# Zernike Polynomials

# 1 Introduction

Often, to aid in the interpretation of optical test results it is convenient to express wavefront data in polynomial form. Zernike polynomials are often used for this purpose since they are made up of terms that are of the same form as the types of aberrations often observed in optical tests (Zernike, 1934). This is not to say that Zernike polynomials are the best polynomials for fitting test data. Sometimes Zernike polynomials give a poor representation of the wavefront data. For example, Zernikes have little value when air turbulence is present. Likewise, fabrication errors in the single point diamond turning process cannot be represented using a reasonable number of terms in the Zernike polynomial. In the testing of conical optical elements, additional terms must be added to Zernike polynomials to accurately represent alignment errors. The blind use of Zernike polynomials to represent test results can lead to disastrous results.

Zernike polynomials are one of an infinite number of complete sets of polynomials in two variables,  $\rho$  and  $\theta$ , that are orthogonal in a continuous fashion over the interior of a unit circle. It is important to note that the Zernikes are orthogonal only in a continuous fashion over the interior of a unit circle, and in general they will not be orthogonal over a discrete set of data points within a unit circle.

Zernike polynomials have three properties that distinguish them from other sets of orthogonal polynomials. First, they have simple rotational symmetry properties that lead to a polynomial product of the form

r[
ho] g[ heta] ,

where  $g[\theta]$  is a continuous function that repeats self every  $2\pi$  radians and satisfies the requirement that rotating the coordinate system by an angle  $\alpha$  does not change the form of the polynomial. That is

 $g[\Theta + \alpha] = g[\Theta] g[\alpha].$ 

The set of trigonometric functions

$$g[\Theta] = \mathbb{e}^{\pm i m \Theta}$$

where m is any positive integer or zero, meets these requirements.

The second property of Zernike polynomials is that the radial function must be a polynomial in  $\rho$  of degree 2n and contain no power of  $\rho$  less than m. The third property is that  $r[\rho]$  must be even if m is even, and odd if m is odd.

The radial polynomials can be derived as a special case of Jacobi polynomials, and tabulated as  $r[n, m, \rho]$ . Their orthogonality and normalization properties are given by

$$\int_0^1 r[n, m, \rho] r[n', m, \rho] \rho d\rho = \frac{1}{2(n+1)} \operatorname{KroneckerDelta}[n-n']$$

and

r[n, m, 1] = 1.

As stated above,  $r[n, m, \rho]$  is a polynomial of order 2n and it can be written as

$$r[n_{, m_{, \rho_{}}] := \sum_{s=0}^{n-m} (-1)^{s} \frac{(2n-m-s)!}{s! (n-s)! (n-m-s)!} \rho^{2(n-s)-m}$$

In practice, the radial polynomials are combined with sines and cosines rather than with a complex exponential. It is convenient to write

$$rcos[n_, m_, \rho_] := r[n, m, \rho] Cos[m \theta]$$

and

 $rsin[n_, m_, \rho_] := r[n, m, \rho] Sin[m \theta]$ 

The final Zernike polynomial series for the wavefront opd  $\Delta w$  can be written as

$$\Delta w[\rho_{-}, \theta_{-}] := \overline{\Delta w} + \sum_{n=1}^{nmax} \left( a[n] r[n, 0, \rho] + \sum_{m=1}^{n} (b[n, m] rcos[n, m, \rho] + c[n, m] rsin[n, m, \rho]) \right)$$

where  $\Delta w[\rho, \theta]$  is the mean wavefront opd, and a[n], b[n,m], and c[n,m] are individual polynomial coefficients. For a symmetrical optical system, the wave aberrations are symmetrical about the tangential plane and only even functions of  $\theta$  are allowed. In general, however, the wavefront is not symmetric, and both sets of trigonometric terms are included.

# 2 Calculating Zernikes

For the example below the degree of the Zernike polynomials is selected to be 6. The value of nDegree can be changed if a different degree is desired.

The array zernikePolar contains Zernike polynomials in polar coordinates ( $\rho$ ,  $\theta$ ), while the array zernikeXy contains the Zernike polynomials in Cartesian, (x, y), coordinates. zernikePolarList and zernikeXyList contains the Zernike number in column 1, the n and m values in columns 2 and 3, and the Zernike polynomial in column 4.

```
zernikePolarList = Array[temp, i];
Clear[temp];
Do[zernikePolar[i - 1] = zernikePolarList[[i, 4]], {i, 1, Length[zernikePolarList]}];
zernikeXyList = Map[TrigExpand, zernikePolarList] /. {\rho \rightarrow \sqrt{x^2 + y^2}, Cos[\theta] \rightarrow \frac{x}{\sqrt{x^2 + y^2}}, Sin[\theta] \rightarrow \frac{y}{\sqrt{x^2 + y^2}}};
```

```
Do[zernikeXy[i - 1] = zernikeXyList[[i, 4]], {i, 1, Length[zernikeXyList]}]
```

### 2.1 Tables of Zernikes

In the tables term # 1 is a constant or piston term, while terms # 2 and # 3 are tilt terms. Term # 4 represents focus. Thus, terms # 2 through # 4 represent the Gaussian or paraxial properties of the wavefront. Terms # 5 and # 6 are astigmatism plus defocus. Terms # 7 and # 8 represent coma and tilt, while term # 9 represents third-order spherical and focus. Likewise terms # 10 through # 16 represent fifth-order aberration, terms # 17 through # 25 represent seventh-order aberrations, terms # 26 through # 36 represent ninth-order aberrations, and terms # 37 through # 49 represent eleventh-order aberrations.

Each term contains the appropriate amount of each lower order term to make it orthogonal to each lower order term. Also, each term of the Zernikes minimizes the rms wavefront error to the order of that term. Adding other aberrations of lower order can only increase the rms error. Furthermore, the average value of each term over the unit circle is zero.

#### 2.1.1 Zernikes in polar coordinates

| TableForm[zernikePolarList | , TableHeadings -> {{}, | , {" <b>#</b> ", "n", "m" | <pre>, "Polynomial"}}]</pre> |
|----------------------------|-------------------------|---------------------------|------------------------------|
|----------------------------|-------------------------|---------------------------|------------------------------|

| #  | n | m | Polynomial                              |
|----|---|---|-----------------------------------------|
| 0  | 0 | 0 | 1                                       |
| 1  | 1 | 1 | $\rho \operatorname{Cos}[\theta]$       |
| 2  | 1 | 1 | $\rho \operatorname{Sin}[\theta]$       |
| 3  | 1 | 0 | $-1 + 2 \rho^2$                         |
| 4  | 2 | 2 | $\rho^2 \operatorname{Cos}[2 \theta]$   |
| 5  | 2 | 2 | $\rho^2 \operatorname{Sin}[2 \theta]$   |
| б  | 2 | 1 | $\rho (-2 + 3 \rho^2) \cos[\Theta]$     |
| 7  | 2 | 1 | $\rho$ (-2+3 $\rho^2$ ) Sin[ $\theta$ ] |
| 8  | 2 | 0 | 1 - 6 $ ho^2$ + 6 $ ho^4$               |
| 9  | 3 | 3 | $\rho^3 \operatorname{Cos}[3 \theta]$   |
| 10 | 3 | 3 | $\rho^3 \operatorname{Sin}[3 \theta]$   |

