtain accurate indices for ray tracing, it is customary to use only measured
indices. Therefore in order to calculate dn, which'is now considered a finite change, two wavelengths
are chosen n, and n, . Then dny, = ny - n, . [v and r indicate wavelengths at the ends
(violet and red) of the visible region ] . Then a wavelength A, between v and r is used as the
reference index of refraction. A g is any wavelength in the middle part of the spectrum. The paraxial

dn
*A(dn/n}is defined as(-gﬁx-l-)-( -1

), The use of A is often used in optics to denote the difference between a quantity on
n
-1

the two sides of a refracting surface. For example, An=(n-n_4).
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rays are traced at wavelength A

. Therefore,

FIRST ORDER OPTICS

TAch v_r = ( Y )V' - Y )r s J
. . . b
and | ‘
Teh (v ), - (), - | -
The differences are measured in the parax1al image plane where ( y 0. It should be pointed out

that TAchy.p

tions are made with

dn = (n

v-g

and Tchy.y

tell only the difference in y
Ar . In order to calculate other chromatic aberrations, for example

yz{ for light at wavelengths X _  and
Yk

Yo - (vg ) , the caleula-

|

i

!
The wavelengths chosen for calculation, depend on the wavelength region of interest. Visual optical systems .

are usually calculated with

n_ = n

v F

Ny = By
and

nr = nC

6.10.5 Graphical interpretation of axial and lateral color.

'

| N
|

T . ¢ ;

. ! I ! )
6.10.5.1 In Figure 6.13 a simple lens is shown with an exaggerated amount of chromatic aberration. A
simple converging lens, which is necessarily uncorrected for aberrations, is said to be undercorrected.
When a particular aberration is made zero, or smaller than some predetermined tolerance, the lens system
is said to be corrected- I the aberration of the system has a sign opposite to that of a sxmple convergmg

Simple Lens
AW W

¥-D
| |
v, | :
VP —
/ I \,%hF—D
I
: |
F-light | | D-light
I ' focal plane

Surface no, 1

focal plane
l

Figure 6.13 - Under-corrected chromatic abberation of axjial and oblique rays ina :simple‘ lens,
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lens, the system is over-corrected. The two surfaces of the lens in Figure 6.13 are labelled 2 and 3, and
they appear as planes, as they should in the paraxial region. Axial and oblique rays in D and F light are
shown as they pass through the lens. The oblique rays cross the axis at a reference surface #1. This
reference plane will often coincide with the entrance pupil of the system. The pupils will be discussed in
Section 6.11. With a positive lens, the F light image plane falls closer to the lens than the D light image
plane. The chromatic blur, dyy » 1s a linear function of y 1 » the height of the axial ray entering
the system. This can be seen by con51der1ng Figure 6.13. All axial paraxial rays in D light pass through
the same point on the optical axis, independent of y, . Hence all values of y for D light are zero.and
therefore Figure 6. 14 indicates a horizontal line for D light. Similarly all axial paraxial rays in F light
pass through a common point on the optical axis, independent of y; . Hence the separation of the two focal
planes for F light and D light is a constant, independent of y;. . This separation is called the ongltudl-
nal axial chromatic aberration, and is denoted by LA y_p - From Figure 6.13 it is seen that

TAchgp = (LApp) upy = - (LA pp) 3;_1
Because the chromatic blur, TAch y_p , is a linear function of y, the line for F light in' Figure

6.14 is straight and inclined to that for D light at the angle (LA z p )/ f' . Pigure 6.14 shows a plot for
( Vi )F and ( Vi )p inthe D light image plane, as a function of the he1ght of the axial ray on the
entrance pupil plane. This is a recommended way to indicate the transverse axial chromatic aberration of
a system.

