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5 FUNDAMENTAL METHODS OF RAY TRACING

5.1 GENERAL

5.1.1 Basic optical system. Every optical system consists of one or more reflecting or refracting surfaces.
The function of the system is to transform the diverging spherical wavefronts coming from object points in
object space to converging spherical wavefronts going towards image points in image space. As mentioned

in paragraph 2. 1.2 the passage of the wavefronts through the optical system can be most easily discussed by
utilizing the concept of rays. The passage of rays through an optical system may be determined by purely
geometrical considerations, since it is correct to make the following assumptions:

(1) A ray travels in a straight line in a homogeneous medium.
(2) A ray reflected at an interface obeys the law of reflection.
(3) A ray refracted at an interface obeys the law of refraction.

Computing the passage of rays through an optical system is a purely geometric problem best solved by the
techniques of analytic geometry.

5.1.2 Centered optical systemé. )

5.1.2.1 Fortunately, nearly every theoretical optical system consists of centered refracting or reflecting
surfaces. In a centered optical system all surfaces are rotationally symmetrical about a single axis. A
eross-section view of a typical photographic lens is shown in Figure 5.1. In this case all the surfaces are
spherical surfaces and the centers are assumed to lie on the optical axis. Herein lies one of the differences
between theory and practice. Inthe design pbase, the system is assumed to have an axis of symmetry. In
practice the lenses may not be lined up perfectly so it will not be a centered optical system. X the lens is
to perform according to the design, the lenses must be adjusted until they are centered. Procedures to
agsure centering of the elements are a prime consideration in the mechanical design of optical instruments.

MIRROR

Optical Axis

LENS A
Optical
Axis
i N\ \U
LENS B
Figure 5.1 - A cross-section view of a photographic Figure 5. 2—An optical system containing a mirror.

lens.
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5.1.2.2 The optical system shown in Figure 5.2 may not appear at first glance to be a centered optical sys-
tem. The optical axes of the two lenses do not coincide. However, if properly constructed this may be a
centered optical system. To understand this consider Figure 5.3, which shows how a system involving plane
mirrors can be thought of as folded out. These ideas are treated in detail in Section 13.
5.1.2.3 Consideration of the law of reflection shows that the ray of light traveling along the optical axis from
lens A is actually deflected, but can be thought to continue straight through the mirror. If the axis of lens B
lies on the extended axis of lens A, then the system is a centered optical system. One can see that if lens B
of Figure 5.3 is shifted to the left or right, there will be a corresponding shifting of lens B ' up or down; the
system will become decentered and lose its axial symmetry. |

5.1.2.4 The sections on geometrical optics in this handbook consider centered systems. Decentered systems '
usually, when carefully analyzed, are seen to be part of some centered system. Hence if a final design calls
for a decentered system, the preliminary design cqnsiders tl}e centered system as a k{asic starting point.  ~

‘ |
5.1.3 Plane, spherical and aspheric surfaces.

‘ | ] -
5.1.3.1 Production techniques for generating plane and spherical surfaces on optical materials are well
established and thus these are most commonly used. Aspheric surfaces, however, offer certain advantages,
and recent advances in the generation of this type of surface, coupled with the need for the design refinements
they offer, have resulted in more frequent design application of this type. Aspheric surfaces are also usually
considered to have rotational symmetry about the oPtical axis‘. ‘

. ! ; ] .
5.1.3.2 In ray tracing, plane surfaces will be considered to be special cases of spherical surfaces, having
radii equal to infinity; hence no special technique for plane surfaces will be developed in detail in this sec-
tion. In Section 13, reflection from plane surfaces is considered more fully. The technique for treating
aspheric surfaces is developed by extending the technique for spherical surfaces. In both cases, the sur-
faces are considered to be centered. 1 r \ '

P ! !

| f

5.1.4 Ray tracing, the basic tool of optical design.

5.1.4.1 In order to understand clearly the kind of image forr;ned br a system, and whé.t must be done to im-~
]
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Figure 5.3 - Diagram showing "folding out” of an optical system containing a mirror.
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prove this image, a certain nmumber of rays must be determined in their passage through the system. This
process of ray tracing involves the determination of the direction and location in space of each segment of a
ray as it goes from object to image. Since the function of the system is to transfer light from an object sur-
face to an image surface, the object surface and the image surface, although neither reflecting nor refracting,
can be considered as surfaces of the optical system.

5.1.4.2 Figure 5.4 shows a cross-section view of a centered optical system. The ray, consisting of seven
straight line segments, goes from the object point, O, on the object surface, to the image point, O', on the
image surface, being refracted at six intermediate surfaces. The remainder of Section 5 will be concerned
with numerical and graphical methods of determining the course of general and special rays through a gener-

al system.

5.2 DEFINITIONS AND CONVENTIONS

5.2.1 Need for specific conventions. The ray tracing formulae to be used for tracing a ray through a system
involve parameters of more than a single surface or a single medium. Therefore, it is important to adopt a
convention of notation which will clearly distinguish one surface from ancther and one medium from another.
In addition, many optical systems employ mirrors, so that the rays sometimes proceed in a direction gener-
ally opposite to the incident rays. Our conventions should be such that a reflecting surface can be handled

as any other general refracting surface. It is assumed that before applying these conventions the system

has been folded out in the sense of Figure 5.3.

5.2.2 Statements of definitions and conventions. The following definitions and conventions, which are in
agreement with those given in MIL-STD-34, will be used in Sections 2, and 5 through 15, inclusive. Refer-
ence to Pigures 5.4 and 5.5 will indicate examples of some of these conventions.

(1) It will be assumed that light initially travels from left to right.

(2) An optical system will be regarded as a series of surfaces starting with an object surface
and ending with an image surface. The surfaces will be numbered consecutively, in the
order in which the light is incident on them, starting with zero for the object surface and
ending with k for the image surface. A general surface will be called the j th surface.

(3) All quantities between surfaces will be given the number of the i_mmedia'tely preceding
surface. .

(4) A primed superscript will be used to denote quantities after refraction only when necessary.

(5) r. is the radius of the jth surface. It will be considered positive when the center of
curvature lies to the right of the surface.

(6) The curvature of the jth surfaceis ¢; = i/ ry. ¢j has the same sign as rj .

() t; is the axial thickness of the space between the jth and the j + 1 surface. Itis positive
if’ the j + 1 surface physically lies to the right of the jth surface. Otherwise it is negative.

(8). n; is the index of the material between the jth and the j + 1 surface. It is positive if the
pljmysical ray is traveling from left to right. Otherwise it is negative.

9 X., L;, My are the products of n; and the direction cosines (with respect tothe X, Y, Z
axes reéspectively) of a ray in the space between the jth and the j + 1 surface. They will
be called the optical direction cosines. .

(10) The right-handed coordinate system shown in Figure 5.5 will be used. The optical axis
will coinecide with the Z axis. The light travels initially toward larger values of Z.
Positive values of X are away from the reader in Figure 5.5.

(1) X

Y Z; are the position coordinates of a ray where it intersects the jth surface.

j? J >

(12) In writing formulae where no confusion is likely to result, the j will be omitted from the
subscript. Thus the curvature of the j - 1 surface will be written ¢_; , the curvature
of the j th surface will be written c and the curvature of the j + 1 surface will be

written ¢,y .
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5.3 BASIC RAY TRACE PROCEDURE

5.3.1 Transfer procedure. As can be seen from Figure 5.4 a ray travels in a straight line from a point on
one suriace to a point on the following surface. It is then refracted and proceeds to the next surface in a
straight line. The ray tracing procedure then consists of two parts, the transfer procedure, and the refrac-
tion procedure. The transfer procedure involves computing the intersection point of the ray on the surface
from the optical direction cosines and the intersection point data at the previous surface. That is, given
K M_;, Ljand X3, Y ;, Z_;, compute X, Y, Z. The equations used are called the transfer equa-
tions.

5.3.2 Refraction procedure. The refraction procedure involves computing the optical direction cosines of a
ray from the intersection point data and the optical direction cosines of the previous ray segment. That is,
given X, Y, Z and X3, M3, L3, compute K, L, M. The equations used are called the refraction
equations. :

5.3.3 Repetition for successive surfaces. After having applied the two procedures, we have the initial data
for the next application. The transfer equations will be used to compute X ., Y,.,, Z,; and the refraction
equations will be used to compute K ,;, L,;, M. It should be noted that it is often convenient to introduce
fictitious or non-refracting surfaces to simplify the procedure. One example is the tangent plane, an XY
plane tangent to a physical surface at the optical axis. Another example is a sphere, tangent to an aspheric
surface at the optical axis. These fictitious surfaces are handled in exactly the same manner as a physical
surface. Transfer equations are used to go to or from such a surface. The refraction equation reduces to

1 = I', andthe direction cosines of the refracted ray equal those of the incident ray, as would be expected
at a non-refracting surface. Fictitious surfaces will be used in the next section.

5.4 SKEW RAY TRACE EQUATIONS FOR SPHERICAL SURFACES

5.4.1 Types of rays.

5.4.1.1 A general ray is any ray passing from any object point through the optical system to its image point
on the image surface. A special ray that lies in a plane containing the optical axis and the object point is
called a meridional ray. Any non-meridional ray is a skew ray. A ray close to the optical axis is a paraxial
ray. Because of the approximation involved, a paraxial ray is a special type of meridiondl ray. A skew ray
is considered to be non-paraxial since it is non-meridional. These distinctions will become apparent as the
subject is developed. ‘ :

5.4.1.2 Corresponding to the three types of rays, skew, meridional, and paraxial, we will develop three
sets of ray trace equations and procedures. Because the three rays, in the order given here, become less
general and more specialized, the eguations relating to these types of rays become simpler as we proceed
from skew through meridional to paraxial. One method of developing the subject would be to discuss the
simplest case first (paraxial), then proceed to the more complicated (meridional) and finally to the most
general (skew). This procedure would have the advantage of beginning with the simplest derivation. How-
ever, it would necessitate three separate derivations.

5.4.1.3 We will proceed in the other direction, beginning with the most general case, the skew ray trace.
From this the meridional and paraxial equations follow by simplification; hence only one derivation is
necessary, instead of three. The particular equations derived in Section 5. 4 are set up in a form for an
electronic computer. However they are completely satisfactory for use with a desk calculator, and repre-~
sent a good starting point for the human computer who has not yet worked out his own equations.

5.4.2 Initial data for a skew ray. Figure 5.6 shows the skew ray as it traverses the space between two
surfaces, At the right hand surface it is refracted, and a drawing corresponding to Figure 5.6 could
show this ray as it traverses the space between the jthand j spherical surfaces. Similarly, another
drawing could show the ray before refraction at the j_j surface. The initial data for the ray we are
considering will consist of the emergence point with the left surface, and the direction of the ray in
space. Hence we specify X 3, Y5, and Z_;, the coordinates on the j_j surface, and K 3, L_;, and
M_,, the optical direction cosines of the ray. From these data we will determine the intersection of
the ray with the next surface, and the optical direction cosines of the refracted ray. These values then
hecome the initial data for the new ray, and the process is repeated until the image point is reached.