| 11 | 3 | 2 | $\rho^2 (-3+4 \rho^2) \cos[2 \theta]$                                             |
|----|---|---|-----------------------------------------------------------------------------------|
| 12 | 3 | 2 | $\rho^2 (-3+4 \rho^2) \operatorname{Sin}[2 \Theta]$                               |
| 13 | 3 | 1 | $\rho (3 - 12 \rho^2 + 10 \rho^4) \cos[\Theta]$                                   |
| 14 | 3 | 1 | $\rho (3 - 12 \rho^2 + 10 \rho^4) \operatorname{Sin}[\Theta]$                     |
| 15 | 3 | 0 | $-1 + 12 \rho^2 - 30 \rho^4 + 20 \rho^6$                                          |
| 16 | 4 | 4 | $\rho^4 \operatorname{Cos}[4 \Theta]$                                             |
| 17 | 4 | 4 | $\rho^4 \operatorname{Sin}[4 \Theta]$                                             |
| 18 | 4 | 3 | $\rho^{3} (-4 + 5 \rho^{2}) \cos[3 \theta]$                                       |
| 19 | 4 | 3 | $\rho^3 (-4+5 \rho^2) \operatorname{Sin}[3 \Theta]$                               |
| 20 | 4 | 2 | $\rho^2$ (6 – 20 $\rho^2$ + 15 $\rho^4$ ) Cos[2 $\Theta$ ]                        |
| 21 | 4 | 2 | $\rho^2$ (6 - 20 $\rho^2$ + 15 $\rho^4$ ) Sin[2 $\Theta$ ]                        |
| 22 | 4 | 1 | $\rho  (-4 + 30  \rho^2 - 60  \rho^4 + 35  \rho^6)  \cos \left[\Theta\right]$     |
| 23 | 4 | 1 | $\rho$ (-4 + 30 $\rho^2$ - 60 $\rho^4$ + 35 $\rho^6$ ) Sin[ $\Theta$ ]            |
| 24 | 4 | 0 | 1 - 20 $\rho^2$ + 90 $\rho^4$ - 140 $\rho^6$ + 70 $\rho^8$                        |
| 25 | 5 | 5 | $\rho^5 \operatorname{Cos}[5 \theta]$                                             |
| 26 | 5 | 5 | $\rho^{5}$ Sin[5 $\theta$ ]                                                       |
| 27 | 5 | 4 | $\rho^4$ (-5+6 $\rho^2$ ) Cos[4 $\Theta$ ]                                        |
| 28 | 5 | 4 | $\rho^4$ (-5+6 $\rho^2$ ) Sin[4 $\Theta$ ]                                        |
| 29 | 5 | 3 | $\rho^3 (10 - 30 \rho^2 + 21 \rho^4) \cos[3\theta]$                               |
| 30 | 5 | 3 | $\rho^3 (10 - 30 \rho^2 + 21 \rho^4) \operatorname{Sin}[3 \theta]$                |
| 31 | 5 | 2 | $\rho^2  (-10 + 60  \rho^2 - 105  \rho^4 + 56  \rho^6)  \cos{[2 \theta]}$         |
| 32 | 5 | 2 | $\rho^2$ (-10 + 60 $\rho^2$ - 105 $\rho^4$ + 56 $\rho^6$ ) Sin[2 $\Theta$ ]       |
| 33 | 5 | 1 | $ ho$ (5 - 60 $ ho^2$ + 210 $ ho^4$ - 280 $ ho^6$ + 126 $ ho^8$ ) Cos [ $	heta$ ] |
| 34 | 5 | 1 | $ ho$ (5 - 60 $ ho^2$ + 210 $ ho^4$ - 280 $ ho^6$ + 126 $ ho^8$ ) Sin[ $	heta$ ]  |
| 35 | 5 | 0 | $-1 + 30 \ \rho^2 - 210 \ \rho^4 + 560 \ \rho^6 - 630 \ \rho^8 + 252 \ \rho^{10}$ |
| 36 | 6 | б | $\rho^{6} \operatorname{Cos}[6 \Theta]$                                           |
| 37 | 6 | б | $\rho^{6}$ Sin[6 $\Theta$ ]                                                       |
| 38 | 6 | 5 | $\rho^{5} (-6 + 7 \rho^{2}) \cos[5 \Theta]$                                       |
| 39 | 6 | 5 | $\rho^{5} (-6 + 7 \rho^{2}) \operatorname{Sin}[5 \Theta]$                         |
| 40 | 6 | 4 | $\rho^4  (15 - 42  \rho^2 + 28  \rho^4)  \cos{[4  \Theta]}$                       |
| 41 | б | 4 | $ ho^4$ (15 – 42 $ ho^2$ + 28 $ ho^4$ ) Sin[4 $	heta$ ]                           |
| 42 | 6 | 3 | $ ho^3$ (-20 + 105 $ ho^2$ - 168 $ ho^4$ + 84 $ ho^6$ ) Cos[3 $\Theta$ ]          |
| 43 | б | 3 | $\rho^3 (-20 + 105 \rho^2 - 168 \rho^4 + 84 \rho^6) \sin[3 \theta]$               |
| 44 | б | 2 | $\rho^2 (15 - 140 \rho^2 + 420 \rho^4 - 504 \rho^6 + 210 \rho^8) \cos[2\theta]$   |
| 45 | 6 | 2 | $\rho^2 (15 - 140 \rho^2 + 420 \rho^4 - 504 \rho^6 + 210 \rho^8) \sin[2\theta]$   |

| 46 | 6 | 1 | $\rho \ (-6 + 105 \ \rho^2 - 560 \ \rho^4 + 1260 \ \rho^6 - 1260 \ \rho^8 + 462 \ \rho^{10}) \ \cos[\theta]$ |
|----|---|---|--------------------------------------------------------------------------------------------------------------|
| 47 | 6 | 1 | $\rho$ (-6 + 105 $\rho^2$ - 560 $\rho^4$ + 1260 $\rho^6$ - 1260 $\rho^8$ + 462 $\rho^{10}$ ) Sin[ $\Theta$ ] |
| 48 | 6 | 0 | $1-42\ \wp^2+420\ \wp^4-1680\ \wp^6+3150\ \wp^8-2772\ \wp^{10}+924\ \wp^{12}$                                |

#### 2.1.2 Zernikes in Cartesian coordinates

#### TableForm[zernikeXyList, TableHeadings -> {{}, {"#", "n", "m", "Polynomial"}}]

| #  | n | m | Polynomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | 0 | 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1  | 1 | 1 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2  | 1 | 1 | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3  | 1 | 0 | $-1+2(x^2+y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4  | 2 | 2 | $x^2 - y^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5  | 2 | 2 | 2 x y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6  | 2 | 1 | $-2x + 3x (x^2 + y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7  | 2 | 1 | $-2y + 3y(x^2 + y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8  | 2 | 0 | $1 - 6 (x^2 + y^2) + 6 (x^2 + y^2)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9  | 3 | 3 | x <sup>3</sup> - 3 x Y <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 | 3 | 3 | $3 x^2 y - y^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 | 3 | 2 | $-3x^{2} + 3y^{2} + 4x^{2}(x^{2} + y^{2}) - 4y^{2}(x^{2} + y^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12 | 3 | 2 | $-6 \times y + 8 \times y (x^{-} + y^{-})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13 | 3 | 1 | $3 x - 12 x (x^2 + y^2) + 10 x (x^2 + y^2)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14 | 3 | 1 | $3 y - 12 y (x^2 + y^2) + 10 y (x^2 + y^2)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15 | 3 | 0 | $-1 + 12 (x^2 + y^2) - 30 (x^2 + y^2)^2 + 20 (x^2 + y^2)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16 | 4 | 4 | $x^4 - 6x^2y^2 + y^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17 | 4 | 4 | $4 x^3 y - 4 x y^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18 | 4 | 3 | $-4x^3 + 12xy^2 + 5x^3(x^2 + y^2) - 15xy^2(x^2 + y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19 | 4 | 3 | $-12 x^{2} y + 4 y^{2} + 15 x^{2} y (x^{2} + y^{2}) - 5 y^{3} (x^{2} + y^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20 | 4 | 2 | $6 x^{2} - 6 y^{2} - 20 x^{2} (x^{2} + y^{2}) + 20 y^{2} (x^{2} + y^{2}) + 15 x^{2} (x^{2} + y^{2})^{2} - 15 y^{2} (x^{2} + y^{2})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21 | 4 | 2 | $12 \times y - 40 \times y (x^2 + y^2) + 30 \times y (x^2 + y^2)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22 | 4 | 1 | $-4x + 30x (x^{2} + y^{2}) - 60x (x^{2} + y^{2})^{2} + 35x (x^{2} + y^{2})^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23 | 4 | 1 | $-4y + 30y (x^{2} + y^{2}) - 60y (x^{2} + y^{2})^{2} + 35y (x^{2} + y^{2})^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24 | 4 | 0 | $1 - 20 (x^2 + y^2) + 90 (x^2 + y^2)^2 - 140 (x^2 + y^2)^3 + 70 (x^2 + y^2)^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 25 | 5 | 5 | $x^5 - 10 x^3 y^2 + 5 x y^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 26 | 5 | 5 | $5 x^4 y - 10 x^2 y^3 + y^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27 | 5 | 4 | $-5 x^4 + 30 x^2 y^2 - 5 y^4 + 6 x^4 (x^2 + y^2) - 36 x^2 y^2 (x^2 + y^2) + 6 y^4 (x^2 + y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28 | 5 | 4 | $-20 x^3 y + 20 x y^3 + 24 x^3 y (x^2 + y^2) - 24 x y^3 (x^2 + y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29 | 5 | 3 | $10 x^{3} - 30 x y^{2} - 30 x^{3} (x^{2} + y^{2}) + 90 x y^{2} (x^{2} + y^{2}) + 21 x^{3} (x^{2} + y^{2})^{2} - 63 x y^{2} (x^{2} + y^{2})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | 5 | 3 | $30 x^2 y - 10 y^3 - 90 x^2 y (x^2 + y^2) + 30 y^3 (x^2 + y^2) + 63 x^2 y (x^2 + y^2)^2 - 21 y^3 (x^2 + y^2)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31 | 5 | 2 | $-10\ x^{2} + 10\ y^{2} + 60\ x^{2}\ (x^{2} + y^{2}) - 60\ y^{2}\ (x^{2} + y^{2}) - 105\ x^{2}\ (x^{2} + y^{2})^{2} + 105\ y^{2}\ (x^{2} + y^{2})^{2} + 56\ x^{2}\ (x^{2} + y^{2})^{3} - 56\ y^{2}\ ($ |
| 32 | 5 | 2 | $-20 x y + 120 x y (x^{2} + y^{2}) - 210 x y (x^{2} + y^{2})^{2} + 112 x y (x^{2} + y^{2})^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33 | 5 | 1 | $5 x - 60 x (x^2 + y^2) + 210 x (x^2 + y^2)^2 - 280 x (x^2 + y^2)^3 + 126 x (x^2 + y^2)^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 34 | 5 | 1 | $5y - 60y(x^2 + y^2) + 210y(x^2 + y^2)^2 - 280y(x^2 + y^2)^3 + 126y(x^2 + y^2)^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 35 | 5 | 0 | $-1+30  \left(x^2+y^2\right)-210  \left(x^2+y^2\right)^2+560  \left(x^2+y^2\right)^3-630  \left(x^2+y^2\right)^4+252  \left(x^2+y^2\right)^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 36 | 6 | 6 | $x^6 - 15 x^4 y^2 + 15 x^2 y^4 - y^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 37 | 6 | 6 | $6 x^5 y - 20 x^3 y^3 + 6 x y^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 38 | 6 | 5 | $- 6  x^5 + 60  x^3  y^2 - 30  x  y^4 + 7  x^5  \left(x^2 + y^2\right) - 70  x^3  y^2  \left(x^2 + y^2\right) + 35  x  y^4  \left(x^2 + y^2\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 39 | 6 | 5 | $-  30  x^4  y + 60  x^2  y^3 - 6  y^5 + 35  x^4  y  (x^2 + y^2) - 70  x^2  y^3  (x^2 + y^2) + 7  y^5  (x^2 + y^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40 | 6 | 4 | $15 x^{4} - 90 x^{2} y^{2} + 15 y^{4} - 42 x^{4} (x^{2} + y^{2}) + 252 x^{2} y^{2} (x^{2} + y^{2}) - 42 y^{4} (x^{2} + y^{2}) + 28 x^{4} (x^{2} + y^{2})^{2} - 168 x^{2} y^{2} (x^{2} + y^{2})^{2} + 28 y^{4} (x^{2} + y^{2})^{2} + 28 x^{4} (x^{2} + x$ |