6.10.5.2 Figure 6. 15 shows a plot of yk versus y for F and D light. The chromatic blur,

dYy.p » is alinear function of y; for a reason s1m11ar to that given in Paragraph 6.10.5.1. For all
values of y; , .all D rays pass through a common point on the D light focal plane. Similarly, all F
rays pass through a common point. Since the rays are paraxial, the obhque ray at y; =.0 canbecon-
sidered as an auxiliary axis; hence a ray parallel to it through a point Vi 0 wil } make the same angle
with the chief ray that an axial paraxial ray makes with the optical axis. The former angle is a linear function
of y » A8 Up . is a linear function of vy Hence the chromatic blur is a linear function of vy
and the F light line is straight in Figure 6.15. I’I‘he distance between the F and D chief rays in the D
light image plane is as indicated in Figure 6.15. This is the value computed from Equation (38). The differ-

3

Vi ;y.k
A A
F
l
D 1 0
| |-+ TAchg p
} 4
-yl . 0 +Y1
h——>»
Figure 6.14 - A plotof y;. for F and D-light Flgure 6.15 - A plot of yk for F and D light versus
versus the helght yy of the axial paraxml the height ¥; of the oblique paraxial rays.
rays on the entrance pupil plane.
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ence in slope between the F and D lines is the same as for the axial rays shown in Figure 6. 14, because
the proportionality constant between TAch and y; is 1dentlca1 to that between Tch and y; . Figure
6.15 (and also Figure 6.13) shows that there is a value of y i such that Tch ¥ _D = 0., This means

that if the obligue paraxial ray had been taken through ‘the lens atavalueof ¥ yi **, instead of
y1 = 0, then Tch F-D would come out to be zero. In fact in general, zt can be sald that
— i ! .
h * = Tech —yl—* TAch
Teh*p p = Tchg p + v, ch.

Vo - ;
6.10.56.3 This equation states that Tch p_ 5, can be calculated for any oblique ray stnkmg the entrance
pupil plane at y# with the above equation. The (*) is used to indicate the Tech for some oblique ray
displaced from the ray passing through y1 = 0. Defining y1 / = Q, the above equation may

be written | ;

TChFD =ThFD+QTAch. | | # (39)
Again it can be seen that it is necessary to trace only two paraxxal rays through a lens- system. It is possi- "
ble to compute TAch, and Tch {for any other rays from the data on these two. [
X | ! ‘ i
6.10.6 Basic concepts in correcting systems for chromatic aberrations.

i |

6. 10. 6 1 If two wavelengths, F and D for example, come to focus in the same image plane, then

(y, )p = 0. This equation gives the condition for correctlon of the axial color. However,
thfs clogs not mean that (v, ; )y will necessarily be equalto ( up If these two angles are not
equal, then the magnifications between the object and image will not be equari) and (7, # (¥ )D .
Therefore, the system will have residual lateral color. Hence if both axial and later color are to
corrected, the rays in F and D light should emerge from the system at the same value of Vi1 and

uk_l .

6.10.6.2 The usual achromatic doublet lens is corrected for a_x1al and lateral color becapse the axial rays
inthe F and D light never become significantly separated. See F1gure 6.16 (a) . In the case of two
separated lenses, Figure 6.16 (b) , it is clear that both elements must be color corrected to keep the rays
together all the way to the final image. If any axial color is a110wed in the front element the rear element . .
would have to be thick enough and designed properly to get the two ra.ys fogether again before emerging from
the rear surface. It is possible, by using the proper lens power and glass dispersion, to correct for axial
and lateral color in widely spaced lenses as shown in Figure 6.16 (c)'. This is the pr1nc1ple used in the
design of the famous Taylor triplet photographlc lens. Asa general principle, however, it is always advis-
able to keep the color rays as close together as possxble at all tlmes.' This means, if the system is to be
made up of several components, each component should be made achromatic. ‘

S : 1 i
i T ‘ ‘

6.10.7.1 It is possible to apply Equations (37) and (38) to a thm lens immersed in a non- disperswe medium

and snnphfy the equations because the values of y andof ¥ are the same on both surfaces. Suppose there

is a thin lens in a system of thin lenses in air with values of y and ¥ for heights of the axial and oblique

paraxial rays. ( See Figure 6.17 ). This lens will contribute the followmg amounts of axial and lateral color

to the final image.

6.10.7 Chromatic aberration in a thin lens.

‘ 1 ' ( 2 ¢ ) 7,
TAch o = Togg upq ) . T
. L
and ‘ ‘ .
.1 ( _ ¢ )
Tch, ., = (ng1 gy ) ' yy | Vv—r ‘ . I
| o
where ¢ is the power of the lens, and v, = -1 )/ (ny, ~ n, ). These equations follow from
Equations (37) and (38), w1th the use of Equations (4), ( 5), (33a) and 2-( ) for small angles.