5.4.3 Transfer procedure, physical surface to next tangent plane.

5.4.3.1 The first part of the problem, namely the determination of the intersection of the ray with the jth
spherical surface, will be divided into two parts: first, the intersection of the ray with a non-physical sur-
face, the plane tangent to the spherical surface, and, second, the final intersection with the spherical sur-
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Figure 5.6 - Diagram of a skew ray in space bt;atween the j_4
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5.4.3,2 The origin of the position coordinates for points on the tangent plané is at the p;oint of tangency, the

optical axis. Hence Z, =

O for all points in the plane. The new value of X, Xp ' is the old value, X _,,

plus the change in X, A X . The latter is the projection of the skew ray, of length d -p ontothe X axis,

Hence

AX = X .+

Xo= X_,+ ot Ay

T -1

K

n_y

!

‘ |
since K _1/n _.% is the direction cosine of the ray with respect to the X axis. There is a corresponding

equation for Y-

: I I i
5.4.3.3 The length of the ray, d_;, between the left-hand surface and tbe tangent plane is not given; it
must be calculated from the initial data. From Figure 5.6 the‘chanﬁ
‘ ‘

AZ = t__l - Z"l’

and this equals the projection of the ray along the Z axis. Thei'eforle

dq Ma |
n_y

AZ =

ein 7 is given by

5.4.3.4 It is now possible to summarize the three equations which are used to calculatei the intersection of

the ray with the tangent plane.
d

ooty - Z ) i
n_, -1 ML
_ dy
YT = Y_1+ n_—l L_]_;
and d
Xp = X+ =2 K.
, n,

)

(1)
(2

()

1t should be pointed out that in addition to the initial déta for the ray, we must be given the value t ;, the
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distance between the surfaces measured along the optical axis. Itisnot necessary , however, to
know explicitly the value of n_; at this time. The specific procedure followed is first, to use Equation (1)
to calculate the numerical value of d_y/n _1 ; second, to use the value thus obtained in Equations (2) and (3)
to calculate Y., and X, respectively.

5.4.4 Transfer procedure, tangent plane to spherical surface.

5.4.4.1 The discussion in Section 5.4.3 treated the first part of the transfer problem. The following dis-
cussion treats the second part, transferring the ray coordinates on the tangent plane to those on the spheri-
cal surface.

5.4.4.2 Referring to Figure 5.6, since the tangent plane is not a refracting plane, the ray continues on to
the sphere, for a distance A. The segment A has the same optical direction cosines as the segment d_,
Therefore the new values of the coordinates, X, Y, and Z on the sphere, are determined from the values
on the tangent plane, Xp, Yp, and Z, by the process that was used to set up Equations (2) and (3).
Remembering that Z. is zero, we have

X = Xp+ 2 K, ‘ @
n_y
A
Y = YT+ n—_; L_]_: (5)
and
z = & M. . (6)
Dy

5.4.4.3 In order to use Equations (4) , (5) , and (6) , it is necessary to calculate the value of A. It is
clear from Figure 5.6 that this value depends on the curvature of the jth spherical surface, the coordinates
of the ray at the tangent plane, and the direction cosines of the ray. We will use a relation between X, Y,
Z and c which depends on the properties of a sphere. This equation can be used with Equations (4) , (5) ,
and (6) to eliminate X, Y, and Z. The result will be an expression for A/n _; in terms of known data.

5.4.4.4 Figure 5.7 shows a plane containing the optical axis and the intersection point (X , Y, Z2) of the

(X, Y: Z)
X, ¥, 0) ¢

(0, 0, 0) v ¥%
Z-D

Spherical surface

Tangent plane (o0, 0, r)
’ >

Figure 5.7 - Some properties of a spherical . .
surface. Figure 5.8 - Determinationof n_; cos I .
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ray on the spherical surface, From the figure, and récalling that ¢ 1 = 1/r, we have
| ! ?
/2 1 ; 1/2
Z=r-[r2-(X2+Yz)] =E~g[1-cz(X2+Y2): ,

which can be simplified, by transposing and squaring,j to

I
c2 (X2 4+ Y2 4+ 22) _2¢2 = O. - ‘ 7
‘ | | ‘
Substituting into this equation the expressions for X, Y, and 7 from Equations (4) , (5) and (6) .
result, on collecting terms, is

| |

. 2 2
(_6_5 C(K?_l + L%l + M%].) -{TA—]-)[M—I-C(YTL—I + XTK—I)] +C(XT+-YT)=

5.4.4.5 In this last simplification it was assumed that ¢ # 0 ;thecaseof ¢ - 0 will now be consxdered
Since the sum of the squares of the direction cosines 1s unity, the coe£f1c1ent of (A/n_ 1) xs c n_12 . Calling -

the other coefficients 2 B and H respectively, we have

2
cn2_1 (ﬁé—J ‘—ZB(nil) +H = 0,
which has the solutions, !

s meng [ -en]”

n. cnzl

[

1 i
As ¢ -~ 0, thatis as the spherical surface approaches a plane surface, A - 0 as can be seen from
Figure 5.6 . To insure this we can use only the negative sign in the above solutions. A has the same sign
as c ; this can be seen either by considering the expression for A/n’ ~1, orfrom Flgure 5.6 . When A
is negative, the tangent plane lies to the right of the surface. The coeffxcxents B and H were introduced
for convenience in calculation. Their physical significance is not dxfflcult to understand. From the definition
of H, andfrom Figure 5.7, it is seen that J ‘

2 2 x2 4 y2 2,
H = ¢ (Xp+ Yp) = r—T?Z--—I = rtan“g,

i | i i
P | i |
where B is the angle between the optical axis and a line drawn from the center of curvature to the intersec-
tion of the ray with the tangent plane. From this expression for H , and the result derived in paragraph
5.4.4.4, an expressionfor B interms of n_; , and angles 1 and B can be found.
\ i | i
5.4.4. 6 Before simplifying the expression for ﬁé—— a dlscussmn of the physical meaning of the square root,
(B/n 1) 1/ 2, is in order. This term will be used by itself m the refraction progedure, it is con-
venient to put 1t in another form here. Consider Figure 5.8 ; all the lines are in the plane of incidence.
Using the cosine law, it can be stated that | ; | :
2 2 2 2 2 ‘ B

p? = xZ+ ¥l 4+ 1% = 4 +r2‘+ 2ArcosI.i }

: i i | y
Solving for cos I, and substituting H for c (X2 + Y%) produces
| !

- en? ()
n_; cosl = ’ cn_l

i | |
Finally, substituting the expression for ni » Wwith the negative sigli, given in paragraph 5.4.4.5, gives

|
| |

’2 1‘:/2 } . ‘
n_; cosl = n_l[ (ni__l) - c¢c H } . : (7
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5.4.4.7 Returning to the solution for nAI in paragraph 5. 4. 4.5, and using the expression for n_y cosI,
we have -

—_— = T R——— - - - - -

A B - n_l cos I
n_jy cn_y

But by using Equation (7)

Bz-n_2 cos (B +n,cosI)(B - n_;coslI)
2 1 = 1 1
cn_j; = H = H »

and the final expression for A becomes,

s |
A _ H '
n; B+mu_jcosI ° (8)

5.4.4.8 The four equations, then, which are used to calculate —né—l are, in the order used,

H = c(xX2+Y2), (9
B = M-—l - C (YT L'l + XT K—l) 5 (10)
B \2 1/2
n_jcosI = n_ (ﬁ:‘) - ¢cH , (7)
and
A o H ) ] o B o
n,;  B+n_jeosI ° ®)

Equations (4) , (5) , and (6) are then used to calculate X, Y, and Z.

5.4.5 Refraction procedure at the spherical surface.

5.4.5.1 Now that X, Y and Z have been calculated, these values together with initial data K _, , L_l s
and M_;, can be used to determine X, L, and M, which specify the direction of the ray after refraction.
The basic equations which will be employed are Equations 2-(3) and 2-(4) .

5.4.5.2 In Section 2 it was shown that Equation 2-(3) has the following meaning: if vectors are drawn
(refer to Figure 2.3) from the intersection point, in the direction of the incident and refracted rays respec-
tively, and these vectors have lengths equal to n, and ny, then the closing side of the triangle is parallel
to the normal to the suriace, and is of length T.

5.4.5.3 We now redraw this figure considering the surface as the jth surface. This is shown in Figure 5.9,
which is drawn in the plane of incidence. Thus, the radius of curvature of the surface is also in this plane.
The line of length I' is parallel to r . The unit vector’ 1VI1 is the quotient of the vector parallel to the
normal divided by r . Hence

M, - c[(O -X)T+ (0 - Y)F + (r - Z)E]
= c[— X7 - Y?+ (r - Z)—lz:[,
where T, T, k are unit vectors along the coordinate axes. Using Equation 2-(3) ,

S, -8, = -cXri-cYrj +ec(r - Z) Tk .
1 ]
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— —_ PN - —n
So = n;Q, = K i+ L_,j+ Mk,

Now

1

. i

and a similar equation holds for Sj. Hence :

‘ I

— —

S; -8, = (K-XK_)i+ (L - L_l)] + (M!— M) k.
Bquating like coefficients of 1 , ] , and k we have relations between the old and new optlcal direction

cosines. ‘ ;
. i

§ i .
5.4.5.4 There remains the calculation of TI'. Tlus is done by using Equatlon 2-(4) . We can now write

down the five equations which are used in the order gwen to calculate K, L, and M from the initial data
or from previously calculated results. ;

ncosI = n[(-n—‘-l <:c>s.l)2 - (E-"—l)z + 1]1/2, (11)
n | " A
I = ncosI' - n_coslI, [- (12)
K = K, - XerT, - o (13)
L = L, - YerT, - | ‘ [ (14)
and | ! | | |
M = M - (Zc - 1)T. | f (15)

5.4.6 Summary of ray trace equations.

'

5.4.6.1 In the previous sections there were derived the equations ﬁsed to trace a skew ray ifrom one sur-

face through the following one. For convenience, the equatlons are now listed in the order of use. The

initial ray dataare X3, Y1, 2.3, K3, L3 and M. The initial system data are t_y , n_; and

¢ . Final values to be determinedare X, Y, Z, K, L, and 1\4 .
|

|
|
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akd Y - — 1
— (ty - Z24) M (1)
d
I Yp = Y, + 2% L4, (2)
n_g
d_1
l Xp = Xaq + 5 Ka, (3)
l B = M—l - C (YT L-l + XT K—l) ’ (10) Lo
~ B \2 1/2 -
l n_j; cosI = n_l[ C‘—-l) —cH] , - (7)_: .
A o . SO, - : : : (8) .
I n_; B+ n_jcosl
A
X = XT + H:I’K_l, (4)
A
l Y = YT+n—_1L_1, _ (5)
A
I A Y | | (6)
/2 ‘
2 2
ncosl = n[ (9.:_3: cos I) - (H) + 1 ] s (11) .
l o n ,
I = ncosI" - n_; cos1, ‘ (12)
I K = K, - XcT, (13)
L = Ly-Yerl, - (14)
and
M = M_; - (Zc - 1)T. ' (15)

5.4.6.2 The final calculated values, X, Y, Z, K, L, and M now become the initial ray data for the
next calculation. The new system data, t , I, and c +1 must be given. These ray and system data are
used with the above ray trace equations; in this way a given skew ray from any object surface can be traced
through any number of spherical surfaces to the spherical image surface.

