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3 CONSIDERATIONS OF PHYSICAL OPTICS

3.1 INTRODUCTION

3.1.1 Diffraction nature of optical images.

3.L1.1 The goal in designing a lens system on the basis of geometrical optics is to find a combination of lenses
for which all rays in a specified cone of rays that diverges from an object point P are converged upon the cor-
responding image point P' such that the optical paths of all rays from P to P' are equal. Other requirements
are added. For example, it may be required that points P and P' shall belong to a single object plane and a
single image plane, respectively. Even when the design satisfies all these requirements to a high degree, the
image P' of a self-luminous object point P is not a point but consists of a central bright spot surrounded by
systematically distributed dark and bright fringes whose contour and width depend upon the contour and dimen-
sions of the aperture of the lens. If, for example, the lens aperture is circular and if the self-luminous object
point is located upon or near the optic axis, the image consists of a circular, central bright spot surrounded -
alternately by dark and bright rings. The central bright spot is called the Airy disk. Its diameter decreases
as the diameter of the lens aperture is increased. The actual image of the object point is modified to such a’
degree by diffraction from the finite lens aperture that this image is appropriately called a diffraction image.

3.1.1.2 The diffractive nature of the image may not be so apparent with, for exam;')le, high-speed objectives in -

- which compromises among the geometrical corrections and tolerable aberrations must be made. However, the

image will generally exhibit effects due to diffraction, i.e., effects that cannot be explained from Snell's law of
refraction or reflection alone. In any case, the image of a point will not be a point; an exact point by point simi-
larity between object and image cannot be achieved. Resolution of details in the image of the object is restricted
first by the degree of correction of the optical system and finally by the laws of diffraction, i.e., by the laws gov-
erning the bending of tight rays from the paths consistent with Snell's law of refraction and reflection.

3.1.1.3 Whereas the action of most optical systems can be explained by the principles of geometrical optics, the
action of other systems such as phase microscopy can be understood only as a proposition in diffraction.” How-
ever, in any system, the ultimate resolving power and contrast in the fine-grained details of an image are de-
termmed by diffraction.

3.1, 2 Diffraction and interference.

,3.1.2,1 Broadly, diffraction is the phenomenon whereby waves are modmed in direction, amplitude,and in phase
by interaction with an object or obstacle. In its most general sense, diffraction includes the phenomena of re-
fraction and reflection but these two phenomena are ordinarily considered apart from diffraction. However,
when the dimensions of the object become comparable to the wavelength, the concepts of refraction and reﬂec~
tion become useless.. With such small objects, even scattering becomes a direct aspect of diffraction.

3.1.2,2 Interference is the process by which two or more overlapping waves interact so as to re-enforce one
another in some regions and to oppose one another in other regions. This process is essentially one of addition
of the instantaneous amplitudes of the overlapping waves. It matters a great deal whether or not the overlapping
waves are coherent. In case the added waves are incoherent, the time-averaged energy density is simply the
sum of the time-average of the energy density associated with each wave, i. e., the resulting energy follows the
law of superposition of energy. Conversely, it may be concluded that if the time-average of the energy densities
follws the law of superposition of energy, the interfering waves are essentially incoherent. Interference includes
the process by which a given wave is split or decomposed into two or more waves {(often called component waves).
These component waves are automatically coherent since they belong to the same wave-train. The action of in-
terferometers can usually (but not always) be explained adequately by considering the sum of two or more waves.

3,1.2.3 Diffraction and interference are related processes,but diffraction is the more inclusive. In{fact, dif-
fraction effects can include interference effects as special cases. For example, in explaining the "interference
fringes™ produced with monochromatic light leaving two small pinholes that are illuminated coherently from a
third pinhole, it is natural to regard the formation of the interference fringes as an interference effect, i.e.,as -
a process of adding the two well defined spherical waves that emerge from the pair of pinholes. However, as
the area of the pinholes is increased, the location of the origin of the spherical waves that.leave different por-
tions of the pinholes begins to matter. The process of summing the effects of the infinite many wavelets that
leave the pinholes is now carried out most conveniently by means of integrals that characterize diffraction pro-
cesses.