6.10.7.2 Each of the thin lenses adds a contrlbutlon, so the fmal axial and lateral color ior a system of 7

l
| F
- 5

|

673Q
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Negligible difference in y for F and D

©

Figure 6.16 - Illustration of axial and lateral color correction for paraxial rays.
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Table 6.13 ~
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| |
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g
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: |
|
i i !
1 i !
: ‘ : ‘ ’
‘Figure 6.17 -A system of thin lenses. ,
. . ' ! |
: i |
t i
7 i |
: | . |
: | |
i ; | !
‘SURFACE {1,2) (3, 4) (5,6) IMAGE
) ~0.16537 0.28698 | -0.18208
t 1.4685 1.4868
y 1.5 1.,1357 1.2515
u 0 20.2481 0.0779 ~0.1500
v -0.8 -0,07119 0.63633 |
T 0.364. 0.49630  0.47587 0.36000
YF-c 60.3 36.2 60,3 :
a=-Y290 -0,006171 | 0.010226| -0.004730 Za = -0. 000675
1 4
b=-3ye/v 0.003291 | -0.000641| -0.002405| b= 0.000245
1 ! |
TAch =—Z2 = _0.00450
{0y qup) |
-Zb ‘
Teh =7————= 0.00164
Vo) :

[N
1

Thin lens computa%ion of axial and lateral color for a triplet. (f =10 )
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thin lenses is given by,

1 i=n ¢ -Z a |
TAch = — ( 2 ) = » -~ (40)
Hvr (npq wgg ) § Z__; y i

and

1 i

(ng; upy )

L)
q
&
)
AN

7

(yy ¢ ) = % . (41)
1 Vyr j Dpa Ygra
The use of these equations is illustrated in Table 6.13. The system used in the table is very close to the thin
lens equivalent of the system shown in Table 6.7. Note how the angle u of the axial ray as it passes through
the system is the same,to four decimal places, for both examples. The TAch for the equvalent lens 1s not
exactly the same as for the thick lens due to the'thicknesses of the elements.

6.10.8 Thin lens achromatic system.

6.10.8.1 K Equation (40) is written for two closely spaced lenses (a) and (b), and combined, there rés_ults

1 ¢ i
TAchy , = (ngy ugy ) [yz(yv—r )a toy? (Vv—r )b] : (42)

This is an expression for the axial chromatic aberration of the doublet lens. In order to make
TAch, . = 0, it is necessary that, :

SRy

In Table 6.9 it was shown that for two thin lenses in contact,

¢ = ¢a + ¢b .

Combining this equation with Equation (43) yields the relations,

Va

R

e (49)

and

Vb
Va ~ Vp

oy -9 (45)
6.10.8.2 Equations (44) and (45) enable one to pick two glasses with different v - values and calculate the
powers of the two lenses to make an achromatic lens. It is important to realize that these equations reduce
the transverse axial chromatic aberration to zero only for the two wavelengths A, and A, . These are
the two wavelengths used to compute the value of » for the glasses, where the V - number of a glass is
defined as,

-1
_ gt
Vieery 7~ n, - n, : ' (46)

On the other hand, other wavelengths do not come to the same focus as X, and A, . The chromatic
aberration TAchy_, | between an intermediate wavelength X g and A may be calculated by substi-

tuting v, - = ____..5_’_1__ for each element and inserting them in Equation' (42). Then
= n,- n
v g
1 ) 9
O S Y S e
v-g (ny_q ugg) [y Vyg /a Vy-g /b :

Since the lens was adjusted to be an achromat for A, and 2, then Equation (43) must also be satis-
fied . This equation can be readily inserted in Equation (47) by an obvious redefining of v__ g o 38
follows,

) _ ng-_l ng - N, -, (n - nr)'

v-g hy - Ng ng - N, v-r n, - ng
6-33
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Yx
Fand C
|
I TACh.F_D
= 0
|
|
|
] ]
0
e ¥
Y, —

Figure 6.19 - Transverse axiallchrqmatic aberration
for an achromatic objective corrected
for F and C light.