5.4.6.3 The equations listed in paragraph 5. 4. 6. 1 are general, in that they also hold for plane surfaces,
Referring to Figure 5.6, the physical result is that the jt® surface coincides with the tangent plane, hence
the coordinates Xp , Yp , Zp equal X , Y , Z , and A = 0 . These results follow mathemat-
ically by using ¢ = 0 in the equations given in paragraph 5. 4.6. 1. Refraction at plane surfaces will be
discussed in detail in Section 13,

5.4.7 Step by step ray tracing procedure.

5.4.7.1 The following table, Table 5.1 , shows how these calculations can be made in a compact system-~
atic manner. The surfaces are numbered 0, 1, 2, 3 beginning with 0 as the object surface. The initial
system data are the values of the ¢, t, and n quantities indicated above the double line. In a numerical
example ( see Table 5.2 ) the values of these quantities are written in the places indicated. The letters in
the left hand column have been defined in Section 5.2.2 , or by the equations in Section 5.4.6 .

5.4.7.2 The initial ray data are numerical values of X,, Y, , Zos Ky, Ly, and M, whlch would be
written at the place indicated. Note that quantities pertammg to surfaces are written w1thm the column for
the corresponding surface; quantities pertaining to the space between surfaces are written in a break in the
corresponding vertical line. The numbers running from 1 to 17 are the steps in the calculation in the order
they are made. The steps, except (7) and (14) , correspond to the 15 equations, listed in order of steps, in
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Section 5.4.6.1 . "Next step’ indicates step No. 1 for the next ray segment The table entries have been
so chosen that a person using a desk calculator does not have to wr1te down any number except those to be
entered in the table.

_SURFACE 0 1 2 3
¢ c B B
t i, Yooy 2y,
n g ny ny
X X, (9)
Y Y, (10) _
Z Z, (11) :
K K, (15) -
L L, (16) .
M M, (t7)
d_;/ny (1) Next Step
T (2)
Yr (3)
H (4
B (5)
n_y cos (6)
B+n_jcosl (7)
A/n_ (8)
n cos I (12)
T (13)
¢ (14)

1 z ]
Table 5. 1-Skew ray trace computing sheet

SURFACE 0 1 2 i3
c 0 0. 25284872 0. 01473947 ‘
t -2.2 0.6

n 1.0 1.62 1.0

X 1.48 1.48 1.43679417

Y 0 _0.33445977 0. 29386784

Z 0 0.30264162 0. 01585220

K 0 —0.24330257  —0.25700617
L 0. 17360000 0. 22858306 0.23138586
M 0.98481625 1. 58522985 0.93830084
d_;/n_, -2. 23391927 0. 18758061

Xp 1.48 1.43436116

Yo ~ |-0.38780839 0. 29158202

H 0.59186710 -0. 03157802

B 1.00183892 1.57910362

n_jcosl 0.92413654 1.57871680
B+n_jcoslI 1.92597546 3.15782041

A/n_; 0.30730770 -0. 00999994

n cosT 1. 57430250 0.93163659

T 0. 65016596 0. 64708020

cT 0.16439363 0.00953762

Table 5. 2-Skew ray ;trace for *:hree;surfaces.
5.4.8 Numerical example.

i ’ ]
5.4.8.1 Throughout the discussion of geometrical optxcs, lengthy explanatlons have been avoided by the in-
clusion of numerical examples showing the actual calculations. Table 5.2 is such an illustration. The calcu-
lations shown in this table can be made by an experienced person with a modern desk calculator without undue
labor. In order for the calculations to be useful, at least six sxgmfxcant figures must be carried throughout,
Since the introduction of the modern electronic computmg machmes there is really very little justification
for 2 human computer to carry out these calculations unless ray tracmg is only done occasionally. The above
equations can be programmed in a modern machine to make these calculations in less than one second per sur-
face, with at least eight significant figures. The calculations shown in this and other numerical examples may
not offer complete consistency in the number of significant flgures for two reasons: (1) some were prepared

» |
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from automatic computer results where intermediate values were not available and had to be developed by
hand computing; (2) others were prepared from a designer's work sheets where the aim was not eight-figure
accuracy but only three or four-figure accuracy in which case the designer had merely entered results as they
appeared on the hand calculator. No units appear in this and other numerical examples, because the equations
are valid for any set of consistent units. As long as all lengths are in the same units, the numerical example
will be correct for any units.

5.4.8.2 Some specific remarks should be made about Table 5.2 . The initial data which are given to one,
two, or three significant figures are assumed exact. From the initial system data it is apparent that we are
considering a double convex lens, index 1.62, surrounded by air. The incident light first intersects
the convex face of the lens. The lens thickness is about one quarter of the distance between lens and object
surface, but no information is given (or needed for a ray trace) concerning the absolute magnitude of any
d1stance. The object surface is to the right of the lens; therefore the object is virtual.

5.4.8.3 From the initial ray data we see that the (virtual) object point, that is the point towards which the
ray is heading, is on the X axis, but not in the Y - Z plane. The initial ray is parallel to the Y - Z plaiie,
hence X; = X, . The ray is inclined upwards at an angle with the Z axis of 10°. The calculations indi-
cate that the ray intersects both surfaces of the lens below the X - Z plane (because Y is negative), and
intersects both surfaces at points "away from the reader" with respect to the Y - Z plane (because X is
positive). The Z value at the first surface is positive because the curvature is p051t1ve ; likewise the 7 value
at the second surface is negative.

5.5 SKEW RAY TRACE EQUATIONS FOR ASPHERIC SURFACES

5.5.1 General.

5.5.1.1 The discussion in Section 5.4 developed equations for, and demonstrated their use in, ray tracing
procedures through spherical surfaces. Although spherical surfaces are still much easier to make, and
hence are preferred by the lens maker, aspheric surfaces are readily handled by the lens designer who has
access to an electronic computer. Aspheric surfaces afford the designer a great deal more latitude in'the
design, and in addition often permit better correction of aberrations. Aspheric surfaces are being used more
and more, and their widespread use depends on inexpensive methods of production.

5.5.1.2 In the skew ray trace for spherical surfaces, it was convenient to effect the transfer from one ‘
physical surface to the next by introducing a non-physical tangent plane, and effecting the transfer in two
steps. In the case of aspheric surfaces we introduce two non-physical surfaces, a plane and a sphere, both
tangent to the physical aspheric surface at the optical axis. See Figure 5.10. The transfer between physical
surfaces is now effected in three steps:

(1) first surface to next tangent plane;

(2) tangent plane to tangent sphere;

(3) tangent sphere to physical (second) surface.

Steps (1) and (2) are carried out using the procedure already developed in Section 5.4 .

5.5.2 Mathematical description of an aspheric surface.

5.5.2.1 We need to describe the aspheric.surface in a way that indicates clearly its departure from the tan-
gent sphere. This kind of description will not only be easily handled by the ray trace equations, but will also
quickly and quantitatively show how close in form the aspheric is to the sphere.

5.5.2.2 In Paragraph 5.4.4.4 there is given an equatmn for Z ; this quantity is called the sag of the sphere,
an abbreviation of sagitta. Using 8 2 = X2 4 Y2, this equatmn is

7z = L [1-(1 - c2g2)l/2 ]

c

t

o
f_' -~

- <
£ v

By multiplying and dividing by [ 1+ (1 - c2 g2)l/2 ] , we have

c §2

7z = -
1 +vV1-c282

Because the shape of an aspheric surface (which is assumed to have rotational symmetry about the Z axis)

5-13
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| | i i
| i :
; | i !
| | ‘
; i !

differs from that of the tangent Sphere; the sag { Z $ of the aépheric at any distance S from the axis may differ
from the sag of the tangent sphere. This is indicated by expressing the difference in these two sags by a
power series in S% , (The series is in powers of $2 | and hence only even powers of S appear, because the
aspheric has rotational symmetry about the 7 axis.) The final expression for the sag is

. | ! i i
8 10 '

c 82
v es? + 185 + gs® + ns'® + 0(s¥?)
i | | ! :

Z = {1 4+V1-cZaz
|

5.5.2.3 Each of the numerical coefficients e, f, g, and h may be positive or negative. The term O (81%)
stands for the rest of the series, that is terms of order 12 and higher. Ina numerical calculation, if the sag

is given by this expression, O (Slz) would be assumed zero, and the calculations would involve only e, I,

g, and h. The terms eSS4, 1s% , etc., are called deformation terms.

‘ ‘ | | | : : .
5.5.3 Initial data, and transfer from physical surface to next tangent sphere. Part of the transfer from one
physical surface to the next has already been solved in Section 5.4 . The initial ray data for the skew ray

between aspheric surfaces is the same as given in Section 5. 4.2, namely X, , Y3, Z3, K3, L

6

and M_; . We determine the intersection of this ray with the non-physical sphere, tangent to the jth aspheric

surface, by the procedure given in Sections 5.4.3 and 5.4.4 . In other words we apply Equations (1), (2), (3),
(9), (10), (7), (8), (9, (5) and (6) in that order. The only difference so far between this ray trace and the
former is that in the previous case the sphere was a physical surface, while in the present case it is a purely
fictitious surface. The equations do not know the difference between physical and non-physical surfaces;

hence the same equations are used for both cases. ! '

Lo
5.5.4 Transfer procedure, tangent sphere to aspheric surface.

; | : | :
5.5.4.1 In Paragraphs 5.4,4.4 and 5.4.4.5 an ex‘pression for A was derived using four equations,

{ | ' ' -1
namely the equation for the sag, Z , of the sphere and Equations 4), (5), and (6) . This value of —;L—
| ~1

‘ ‘ ! |

was then used in Equations (4), (5), and (6) to transfer from tangent plane to sphere. "1t would be perfectly

possible to proceed similarly here. We would set up three equations, corresponding to (4), (5), and (6) ,
but replacing A by A + A’ . (fee Figure 5. 10) . Using these three equations, and the equation for the

| | | I

Position coordinates

X,Y,Z, onthe
aspheric surface

]

Originof j.q
surface coordinates

Position coordinates

Xy, Ygonthe \]
tangent plane

REFRACTED
SKEW RAY

Optical

Axis

Position coordinates
Xy, Y, , Z, on the

Position coordinates
tangent sp%ere

X3 Yy Z3 on
the j_; surface.