 $60 x^{3} y - 60 x y^{3} - 168 x^{3} y (x^{2} + y^{2}) + 168 x y^{3} (x^{2} + y^{2}) + 112 x^{3} y (x^{2} + y^{2})^{2} - 112 x y^{3} (x^{2} + y^{2})^{2} + 112 x^{3} y (x^{2} + y^{2})^{2} + 112 x^{3} + 112$ 41 6 4  $-20\,x^{3} + 60\,x\,y^{2} + 105\,x^{3}\,(x^{2} + y^{2}) - 315\,x\,y^{2}\,(x^{2} + y^{2}) - 168\,x^{3}\,(x^{2} + y^{2})^{2} + 504\,x\,y^{2}\,(x^{2} + y^{2})^{2} + 84\,x^{3}\,(x^{2} + y^{2})^{3} - 252\,x\,y^{2}\,(x^{2} + y^{2})^$ 42 6 3  $-60\,x^{2}\,y+20\,y^{3}+315\,x^{2}\,y\,(x^{2}+y^{2})-105\,y^{3}\,(x^{2}+y^{2})-504\,x^{2}\,y\,(x^{2}+y^{2})^{2}+168\,y^{3}\,(x^{2}+y^{2})^{2}+252\,x^{2}\,y\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})^{3}-84\,y^{3}\,(x^{2}+y^{2})$ 43 6 3  $15 x^{2} - 15 y^{2} - 140 x^{2} (x^{2} + y^{2}) + 140 y^{2} (x^{2} + y^{2}) + 420 x^{2} (x^{2} + y^{2})^{2} - 420 y^{2} (x^{2} + y^{2})^{2} - 504 x^{2} (x^{2} + y^{2})^{3} + 504 y^{2} (x^{2} + y^{2})^{3} + 210 x^{2} (x^{2} + y^{2})^{4} - 210 y^{2} (x^{$ 44 6 2  $30 x y - 280 x y (x^{2} + y^{2}) + 840 x y (x^{2} + y^{2})^{2} - 1008 x y (x^{2} + y^{2})^{3} + 420 x y (x^{2} + y^{2})^{4}$ 45 6 2  $1 \qquad -6\,x + 105\,x\,\left(x^{2} + y^{2}\right) - 560\,x\,\left(x^{2} + y^{2}\right)^{2} + 1260\,x\,\left(x^{2} + y^{2}\right)^{3} - 1260\,x\,\left(x^{2} + y^{2}\right)^{4} + 462\,x\,\left(x^{2} + y^{2}\right)^{5}$ 46 6  $1 \qquad -6 \, y + 105 \, y \, \left(x^2 + y^2\right) - 560 \, y \, \left(x^2 + y^2\right)^2 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 462 \, y \, \left(x^2 + y^2\right)^5 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^3 - 1260 \, y \, \left(x^2 + y^2\right)^4 + 1260 \, y \, \left(x^2 + y^2\right)^2 + 1260 \,$ 47 6  $0 \qquad \qquad 1-42 \, \left(x^2+y^2\right)+420 \, \left(x^2+y^2\right)^2-1680 \, \left(x^2+y^2\right)^3+3150 \, \left(x^2+y^2\right)^4-2772 \, \left(x^2+y^2\right)^5+924 \, \left(x^2+y^2\right)^6-1680 \, \left(x^2+y^2\right)^2+1680 \, \left(x^2+y^2\right)^2+1680$ 48 6

# 2.2 OSC Zernikes

Much of the early work using Zernike polynomials in the computer analysis of interferograms was performed by John Loomis at the Optical Sciences Center, University of Arizona in the 1970s. In the OSC work Zernikes for n=1 through 5 and the n=6, m=0 term were used. The n=m=0 term (piston term) was used in interferogram analysis, but it was not included in the numbering of the Zernikes. Thus, there were 36 Zernike terms, plus the piston term used.

# 3 Zernike Plots

A few sample plots are given in this section. More plots can be found at http://www.optics.arizona.edu/jcwyant/Zernikes/ZernikePolynomials.htm.

## 3.1 Density Plots

zernikeNumber = 8;

temp = zernikeXy[zernikeNumber];

```
DensityPlot[If[x^2 + y^2 \le 1, (Cos[2\pi temp])<sup>2</sup>, 1], {x, -1, 1}, {y, -1, 1},
PlotLabel \rightarrow "Zernike #" <> ToString[zernikeNumber], ColorFunction \rightarrow GrayLevel, PlotPoints -> 150, Mesh -> False];
```



# 3.2 3D Plots

#### zernikeNumber = 8;





-0.5

0

0.5

-0.5

1 -1

9



# 3.3 Cylindrical Plot 3D

zernikeNumber = 8;

temp = zernikePolar[zernikeNumber];

gr = CylindricalPlot3D[temp, { $\rho$ , 0, 1}, { $\theta$ , 0, 2 $\pi$ }, BoxRatios  $\rightarrow$  {1, 1, 0.5}, Boxed  $\rightarrow$  False, Axes  $\rightarrow$  False];



#### zernikeNumber = 5;

```
temp = zernikePolar[zernikeNumber];
gr = CylindricalPlot3D[{temp, Hue[temp]}, {\rho, 0, 1},
{\theta, 0, 2\pi}, BoxRatios \rightarrow {1, 1, 0.5}, Boxed \rightarrow False, Axes \rightarrow False, Lighting \rightarrow False];
```



