1) (5 points) A field lens is added to a Keplerian telescope. What is the effect of the field lens on each of the following?

 a) MP

 b) Eye Relief

 c) Exit Pupil Diameter

 d) Field of View

 e) Telescope Length

 f) Image Orientation
2) (15 points) An aberration-free beam is focused through a thick glass plate (a plane-parallel plate) of thickness \(t \) in air. The plate has an index of refraction of \(n_d \) and an Abbe number of \(v \).

a) Derive an expression for the longitudinal (or axial) chromatic aberration introduced by the glass plate in terms of \(t \), \(n_d \) and \(v \). The longitudinal chromatic aberration is defined to be the distance between the F and C foci.

A useful approximation to use is \(n_F n_C \approx n_d^2 \).
b) A thin lens of 100 mm focal length is made out of LLF1 glass (Glass Code: 548458). A 100 mm thick glass plate is also made out of LLF1 glass. Determine the axial chromatic aberration introduced by each of these elements.

In these two situations, is the relative order of the F and C foci the same or reversed?

Lens: _________ mm Plate: _________ mm Order: _______________
3) (15 points) A moving train is being photographed by a fixed camera. The camera does not move during the exposure. The train is at a distance of 100 m, and the focal length of the camera lens is 50 mm. The speed of the train is 10 m/s and the train motion is perpendicular to the optical axis of the camera.

a) Using reasonable approximations, what is the slowest shutter speed that can be used so that the motion blur on the detector is 5 μm?

Shutter speed = ________ sec

Continues...
b) The train is being photographed on a sunny day, and the detector requires an exposure of 0.002 J/m² in order to produce a good image. What f/# is should be used to obtain this exposure given this shutter speed? Use a typical value for the solar irradiance on the surface of the earth, and make any other reasonable assumptions.

\[f/# = \]
4) (25 points) A system is comprised of three thin lenses in air. The following partially-completed raytrace of the system is the starting point for this problem, and will be completed during various parts of the problem. Extra lines/rays are provided.

NOTE: This problem is to be worked using raytrace methods only. All answers must be determined directly from the rays you trace. The image size and location must be determined from the marginal and chief rays associated with the object. Gaussian imaging methods may not be used for any portion of this problem. Be sure to clearly label your rays on the raytrace form.
a) Which element serves as the System Stop (circle one)?

Lens 1 Lens 2 Lens 3

b) Determine the Entrance and Exit Pupil locations.

EP: Located ____________ mm to the ____________ of the first lens.

XP: Located ____________ mm to the ____________ of the third lens.

c) Determine the system Focal Length and its Back Focal Distance (BFD).

\[f = \quad \text{mm} \]

\[\text{BFD} = \quad \text{mm} \]

d) The System Stop has a diameter of 20 mm. Determine the diameters of the Entrance Pupil and the Exit Pupil.

Entrance Pupil Diameter = ________________ mm

Exit Pupil Diameter = ________________ mm

Continues...
e) For distant objects, the system has an unvignetted Field of View of +/- 12 deg. What is the image height in the image plane for this FOV? What are the required Lens Diameters to support this FOV?

Image Height = +/- ______________ mm

Lens 1 Diameter = ______________ mm

Lens 2 Diameter = ______________ mm

Lens 3 Diameter = ______________ mm
5) (15 points) A thick lens in air has the following specifications:

\[
\begin{align*}
R_1 &= -25 \text{ mm} \\
t &= 20 \text{ mm} \\
R_2 &= 50 \text{ mm} \\
n &= 1.55
\end{align*}
\]

A second optical system produces a real image that is projected into this lens. This image serves as a virtual object for the thick lens. The virtual object has a height of \(+/- 5\) mm and is located 15 mm to the right of the first surface of the thick lens.

Determine the size and location of the image produced by the thick lens.

NOTE: This problem is to be worked using raytrace methods only. Two rays must be traced: One for image location and one for image size. Gaussian imaging methods may not be used for any portion of this problem. Be sure to clearly label your rays on the raytrace form.

Continues with a raytrace form on the next page...
<table>
<thead>
<tr>
<th>Surface</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t/n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Image size = +/- _____ mm; Located _____ mm to the _____ of the rear vertex.
6) (10 points) This diagram shows an optical system consisting of two refracting surfaces and an object. Also shown are the locations and sizes of the stop, the entrance pupil (EP) and the exit pupil (XP). Show the paths of the marginal and chief rays through the system along with the location and size of the image. No calculations or equations are required or allowed. Please use a straight edge!
7) (20 points) Two thick lenses in air are combined into a single imaging system. Both lenses are 25 mm thick and both lenses have a focal length of 100 mm, however the index of the first lens is 1.6 and the index of the second lens is 1.5. The vertex-to-vertex spacing of the lenses is 50 mm. The principal plane locations for the two individual lenses with respect to surface vertices are shown in the figure. All units are in mm.

A 20 mm diameter stop is located between the two thick lenses. The stop is 20 mm to the right of the rear vertex of the first lens. The vertex-to-vertex separation of the two lenses is 50 mm. All units are in mm.

![Diagram showing two thick lenses with principal planes and stop](image)

a) For this system of two thick lenses, determine:
- System Focal Length
- Location of the Rear Principal Plane of the system relative to the rear vertex of the second lens
- Back Focal Distance

b) Determine the entrance pupil and exit pupil locations and diameters. The entrance pupil is to be located relative to the front vertex of the first lens, and the exit pupil is to be located relative to the rear vertex of the second lens.