=

X - Y plane (Z = 0) tangent tothe jth

- ty / » l aspheric surface at coordinate origin.

b i
Figure 5. 10 - Diagram of a skew ray in spacé between the j_, surface and the j'i aspheric surface.
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Tangent Plane Asphere
at Point 3

Final
Intersection
Point

Tangent Plane
at Point 1

Point 0
(Xo» Yo» Zo)

Tangent Sphere
Figure 5. 11- Step-wise approximations from tangent sphere intersection, point 0, to final intersection point.-

A+ A

n_p .
transfer directly from tangent sphere to aspheric. The resulting calculations are extremely involved and it
is preferable to proceed otherwise.

sag of an aspheric surface, Paragraph 5.5.2. 2, an expression for could be found, and used to

5.5.4.2 The procedure to be employed makes use of the fact that transfer to the tangent sphere is fairly
simple. The remaining transfer from tangent sphere to aspheric is effected in a step-wise procedure ap-
proaching the final intersection by successive approximations. The physical procedure is indicated in Fig-
ure 5.11 ; this figure represents the plane determined by the skew ray, and a line through this ray parallel
to the Z axis.

5.5.4.3 Beginning at point 0 , the intersection of the ray with the tangent sphere, the first approximation
to the final point is point 1 . Point 1 has the same X and Y values as point 0 ; its Z value differs from
that of point 0 by the deformation terms evaluated at these particular values of X and Y. The second
approximation is point 2 , the intersection of the ray with a line tangent to the aspheric at 1. The tangent
line is determined from the known coordinates of point 1 and the calculated curvature of the aspheric at point
1. Since the ray direction is known, its intersection with the tangent line, point 2 , is determined. The
procedure is now repeated. Point 3 has the same X and Y as point 2, and its Z value can be found from
the deformation terms and the Z value at point 2 . The fourth and fifth approximations are points 4 and 5,
respectively. (The point 0 , on the sphere, is correctly called the zeroth approximation to the final point.)

5.5.4.4 The various values of X, Y, and Z for points 0, 1, 2,--- will be referredtoas X, , Y, , and
Z,, where the n will stand for the order of approximation. Let us begin at any even-numbered point, that is
a point on the ray; in practice, the calculations begin with point 0, but we wish to make the equations gener-
al so that n will stand for any even-numbered point. The next point, on the aspheric, will have coordinates
X, Y, , Z,,. Note that the X and Y values are the same as for the previous point. The 8, value now
used to calculate the sag, Z is

m ?
s2 - x? . v2. (16)

n n

The change in Z , that is Z,, - Z, , is the distance parallel tothe Z axis between an even-numbered
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i
1 H
i

point and an odd-numbered point. Calling fhis distﬁmce - F‘(see i“igure 5.11) , we have

[ 6 0 .
F=Zn-[1+m + es? 4+ 18 +gSs+hsl]. (17

| 3 : |
(The subscript n has been omitted. Henceforth all values of S are rigorously S, .)
1 | :‘
5.5.4.5 For notational purposes it is convenient to designate the 'square root in Equation (17) by W. Hence

W o= [1—02 52]1/2- | ‘ (18)

, | * ! i
Referring to Figure 5.7 , it can be seen that W = V1- sin2a =cos a, where a is the angle be-
tween the normal to the surface and the optical axis. W therefore is the direction cosine, with respect to
the Z axis, of a radius drawn from the sphere to tﬁle center. ‘
5.5.4.6 From an odd-numbered point, whose coordinates we now know, we move along the tangent line to,
the ray. The coordinates of this new even-numbered point are Xn_,_1 v Yo o and Z_,, . Calling the dis-
tance along the ray, between two even-numbered points, AA', we can write equations %or the new coordi-

nates similar to equations (4), (5), and (6). We have then
\ ' |

_ AA’ :
Xn+l = Xn + n_, K_1 R (19)
. ' | :
AA'
Yn+1 = Yn + n_, L_]_ y v . (20)
and A—A'
Zpyy = 2y n_, M, . (21)

We will consider the calculation of AA’ presentljr. Once this isF known, the new coqrdinatés on the ray

are known, and we repeat the calculations through two more steps until we get once again to the ray. This
iteration procedure is continued until AA' /n_1 is less than any desired tolerance. In this manner we can
approach the final point on the aspheric as closely as we choose. ’

5.5.4.7 The remaining problem in the transfer from tangeﬁt sphere to aspheric surface is thie determination

of AA' . First we need the equation of the plane tangent to the aspheric surface at an odd-numbered point.
From the equation for the sag of the surface, Paragraph 5.5.2.2, we can write ' : '
. T [E ! 1 -

! ! i
CS2 .
y(X,Y,2) = 2 '[T:—ﬁ_—_-——?_f—é—* eS4+fSG+gSS+hSm]=0,

‘ : i ; ]
where ¥ (X, Y, Z) = 0 isthe equation of the aspheric suriace. Now a plane, tangent to the surface
at the point X, , ¥, , 2 will coincide with the. first approximation to the surface, Physically, if we
restrict ourselves to points close to (X, , Y, , Zy, ) the surface is a plane. To find the first approxi-

mation to the surface we expand ¥ ( X, Y, Z) and keep only the zeroth and first order terms.

R R

[ !

| Taw .
m )t (X - X) 93X %, v, 2z,

Y ' 81!/] ‘
Y - v Z - Z =0,
+( Yn) [aY:IXn,Yn,Zm ¥ ( ' m) [BZ XD,YH,Zm

| ! ‘
where the first term is the zeroth order term, and the last three are the first order terms, in the expansion
of ¥ (X, Y, 2). Using Equation (16) we have ' '

5.5.4.8 The equation oif the tangent plan;e‘ is then

Y (X, Y, ,2

oW _ w38 _ ay X
X s 90X as s’
y o X |
a3y = 3§ § ° i |
and |
l !
v g ‘ ‘

@
N
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Using the expressionfor ¥ (X, Y, Z ) given in Paragraph 5.5.4.7, and Equation (18) , we get

ay _ 8 . [ 2 4 6 s]
58 = W c S 4eS° + 6fS® + 8gS” + 10hS ,
. . . ay  _ S .-
which can be simplified to s - Tw E by defining
E = c+ W [4es2 + 6£8% + 8gs® + 10hs8 ] . (22)

(If the deformation coefficients are small, E is approximately the eurvature of the aspheric surface at the
distance S, from the optical axis.} .

5.5. 4 9 The equatxon for the sag of the aspheric surface glven in Paragraph 5.5.2.2 is an equation for Z

if 82 = X2 + Y . Because of this, ¥ (X, , m ) is zero, using the equation for ¥ in Para- .
graph 5.5. 4, ’7. The zeroth order term in the expansion is therefore zero, The equation of the plane becomes,
using the above expressions for the partial derivatives, T

X w
-(X-X,) 3 B - (Y- Y)W E+(2-2 ) 5w +%, -2Z_ =0,
where we have separated the term 2 - Z,, intotwoterms. By Equation(17), F = 2, - Z_, .., We
define here two quantities,
U = - XE, (23)

V = - YE. (24)

5.5.4.10 With these substitutions the equation of the plane becomes

(X -X, ) U+ (Y -Y,)V + (2 -Z,)W = - FW ..

This equation holds for all values of X, Y, and Z , in particular X ., , Y., , and Z sy - Instead of
the difference (X ,; - X, ), weuse (AA'/n l)K from Equation (15} . Slmxlarly, usmg Equatmns (ZO) ‘
and (21) , and solving for AA'/n . .

AA’ -FW , | .

n; K U+LiV+M;wWw ° (25)
From Figure 5.10 , it can be seen that the distance, D_;, along the ray is

D_1 = d-—l + A + AT, (25&)

5.5.5 Refraction procedure at the aspheric surface.

5.5.5.1 Now that the intersection point, (X, Y, Z), of the ray and the aspheric suriace has been found,
the refraction equation is used to determine the new direction of the ray. The procedure is basically the
same as that used for refraction at spherical surfaces, discussed in Section 5.4.5. In that section Equation
(11) was used to calculate neosl', because n_; cosl hadalready been calculated using Equation ).

5.5.5.2 In the present case there is not yet a value for n_; cosI. To calculate this we use the fact that
the cosine of an angle betweern two directed lines is equal to the sum of the produets of their corresponding
direction cosines. Since we are calculating cos I, the two lines in question are the ray whose optical
direction cosinesare K _; , L ; , and M_; , and the normal to the aspheric surface. Now the normal fo
the surface is just the normal to the tangent plane. The equation of this tangent plane is given in Paragraph
5.5.4.10 , where X » Y, ,and Z are the coordinates of the final point on the ray, the intersection with
the surface.

5.5.5.3 Given the equation of a plane, the direction cosines of the normal are proportional to the corre-
sponding coefficients of X, Y, and Z . Hence the direction cosines of the normal are, in the usual order,
U/G, V/G, and W/G , where G is a proportionality constant. Because the sum of the squares of the
drrectlon cosines is umty, we have :

G2 = Uu? +v2 ; w2, (26)
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Using the direction cosines of the ray we get

M W
cos_'[:.l_c_ig.g.ﬁl-p__i_’
n_l G n"'l G n_l G ‘ ) ,‘
which is rewritten in final form as | ‘ ,
| | ; ‘ :
Gn,y cosl = K, U+L_, V+M,; W, ‘ 27)

i 1 { :
5.5.5.4 Equation (11) is now used to determine ncosI'. However, for calculation purposes, it is prefer-
able to leave the G on both sides of the equation. ' 12

H . . !
GneosI' = n [(G 21 cos1)? - G (Eﬁ-;)z ¥ Gz] : - (28)
| . .
\ ‘ i
5.5.5.5 Returning to the equation in Paragraph 5.4.5.3, we write this vector equation as three scalar
equations using the method of Paragraph 5.4.5.4. We get |
|

K-K; = rg, l
L-Ly = Tg ,

and ; !
M-M_1=r%,

because I is parallel to the normal to the ‘surface ahd therefore has the same directioh cosines. Intro-
ducing P =TI/G, we have, using Equation (12) , l ‘ .
i i

P = (GneosI' - Gn, cos1)/G? . | \ (29)

Finally, K, L, and M are found from thé equations, i
|
t

K = K; +UP, ‘ - (309)

L = Ly + VP, | | (31)
and | | | :

M = M, +WP. j ' , (32)

5.5.6 Summary of ray trace equations.

i ‘ i .
5.5.6.1 In the previous sections we have derived the equations used to trace a skew ray from a tangent
sphere through the aspheric surface. For convenience we rewrite the equations in the order of use. The
initial ray dataare X , , ¥, ,Z; ,K_, L_;, and M_, . The initial system dataare t_, , nj,c,
and the deformation coefficients e , f, g,--- . Final vaf'ues to be determined are . X, Y, ]Z , K, L,
and M . ' ;
: i i

5.5.6.2 The position coordinates for the ray on the tangent sphere are calculated using the first ten equa~
tions listed in Section 5.4.6. Equations (16) through (32) are then usled in the order list«!ad below.

s? = x2,v2 | | (16)
1/2

W=[1-—c282]/ , : (18)
F = 2 [ c & e ‘s6 | g8 w] 7
= n - 1+ ‘/_]._-C—Z_SZ +‘eS +f +’ g + hS .: (1)
E = c+ W [4es2 + 6£8% + 8gS® + 10ns8 ] , (22)
| . |
= - XE , | o , (23)

\ |
vV = - YE , : . (24)
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AA'  _ - FW
ny K; U+Ly ViMy w '’ (25)
AA(
Xpp = X, + Ewy K3 > (19)
AA’
Yoo = Yyt 3 La o (20)
AA'
Zn+1 = Zn + n_y Mo ’ (21)
G2 = U2 + v2 s w2 , (26)
Gnjcosl = K43 U0U+L 3V +M 4 W o, _ (27)
. Z e /2 o
‘GneosI' = n [(G —n—'l cos I) - G2 (—n'l]-') + G2 s (28)-
P = (Gneosl' - Gny cosl)/GZ (29)
K = K—l + UP > (30)
L = Ly + VP , ‘ (31)
and
M = M; + WP . (32)

5.5.6.3 The first ten of these equations are used in an iterative process until AA'/n _1 becomes as small

as desired. The final values of U, V, and W are then used in the lasf seven equations (26) through (32) .
The final calculated values of X, Y, Z , K, L, andM become the initial ray data for the next calculation. .
These values, together with new system data, t, n, ¢;; , and deformation terms, are used in a reapplica-
tion of the ray trace equations.

