Name_______________________

Closed book; closed notes. Equation sheets are attached and can be removed. Use the back sides if required. The time limit is 2 hours. Do not use any pre-stored information or programs in your calculator. Note any assumptions you make in solving the problems. Show your work. Present it in a neat and logical fashion.

Thanks for all your efforts this semester. Have a great holiday!!

1) (10 points) Sketch the basic layout of a slide projector showing the important features of a specular illumination system (a projection condenser system).
2) (15 points) Design a doubly telecentric system using two thin lenses (in air). The overall object-to-image distance is required to be 200 mm, and the image size is one third the object size. The object and image must both be real. The image-space working F-number is f/5.

Determine the focal lengths, lens separation, object and image positions, stop location and stop size. The lens element diameters are not required.
3) (15 points) An achromatic prism provides deviation without dispersion. On the other hand, a *direct vision prism* produces dispersion without deviation.

Given two glasses (n_{d1} and ν_1; n_{d2} and ν_2), design a *direct vision prism* with a net dispersion of Δ (i.e. derive the equations for the two prism angles α_1 and α_2).
4) (15 points) An afocal adapter can be used to change the field of view seen by the detector/film in a camera with a given camera lens. A Galilean or reverse-Galilean telescope is simply placed in front of the camera lens to change the FOV. The afocal adapter is specified by its magnifying power MP, and this use of MP is the same as for a visual telescope.

a) If the focal length of the original camera lens is f_C, what is the focal length of the combination of the afocal adapter and the camera lens? You are required to provide a derivation of this result. Hint: Sketch the marginal ray path through the system with and without the adapter and use the definition of focal length (assume an object at infinity).
b) For a wide-angle application (increasing the FOV), should the MP be >1 or <1?

5) (5 points) A field lens is added to a Keplerian telescope. What is the effect of the field lens on each of the following?

 a) MP

 b) Eye Relief

 c) Exit Pupil Diameter

 d) Field of View

 e) Telescope Length
6) (15 points) The figure below shows the path of the chief ray through an optical system comprised of four thin lenses in air. Identify the pupil location in each optical space. Which of these pupils has the largest diameter and why?
7) (10 points) Design a thin-lens Petzval objective with the following specifications:
Separation of the two elements = 50 mm
Focal length = 100 mm
Back focal distance = 75 mm
8) (15 points) A catadioptric system uses both reflection and refraction to achieve its focal power. A solid catadioptric system (a solid-cat) can be produced by coating portions of the front and rear surfaces of a lens so that there are transmissive and reflective zones on each surface. In this system, both surfaces have the same radius of curvature.

\[R_1 = R_2 = -100 \text{ mm} \]
\[t = 30 \]
\[n = 1.5 \]

The system is in air

Use a paraxial raytrace to determine the back focal distance and the system focal length.