

Two-Beam Interference Fringes

$$I = I_1 + I_2 + 2\sqrt{I_1I_2}Cos(\alpha_1 - \alpha_2)$$
 $\alpha_1 - \alpha_2$ is the phase difference between the two interfering beams

 $\alpha_1 - \alpha_2 = \left(\frac{2\pi}{\lambda}\right)$ (optical path difference)

 Image: The UNIVERSITY construction of the two interferences of the two interferenc

Verifire Asphere Spec (from Zygo brochure)				
A	spheric Shape ⁽⁷⁾	Axially s with spe	ymmetric concave or convex shape cular surface and a measurable apex	
D	Departure from asphere designUp to 1Departure from vertex sphere R0Approxit) µm	
D			nately 800 μm	
Pa	art Diameter ⁽⁸⁾	1 mm to	130 mm	
	Simple Repeatabi	lity ^(2,3)	≤1 nm (λ/600) RMS	
	Surface Measurem Repeatabi	ent lity ^(2,4)	≤5 nm (λ/125) RMS	
	Height Re	solution	0.08 nm	
	Cycle Time	e ⁽⁵⁾	2 - 8 minutes (typical)	
THE UNIVERSITY OF ARIZONA 2017 – James C. Wyant				Page 143