SURFACE 0 1 2 3
C 0 0. 25284872 -0.01473947
e -0. 005
| f 0.00001
| g ~0.0000005
| h 0
t -2.2 0.6
n 1.0 1.62 1.0
X 1.48 1.48 1. 44043943
Y 0 -0. 33905030 -0. 29645624
yA 0 0. 27660001 -0.01594078
K 0 -0. 20481560
L 0. 17360000 0.22052072
M 0.98481625 1.59179807
d_1/n_1 -2, 23391927
XT 1.48
Yo -0. 38780839
H 0.59186710
B 1. 00183892
n_jcosl 0.92413654
Bi+n_jcosI 1. 92597546
A/n -1 0. 30730770
n cosT
T Enter X3 Y¥p 7, .
cT 'in Table 5.4 .

Table 5. 3 - Skew ray trace through an aspheric surface. Part of the calculations are shown in Table 5. 4.
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5.5.6.4 Because a spherical surface is a special case of an aspherlc surface for which the deformatmn
terms are zero, the ray trace equations for asphenc surfaces should easily reduce to those for spherical

B
i
|

i
¥
1

surfaces. We see, for the case of a sphere (e = f = g = h =
U = - Xe, 1
V = -Ye, a
W = - (Z2c-1), (holdsforasﬁheric alsq)
¢ =1, | | -
ny cosl = —c[XK_1+YL_1+ZM_1],
P = T, ) |

I ‘ | !
and equations (30) , (31) , and (32) become identical with equations (13) , (14) , and (15) .
‘ e ,

|

o o
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1

0),

Table 5.4 - Skew ray trace iteration and refractmn calculatlons.

5.5.7 Numencal example,

5.5.7.1 A numerical example is shown in Tables 5.3 and 5.4. The system data is the sa.me as the example
shown in Table 5.2, except for the addition of three deformatlon coefficients e , f, and g -

|
L i
|

o
|
|

ITERATION 1 2 3.
X, 1. 48000000 1. 48000000 1. 48000000
Y, -0. 33445977 -0. 33905071 ~0. 33905030
n 0.30264163 0. 27659764 0. 27659999
Sy2 2.30226334 2. 30535538 2. 30535510
1 -c? s? 0. 85281060 0.85261290 0. 85261290
W 0.92347745 0.92337040 0. 92337040
c / (1+wW) 0.13145395 0.13146127 0. 13146127
hs 2 0. 00000000 0. 00000000 0. 00000000
hst 4+ gS2 -0. 00000115 -0, 00000115 ~0. 00000115
nsSé + gst, fs2 0.00002037 0. 00002040 0. 00002040
hS f130 * gS 6, fs‘é + eSZ cs2 -0.01146441 -0, 01147976 -0, 01147976
hS10, g88 . 5548 +— | 027624751 0. 27660004 0. 27660000
-F ~0. 02639412 -0.00000238 ~0. 00000002
-10 hS 2 0.00000000 0, 00000000 0. 00000000
-10 h8* _ 8 gs? 0. 00000921 0. 00000922 0. 00000922
-10 hS® - g gs? ~ 6152 -0.00011693 ~0. 00011706 ~0, 00011706
10hS8 + 858 + 615% + 4es2 | -0.04577605 0. 04583724 -0. 04583723
-E -0. 21057557 -0. 21052397 -0. 21052398
U -0.31165184 -0.31157548 -0. 31157549
v 0. 07042906 0.07137830 0.07137822
KU+ L_1jV+M W 0.92168208 0.92174144 0.92174143
- ~0.02437438 . 0.000002198 0.000000018
AA/n4 -0.02644553 0.000002384 0. 000000020
X 1. 48000000 1. 48000000 1. 48000000
Y ~0. 38905071 -0. 33905030 -0. 33905030
Z 0. 27659764 0. 27659999 0. 27660001
G2 0. 95478704
GncosI' 1.54937517
P 0. 65735466
K -0. 20481560
L 0. 22052072
M 1. 59179807

The table shows three iterations.

The coefficient
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h is specifically listed in both tables as zero. This avoids possible error in not being certain whether or
not a coefficient was erroneously omitted. The initial ray data is identical with the previous example; hence
the calculations and results for transfer to the tangent sphere are the same. Thus steps 1 through 11 ( see
Table 5.1 ) are identical, except for the location of the results of step 11. These are placed in Table 5.4
and are the initial data for the iteration process.

5.5.7.2 Table 5.4 shows the iteration process by which ( AA'/n_; ) < 0.00001 ; this represents the
criterion, set up prior to the calculations, to determine when the iteration process is to be stopped. It is
noticed that the first value of AA'/n -1 is negative, the second positive, the third almost zero. This
oscillation about the target value (< 0.00001) is typical of the method of successive approximations. This
‘method will be used in later sections where aberrations are discussed. ) '

5.5.7.3 The final values of X, Y, and Z , shown just above the double line in Table 5.4 in the column 3 ,
are entered in Table 5.3 in the place for steps 9, 10, and 11 . ( The entire iteration process gives the.. |
results for steps 9, 10, and 11 for an aspheric surface. ) These values are now part of the initial ray data
for the next surface. The refraction calculations at the aspheric surface are given in Table 5.4 below-the -
double line, and use the final results found above. The values of K, L , and M are now entered in Table 5.3
as the results of steps 15, 16 , and 17 . They will be used as initial data for the next surface.

5.6 MERIDIONAL RAYS

5.6.1 Definition. A meridional ray is any ray lying in a plane containing the optical axis. A meridional
ray will remain in the same plane throughout an entire centered system. For this reason, the tracing of
meridional rays is a two dimensional problem, while the tracing of skew rays, which do not lie in a plane
containing the optical axis, is a three dimensional problem.

5.6.2 Use of skew ray trace equations. The skew ray forinulae given in Sections 5.4 and 5.5 are designed
for use on modern automatic computing machines. However, they are in a form which can be used with
relative ease - for skew rays - on a desk calculator. Extensive skew ray tracing, which is essential in
order to make a complete analysis of a lens system, should be done on a computing machine. In the pre-
liminary design of a lens system it is usually convenient to trace a few selected meridional rays. These
are often traced by hand. ¥ the object point has coordinates (X, = 0, Y, , Z, ) and the ray pierces
the first surface at coordinates (X, = 0, Y; , Z, ) the ray is meridional and will remain in the

Y Z-plane all the way to the image surface. Meridional rays can be traced using the skew ray formulae -
given in Sections 5.4 and 5.5 by setting X = 0 and K = 0.

5.6.3 Meridional ray trace, spherical surfaces.

5.6.3.1 Meridional ray tracing can be done for spherical surfaces by using Equations (1) through (10) ,
followed by either Equations (11) through (15) or Equations (16) through (32). For meridional rays, Equa--
tions (1) through (10) reduce to the following eight equations, in the order used:

d 1

ny (ty - 24) W, (1)
d
YT = Y, + n—"—i‘ Ly, (2)
H=cY2 (92)
= T > , _
1
B = M_ - cYT L, (10a)
B \2 1/2
n_y cosl = n—l[('ﬁ:) —cH] ) ’ ™
A H , e : (8)
n_y B + n_ cosl
: A
Y = ¥Yp + n, o (5)
and A - .
Z = o M, - (6)
-1
Only eight equations are needed, the other two being X7 = X = 0. These eight equations trace a

meridional ray from any surface to the next spherical surface.
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5.6.3.2 Refraction at the spherical surface may be calculated by applying Equations (11) (12), (14), and (15)

as written. Equation (13) becomes K = 0. (Thxs procedure is referred to as the short form ) .

other hand Equations (16) through (32) may be used. ‘These are reduced to the followmg seven equations, in

the order used: 1 ‘ |
1/2
w = [1 - c2 Yz]/ ,

V = -Ye,

ngcosl = L ; V+M, W,
| o | |

2 2 1/2
ncosI' = n [(3:5 cosl) - (L) +1]. ,
n n ‘
: |
T = ncosI' - n_j cosl, }
L = Lj - Yerl', ‘
and ;
M = M-l - Wl—'. I
Only seven equations are needed, the other ten being S, = Y, , E = ¢ , G = i, Yos1
Zpal = Zp, and F = U = AA' = X, = K = 0.

! i

5.6.4 Meridional ray trace, aspheric surfaces. For meridional rays and aspheric surfaces, after applying
the eight equafions given in Paragraph 5. 6. 3. 1, the Equations (16) through (32) are used. These reduce to

the following thirteen equations, in the order used

i

1/2
w = [1 - Cz Yz ] ’
2 ‘ ! i !
Y
F=Zn—[—ﬂ—w—+eY4+fY6+gY8+hY10],
T
E = ¢c+W [4eY2 + 6fY4+ 8¢YS + 10nYS ]
| ! i
vV = - YE, " ‘ }
n_g ...1 V + M-l w ?
! J
AA'
Yn+1 = Yn + n—l L_l 5
AAT
Zn-i-l = zn + n_; M—l 4
v | ‘
G2 = vZ2 w2 | | ‘
|
! | i
Gn_4 cosl = L; V+ M, W, | ‘ ‘
i i
: Y2
GncosI' = n[(Gr—la—lcosI)z—Gz(L‘l)2+G2] ,
n
‘ ! : i
P = (GunecosI' - Gn, cos 1)/G 2 | _
i i
L = L-']. + VP,
and \
M = M,; + WP. .
: [
Only 13 equations are needed, the other four being 8, = Y, , and U = X1 = K =

5.6.5 Simplified meridional ray trace, spherical suffaces. ‘

5.6.5.1 There are many other methods, involving different parameters, which are commonly used to trace
meridional rays. One such method specifies the angle the ray makes with the optical axis, and the per-
. pendicular distance from the center of curvature of the surface to the ray. Figure 5. 12 mdlcates the two

| i i
| i

(18a)
(24a)

(272)

(11)

(12)
(14)

(32a)

(18a)

(17a)

.(22a)

(29)

(25b)

(20)

(21)

(262)

(27a)

(28)

(29)

(31)

. (32)

0.
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N
Enterjng A

‘Optical Axis

Do

Figure 5. 12—Ray tracing by the PR method.

quantities specified, U_; and CA . The corresponding quantities, U and CA', specify the refracted
ray. This diagram involves the angles U and U_; , called the slope angles. We will'use a convention
for the sign of a slope angle similar to that for incidence, reflection, and refraction angles. (See Section
2.2.2). K the ray must be rotated clockwise through the acute angle to bring it into coincidence with the
optical axis the angle is called positive. Both U and U_; are negative as drawn.