0. 0025851
. 0020}
A'__::
‘ . 0015
. 0010 ; :
y Glass types used in doublet
k Positive lens 511635
Negative lens 649338
. 0005 F @
0 D
E
-0.00 s
0.0005 4500 5000 6000 7000 7700

WAVELENGTH IN ANGSTROMS

Figure 6. 20 - Plot of y, versus A for an achromatic doublet.
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\
Defining the partial dispersion ratio ( see Paragrgph 2.7.3),
~ (ny - ng )

P ( n, - o, y
|
we have i
vog = Veur /P . | | (48)
i ] | “ ‘
Equation (47) then becomes, with the help of Equatigns (44) and (45%,
__-__X__ ﬁa - f;b
TAch, , = T I:Va e ] . _ (49)

6.10.8.3 Equation (49) gives the value of the transverse aberration between Ay and X, , when A
and A, wavelengths are united. The gquation indicates that if A,, A4, and Ar are to be brought
to focus simultaneously, then P, = Py . Most g}ass cat‘alogs‘ give values of P - for many combina-

tions of wavelength for each glass. In Figure 6.18 t;hé value of B for - D is plotted against VE-c

‘ F-C
for several types of glass. As will be pointed out in later sections, a doublet should be designed with low
powers of the individual elements. Equations (44) and (45) show that the powers of the (a) and (b) elements
of a doublet may be kept small by selecting optical glasses with large differences in v . Usually doublets
should have v differences larger than 20. As can be seen from the slope of Figure 6. 18, for almost any
combination of glasses one can select, the ratioof (P, - Py )/(v, - vy ) is a constant equal to
~1/2200. When this number is substituted into Equation (49), TAchy_g is positive for positive y .
Reference to Figure 6. 13 indicates that for positive TAch _ the axial ray in D light crosses the axis
closer to the lens than the axial ray in F light. Using Equation (13) and noting that ( up 3 )p = (upy )b
to this approximation, we see that if F and C wavelengths are united, then D light focuses closer to the
lens by the amount f' /2200, if the lens is in air. In Figure 6. 19 a plot similar to that of Figure 6. 14 is
shown for a typical achromatic doublet, corrected to unite F and (C light. It is instructive to plot the
transverse axial aberration as a function of wavelength. This has f:)een done in Figure 6. 20 for an achro-

matic lens. Note how the curve has a minimum near A = 5500A, This is the wavelength at the peak of
sengitivity for the eye, which is the reason F - C achromatism is considered to be proper for visual sys-~

tems. ; ; | . -
6.10.8.4 TAchy_p is called the Secondéry spectfum or the secondary color. It is af very difficult aberra-
tion to eliminate with ordinary glass types, and often sets the limiting aperture for a lens. The following -

methods may be used to reduce the secondary spectrum in a lens gystem.

] ‘ |
(1) Use special materials with equal partial disgersic?ns. X
‘ \ 1 . i

| o
(3) Use proper combinations of lenses. | ,
More information on the correction of the s,econda,rj) spectrum will be given in Section 11 under the design
of telescope objectives. One can use Equation (40) to compute the isecondary color for: more complex opti- .
cal systems, such as air spaced doublets, triplets, or combination$ of doublets: however, the algebra be-
comes so complicated that it is difficult to obtain useful equations like (49) for anything more complicated
than a closely packed doublet. It can be shown however, that for a given pair of glasses, the secondary color
increases as the air space increases. The relation between secondary spectrum and separation of the two
elements is derived by a method similar to that used for Equation (49). First an equation analogous to Equa-~
tion (42) is derived; this will involve the separation of the elements as well as the powers and v - numbers.
The condition for C - F achromatism, analogous to Equation (43) is then found. The total power for a
dialyte from Table 6.9 is used with the achromatic condition to find the analogs of Equations (44) and (45).
By the method given in 6.10.8.1, the equations analggous to (“17) an‘ld (49) are then deriYed.
; |- e : i
6.10.8.5 Although Section 6 deals with first order optics, and hence with the chromatic aberrations, we
will mention here one of the third order aberrations, Petzval curvature, because of its, close connection
with the secondary spectrum. Petzval curvature, known also as curvature of field, has the following physi-
cal meaning. For monochromatic light, if spherical aberration, coma, and astigmatism are absent, the
point images of point objects lie on a surface, generally curved. Near the optical axis this surface can be
considered spherical with a curvature called the Petzval curvature., Flat-field systems have zero or very
small Petzval curvature. : i

(2) Use more than two typesvof glass.
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Figure 6.21 - Plot shows qualitative connection between Petzval curveature and secondary-color,
(Image is assumed in air).