Can rotate without getting dark side

```
zernikeNumber = 5;
```

```
temp = zernikePolar[zernikeNumber];
gr = CylindricalPlot3D[temp, {ρ, 0, 1}, {θ, 0, 2π}, BoxRatios → {1, 1, 0.5},
Boxed → False, Axes → False, LightSources -> {{{1, 0, 1.}, RGBColor[1, 0, 0]},
{{1., 1., 1.}, RGBColor[0, 1, 0]}, {{0., 1., 1.}, RGBColor[0, 0, 1]},
{{-1., 0., -1.}, RGBColor[1, 0, 0]}, {{-1., -1.}, RGBColor[0, 1, 0]},
{{0., -1., -1.}, RGBColor[0, 0, 1]}];
```



zernikeNumber = 16;

```
temp = zernikePolar[zernikeNumber];
gr = CylindricalPlot3D[temp, {ρ, 0, 1}, {θ, 0, 2π}, BoxRatios → {1, 1, 0.5},
Boxed → False, Axes → False, LightSources -> {{{1., 0., 1.}, RGBColor[1, 0, 0]},
{{1., 1., 1.}, RGBColor[.5, 1, 0]}, {{0., 1., 1.}, RGBColor[1, 0, 0]},
{{-1., 0., -1.}, RGBColor[1, 0, 0]}, {{-1., -1.}, RGBColor[.5, 1, 0]},
{{0., -1., -1.}, RGBColor[1, 0, 0]}];
```



### 3.4 Surfaces of Revolution

zernikeNumber = 8;

temp = zernikePolar[zernikeNumber]; SurfaceOfRevolution[temp, {ρ, 0, 1}, PlotPoints → 40, BoxRatios → {1, 1, 0.5}, LightSources -> {{{1., 0., 1.}, RGBColor[1, 0, 0]}, {{1., 1., 1.}, RGBColor[.5, 1, 0]}, {{0., 1., 1.}, RGBColor[1, 0, 0]}, {{-1., 0., -1.}, RGBColor[1, 0, 0]}, {{-1., -1., -1.}, RGBColor[.5, 1, 0]}, {{0., -1., -1.}, RGBColor[1, 0, 0]}];



# 3.5 3D Shadow Plots

zernikeNumber = 5;



### 3.6 Animated Plots

3.6.1 Animated Density Plots

zernikeNumber = 3;

temp = zernikeXy[zernikeNumber]; MovieDensityPlot[If[ $x^2 + y^2 < 1$ , Sin[(temp + t  $y^2$ )  $\pi$ ]<sup>2</sup>, 1], {x, -1, 1}, {y, -1, 1}, {t, -7, 4, 1}, PlotPoints  $\rightarrow$  100, Mesh -> False, FrameTicks -> None, Frame  $\rightarrow$  False];



zernikeNumber = 5;

temp = zernikeXy[zernikeNumber];

g = ShadowPlot3D[temp, {x, -√1-y<sup>2</sup>, √1-y<sup>2</sup>}, {y, -1, 1}, PlotPoints → 40, DisplayFunction → Identity]; SpinShow[g, Frames -> 6, SpinRange -> {0 Degree, 360 Degree}]



```
3.6.3 Animated Cylindrical Plot 3D
```

```
zernikeNumber = 5;
```

```
temp = zernikePolar[zernikeNumber];
gr = CylindricalPlot3D[{temp, Hue[Abs[temp + .4]]}, {ρ, 0, 1}, {θ, 0, 2π},
BoxRatios → {1, 1, 0.5}, Boxed → False, Axes → False, Lighting → False, DisplayFunction → Identity];
SpinShow[gr, Frames -> 6,
SpinRange -> {0 Degree, 360 Degree}]
```



### 3.7 Two pictures stereograms

```
zernikeNumber = 8;

Print["Zernike #" <> ToString[zernikeNumber]];

ed = 0.6;

temp = zernikeXy[zernikeNumber];

f[x_, y_] := temp /; (x<sup>2</sup> + y<sup>2</sup>) < 1

f[x_, y_] := 1 /; (x<sup>2</sup> + y<sup>2</sup>) >= 1

plottemp = Plot3D[f[x, y], {x, -1, 1}, {y, -1, 1}, Boxed → False,

    Axes → False, DisplayFunction → Identity, PlotPoints → 50, Mesh -> False];

Show[GraphicsArray[{Show[plottemp, ViewPoint -> {-ed/2, -2.4, 2.}, ViewCenter → 0.5 + {-ed/2, 0, 0}],

    Show[plottemp, ViewPoint -> {ed/2, -2.4, 2.}, ViewCenter → 0.5 + {ed/2, 0, 0}],

    GraphicsSpacing → 0], PlotLabel → zernikeXy[zernikeNumber]];
```

Zernike #8

$$L - 6 (x^2 + y^2) + 6 (x^2 + y^2)^2$$



# 3.8 Single picture stereograms

zernikeNumber = 8;

```
temp = zernikeXy[zernikeNumber];
tempPlot = Plot3D[If[x<sup>2</sup> + y<sup>2</sup> < 1, temp, 1], {x, -1, 1}, {y, -1, 1}, PlotPoints → 400, DisplayFunction → Identity];
SIRDS[tempPlot];
Clear[temp, tempPlot];
```



# 4 Relationship between Zernike polynomials and third-order aberrations

### 4.1 Wavefront aberrations

The third-order wavefront aberrations can be written as shown in the table below. Because there is no field dependence in these terms they are not true Seidel aberrations. Wavefront measurement using an interferometer only provides data at a single field point. This causes field curvature to look like focus and distortion to look like tilt. Therefore, a number of field points must be measured to determine the Seidel aberrations.

```
thirdOrderAberration = {{"piston", w_{00}}, {"tilt", w_{11} \rho \cos[\theta - \alpha_{\text{Tilt}}]}, {"focus", w_{20} \rho^2},
{"astigmatism", w_{22} \rho^2 \cos[\theta - \alpha_{\text{Ast}}]^2}, {"coma", w_{31} \rho^3 \cos[\theta - \alpha_{\text{Coma}}]}, {"spherical", w_{40} \rho^4}};
```

#### TableForm[thirdOrderAberration]

| piston      | W <sub>0</sub>                                                                        |
|-------------|---------------------------------------------------------------------------------------|
| tilt        | $ ho \cos \left[ 	heta - lpha_{\texttt{Tilt}}  ight] \mathtt{w}_{\texttt{ll}}$        |
| focus       | $\rho^2 w_{20}$                                                                       |
| astigmatism | $ ho^2 \operatorname{Cos} \left[ \theta - lpha_{\operatorname{Ast}} \right]^2 w_{22}$ |
| coma        | $ ho^3 \cos \left[ \theta - lpha_{\text{Coma}} \right]  w_{31}$                       |
| spherical   | $\rho^4 w_{40}$                                                                       |

## 4.2 Zernike terms

First-order wavefront properties and third-order wavefront aberration coefficients can be obtained from the Zernike polynomials. Let the coefficients of the first nine zernikes be given by

#### zernikeCoefficient = {z<sub>0</sub>, z<sub>1</sub>, z<sub>2</sub>, z<sub>3</sub>, z<sub>4</sub>, z<sub>5</sub>, z<sub>6</sub>, z<sub>7</sub>, z<sub>8</sub>};

The coefficients can be multiplied times the Zernike polynomials to give the wavefront aberration.