5.6.5.2 The following equations are readily derived from the figure: *

sinl = _gé_,’ : B B I o B
r
and
. CA’
sinl' = —‘—r— .

Therefore from Snell's law

CAn_4 CA'n

ny sinl = = = = = nsinl'.
By definition:
P = CAn_,; = CA'n,
and
R = n_ll r > B = nlr - .

(Because of these two ‘definitions, this method is referred to as the PR method.)

# The notation used in this simplified ray trace must not be confused with the skew ray formulae. There has been no
attempt to avoid duplication of symbols. :
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The refraction equations then become

sinl = PR, o (33)

sinI' = PR', ‘ (34)
and | |

U = U -(1-1). ‘ | , - (35)

| i
The value of P is transferred from one surface to the next by the following equation:

\ ; ]
Py =P-(r-r,; -t)nsinU. : - (36)

‘ : |
5.6.5.3 Equation (36) is seen to follow from Figure 5. 13. WF have
| L o |
P+1 = C+1 A+1 n = C Al n + C C+1 n sin T] y ’
; ? | T ‘
becanse U is negative. The distance C Cyyp= t - r + r,,, and Equation (36) follows by rearrangement.
The above ray tracing equations, (33) through (36), require a minimum of calculation and are ideal for hand
computing. If several rays are to be calculated it is worth while to precalculate the lens constants R, R',
and n(r - ryy ~-t) . :

]
i
{
1
Il
|
i
{
i
|
{
i

|
|
|
|

'
i

. -~
, \\ ~ e —_ A+1\{

Optical Axis . ) U TS -~
\o

'1 :

Figure 5.13 - Transfer procedure for the PR method. _

. | |
| o |
S } : .
5.6.5.4 A numerical example is shown in Table 5.5. The numbers above the double line are either given,
suchag r, t, andn, or are precalculated suchas R, - R', and (r - ry; - t) n. The P below
the line, surface 1, is calculated from initial ray data, CA . All other values in the table, below the
double line, are calculated using Equations (33) through (36). The problem of finding angles I and I' from

their sines, in order to use Equation (36), is discussed below.

|
|

I i
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SURFACE 1 2 3
T 19.23 -64.25 13.51
t 0.8 0.05
n 1 1.51017 1
R 0.0520021 | -0.0103063
R -0.0344346| 0.0155642
n(r -1y -t 124,861 ~77.81
P 3.330000 | 10.708028 | 1.703612
sin 1 0.173167 | -0.110360
-sin T -0.114667 | 0.166662

U ') -0.059124 -0,115983

Table 5.5 - Numerical example of ray tracing by the PR method.

5.6.5.5 One should note that the above formula, (36), cannot be used to transier from a plane surface where-
in r -~ , ortoa plane surface wherein r,; — ®. To deal with 2 plane, the procedure is to calculate
the distance from the pole of the plane surface to the ray; see Figure 5.14.

Let
OAn_; = Q for the entering ray, and
OA'n = Q' for the refracted ray.
Then, because U; = I, and U = 1', we have,
tan U—l

[ = ainiiaie SN

Q Q tan U
¥

tep

¢

( I”‘-’I‘de n
nt )
W
I
\ ~ A
e~ ’
~1
S
/ A -
U / Qe). ~ ~—
—»U_q ) Q ~
iy ¥\ ~—
~
pad }J U ~.
. . U; S~
Optical Axis + ~

n.y IO k n \

Figure 5. 14 - Method of transfer for a plane surface.
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To transfer from a spherical surface r, to a‘plane jsurface, ry,y; = ©, Weuse
" ' I H i
! . | !
Quy = P -(r -t)nsinvU. ]
|
To transfer from a plane surface, r = w , toa spherical surface, r,y , the equation is
K | S |
Py = Q - (-1, -t)nsinU‘.‘ |

5.6.5.6 To trace meridional rays through systems involving plane surfaces, Equations (33) through (36) are

used until the plane surface is encountered. To transfer to a plane surface from a spherical one or vice
versa, use one of the transfer equations in Paragraph 5.6.5.5. A transfer between two plane surfaces is
calculated using , 1 |
Qy = Q+ tnsinU. |
|

Refraction at a plane surface is calculated using

sinU = 22 gy,
n | |
and |
tan U
] = ~1
Q Q tan U !

‘ S !

i | i I
where Q is either specified initially, calculated from initial data, or gotten by transfer from a previous
surface. The calculations for plane surfaces are put into the same table (Table 5.5) as used for spherical
surfaces. The values of sin U_; and sin U are written opposite sinI and sinI' (which they equal
respectively), and the values of Q and Q' are written opposite P . (The tangents need not be written
down. ) ‘ i | |

[ ; ! .
5.6.5.7 One difficulty with the above formulation, Equation (36), is that if r ; becomes large, but re-
mains finite, P,; becomes equal to the difference between a relatively small and a relatively large num-
ber. Hence unless a large number of significant figures are used for n , 8in U, and the coefficient of

these terms, the value of P,; will be independent of P . In doing hand computing one can readily notice

this less of precision. I this occurs, it is necessary to resort to other formulae, or reshape the lens so
that the surface becomes plane, Another difficulty with Equation (36) arises if U becomes small, but re-
mains finite. In this case the ray is almost parallel to the optical axis, and P becomes equal to the

difference of two nearly equal numbers. Hence unless both numbers are knowr;- %o a large number of signifi-

cant figures, the value of P,j; is quite inaccurate. In case the use of Equation (36) becomes difficult, the
formulae given in Section 5. 6.3 should be used. ‘ ‘ |
i I | |

5.6.5.8 In using the above equations it is necessary to convert sines to angles and to tangents, and to con-
vert angles to sines. Tables are given in the Appendix. The tables convert from sine or tangent to the
argument in radians and vice versa. They are designed for six place accuracy, and intervals are chosen
for ease of interpolation. The first three digits of the function can always be found in the table and the

last three digits are always multiplied by the interpolation constant and the product added to the tabular
value. Interpolation therefore requires no mental arithmetic, and the process becomes completely auto-
matic, By paying attention to such details a good human computer can trace rays through a lens at a speed
of 40 to 60 seconds a surface. This method, in spite of its limitations, is an extremely useful method for
hand computing meridional rays.

; i
i ‘ !
i i !

|

5.7 GRAPHICAL RAY TRACING PROCEDURE | | } :

5.7.1 Explanation of the method.

-
5.7.1.1 Rays may be traced graphically by means of a simple construction. The left side of Figure 5.15
shows a portion of two concentric eircles whose radii are proportional to the indices n_3 and n. Onthe
right side of the figure is shown the surface separating media of index n_; and n. The angle of the re-
fracted ray is determined from the diagram on the left. From this diagram n_y sinl = n sinl’;thus,
the construction solves Snell's law. Reference to Paragraph 5.4.5. 3 will disclose that this is merely the
graphical solution of the vector method. ‘ ! ,

| B {

5.7.1.2 The detailed procedure for tracing a ray is as follows. Draw a line through the center of the two

circles parallel to the incident ray. Draw a line, parallel to the radius of curvature, through the inter-
section of the first line and the circle corresponding to the index of the object space. Th? line through the
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Figure 5. 15- The method of tracing rays graphically.

center of the two concentric circles and the intersection of the second line with the other circle is the re-
fracted ray. The incident and refracted rays can be drawn on the right hand diagram, but this is not’
necessary. The two diagrams may be superposed by placing the center of the concentric circles on the
incident ray a distance n_; (arbitrary units) to the left of the incidence point. This procedure makes un-
necessary the drawing of the circle for n_; , or the drawing of two lines each for the incident ray and the
radiug vector. The remainder of the construction is as given above.

5.7.2 Example using an air-spaced doublet. Figure 5. 16 shows the graphical ray trace for a ray which is
initially parallel to the axis (ray a). It is seen that the first surface of the second lens is a diverging sur-
face; the other three surfaces are converging, because the ray is bent toward the optical axis. By measure-
ment of the radii of the concentric circles, we see that n; = 1.5 and ny = 1.7. This combination of
a converging crown lens, followed by a diverging flint lens is typical of a type of achromatic telescope objec-
tive. These lenses will be studied in detail in Section 11 .

5.8 DIFFERENTIAL RAY TRACING PROCEDURE

5.8.1 Meaning of a differentially traced ray.

5.8.1.1 In the previous sections equations have been developed for tracing a general ray (skew or meridi-
onal) through a general surface having rotational symmetry. Once such a ray has been traced through the
system, we have a baseline from which to find the path of neighboring rays. A differentially traced ray,
sometimes referred to as a close ray, is a ray differing from the originally traced ray by small, first order
quantities. This means that the change in direction cosines, dK_; , dL_; , dM_; , andthe change in
the coordinates of the intersection point, dX , d¥Y, d%Z , are first order differentials.

5.8.1.2 The tracing of one ray gives us information about the one intersection point of that ray with the
image surface. The tracing of several neighboring rays gives us their intersection points and hence infor-
mation about the structure of the image formed by these rays. In addition to this useful information, differ-
entially traced rays are generally easier to calculate than a single, general ray. Because of these advantages,
the concepts and procedures of differential ray tracing are important. ' ,
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1
{
i
t

Figure 5.16 - Graphicai ray trace of a doublet.

5.8.2 Differentially traced skew ray. ‘ ‘ ‘
1

5.8.2.1 Once a skew ray has been'traced through a lens system‘it is possible to trace the path of a ray differ-

entially displaced from it. The skew ray trace provides the values of X » Y, 2 on eachsurface, and K, L
M between surfaces. The values of X, Y, Z on adjacent surfflces are linked by the tr%nsfer equations

| |

D
X = X3 + =L x,, (37)
l’l_l ‘ ;
Y = Y., + Dy L, ' (38)
and ‘ i i
D " .
Z = Z4 -ty + —L M, (39)
B

1 I

where D_; , given by Equation (25a), is the geometrical distance along the skew ray between the two sur-
faces. These equations follow from Paragraph 5.4. 3. 2‘ applied t? any Two surfaces. .