3.2 THE PHYSICAL NATURE OF LIGHT
3.2.1 The wave theory
3.2.1.1 Much evidence supports the view that light is propagated as electromagnetic waves whose wavelengths’

A fall in the visible range from 0. 38 to 0. 76 microns. The transverse nature of electromagnetic waves is il-
lustrated in Figure 3.1 in which E_and H denote the electric and magnetic vectors, respectively. The electric
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Figure 3. 1—The electromagnetic nature of a plane polarized light wave. The electric
vector E and the magnetic vector H oscillate at right angles to the direc-
tion of propagation and at rlght angles to one another.

and magnetic vectors are ordmarﬂy perpendicular to each other and to the direction of propagation. The elec-
tric vector describes an electric force field that will cause an electric charge to vibrate along the E-direction.

Thus the electric vector produces displacements of ions or electrons along the positive or negative E- -direction,
pect1ve1y. The vectors E and H are inseparable and are mutually dependent. For this reason it usually

suﬂ‘ices to specify only the electric vector. The luminous flux can be computed whenever the radiant flux of
the electromagnetic waves is known (as it is when the E-vector is specified). : .

3.2,1,2 The velocity of all electromagnetm waves in vacuum is a constant = ¢ = 299792.5 kilometers per second.
The velocity of monochromatic waves in non-vacuum media 1nvar1ably depends upon the wavelength and is accord-
ingly called the phase velocity to distinguish it from the group velocity of a group of monochromatic waves. The
refractive index n of a medium is defined such that

_ velocity in vacuum o ‘ a
‘phase velocity in the medium )

) : : | ‘ \ J
Let T denote the period of vibration of a monochromatic wave, Let v = 1/T denote the frequency v of
vibration. Then if v denotes the phase velocity

= = ‘ ’ :
Vv=uva < : | (2)

As an electromagnetic wave moves from one medium into another; its frequency remains fixed. Hence its
wavelength must change such that the wavelength A in a medmm of refractlve index n va.rles according to the

law ‘
| ]

A= - L _ 2o ' , (3)
where A, = ¢T = wavelength in vacuum.

3.2,2 Plane—polarized light waves.

3.2,2,1 A plane-polarized light wave is one whose electric vector vibrates in a fixed piane (which we shall call
the plane of polarization) in homogeneous media that do not rotate the plane of polarization. The wave illus-

trated in Figure 3. 1 is plane-polarized. If the dlrectlon of propagatxon is the Z-axis, the magmtude E (2, t) of
. |
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the electric vector can be specified as the trigonometric function

E (2, t) =a cos (knz + ¢ - wt) “)
where

z = distance measured along Z ¢ = phase angle
t = time n = refractive index. It canbea
k = 27/ function of z for variable media.
w = 27/T a = amplitude of the wave. Itisan
A = wavelength exponential decreasing function
T = period for one complete vibration of z for absorbing media.

The phase angle ¢ is needed for specifying.the phase of one wave relative to another. If, for example,

E

1 = a; cos (knz+¢1—wt) 6) -

E

2 =2y cos (knz + ¢, - wt) - (6:) |

the corresponding waves differ in phase by the amount 9, - ¢, at like values of t and z.

3.2,2,2 The state of vibration or polarization is the same for all points that belong to a wavefront. On eacﬁ
wavefront

knz + ¢ - wt = constant = w ("N

where w is different for each wavefront. 'The wavefront moves so as to satisfy Equation (7). By differenti-
ating the members of Equation (7) with respect to the time t, one finds that

.d—z—v~ -(J.L
dt kn

. c_c
Y RT T e T =
n n

2 (8)

3.2,2.3 The wavefronts of the plane-polarized wave described by Equation (4) are perpendicular to the Z-axis,
the direction of propagation. If the plane-polarized plane wave is propagated along an arbitrary direction oP,
Figure 3. 2, the magnitude E of the electric vector assumes the form

=12r_c
nT n

E=acos[kn(px+qy+rz)+¢-wt] 9)
where p, q and r are the direction cosines of OP with respect to X, Y, and Z, respectively. Thus,
p2 + qZ + 12 =1, (10)

Equation (9) reduces to Equation (4) when the directiori of propagation OP is the Z-direction only, for then
P =g =o0andr =1 Itisimportantto observe that the wave motion of Equations (4) and (9) is of the form

E=2acos (&- wt) (11)

where

®=kn (px + qy + 12 ) + ¢ | ‘ (12)

with p, g,and r defined as the direction cosines of the direction of propagation of the plane-polarized, plane
wave. The electric vector vibrates in the wavefront.