6.10.8.6 Section 8 will discuss how the Petzval contribution for each surface is calculated. - When the two
surface contributions for a simple lens are added, as was done for the chromatic contributions in Paragraph .
6.10.7.1, the Petzval contribution of a simple lensis P = -¢/n. For a system of thin lenses in air, —P
is the sum of the power, ¢, divided by the index for each lens. P = _ 3.5'71' ﬂ] . If the

: : = n . :
TAch p_, is plotted versus P for lens types, the points lie along an :si.pproximjat«a1 straijght line. This is
shown in Figure 6.21. To obtain the data for this curve, a zero spaced doublet, an air spaced doublet, a
positive-negative-positive-triplet, and two widely spaced achromatic doublets ( a Petzval lens ) were set up
for computation. Each system has an exact focal length of 10 and is corrected for zero TAch F-c - The
axial paraxial ray was traced throughat y '= 1.0. Allthe positive lenses were of 511635 glass and all
the negative lenses were of 649338 glass. This approximately linear relationship causes real difficulty in
the design of flat-field lenses, since reduced Petzval curvature tends to accompany an increase in the a-.
mount of secondary color. This is a particularly serious problem in the design of periscope systems.

6.11 ENTRANCE AND EXIT PUPILS, THE CHIEF RAY AND VIGNETTING

6.11.1 General. As shown in Section 6.4, the complete analysis of the first order properties of an optical
system can be found by tracing two rays through the optical system. Any two rays may be used, but it is
convenient to pick the two rays with some eare. In order to specify quantitatively which two rays are usually
used, we must discuss the meanings of the pupils of an optical system.

6.11.2 The aperture stop. The bundle of rays, which proceed from an object point to the image point
through an optical system, is limited in the sense that all the rays in the entire solid angle of 4 7 sterra-
dians do not get through the system. The aperture stop is the physical stop or diaphragm, as distinguished
from an image of a stop, which limits the rays passing through the system. The aperture stop may be a
lens or it may be an opening in an otherwise opaque surface. It is almost always circular; we will consider
it as such since we are concerned with systems having rotational symmetry.

6.11.3 Entrance and exit pupils.

6.11.3.1 The pupils are images of the aperture stop. The entrance pupil is the image of the aperture stop
in the part of the system preceding the aperture stop. Hence to locate the entrance pupil, given the position
of the aperture stop, an axial paraxial ray is traced backwards through the system from the center of the
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aperture stop. The point where it last crosses the ax1s is the entrance pupil point. The entrance pupil plane
is a plane perpendicular to the axis at the entrance pupﬂ point. If the diameter of the aperture stop is known,
an obligue paraxial ray is traced backwards from the rim or margln of the aperture stop. The intersection
of this ray with the entrance pupil plane gives the radlus of the entrance pupil. :

6.11.3.2 Similarly, the
By tracing an axi

aperture stop.

pupil).

‘ P i :
6.11.4 The chief ray. The chief ray is an oblique ray from an off-axis object point, which intersects the

.

axis at the entrance pupil point, the center of the aperture stop, and the exit pupil point.
through the centers of the pupils and the aperture stop, it is approx1mately the central ray of the conical
bundle from the object point to the image point.

6.11.5 Two convenient paraxial rays.

plane intersected by the optical axis (y, .
to equal one half the actual cone angle to be passed by the optical system. Hence this ray passes through.the
is the radius of the entrance pupil divided by the dxstance

exit pupil is the image of the aperture stop in that part of the system following the
and oblique ray from the aperture stop, the exit pupil plane can be located,
and the diameter of the exit pupil can be determmed. It sometlmes happens that the aperture stop precedes
(or follows) the rest of the system. In this case the aperture stop comcldes with the entrance pupil (or exit

The usual procedure 1s to trace one ray from the point on the ob]ect ‘
The angle w1th the optical axis,

margin of the pupils and the aperture stop.

between object surface and entrance pup11 plane. The second ray should be traced from a point yo
object plane corresponding to an object near the max1mum sme to be accommodated by the lens system.
This second ray is a chief ray from the object pomt chosen. Hence u,
between object surface and entrance pupil plane. { See Flgure 8.22).