. s ' I ‘ | ' i
5.8.2.2 A neighboring ray, in the sense of Paragraph 5.8.1.1, will have slightly different coordinates on
the jth surface. The differences, dX, dY, anddZ are found by differentiating Equations (37), (38), and

(39). We have ‘

D D
dX = dX; + —L dK,; + K, d( -1), (40)
n.; n~1 } ‘
dY = dY_; + Dy dL_; + L d (D‘l), (41)
e ‘ i n |
: .
and Lo i ] .
. D_ ' D_ '
dz = dZ; + L dM_; + M d( 1). (42)
. l’l_l v ‘ n_l ) .
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These. equations may be referred to as differential transfer equations, in that they are used to calculate the
change in coordinates. The changes in coordinates at the previous surface have been determined by the previ-
ous application of these equations; the changes in optical direction cosines are caleulated by differential re-
fraction equations discussed below. The last term, involving the change in total ray length, must also be

calculated. The remaining equations will first be derived; then their order of use will be summarized.

5.8.2.3 The procedure used to derive an equation for d (:))—'12“ will be quite similar to that used to derive

. -1 .
an equation for ﬁé_ . (See Paragraphs 5.4.4.3 - 5.4.4.5). that case we used four equations, Equations

(4), (5), (6) and the equation for the sag, Paragraph 5.4.4.4. These four equations were solved simultane-
ously for ni . The equation for the sag, Z , is the equation for the surface, in that case the sphere. Be-

cause the intersection point_must lie on the surface, this equation is called an equation of constraint. Inthe
present case, the four equations to be used are Equations (40), (41), (42) and the differential equation of con-
straint. T

5.8.2.4 Although the physical jth surface is a general surface of revolution, this surface is replaced by the
plane, tangent at the intersection point. The reason this must be done is that we have restricted the change
in coordinates to first order differentials; as one moves away from a point on a surface by distances of the
order of first differentials, the motion is constrained to the plane tangent to the surface. The equation of the
tangent plane is given in Paragraph 5.5.4.10. Differentiating this to obtain the differential equafion of con-
straint we have ’

UdX + VdY + WdZ2 = 0.

We now substitute into this equation the values of dX, dY, and dZ given by Equations (40), (41), and (42).
Collecting terms, and using Equation (27), we have ) .

D, -1 D,
d(D‘l) U@X 3+ g dK_) + V(Y ) + g~ dL ) +W (dZ +n, dM_3)

-1 1

= - -

(43)

n_y -Gn_; cosl

5.8.2.5 Using Equation (43), and then Equations (40), (41), and (42), we will have completed the transfer
of the differentially traced ray. The differential refraction equations, now to be derived, will be used to
calculate dK, dL., and dM . Differentiating Equations (30) to (32) gives

+ PdU + U4dP, (44)

dK = dK
dL, = dL—l + PdV + VdP, (45)
and
dM = dM_, + PdW + WdP. . (46)

5.8.2.6 In differentiating the equation for the tangent plane we kept U, V , and W constant and thereby
obtained the differential equation of constraint. Physically this means that at any point on this tangent plane
the ratio of the direction cosines of the normal, U :V :W , is the same as at any other point. (See Para-
graph 5.5.5.3). Justifiably it may be asked why U, V , W were not held constant in differentiating Equa-
tions (30), (31), and (32). The answer is that though the tangent plane and surface differ by second order
differentials, at the new intersection point, the normals to the two tangent planes, erected at the two inter-
section points, have direction cosines differing by first order differentials. Hence, since refraction in-
volves the normal at the intersection point, dU , dV , and dW are not necessarily zero in Equations (44),
(45), and (46).

5.8.2.7 Differentiating Equations (23), (24), and (18), we get

dU = -XdE - EdX, (47
dV = -YdE - EdY, ‘ (48)
and
c?2 ’
dW = - % (XdX + YdY). (49)
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dE may be found by differentiating Equation (22), rememberiné that
|

dE

thus

dE

5.8.2.8 The one remaining problem is the determination of dP to
This is done by the same method used to derive Equation (43).
(45), (46), and a differential equation of constraint.
entials on the left-hand side of the firs

E
ﬁdx+
_fe-E
w

sines of a given line is unity, we have

KdK + LdL + MdM =

as the differential equation of éonstraint.
remernbering Equation (27), we have

aPp

K(dK_; + PdU) + L@L_; + PdV) + M(dM_, + PdW)

(4e + 1287 + 24g5* 4+ 20nsS)

0

IE IE
57 4Y + 57 dz,
. |
2W
+ c2

i

de.;

- Gn cosI'

5.8.2.9 We can now summarize the calculations, in the order made,

skew ray through aspheric surfaces.
as 5.3 and 5.4, the initial ray data of the nei
N and dM ~1

dK _; , dL

However for hand computing the close skew ray trace

5.8.3 Differentially traced meridional ray. At first

to trace a differentially traced ray as a skew ray. Actually the equations are simple and no square roots

sight it mig

are involved. An interesting application of the above equations occurs
Assume a meridional ray has been traced from an object point ( X,

system; let us now trace a ray from the same o

mount dKo . We also assume that dLo

KdK + LdL + MdM =

and the differential ray is to be traced around a meridional ray K
had assumed dM, = 0, then it would follow that dL, =

From Equations (40), (41) and (42),

dX,

ay,

and

le

1

D
o dK ,
nO

0,

0.

>

Careful inspection of Equations (47) to (51) shows that,

du
av
dw
dE_
and
ap

i

- BdX,

0).

o]

[
|

Equation (43
|

.

= 0. (If originally we
at diD,/n,)=0.

1
I

ht appear that it would take as much time

i

0
) shows tih

AMENTAL METHODS OF RAY TRACING

(50)

be used in Equations (44), (45), and (46).
The four equations used are Equations (44),
In each case, the fourth equation involves the differ-

t three equations. Because the sum of the squares of the direction co-

l

Substituting Equations (44), (45), and (46) into this constraint, and

(51)

used in tracing a differentially traced
In addition to the results for the skew ray, available from tables such
ghboring ray must be given. That is dX 4
must be specified.

(43), (40), (41), (42), (49), (50), (47), (48), (51),
not seem to be worthwhile to trace close skew rays since the regular
1S a ver

L, dY,y ,dZ_, ,

The following equations are used in the order given here:
(44), (45), and (46). With an automatic computer it does

skew rays can be traced so rapidly.

y valuable tool.

in connection with meridional rays.
= 0, Y, , Z,) through the lens
bject point which will be differentially displaced by the a~
= 0. Since ’
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Substitution into Equation (44) gives the relation

_ Gnycosl" - Gn_cosl
dK; = dK, -[ 1 LT ]El ax, .
G
It then follows, since d(—ngiL) = 0, that
D,
aXp = aXp + gl dKg,

and

dK,

dK, _'[ancosl' - Gnjcosl ] E, dX, .
G2

The close meridional ray may be traced through the system by successive application of the equations -

dX = dX_; +f~1 dK _; (52)

and

dK

1]

dK 4 - [Gncosl' -an_l cos I ]de_ (53)
G

5.8.4 The Coddington equations.

5.8.4.1 The above two equations,(52) and (53), apply to a general surface having rotational symmetry. In
case the surface is spherical, Equation (53) is simplified since E = ¢ and G = 1. I the close ray
has dL, = dM, = 0, as in the above example, and if the traced meridional ray and the close ray
intersect to form an image, these two rays obey one of the Coddington equations, namely,

n

D—°o- + %1? = c{(nycosI' - nycosT).

Because the close ray was shifted in a way that resulted in dYy, = dZ; = 0, the shift of the inter-
section point occurred parallel to the X axis, in other words in the sagittal plane. The resulting focus is
referred to as the sagittal focus, or the skew focus, because the close ray is actually a skew ray.

5.8.4.2 The above Coddington equation can be derived from Equations (52) and (53) applied to a spherical
surface, (E = ¢ and G = 1) . Because we are dealing with a single object and single image point,
dX, = dXz = 0. Applying these two equations to Equation (52), we have
D, D
= —° = - =1 dK;.
axy n, dK, ny dK,

Using Equation (53), for a spherical surface,
dK; = dK, - (njcosI' - nycosl) cdX;,
and, expressing dK, interms of dK; , and dX; interms of dK; , weget

d — l_)_l_. E_Q._ dK ( I 1 ) 21_ dK
dKy = - n, D 1 + (ny cos - n,cos c o, 1 -
Simplification gives the above Coddington equation.

5.8.4.3 Instead of shifting the ray in a plane perpendicular to the meridional plane, the ray could have been
shifted in the meridional plane. In this case, dK = dX = 0. Ina manner similar to that used in Sec-
tion 5.8.3, ray trace equations for dY and dL can be derived, corresponding toEquations (52) and (53).
(We do not need specific equations for dZ and dM , because these are proportional to dY and dL
respectively). For a single image to be formed by two close rays from a single object point,

dy, = dY¥, = 0. The final result is the second Coddington equation involving the meridional or tan-
gential focus,
2 2 7t . )
Do (;:(;: 1 + 21 ('B)ls . c(njcosI' - nycosl).
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5.9 PARAXIAL RAYS

5.9.1 The paraxial ray concept. The previous sectmn on d;{ferent1ally traced meridional rays provides a
good way to introduce the concept of para.xial ray tracmg and the meaning of paraxial rays. A ray passing
directly along the optical axis of the system is a perfectly good ray to use as a base from which to trace a
close, neighboring ray. Such a ray, differentially traced with respect to the optical axis, is a paraxial ray.
Physically, paraxial rays are the rays that get through the system as the aperture of each lens, centered
concentrically with respect to the optical axis, becomes very small. Because paraxial rays are fairly easy
to visualize, and because the ray tracing equatlons become quite s1mple for these rays, .the usefulness of

paraxial rays in the preliminary design of optmal elements cannot be overemphasmed
i \

5.9.2 Ray trace equations.

5.9.2.1 For a ray coinciding with the optlcal axis, cosl and cos I’ will be exactly equal to 1 on every
surface and D.3 —~ t_1 , so0 Equations (52) and (53) l‘oecome ‘ I

dX = dX_ + %‘1_ dK . (54)
-1 ) )

and i
dK_3 - (n - n_y ) cdX. : ‘ (55)

dK

. [ { X
Therefore a ray may be traced differentially close to the optical axis by applying the above equations. Since
the original ray was the optical axis, there is no distinction between the X and Y axes, and these equations
apply equally well for a close ray in the YZ plane. For such a ray, replace dX by dY and dK by dL,
for each part of the system. It should be noted that these equailons hold for aspheric as. well as spherical
surfaces. Mathematlcally this is sq because for the optical axis, X = Y = 0; ; hence by Equations (18)
and (26), W = 1 = G, andby Equation {(22), E = ¢ . Physically the asphenc and the sphere are
tangent at the optical axis and have the same curvature, hence a ray close to the axis intersects a surface of
curvature c . \ i
\ |
5.9.2.2 Paraxial ray calculations will be used s0 extenswely to build up an understanding of optical systems,
that a special notation will be used to refer to paraxial data. It is customary to use lower case letters for =
paraxial rays. Equations (54) and (55) will be wrxtten for a ray in the Y Z plane and become

y = V.1 +

(ny uy ), f (56)

and ) ' |

nu = 1u1+yc(n_1—n).‘ ‘ | (57

The differentials have been replaced by small letters 1nd1catmg paraxial ray data. One can see that dY has
been replaced by y , indicating a small displacement perpendicular'to the optical axis. dL , which re-
places dK for a paraxial ray inthe YZ plane, is the change in the optical direction cosine of the originally
traced ray. Since the original ray is the axial ray, and the original L. = 0 , dL = . new value of
L = ncospB, where B is the angle between the ray and the Y a.x1s. Instead of cos 8, we can use sin U,
the angle between the ray and Z axis. Therefore d L = n sin U'.But U is a small angle, and we re-
place the sin U by U, the first order approximation. (See Sectlon 5 11). Hence dL! = nU, andusing
small letters, dLi = n u. We see here why the term paraxial ray optics and first order optlcs are
synonymous. ’ i

1 i

\ i !