3.2,3 Energyina single wave. The instantaneous energy, W, (whether energy flux or energy density)

in the wave is proportional to E 2, where E denotes the instantaneous magnitude of the electric vector.
We take the factor of proportiofiality as unity and write from Equation (i1

W; =E2 =22 cos? (- wt). ' (13)

The oscillations of light waves are so rapid that the eye or other known detectors are unable to follow the in-
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stantaneous values. Rather, the time average W of W; is detected and measured. It suffices to average over

one period T of oscillation. Thus,

w

il

_}T_LTaz ecos?2 (& - wt) dt

2
2T

Since w = 21/T, it follows almost directly that
T
fo cos 2 (&- wt) dt = 0.

Hence,

W =a?/2,

i.e. the time-averaged energy density or energy flux ina single wave is proportionalito the square of its ampli-
tude. W is independent of, for example, the phase angle ¢ of the single plane wave.

3.3 INTERFERENCE BETWEEN WAVES

3.3.1 Collinear, coherent waves.

i : { :
3.3.1.1 Two waves will be called collinear when they are propagated in the same direction. We consider the in-
terference of two plane-polarized,*’ plane waves that are propagat

= a® foT[1+cosz(<I>-wt):|dt.

ag

b

!
i
i

i

ed in the same direction with a constant phase

tion of a plane wave.
‘ i

(14)

(15).

Z (16)

!

* The electric vectors of these two plane polarized waves are assumed parallel, i.e., are assumed

to vibrate in the same fixed plane.
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difference 6 . The magnitudes E1 and E2 of the electric vectors of two unlike plane waves assume from
Equation (11) the form

E, =a;cos (& - wt) ; E2=a2(§>2—wt). (17)
From Equation {12)

@1 - @2 = 6 » ) (18)
the phase difference between the two waves.

3.3.1.2 Let E denote the magnitude of the electric vector formed by the sum of E 1and E,, ie., formed
by the interference of the two waves. Then,

E=a1cos(<I>1-wt)+azcos(¢1>2-wt). _ (19) ‘
Let W be the time-averaged energy density formed by the two interfering waves. As in paragraph 3.2.3,
w=2L1 [Tg?at .
(4

Hl2

2
- T 2 a2 T 2
_£ cos (Ql—wt)dt+—T— _L cos? (&, - wt) at
+ g——a—ﬁszcos(Q - wt) cos (&, - wt) 4t
T o 1 2
2 2
a a
= -El- +-—5& +2a13.21 : (20)
where .
Iz-% chos(cbl-wt) cos (&, - wt) dt . 21)
o
But .
-1 .
cos(él—wt) cos(@z-wt)—é—[cos(<I>1+<I>2-2wt)+cos(¢1—¢2)] . (22)

As in Equation (15),

fFeos (@& +& -208)dt=0.,
A 1+ %2

Hence,
cos (q)l’éz) fT dt = cos (@1"(}2) _ cos O (23
2T o - 2 T2 )

Finally, from Equations (23) and (20) we find that the time-averaged density, W , produced by the interference
of two, plane-polarized, collinear, plane waves having amplitudes a; and a, and phase difference ( ¢ 1 ¢ 2 ) is

W=—1—[az+2a1a

5 1 Zcos&+a§]. (24)

3.3.1.3 For constructive interference, the phase difference %, - &, = 6 between the two waves is 0,' 27, 4x ,
etc., so that ’

_1 2 o
For destructive interference, 6 = m7 where m is an odd integer. Correspondingly,
=1 -
W= o (a,-2,) . (26)

It should be noted from Equation (26) that W = 0 when the two waves have equal amplitudes and are out of phase.
Thus, two plane waves that are propagated in the same direction can cancel one another everywhere, or they can
re-enforce one another everywhere provided that their phase difference & is a suitably chosen constant. The

3-3




Mil-HDBK-141 ‘ . CONSIDERATIONS OF PHYSICAL OPTICS

|
|

time-averaged energy density of the resultant wave is not merely the sum of the time:averaged energy densities
of the two separate waves except in the special cases cos § = 0. See Equations (25) and (16). The waves are
coherent when 6 is constant.