#### wavefrontAberrationList = Table[zernikeCoefficient zernikePolarList[[Range[1, 9], 4]]];

We will now express the wavefront aberrations and the corresponding Zernike terms in a table

### 4.3 Table of Zernikes and aberrations

```
wavefrontAberrationLabels = {"piston", "x-tilt", "y-tilt", "focus", "astigmatism at 0 degrees & focus",
    "astigmatism at 45 degrees & focus", "coma and x-tilt", "coma and y-tilt", "spherical & focus"};
```

#### Do [

```
{tableData[i, 1] = wavefrontAberrationLabels[[i]], tableData[i, 2] = wavefrontAberrationList[[i]]}, {i, 1, 9}]
```

TableForm[Array[tableData, {9, 2}], TableHeadings → {{}, {"Aberration", "Zernike Term"}}]

| Aberration                        | Zernike Term                                             |
|-----------------------------------|----------------------------------------------------------|
| piston                            | z <sub>0</sub>                                           |
| x-tilt                            | $\rho \operatorname{Cos}[\Theta] \mathbf{z}_1$           |
| y-tilt                            | $\rho \operatorname{Sin}[\theta] \mathbf{z}_2$           |
| focus                             | $(-1 + 2 \rho^2) z_3$                                    |
| astigmatism at 0 degrees & focus  | $\rho^2 \operatorname{Cos}[2 \theta] z_4$                |
| astigmatism at 45 degrees & focus | $\rho^2 \operatorname{Sin}[2 \theta] z_5$                |
| coma and x-tilt                   | $\rho$ (-2+3 $\rho^2$ ) Cos[ $\theta$ ] z <sub>6</sub>   |
| coma and y-tilt                   | $\rho$ (-2 + 3 $\rho^2$ ) Sin[ $\theta$ ] z <sub>7</sub> |
| spherical & focus                 | $(1 - 6 \rho^2 + 6 \rho^4) z_8$                          |

The Zernike expansion above can be rewritten grouping like terms and equating them with the wavefront aberration coefficients.

wavefrontAberration = Collect[Sum[wavefrontAberrationList[[i]], {i, 9}], p]

 $\begin{array}{l} z_{0}-z_{3}+\rho\;(\text{Cos}[\theta]\;z_{1}+\text{Sin}[\theta]\;z_{2}-2\;\text{Cos}[\theta]\;z_{6}-2\;\text{Sin}[\theta]\;z_{7})\;+\\ \rho^{3}\;(3\;\text{Cos}[\theta]\;z_{6}+3\;\text{Sin}[\theta]\;z_{7})\;+\;\rho^{2}\;(2\;z_{3}+\text{Cos}[2\;\theta]\;z_{4}+\text{Sin}[2\;\theta]\;z_{5}-6\;z_{8})\;+\;z_{8}+6\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}\;+\;0\;\rho^{4}\;z_{8}$ 

piston = Select[wavefrontAberration, FreeQ[#, \rho] &];

tilt = Collect[Select[wavefrontAberration, MemberQ[#,  $\rho$ ] &], { $\rho$ , Cos[ $\theta$ ], Sin[ $\theta$ ]}];

focusPlusAstigmatism = Select[wavefrontAberration, MemberQ[#,  $\rho^2$ ] &];

```
coma = Select[wavefrontAberration, MemberQ[#, \rho^3] &];
```

```
spherical = Select[wavefrontAberration, MemberQ[#, \rho^4] &];
```

### 4.4 zernikeThirdOrderAberration Table

#### TableForm[zernikeThirdOrderAberration]

| piston              | $z_0 - z_3 + z_8$                                                                                                    |
|---------------------|----------------------------------------------------------------------------------------------------------------------|
| tilt                | $\rho$ (Cos[ $\theta$ ] (z <sub>1</sub> - 2 z <sub>6</sub> ) + Sin[ $\theta$ ] (z <sub>2</sub> - 2 z <sub>7</sub> )) |
| focus + astigmatism | $\rho^2 (2 z_3 + \cos [2 \theta] z_4 + \sin [2 \theta] z_5 - 6 z_8)$                                                 |
| coma                | $\rho^3 (3 \cos[\theta] \mathbf{z}_6 + 3 \sin[\theta] \mathbf{z}_7)$                                                 |
| spherical           | 6 p <sup>4</sup> z <sub>8</sub>                                                                                      |

These tilt, coma, and focus plus astigmatism terms can be rearranged using the equation  $a \cos [\theta] + b \sin [\theta] = \sqrt{a^2 + b^2} \cos [\theta - ArcTan[a, b]]$ .

#### 4.4.1 Tilt

tilt = tilt /. a\_ Cos[
$$\theta_{-}$$
] + b\_ Sin[ $\theta$ ]  $\rightarrow \sqrt{a^2 + b^2}$  Cos[ $\theta$  - ArcTan[a, b]]

$$\rho \cos \left[\Theta - \arctan \left[z_1 - 2 z_6, z_2 - 2 z_7\right]\right] \sqrt{(z_1 - 2 z_6)^2 + (z_2 - 2 z_7)^2}$$

#### 4.4.2 Coma

 $coma = Simplify \left[ coma /. a_Cos[\theta_] + b_Sin[\theta] \rightarrow \sqrt{a^2 + b^2} Cos[\theta - ArcTan[a, b]] \right]$ 

$$3 \rho^{3} \cos [\theta - \arctan[z_{6}, z_{7}]] \sqrt{z_{6}^{2} + z_{7}^{2}}$$

#### 4.4.3 Focus

This is a little harder because we must separate the focus and the astigmatism.

#### focusPlusAstigmatism

$$\rho^2 (2 z_3 + \cos [2 \theta] z_4 + \sin [2 \theta] z_5 - 6 z_8)$$

focusPlusAstigmatism = focusPlusAstigmatism /. a\_Cos[ $\theta_{-}$ ] + b\_Sin[ $\theta_{-}$ ]  $\rightarrow \sqrt{a^2 + b^2}$  Cos[ $\theta$  - ArcTan[a, b]]

$$\rho^{2} \left( 2 z_{3} + \cos \left[ 2 \Theta - \operatorname{ArcTan} \left[ z_{4} , z_{5} \right] \right] \sqrt{z_{4}^{2} + z_{5}^{2}} - 6 z_{8} \right)$$

But  $\cos[2\phi] = 2\cos[\phi]^2 - 1$ 

focusPlusAstigmatism = focusPlusAstigmatism /. a\_Cos[2 $\theta_- \theta_1$ ]  $\rightarrow 2 a Cos[\theta_- \frac{\theta_1}{2}]^2$  - a

$$\rho^2 \left( 2 z_3 - \sqrt{z_4^2 + z_5^2} + 2 \cos \left[ \theta - \frac{1}{2} \operatorname{ArcTan} \left[ z_4 , z_5 \right] \right]^2 \sqrt{z_4^2 + z_5^2} - 6 z_8 \right)$$

Let

focusMinus = 
$$\rho^2 \left( 2 z_3 - \sqrt{z_4^2 + z_5^2} - 6 z_8 \right);$$

Sometimes 2  $\left(\sqrt{z_4^2 + z_5^2}\right) \rho^2$  is added to the focus term to make its absolute value smaller and then 2  $\left(\sqrt{z_4^2 + z_5^2}\right) \rho^2$  must be subtracted from the astigmatism term. This gives a focus term equal to

focusPlus = 
$$\rho^2 \left( 2 \mathbf{z}_3 + \sqrt{\mathbf{z}_4^2 + \mathbf{z}_5^2} - 6 \mathbf{z}_8 \right);$$

For the focus we select the sign that will give the smallest magnitude.

focus = If[Abs[focusPlus /  $\rho^2$ ] < Abs[focusMinus /  $\rho^2$ ], focusPlus, focusMinus];

It should be noted that most commercial interferogram analysis programs do not try to minimize the absolute value of the focus term so the focus is set equal to focusMinus.

#### 4.4.4 Astigmatism

#### astigmatismMinus = focusPlusAstigmatism - focusMinus // Simplify

 $2 \rho^2 \cos \left[ \Theta - \frac{1}{2} \operatorname{ArcTan}[z_4, z_5] \right]^2 \sqrt{z_4^2 + z_5^2}$ 

astigmatismPlus = focusPlusAstigmatism - focusPlus // Simplify

$$-2 \rho^2 \sin \left[ \theta - \frac{1}{2} \operatorname{ArcTan}[z_4, z_5] \right]^2 \sqrt{z_4^2 + z_5^2}$$

Since  $\operatorname{Sin}[\theta - \frac{1}{2}\operatorname{ArcTan}[z_4, z_5]]^2$  is equal to  $\operatorname{Cos}[\theta - (\frac{1}{2}\operatorname{ArcTan}[z_4, z_5] + \frac{\pi}{2})]^2$ , astigmatismPlus could be written as

astigmatismPlus = 
$$-2\rho^2 \cos\left[\theta - \left(\frac{1}{2} \operatorname{ArcTan}[z_4, z_5] + \frac{\pi}{2}\right)\right]^2 \sqrt{z_4^2 + z_5^2};$$

Note that in going from astigmatismMinus to astigmatismPlus not only are we changing the sign of the astigmatism term, but we are also rotating it 90°. We need to select the sign opposite that chosen in the focus term.

### astigmatism = If [Abs [focusPlus / $\rho^2$ ] < Abs [focusMinus / $\rho^2$ ], astigmatismPlus, astigmatismMinus];

Again it should be noted that most commercial interferogram analysis programs do not try to minimize the absolute value of the focus term and the astigmatism is given by astigmatismMinus.

4.4.5 Spherical

spherical = 6  $z_8 \rho^4$ 

## 4.5 seidelAberrationList Table

We can summarize the results as follows.