5.9.3.1 Equations (56) and (57) were derlved on the assumptmn that y and u are small of the order of
first order differentials. Physically, in order to form an image using paraxial rays, the actual rays must
obey the condition that y apd u are small. It is, however, both a remarkable and extremely useful fact
that in ray tracing, we may use finite heights and angles, not necessarily small, for vy and u. We will
show this in the following paragraph ‘ i

5.9.3.2 Consider Figure 5.17 which indicates two rays from an axial object point O to the corresponding
axial image point O'. Because u_; and u in Equations (56) and (57) were assumed small, we can re-
place them by tanu_; and tan u respectively. (The expansion of tanu, interms of 'u, shows that the
first order approximation is tanu = u, as in the case of sinu. , The third order approx1mat10n, how-
o B o |
‘ ‘ | B t

T |

5.9.3 The use of finite angles and heights for parax1a1 rays.
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Figure 5. 17. Paraxial rays through a single refracting surface,

Figure 5. 18 - Paraxial rays through a single refracting suriace.
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ever, differs from that of sinu). Remembering that u is negative, we substitute intg Equation (57) and find

noF) s G E o e
| l . AV
Upon rearrangement we get ‘ } . ,> ¥ }b\/ \‘)
‘ ‘ R ‘ L2 H
Dy ., n _ n~-ngy 1
t_l E‘ r ’

| ]

! |
which is the familiar form of the paraxial equation for a single surface. The important thing to note is that
u_y , u, and y no longer appear in this equation. This fact is interpreted as meaning that mathematically
we may consider the image O' formed by any ray leaving the object O . Thus both rays (A) and (B) inter-.
sect the axis at the same image point. | . .

5.9.8.3 Figure 5.17 and the above paragraph apply to axial object and image points. The same conclusions - .
concerning finite heights and angles hold for rays through off-axis object and image points. Hence, in Figure
5.18, all rays (A), (B), and (C) intersect at one image point. Neither the angles U, or @; , nor the
heights ¥, , ¥, , or Y, , need be small. *

5.10 GRAPHICAL RAY TRACE FOR PARAXIAL RAYS

[
5.10.1 Specialization of the general graphical method. |
| i ‘
5.10.1.1 Paraxial rays may be traced graphically through a lens system by a construction very similar to
the construction shown in Section 5.7. This is done by replacing the refractive index circles by tangent '
planes, and the curves of the lens surfaces by tangent planes through the vertices of the surfaces. The justifi-
cation for these replacements will be given in Paragraph 5.10.1.3. For paraxial rays, the construction
will appear as shown in Figure 5.19. i

i
P
|

[ ! 1
5.10.1.2 In the above paragraph we have indicated that Figure 5.19 is correct for paraxial rays.

| |

| :

Di Refracted Ray
&

n_; n

(a) (b)
| ‘ ;

Figure 5. 19 - The method for tracing paraxial Erays gré.phically.

i

|
* The angles and heights corresponding to rays through off-axis objeét and image points are written

with a line or bar over the symbol, asuandy . [
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Assuming this let us use the drawing to reexamine and extend the ideas discussed in Section 5.9.3. From
Figure 5.19 it can be seen that

Yl = n_l tan U—l
and
¥ = n tan U .

Since the line connecting A B (a) is parallel to line DC (b) it is clear that, from similar triangles,

VY ¥y _ R -0,

y r

By inserting the expressions for ‘A and y, into the last equation, we find on rearranging
ntanU = ny tanU_; + ye (n_y - n).

5.10.1.3 This last equation, derived from Figure 5. 19, is correct for small angles. This is easily seen,
because when the tan U_; and tan U are replaced by the angles u_; and u respectively, Equation (57)
results. However let us assume for the moment that both Figure 5. 19 and the last equation are correct for
any angles U and U_; . In particular, these may be finite angles and do not have to be small. Now if we
compare this equation to Equation (57), which is true for small angles u and u_; , and therefore for par-
axial rays, we see that tan U and tanU_; correspondto u and uw_; , respectively. This indicates that
the equation derived from Figure 5.19 can be used in connection with paraxial rays, provided the angles u
and u_; are replacedby tan U and tanU_; respectively. Since U can have any value, tan U and there-
fore u can have any value. Equation (57) and Figure 5. 19 can therefore be used for paraxial rays incident
at any finite height and making any finite angle with the optical axis. Equation (56) and Figure 5. 19 can also
be used to accurately transfer the value of y from one surface to another for paraxial rays. This equation
and figure can also be used with non-paraxial meridional rays to transfer between plane surfaces; in this
case u_y is replacedby tanU_ .

5,10,2 Two approaches to the treatment of paraxial rays.

5.10.2.1 We have shown that paraxial rays can be considered from either of two points of view:

(1) We use small angles and finite curvatures for surfaces. This led to Equation (57). -

(2) We use finite angles and zero curvatures for surfaces. This led to Figure 5.19. It
must be emphasized that we do not have to combine these and use small angles with
plane surfaces.

5.10.2.2 It is convenient then to think of paraxial rays as passing through the optical system at finite
heights, striking the surfaces on the tangent planes instead of the actual curved surfaces. Since the two
Equations (56) and (57) are linear equations, and since the location of images are found for values of

vy = 0, it makes no difference what value of u is used. It is instructive to trace paraxial rays through
a lens at heights equal to the actual ray heights, and note the difference in path for a paraxial ray and an
actual ray. This is demonstrated for a single surface refraction in Figure 5.20. The ray traced through
the curved surface crosses the axis at M, closer to the surface than the point P . The paraxial ray
crosses at P, further away from the surface. This defect of focus is called spherical aberration.

5.11 THE DIFFERENT "ORDERS" OF OPTICS

5.11.1 Expansion of the sine function.

5.11.1.1 The fundamental equations which have been discussed and used in tracing rays are: (1) the trans-
fer equations, and (2) the refraction equations. Both have been put into a form explicitly using the cosine
function of various angles, such as the angles of incidence and refraction, and the angles which the ray makes
with the coordinate axes. Both equations could have been written in terms of the sine function; so as to ex-
plain the meaning of the phrase orders of optics we will deal with the sine function.

5.11.1.2 The optical axis is a special ray for which both angles of incidence and refraction are zero. In
addition the angles which this ray makes withthe X, Y , and Z axes are 90°, 90°, and 0° respectively.
For a meridional ray near the axis, the angles of incidence and refraction, and the angle with the Z axis,
are small. The ray trace equations, therefore, involve the sines of small angles. As the meridional ray
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Figure 5.20 - Comparison between a paraxi:;:ll and an actua

makes larger and larger angles with the Z axis, we have to be COl

larger angles.

+0+W

5.11.1.4 The terms given explicitly as zero have
function is expanded in a series the "first” term is called the zeroth a
and successive terms are called the first, second, third, ete., order
sine function,

5.11.2 First order optics. ¥ in ray trace equations the sine is replaced by the angle,
zeroth and the first order terms in the above expansion. The resulting equations and d
are called first order optics, and the rays concerned are paraxial rays. One of the fasc
geometrical optics is the extensive understanding of lens systems one can
rays. With two paraxial rays one can predict the location and size of any
and by making further calculations based on these paraxial ray data it is
magnitude of image errors. The following sections,
the equations of first order optics.

i
i
1
i

ray showing spherical aberration.

ncerned with the sines of larger and

5.11.1.3 One reason the ray trace equations are complicated is that they involve the trigonometric functions
of angles, instead of just the angles. (We have seen in Section 5.9 how the
when they can be expressed in terms of angles,
the angle a , we expand the sine function ina serie’s, thus

equations are greatly simplified
instead of trigonometric functions). To relate the sin a to

i

i

been written down to clarify the situation. Whenever a
pproximation or the zeroth order,

s. In the case of the expansion of the
the zeroth, second, fourth, and all even order terms are identically zero; only the odd orders

This developmen‘t will be basedion the two simple &
. O | ‘

5.11.3 Third order optics.

5.11.3.1 If the first and third order terms in the expansion of
are part of third order optics. But this term has an ad
usually in this latter sense that the term is used.

5.11.3.2 The intersection of a ray with the image s

the sine are retained, tﬁe resulting equations
ded meaning, pertaining to aberrations, and it is

urface locates the image. K the intersection has been
computed using the skew ray trace equations, the intersection is the true image. If paraxial ray trace equa-
tions have been used, the resulting paraxial image will generally be‘displaced from the true image. The

we are using the

sign procedures
inating parts of
obtain by tracing two paraxial
image formed with paraxial rays,
possible to predict the approximate
6 and 7, will be devoted to the development and use of
f;uations, (56) and (57).
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difference between the true image and the first order approximation (paraxial approximation) is known by the
general term aberration. (We are considering here monochromatic light only. Aberrations due to non-mono-
chromatic light are considered in Paragraph 5.11.3.4.) In the same way that the sine was expanded in a series,
the aberrations can be expanded. The first term in the expansion is known as the third order aberration. The
reason for this is that it represents the first approximation to the total aberration, and hence can be con-
sidered as the difference between the paraxial image and the image using the third order approximation for the
sine. Third order optics then has come to mean the equations and procedures dealing with the first approxi-
mation to the aberrations. It is fortunate, as will be evident in a later section (Section 8) that these third

order aberrations can be calculated from first order (paraxial) ray trace data.

5.11.3.3 The next term in the expansion of the aberration, after the third order aberration, is called the
fifth order aberration. Fifth order optics deals with the aberrations through the fifth order aberration term. *
Hence fifth order optics deals with fifth order aberration, or the second approximation to the aberration.

5.11.3.4 Aberrations due to non-monochromatic light can also be expanded in a series. The first terﬁi gi{zes
the aberration appearing in paraxial images, hence is referred to as first order aberration. Thisis -
treated in Section 6, dealing with first order optics. o

* In some countries other than the United States, for example England, the first, second, third, etc., terms
in the aberration expansion are referred to as primary, secondary, tertiary, etc. aberration.
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