¥, =0

Surface number

6.11.6 Pupils as sﬁrfaces in the optical system.

Figure 6. 22 -Location of entrance pupif and numbering of surfaces.
[ P ) : i

o

to

0

plane surface in the system. ‘ ‘ :
countered before the chief ray reaches the entrance pupil. In this case the thickness t,
indicating the entrance pupil plane is actually virtual.  As the chief ray passes through the lens it may cross
Each position is called an aperture plane.
image space it can be extended until it crosses the axis. This pos1t1on is the exit pupil plane of the system
and is numbered the (k - 1) surface. Although it is not necessary to include the entrance and exit pupil
planes in the calculations of a lens, their inclusion 1s helpful because they are excellent planes of reference.
It is convenient to describe aberration data by usmg the image coordmates plotted agamst their conjugate
coordinates in the entrance pupil.

the axis at several positions.

6.11.7 Numerical example.

= u - u

( See Section 8 )

-1

It is labelled number one.

As an example of the foregomg mater1a1 Figure 6. 23 shows the pupxls for a
two-lens system. Table 6. 14 shows the calculations for this system. In the example, the entrance pupil
plane ig found in the following way. As the chief ray is drawn, theilens (a) bends it up and the lens (b)
bends it back down. It is nearly always true that ( A u,
keep the distortion corrected.
tion 8). Since Au
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Because it passes

Hence it is representatxve of the entul'e bundle.

should be chosen

divided by the distance

=2 =

Entrance pupil

| | ‘

Many designers include the entrance pupil plane as a

The actual first surface of the lens may be en- _
is made negative,

After it fmally emerges. in the

+ Awuy ) should be close to zero, This tends to
( Distortion is a monochromatlc aberration which will be discussed in Sec-
Equation (24) shows that to meet this corxdmon, ya $, + ¥ 9p =0.
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The chief ray, therefore, must cross the axis between the two lenses and divide the space in the ratio of
(2% / ¢, . Avalueof -1 for y, and + 1 for ¥y may be selected for convenience in this problem,

because ¢, and ¢y, areequal. Since tz = 5.0, W, = 0.4, and the chief ray can then be traced
backwards to the object plane as shown in the example. The entrance and exit pupil planes are located by
solvingfor t; and tg tomake yy = y4 = 0. Since y, = -1 was usedfor convenience, the

object height may come out to be far different from the value to be used for the true object. If the designer
wishes to have a ray traced from the true object height, it may be done by simply scaling all the ray data for
the chief ray. In the sample y, came out - 4. A second ray was tracedat y, = - 2. :

Exit pupil plane

Entrance pupil plane
A |’/ A Image -
' i
| |
| _
L-— N
—— "1
—
] I
C\\iei Ray ' l
v | Iy
Object Lens a : Lens b

Figure 6.23 - Illustration of entrance and exit pupils.

Object Entrance | Lens (a ) | Lens (b)) |Exit Pupil Image
Plane Pupil Plane Plane
' Plane
Surface 0 1 2 3 4 5
-9 ] 0 ~0.1 -0.1 0 ]
t ) 13.33 -3.33 5 -3.33 13.33
y 0 1.33 1 1 1.33 0
u 0.1 0.1 0 -0.1 -0.1
v -4 0 -1 1 0 4
U 0.3 0.3 0.4 0.3 0.3
L } 3
y -2 0 -0.5 } 0.5 0 | 2
u 0.15 0.15 0.2 0.15 0.15
1 1 1 1 ]

Table 6. 14 - Calculations showing location of entrance and exit pupil planes.

6.11.8 Vignetting.

6.11.8.1 In the above discussion on the aperture stop and pupils it was assumed that the aperture stop was
circular. Hence the pupils are circular and a circular cone of rays passes through the system from an axial
object point. For an off-axis object point, the cone of rays limited by the aperture stop will not be circular;
and the entrance pupil will generally subtend at the object point a smaller solid angle than for an axial object
point. This phenomenon is called vignetting; the obligue bundle of rays is said to be vignetted.
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6.11,8.2 In the example shown in Table 6. 14 the path of the chief ray has been calculated through a simple
two-element lens. The next question is, what is the shape of the beam of light that passes through the optical
system from the oblique object point ? To answer thls, it is necessary to project all the lens apertures in the
system onto the entrance pupil plane. Since the path of any ray can be readlly computed as a linear combina-
tion of two rays ( see Section 6.4 ), it is possible to compute the coordinates in the entrance pupil plane for
any ray from the object point of interest which passes through any part of any aperture of the system. For
example, suppose we wish to find the coordinate on the entrance pupil plane of a ray from the object

Yo = - 2, which passes through the center of the (a) lens. Since two rays have been traced through the
lens, a value of y and y isknown on each surface. Any other ray y may be traced from the object
point y, with the use of Equation (10a)

— - I
Ay; + By; =y - ;
— = i |
On the object plane y, = 0, Vo = Yo - Therefore i
|
A =y /y, =1, | |
and for the ith surface, : ‘
B = Yi - ¥; N ;
Y;

| |
| |
I
|

Finally then,

. - - Vs
= , = = RN
[yj‘yj]‘ [Yi‘yi :lsn .