#### seidelAberrationList // TableForm

| piston      | $z_0 - z_3 + z_8$                                                                                                                                                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tilt        | $\rho \cos \left[ \Theta - \arctan \left[ z_1 - 2 z_6 \right], z_2 - 2 z_7 \right] \right] \sqrt{(z_1 - 2 z_6)^2 + (z_2 - 2 z_7)^2}$                                                                                                                                                                                     |
| focus       | $If \left[Abs \left[2 \ z_3 + \sqrt{z_4^2 + z_5^2} \ - \ 6 \ z_8\right] < Abs \left[2 \ z_3 - \sqrt{z_4^2 + z_5^2} \ - \ 6 \ z_8\right], \ focus Plus, \ focus Minus \right]$                                                                                                                                            |
| astigmatism | $\texttt{If}\left[\texttt{Abs}\left[\texttt{2} \texttt{z}_3 + \sqrt{\texttt{z}_4^2 + \texttt{z}_5^2} - \texttt{6} \texttt{z}_8\right] < \texttt{Abs}\left[\texttt{2} \texttt{z}_3 - \sqrt{\texttt{z}_4^2 + \texttt{z}_5^2} - \texttt{6} \texttt{z}_8\right], \texttt{astigmatismPlus}, \texttt{astigmatismMinus}\right]$ |
| coma        | $3 \rho^{3} \cos \left[ \theta - \arctan \left[ z_{6}, z_{7} \right] \right] \sqrt{z_{6}^{2} + z_{7}^{2}}$                                                                                                                                                                                                               |
| spherical   | $6  ho^4 z_8$                                                                                                                                                                                                                                                                                                            |

### 4.5.1 Typical Results

 $\texttt{seidelAberrationList} //. \{\texttt{z}_0 \rightarrow \texttt{0}, \texttt{z}_1 \rightarrow \texttt{1}, \texttt{z}_2 \rightarrow \texttt{1}, \texttt{z}_3 \rightarrow \texttt{1}, \texttt{z}_4 \rightarrow \texttt{3}, \texttt{z}_5 \rightarrow \texttt{1}, \texttt{z}_6 \rightarrow \texttt{1}, \texttt{z}_7 \rightarrow \texttt{1}, \texttt{z}_8 \rightarrow \texttt{2} \} // \texttt{TableForm}$ 

| piston      | 1                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------|
| tilt        | $\sqrt{2} \rho \cos\left[\frac{3\pi}{4} + \Theta\right]$                                                                |
| focus       | $\left(-10 + \sqrt{10}\right) \rho^2$                                                                                   |
| astigmatism | $-2\sqrt{10} \rho^2 \operatorname{Sin}\left[\theta - \frac{1}{2}\operatorname{ArcTan}\left[\frac{1}{3}\right]\right]^2$ |
| coma        | $3\sqrt{2} \rho^3 \cos\left[\frac{\pi}{4} - \Theta\right]$                                                              |
| spherical   | 12 $ ho^4$                                                                                                              |

seidelAberration = Apply[Plus, seidelAberrationList][[2]];

 $\texttt{seidelAberration} \mathrel{//.} \{\texttt{z}_0 \rightarrow \texttt{0}, \texttt{z}_1 \rightarrow \texttt{1}, \texttt{z}_2 \rightarrow \texttt{1}, \texttt{z}_3 \rightarrow \texttt{1}, \texttt{z}_4 \rightarrow \texttt{3}, \texttt{z}_5 \rightarrow \texttt{1}, \texttt{z}_6 \rightarrow \texttt{1}, \texttt{z}_7 \rightarrow \texttt{1}, \texttt{z}_8 \rightarrow \texttt{2} \}$ 

$$1 + \left(-10 + \sqrt{10}\right)\rho^{2} + 12\rho^{4} + 3\sqrt{2}\rho^{3}\cos\left[\frac{\pi}{4} - \theta\right] + \sqrt{2}\rho\cos\left[\frac{3\pi}{4} + \theta\right] - 2\sqrt{10}\rho^{2}\sin\left[\theta - \frac{1}{2}\operatorname{ArcTan}\left[\frac{1}{3}\right]\right]^{2}$$

# **5 RMS Wavefront Aberration**

If the wavefront aberration can be described in terms of third-order aberrations, it is convenient to specify the wavefront aberration by stating the number of waves of each of the third-order aberrations present. This method for specifying a wavefront is of particular convenience if only a single third-order aberration is present. For more complicated wavefront aberrations it is convenient to state the peak-to-valley (P-V) sometimes called peak-to-peak (P-P) wavefront aberration. This is simply the maximum departure of the actual wavefront from the desired wavefront in both positive and negative directions. For example, if the maximum departure in the positive direction is +0.2 waves and the maximum departure in the negative direction is -0.1 waves, then the P-V wavefront error is 0.3 waves.

While using P-V to specify wavefront error is convenient and simple, it can be misleading. Stating P-V is simply stating the maximum wavefront error, and it is telling nothing about the area over which this error is occurring. An optical system having a large P-V error may actually perform better than a system having a small P-V error. It is generally more meaningful to specify wavefront quality using the rms wavefront error.

The next equation defines the rms wavefront error  $\sigma$  for a circular pupil, as well as the variance  $\sigma^2$ .  $\Delta w(\rho, \theta)$  is measured relative to the best fit spherical wave, and it generally has the units of waves.  $\Delta w$  is the mean wavefront OPD.

average 
$$[\Delta w_{-}] := \frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} \Delta w \rho \, d\rho \, d\theta;$$
  
standardDeviation  $[\Delta w_{-}] := \sqrt{\frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} (\Delta w - \text{average}[\Delta w])^{2} \rho \, d\rho \, d\theta}$ 

As an example we will calculate the relationship between  $\sigma$  and the mean wavefront aberrations for the third-order aberrations of a circular pupil.

$$\begin{split} & \text{meanRmsList} = \left\{ \{\text{"Defocus", } w_{20} \rho^2 \text{", } w_{20} \text{ average}[\rho^2], w_{20} \text{ N[ standardDeviation}[\rho^2], 3] \}, \\ & \{\text{"Spherical", } w_{40} \rho^4 \text{", } w_{40} \text{ average}[\rho^4], w_{40} \text{ N[ standardDeviation}[\rho^4], 3] \}, \\ & \{\text{"Spherical & Defocus", } w_{40} (\rho^4 - \rho^2) \text{", } w_{40} \text{ average}[(\rho^4 - \rho^2)], w_{20} \text{ N[ standardDeviation}[(\rho^4 - \rho^2)], 3] \}, \\ & \{\text{"Astigmatism", } w_{22} \rho^2 \text{ Cos}[\theta]^2 \text{", } w_{22} \text{ average}[\rho^2 \text{ Cos}[\theta]^2], w_{22} \text{ N[ standardDeviation}[\rho^2 \text{ Cos}[\theta]^2], 3] \}, \\ & \{\text{"Astigmatism & Defocus", } w_{22} \rho^2 \text{ (Cos}[\theta]^2 - \frac{1}{2}) \text{",} \\ & w_{22} \text{ average}[\rho^2 \left(\text{Cos}[\theta]^2 - \frac{1}{2}\right)], w_{22} \text{ N[ standardDeviation}[\rho^2 \left(\text{Cos}[\theta]^2 - \frac{1}{2}\right)], 3] \}, \\ & \{\text{"Coma", } w_{31} \rho^3 \text{ Cos}[\theta] \text{", } w_{31} \text{ average}[\rho^3 \text{ Cos}[\theta]], w_{31} \text{ N[ standardDeviation}[\rho^3 \text{ Cos}[\theta]], 3] \}, \\ & \{\text{w}_{31} (\rho^3 - \frac{2}{3}\rho) \text{ Cos}[\theta] \text{", } w_{31} \text{ average}[\left(\rho^3 - \frac{2}{3}\rho\right) \text{ Cos}[\theta]\right], w_{31} \text{ N[ standardDeviation}[\left(\rho^3 - \frac{2}{3}\rho\right) \text{ Cos}[\theta]], 3] \} \}; \end{split}$$