3.3.2 Collinear, incoherent waves,

3.3.2,1 One should expect that when light or any other radiation from two independent sources overlap, the re-
sulting energy density is simply the sum of the overlapping energy densities, i.e., the law of superposition of
energy should apply. The interfering waves ought to be inc herent. The following soinewhat oversimplified
argument brings to bear the essential physics underlying the interference of incoherent waves.

3.3,2,2 The time-averaged energy density, produced by two interfering waves that have amplitudes a, and a,
and the phase difference 6, is given by Equation (24). We shall avoid considering the sum of a large number
of waves having randomly distributed phase differences & (as will occur with independent sources) by suppos-
ing that in a short interval of time the p<hase<dii‘ferences & between the two interfering waves are distributed -
with equal probability in the interval 0 = 6 = 2y . Then from Equation (24) .
W=-§_[af+2a1a2cosﬁ+a§] o (27
5 6 is the average value of cos 6 when all values of § are equally probable in the interval
= 6 = 27 . One can show that 1 ;
i ! !
cos 6 =0 . L . (28)
: i 1
In this manner we conclude that :

. : .
W=—;— (a2+a3 ) ‘ : (29)
. | ' .
so that the interference between incoherent waves is of that degenerate variety to which the law of superposition
of energy applies. ‘ ‘ '
1 :

3.3,3. Non-collinear, coherent waves,

. ; ! :

33,31 The. theory of paragraph 3.3 is almost but not quite adequate for explaining and finterpreting the inter-
ference fringes that appear in Twyman Green and other double-beam interferometers; for in these interferometers
the mirrors are usually tilted so that the two interfering waves are not propagated in the same direction. It is

well known that a series of straight and parallel interference fringes are seen when the interfering waves are

not collinear and when the reflecting surfaces are optical flats.
, I 1

3.3.3.2 We may suppose without essential loss of gerferality th:;t onej wave is propagated: along the direction OP
that makes any angle 6 with Z but is oriented so that the direction cosine q = 0. The two interfering waves
are described by Equation (17); but <I>1 - ®, will not be given by Equation (18). Instead,

. . ' H |

@ =knz + ¢, | | | | (30)

$, =kn (xsin 6 + z cos 0 ) + ¢,
so that ' o f

. ; | \ .
. <I>1-d>2=¢1—¢>2—knxsm9+knz(1‘—cos‘9) . | . (31)
Frorm Equations (20) and (23) the time-averaged energy density forrped by the two interfering, coherent waves is
1 2 2
W—f[alf.?alaz cos(@l.-¢2)+‘a2]. (32)

Substituting &, - &, from Equation (31) and setting $; - &g = 6 , the fixed phase difference between the two
waves, one obtains ‘ ‘

'

|

2w =»ai+ a§+2a a cos[é —knxsin9+knz(1-cose)] ‘ (33)

172
| : .
- Lt . i '
in which 6 is the angle indicated in Figure 3.3, k = 27/X and n is the refractive index of the medium. 6§ is
the phase difference bétween the two interfering waves having amplitude a ; and a, at the point x = 0, z = 0.
. ~ o ‘ ! - i :

|

i ;
| i
| !

. |
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Figure 3.3— Interference between two plane wavefronts W1 and W, that are propagated
along different directions.

3.3.3.3 In doublg beam interferometry, the angle 6 is usually so small that one can set sin @ = - and
1-cos §=6"/2. H, then, one makes observations in planes z near z = 0, Figure 3.3, the term contain-
ing z in Equation {30) can be neglected. The approximation thus obtained is the usual interference formula

2
2+2a1azcos(6-2wnx9/k). (34}

2W = ai + a
The fringes are repeated whenever x is increased by an amount Ax such that.
knAx sin 6 = 27

The fringe width h is therefore given by
(35)

The greater fringe widths belong to the longer wavelengths.

3.3.3.4 In case the fringes are photographed with a camera that images a plane into a plane, the interference
fringes will be straight. Suppose, however, that the camera has. curvature of field. In this case a plane
z = constant will not be focused upon the photographic plate. Consequently, one has to expect from Equation

(33) that the photographed fringes will be curved and that the distortion of the fringes should increase as 8 and
z are increased.
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