1
i |
To calculate the coordinate of any ray on the entrance pupil plane, whlch has the coordmate y1 on the
ith surface, Equation (50) becomes } ‘

(50)

= 3 —_ y I
o= (5 o-n ) = ,
' o
_ \ : , |
since y; = 0. :
| |
6.11.8.3 In the example shown in Figure 6. 23 and Table 6. 14 a ray from the object pomt y. = -2
passing t through the center of the (a) lens (¥ yz = 0) will pro;ect onto the entrance pup11 p?ane at the
value Yl = (0 + 0.5)(1.33)/1 _= 0.666. The top edge of the (a) lens (assumed y, = 1) will
appear in the entrance pupil plane at y_1 = (1 + 0.5)(1.33) 3= 2. The center of the (b) lens will
project in the entrance pupil plane at Y1 = (0 -'0.5)(1.33) ‘= -0.666. The top edge of the (b)
lens { assume y3 = 1) will appear in the entrance pupil plane at y1 = (1 -0. 5 ) (1.33) = 0.666.

6.11.8.4 Since the center and top edge of each lens, (a) and (b) are now projected on the entrance pup11
plane, it is possible to construct circles mdlcatmg the complete aperture of the lenses as they appear in the
entrance pupil plane. These apertures are shown in Figure 6. 24. Only those rays passmg through the area
common to both circles will pass through the two lenses. In order to have the same aperture for the oblique
beam as for the central beam, an aperture would have to be placed to appear as the immer c1rcle shown in
Figure 6.24. A circular aperture in the entrance pup11 plane of radms 0.666 just fits m the common area of
the two circles. Now in this case, the entrance pupil plane is v1rtua1 80 no physical stop can be placed in it.
Since the chief ray does actually cross the axis at a point midway between the lenses, the physical aperture
stop may be placed in this position and it will appear as a central stop in the entrance pup11 plane. Using
Equation (50) , the size of the aperture stop can be calculated using the following data. 1

| t
: |

?1 = 0.666 = height of edge of entrance puptl aperture.
¥ ; = height of edge of aperture stop tn the aperture Ei)lane. [
;i = 0 = height of chief ray in the:aperture ;top pFlane. ’
y; = 1.0 '= height of axial ray in the apertune sto!) plane. ‘
v, = 1.33 = height of axial ray in ‘the entrance puLil plane. |
Therefore o ! |
3=’i = o.lt'igg = 0.5. ‘ | v
|
B |
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6.11.8.5 Usually some vignetting for the oblique beams is allowed, so the aperture stop is made larger than
the largest circle included in the common area. Figure 6.25 shows the appearance of the aperture stop when
it is made 0.75 in radius. The clear area is the common area for all the apertures, and its area is a measure
of the total light passing through the system from the oblique object point. The common area is 67% of the
area of the image of the ( 0.75 ) aperture stop in the entrance pupil plane. Therefore, the oblique beam is
vignetted by 33 % . All other factors remaining constant, the illumination at the image point, Y = 2, is
67 % of the illumination at the point ¥, = 0. In Figure 6.25, the aperture stop of radius 0. 75 located

midway between the (2) and (b) lens, is imaged in the entrance pupil plane with a radius of 1.0 . The exit
pupil also has a radius of 1.0 .

Lens (a) projected on entrance.
pupil plane,

Diameter of lens assumed to
be 2.0.

Image of aperture stop

Lens (b) projected on entrance ‘
pupil plane. Diameter of lens
assumed to be 2.0,

Figure 6.24 - Apertures of the (a) and (b) lenses and of the aperture stop projected onto the entrance -
pupil. The oblique beam is not vignetted.

Image of aperture stop

OA

Figure 6.25 - Illustrating vignetting for the same system shown in Figure 6. 24 but with a larger
aperture stop.
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