NOTE: Only Gaussian methods may be used for this problem.

System Focal Length = ___________ mm BFD = ____________ mm

System P': Located ________ mm to the ________ of the rear vertex of the second lens.

EP: \(D_{EP} = ________ \) mm; Located ________ mm to the ________ of the front vertex of the first lens.

XP: \(D_{XP} = ________ \) mm; Located ________ mm to the ________ of the rear vertex of the second lens.
Method of Solution:

Continues...
Spare raytrace forms:

<table>
<thead>
<tr>
<th>Surface</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-\phi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t/n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-\phi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-\phi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(y \)
\(u \)

\(y \)
\(u \)
OPL = nl

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

\[\gamma = 2\alpha \]

\[d = t \left(\frac{n-1}{n} \right) = t - \tau \]

\[\phi = (n' - n)C \]

\[\frac{n'}{z'} = \frac{n}{z} + \phi \]

\[f_E = \frac{1}{\phi} = -\frac{f_F}{n} = \frac{f_R'}{n'} \]

\[m = \frac{z'/n'}{z/n} = \frac{\omega}{\omega'} \]

\[m = \frac{f_{F2}}{f_{R1}} = -\frac{f_2}{f_1} \]

\[\bar{m} = \frac{n'}{n} \bar{m}^2 \]

\[\frac{\Delta z'/n'}{\Delta z/n} = m_1 m_2 \]

\[m_N = \frac{n}{n'} \]

\[P'N' = PN = f_F + f_R' \]

\[\tau = \frac{t}{n} \quad \omega = nu \]

\[\phi = \phi_1 + \phi_2 - \phi_1 \phi_2 \tau \]

\[\delta' = \frac{d'}{n'} = -\frac{\phi_1}{\phi} \quad \text{BFD} = d' + f_R' \]

\[\delta = \frac{d}{n} = \frac{\phi_2}{\phi} \tau \quad \text{FFD} = d + f_F \]

\[\omega' = \omega - y\phi \]

\[y' = y + \omega' \tau' \]

\[f/# = \frac{f_E}{D_{EP}} \quad \text{NA} \equiv n |\sin U| \approx n |u| \]

\[f/#_w \equiv \frac{1}{2NA} \approx \frac{1}{2n|u|} \approx (1 - m)f/# \]

\[I = H = n\bar{u} - n\bar{u} \]

\[\bar{u} = \tan(\theta_{1/2}) \]

\[\text{MP} = \frac{10\text{in}}{f} = \frac{250\text{mm}}{f} \]

\[\text{MP} = \frac{1}{m} \]

\[m_v = m_{OBJ} \text{MP}_{EYE} \]
\[L = \frac{M}{\pi} = \frac{\rho E}{\pi} \]
\[\Phi = LA\Omega \quad \Omega \approx \frac{A}{d^2} \]
\[E' = \frac{\pi L_0}{4(f/#_w)^2} \]
Exposure = \(E \Delta T \)

\[a \geq |y| + |\bar{y}| \quad \text{Un} \]
\[a = |\bar{y}| \quad \text{and} \quad a \geq |y| \quad \text{Half} \]
\[a \leq |\bar{y}| - |y| \quad \text{and} \quad a \geq |y| \quad \text{Full} \]

DOF = \(\pm B' f /#_w \)
\[L_H = -\frac{fD}{B'} \quad L_{\text{NEAR}} = \frac{L_H}{2} \]

\[D = 2.44 \lambda f /# \]
\[D \approx f /# \in \mu \text{m} \]

\[\text{Sag} \approx \frac{y^2}{2R} \]

\[\nu = \frac{n_d - 1}{n_F - n_C} \]
\[P = \frac{n_d - n_C}{n_F - n_C} \]
\[\delta = -(n - 1)\alpha \]
\[\frac{\delta}{\Delta} = v \quad \frac{\epsilon}{\Delta} = P \]

\[\frac{\alpha_1}{\delta} = -\left(\frac{1}{v_1 - v_2} \right) \left(\frac{v_1}{n_{d1} - 1} \right) \]
\[\frac{\alpha_2}{\delta} = \left(\frac{1}{v_1 - v_2} \right) \left(\frac{v_2}{n_{d2} - 1} \right) \]
\[\frac{\epsilon}{\delta} = \left(\frac{P_1 - P_2}{v_1 - v_2} \right) \]

\[n = \frac{\sin[(\alpha - \delta_{\text{MIN}})/2]}{\sin(\alpha/2)} \]
\[\theta_C = \sin^{-1}\left(\frac{n_s}{n_R} \right) \]

\[\frac{\delta \phi}{\phi} = \frac{\delta f}{f} = \frac{1}{\nu} \]

\[TA_{\text{CH}} = \frac{r_p}{\nu} \]

\[\frac{\phi_1}{\phi} = \frac{v_1}{v_1 - v_2} \quad \frac{\phi_2}{\phi} = -\frac{v_2}{v_1 - v_2} \]
\[\frac{\delta \phi_{\text{dc}}}{\phi} = \frac{\delta f_{\text{cd}}}{f} = \frac{\Delta P}{\Delta \nu} \]