#### TableForm[meanRmsList, TableHeadings -> {{}, {"Aberration", " $\Delta w$ ", " $\overline{\Delta w}$ ", "RMS"}}]

| Aberration            | $\triangle w$                                    | $\overline{\Delta w}$      | RMS                     |
|-----------------------|--------------------------------------------------|----------------------------|-------------------------|
| Defocus               | $w_{20} \rho^2$                                  | <u>w<sub>20</sub></u><br>2 | $0.288675 w_{20}$       |
| Spherical             | $w_{40} \rho^4$                                  | <u>w<sub>40</sub></u><br>3 | $0.298142 w_{40}$       |
| Spherical & Defocus   | $w_{40} (\rho^4 - \rho^2)$                       | $-\frac{w_{40}}{6}$        | $0.0745356 w_{20}$      |
| Astigmatism           | $w_{22} \rho^2 \cos \left[\Theta\right]^2$       | <u>w<sub>22</sub></u><br>4 | $0.25 w_{22}$           |
| Astigmatism & Defocus | $w_{22} \rho^2 \ (\cos[\theta]^2 - \frac{1}{2})$ | 0                          | $0.204124 w_{22}$       |
| Coma                  | $w_{31}\rho^3 \cos[\theta]$                      | 0                          | $0.353553 w_{31}$       |
| Coma & Tilt           | $w_{31} (\rho^3 - \frac{2}{3}\rho) \cos[\theta]$ | 0                          | 0.117851w <sub>31</sub> |

If the wavefront aberration can be expressed in terms of Zernike polynomials, the wavefront variance can be calculated in a simple form by using the orthogonality relations of the Zernike polynomials. The final result for the entire unit circle is

$$\sigma = \sqrt{\sum_{n=1}^{n\max} \left( \frac{a[n]^2}{2n+1} + \frac{1}{2} \sum_{m=1}^{n} \frac{b[n, m]^2 + c[n, m]^2}{2n+1-m} \right)};$$

The following table gives the relationship between  $\sigma$  and the Zernike polynomials if the Zernike coefficients are unity.

$$zernikeRms = Table \left[ If \left[ zernikePolarList[[i, 3]] == 0, \frac{1}{\sqrt{2 zernikePolarList[[i, 2]] + 1}}, \frac{1}{\sqrt{2 (2 zernikePolarList[[i, 2]] + 1 - zernikePolarList[[i, 3]])}} \right], \{i, Length[zernikePolarList]\} \right];$$

zernikePolarRmsList = Transpose[Insert[Transpose[zernikePolarList], zernikeRms, 4]];

TableForm[zernikePolarRmsList, TableHeadings -> {{}, {"#", "n", "m", "RMS", "Polynomial"}}]

| # | n | m | RMS                  | Polynomial                        |
|---|---|---|----------------------|-----------------------------------|
| 0 | 0 | 0 | 1                    | 1                                 |
| 1 | 1 | 1 | $\frac{1}{2}$        | $\rho \cos [\theta]$              |
| 2 | 1 | 1 | $\frac{1}{2}$        | $\rho \operatorname{Sin}[\theta]$ |
| 3 | 1 | 0 | $\frac{1}{\sqrt{3}}$ | $-1 + 2 \rho^2$                   |

| 4  | 2 | 2 | $\frac{1}{\sqrt{6}}$  | $\rho^2 \operatorname{Cos} [2 \Theta]$                              |
|----|---|---|-----------------------|---------------------------------------------------------------------|
| 5  | 2 | 2 | $\frac{1}{\sqrt{6}}$  | $\rho^2 \operatorname{Sin}[2 \Theta]$                               |
| 6  | 2 | 1 | $\frac{1}{2\sqrt{2}}$ | $\rho (-2+3 \rho^2) \cos[\theta]$                                   |
| 7  | 2 | 1 | $\frac{1}{2\sqrt{2}}$ | $\rho (-2 + 3 \rho^2) \operatorname{Sin}[\theta]$                   |
| 8  | 2 | 0 | $\frac{1}{\sqrt{5}}$  | 1 - 6 $\rho^2$ + 6 $\rho^4$                                         |
| 9  | 3 | 3 | $\frac{1}{2\sqrt{2}}$ | $\rho^3 \operatorname{Cos}[3 \Theta]$                               |
| 10 | 3 | 3 | $\frac{1}{2\sqrt{2}}$ | $\rho^3 \operatorname{Sin}[3 \Theta]$                               |
| 11 | 3 | 2 | $\frac{1}{\sqrt{10}}$ | $\rho^2 (-3+4 \rho^2) \cos[2 \theta]$                               |
| 12 | 3 | 2 | $\frac{1}{\sqrt{10}}$ | $\rho^2 (-3 + 4 \rho^2) \operatorname{Sin}[2 \Theta]$               |
| 13 | 3 | 1 | $\frac{1}{2\sqrt{3}}$ | $\rho$ (3 – 12 $\rho^2$ + 10 $\rho^4$ ) Cos[ $\theta$ ]             |
| 14 | 3 | 1 | $\frac{1}{2\sqrt{3}}$ | $\rho$ (3 - 12 $\rho^2$ + 10 $\rho^4$ ) Sin[ $\Theta$ ]             |
| 15 | 3 | 0 | $\frac{1}{\sqrt{7}}$  | $-1 + 12 \rho^2 - 30 \rho^4 + 20 \rho^6$                            |
| 16 | 4 | 4 | $\frac{1}{\sqrt{10}}$ | $\rho^4 \operatorname{Cos}[4 \Theta]$                               |
| 17 | 4 | 4 | $\frac{1}{\sqrt{10}}$ | $\rho^4 \operatorname{Sin}[4 \Theta]$                               |
| 18 | 4 | 3 | $\frac{1}{2\sqrt{3}}$ | $\rho^3 (-4+5 \rho^2) \cos[3 \theta]$                               |
| 19 | 4 | 3 | $\frac{1}{2\sqrt{3}}$ | $\rho^3 (-4+5 \rho^2) \operatorname{Sin}[3 \Theta]$                 |
| 20 | 4 | 2 | $\frac{1}{\sqrt{14}}$ | $ ho^2$ (6 – 20 $ ho^2$ + 15 $ ho^4$ ) Cos[2 $	heta$ ]              |
| 21 | 4 | 2 | $\frac{1}{\sqrt{14}}$ | $\rho^2$ (6 - 20 $\rho^2$ + 15 $\rho^4$ ) Sin[2 $\Theta$ ]          |
| 22 | 4 | 1 | $\frac{1}{4}$         | $\rho  (-4 + 30  \rho^2 - 60  \rho^4 + 35  \rho^6)  \cos{[\theta]}$ |
| 23 | 4 | 1 | $\frac{1}{4}$         | $\rho~(-4+30~\rho^2-60~\rho^4+35~\rho^6)~\mathrm{Sin}[\Theta]$      |
| 24 | 4 | 0 | $\frac{1}{3}$         | $1 - 20 \ \rho^2 + 90 \ \rho^4 - 140 \ \rho^6 + 70 \ \rho^8$        |
| 25 | 5 | 5 | $\frac{1}{2\sqrt{3}}$ | $\rho^5 \operatorname{Cos}[5 \Theta]$                               |
| 26 | 5 | 5 | $\frac{1}{2\sqrt{3}}$ | $\rho^{5}$ Sin[5 $\Theta$ ]                                         |
| 27 | 5 | 4 | $\frac{1}{\sqrt{14}}$ | $\rho^4$ (-5+6 $\rho^2$ ) Cos[4 $\Theta$ ]                          |
| 28 | 5 | 4 | $\frac{1}{\sqrt{14}}$ | $\rho^4$ (-5+6 $\rho^2$ ) Sin[4 $\Theta$ ]                          |
| 29 | 5 | 3 | $\frac{1}{4}$         | $\rho^3 (10 - 30 \rho^2 + 21 \rho^4) \cos[3\theta]$                 |
| 30 | 5 | 3 | $\frac{1}{4}$         | $\rho^3 (10 - 30 \rho^2 + 21 \rho^4) \operatorname{Sin}[3 \Theta]$  |

| 31 | 5 | 2 | $\frac{1}{3\sqrt{2}}$ | $\rho^2 \ (-10 + 60 \ \rho^2 - 105 \ \rho^4 + 56 \ \rho^6) \ \cos[2 \ \theta]$                               |
|----|---|---|-----------------------|--------------------------------------------------------------------------------------------------------------|
| 32 | 5 | 2 | $\frac{1}{3\sqrt{2}}$ | $\rho^2$ (-10 + 60 $\rho^2$ - 105 $\rho^4$ + 56 $\rho^6$ ) Sin[2 $\Theta$ ]                                  |
| 33 | 5 | 1 | $\frac{1}{2\sqrt{5}}$ | $\rho$ (5 - 60 $\rho^2$ + 210 $\rho^4$ - 280 $\rho^6$ + 126 $\rho^8$ ) Cos [ $\Theta$ ]                      |
| 34 | 5 | 1 | $\frac{1}{2\sqrt{5}}$ | $\rho$ (5 - 60 $\rho^2$ + 210 $\rho^4$ - 280 $\rho^6$ + 126 $\rho^8$ ) Sin[ $\Theta$ ]                       |
| 35 | 5 | 0 | $\frac{1}{\sqrt{11}}$ | $-1 + 30 \rho^2 - 210 \rho^4 + 560 \rho^6 - 630 \rho^8 + 252 \rho^{10}$                                      |
| 36 | 6 | 6 | $\frac{1}{\sqrt{14}}$ | $\rho^{6} \operatorname{Cos}[6 \theta]$                                                                      |
| 37 | 6 | 6 | $\frac{1}{\sqrt{14}}$ | $\rho^{6}$ Sin[6 $\Theta$ ]                                                                                  |
| 38 | 6 | 5 | $\frac{1}{4}$         | $\rho^5 (-6+7 \rho^2) \cos[5 \Theta]$                                                                        |
| 39 | 6 | 5 | $\frac{1}{4}$         | $\rho^{5} (-6 + 7 \rho^{2}) \operatorname{Sin}[5 \Theta]$                                                    |
| 40 | б | 4 | $\frac{1}{3\sqrt{2}}$ | $\rho^4 (15 - 42 \rho^2 + 28 \rho^4) \cos[4\Theta]$                                                          |
| 41 | б | 4 | $\frac{1}{3\sqrt{2}}$ | $\rho^4$ (15 - 42 $\rho^2$ + 28 $\rho^4$ ) Sin[4 $\Theta$ ]                                                  |
| 42 | 6 | 3 | $\frac{1}{2\sqrt{5}}$ | $\rho^3 \ (-20 + 105 \ \rho^2 - 168 \ \rho^4 + 84 \ \rho^6) \ \cos[3 \Theta]$                                |
| 43 | 6 | 3 | $\frac{1}{2\sqrt{5}}$ | $\rho^3$ (-20 + 105 $\rho^2$ - 168 $\rho^4$ + 84 $\rho^6$ ) Sin[3 $\Theta$ ]                                 |
| 44 | 6 | 2 | $\frac{1}{\sqrt{22}}$ | $\rho^2$ (15 - 140 $\rho^2$ + 420 $\rho^4$ - 504 $\rho^6$ + 210 $\rho^8$ ) Cos[2 $\Theta$ ]                  |
| 45 | 6 | 2 | $\frac{1}{\sqrt{22}}$ | $\rho^2$ (15 - 140 $\rho^2$ + 420 $\rho^4$ - 504 $\rho^6$ + 210 $\rho^8$ ) Sin[2 $\Theta$ ]                  |
| 46 | 6 | 1 | $\frac{1}{2\sqrt{6}}$ | $\rho \ (-6 + 105 \ \rho^2 - 560 \ \rho^4 + 1260 \ \rho^6 - 1260 \ \rho^8 + 462 \ \rho^{10}) \ \cos[\Theta]$ |
| 47 | 6 | 1 | $\frac{1}{2\sqrt{6}}$ | $\rho$ (-6 + 105 $\rho^2$ - 560 $\rho^4$ + 1260 $\rho^6$ - 1260 $\rho^8$ + 462 $\rho^{10}$ ) Sin[ $\Theta$ ] |
| 48 | 6 | 0 | $\frac{1}{\sqrt{13}}$ | $1 - 42  \rho^2 + 420  \rho^4 - 1680  \rho^6 + 3150  \rho^8 - 2772  \rho^{10} + 924  \rho^{12}$              |

# 6 Strehl Ratio

While in the absence of aberrations, the intensity is a maximum at the Gaussian image point, if aberrations are present this will in general no longer be the case. The point of maximum intensity is called diffraction focus, and for small aberrations is obtained by finding the appropriate amount of tilt and defocus to be added to the wavefront so that the wavefront variance is a minimum.

The ratio of the intensity at the Gaussian image point (the origin of the reference sphere is the point of maximum intensity in the observation plane) in the presence of

aberration, divided by the intensity that would be obtained if no aberration were present, is called the Strehl ratio, the Strehl definition, or the Strehl intensity. The Strehl ratio is given by

strehlRatio := 
$$\frac{1}{\pi^2} \operatorname{Abs} \left[ \int_0^{2\pi} \int_0^1 e^{i 2\pi \Delta w[\rho, \theta]} \rho \, d\rho \, d\theta \right]^2$$

where  $\Delta w[\rho, \theta]$  in units of waves. As an example

strehlRatio /. 
$$\Delta w[\rho, \theta] \rightarrow \rho^3 \cos[\theta] / / N$$

where  $\Delta w[\rho, \theta]$  is in units of waves. The above equation may be expressed in the form

strehlRatio = 
$$\frac{1}{\pi^2}$$
 Abs  $\left[\int_0^{2\pi}\int_0^1 (1+2i\pi \Delta w[\rho, \theta] - 2\pi^2 \Delta w[\rho, \theta]^2 + \cdots) \rho d\rho d\theta\right]^2$ 

If the aberrations are so small that the third-order and higher-order powers of  $2\pi\Delta w$  can be neglected, the above equation may be written as

strehlRatio 
$$\approx Abs \left[ 1 + i2\pi \overline{\Delta w} - \frac{1}{2} (2\pi)^2 \overline{\Delta w^2} \right]$$
  
 $\approx 1 - (2\pi)^2 \left( \overline{\Delta w^2} - \overline{(\Delta w)^2} \right)$   
 $\approx 1 - (2\pi\sigma)^2$ 

where  $\sigma$  is in units of waves.

Thus, when the aberrations are small, the Strehl ratio is independent of the nature of the aberration and is smaller than the ideal value of unity by an amount proportional to the variance of the wavefront deformation.

The above equation is valid for Strehl ratios as low as about 0.5. The Strehl ratio is always somewhat larger than would be predicted by the above approximation. A better approximation for most types of aberration is given by

#### strehlRatioApproximation := $e^{-(2 \pi \sigma)^2}$

strehlRatioApproximation 
$$\approx 1 - (2 \pi \sigma)^2 + \frac{(2 \pi \sigma)^4}{2} + \cdots$$

which is good for Strehl ratios as small as 0.1.

Once the normalized intensity at diffraction focus has been determined, the quality of the optical system may be ascertained using the Marechal criterion. The Marechal criterion states that a system is regarded as well corrected if the normalized intensity at diffraction focus is greater than or equal to 0.8, which corresponds to an rms wavefront error  $<\lambda/14$ .

As mentioned above, a useful feature of Zernike polynomials is that each term of the Zernikes minimizes the rms wavefront error to the order of that term. That is, each term is structured such that adding other aberrations of lower orders can only increase the rms error. Removing the first-order Zernike terms of tilt and defocus represents a shift in the focal point that maximizes the intensity at that point. Likewise, higher order terms have built into them the appropriate amount of tilt and defocus to minimize the rms wavefront error to that order. For example, looking at Zernike term #9 shows that for each wave of third-order spherical aberration present, one wave of defocus should be subtracted to minimize the rms wavefront error and find diffraction focus.

# 7 References

Born, M. and Wolf, E., (1959). Principles of Optics, pp. 464-466, 767-772. Pergamon press, New York.

Kim, C.-J. and Shannon, R.R. (1987). In "Applied Optics and Optical Engineering," Vol. X (R. Shannon and J. Wyant, eds.), pp. 193-221. Academic Press, New York. Wyant, J. C. and Creath, K. (1992). In "Applied Optics and Optical Engineering," Vol. XI (R. Shannon and J. Wyant, eds.), pp. 28-39. Academic Press, New York. Zernike, F. (1934), *Physica* 1, 689.

# 8 Index

Introduction...1 Calculating Zernikes...2 Tables of Zernikes...3 OSC Zernikes...6 Zernike Plots...7 Density Plots...7 3D Plots...8 Cylindrical Plot 3D...10 Surfaces of Revolution...14 3D Shadow Plots...15 Animated Plots...16 Animated Density Plots...16 Animated 3D Shadow Plots...17 Animated Cylindrical Plot 3D...18 Two pictures stereograms...19 Single picture stereograms...20 Zernike polynomials and third-order aberrations...21 Wavefront aberrations...21 Zernike terms...21 Table of Zernikes and aberrations...22 Zernike Third-Order Aberration Table...23 Seidel Aberration Table...25 RMS Wavefront Aberration...27 Strehl Ratio...30 References...32 Index...33