
Use of a symbolic math system to solve
polarized light problems

James C. Wyant

The use of a symbolic math system, muMATH-79, to solve polarized light problems is described. The prob-

lems are setup using Jones calculus, and muMATH running on a Z-80 microprocessor multiplies out the

Jones matrices and simplifies the final algebraic expressions. Only a minimal amount of operator interac-
tion with the microcomputer is required. Several examples are given.

1. Introduction

Jones calculus is a commonly used tool for solving
polarized light problems involving polarizers, retarders,
and wave plates. While Jones calculus involves only 2
X 2 matrices and two row vectors, only a few polariza-
tion components need be present before the algebraic
manipulations present are sufficiently involved that
errors become common. If only numerical results are
desired, it is fairly easy to use a computer to solve the
problem and reduce chances of obtaining an incorrect
result. It is more difficult, however, when the answer
sought is an algebraic equation rather than just a nu-
merical result. This paper describes use of a software
package called muMATH-79,1 created by the Soft
Warehouse of Honolulu, Haw. to run on a Z-80 micro-
processor, multiply the matrices involved in Jones cal-
culus, and simplify the resulting equations, including
simplifications of expressions containing trigonometric
functions. While the simplification is not done com-
pletely automatically, and some operator interaction
is required, the process is much less tedious than doing
all the work by hand, and the chances of introducing an
error into the process are greatly reduced. Plus it is a
lot of fun-and it is not often that algebra is fun.

muMATH-79, which is essentially a symbolic math
system, has recently been described in the literature.23

For readers who are not already familiar with mu-
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MATH, the reading of Ref. 2 is encouraged. muMATH
has capabilities far greater than the ones described in
this paper for working with Jones calculus. mu-
MATH-79 is a modular system consisting of packages
for 611-digit arithmetic, algebra, trigonometric ma-
nipulation, matrix manipulation, equation solving,
logarithmic manipulation, integration, and differen-
tiation. The software gives exact results and works with
integers and fractions rather than decimals. For ex-
ample, adding 1/3 and 1/5 gives 8 /15 rather than a number
such as 0.533333. If you find 50! (50 factorial) on your
calculator you will get a number such as
3.041409318E64. muMATH gives you all 65 digits.
The point being stressed is that if muMATH gives you
an answer, which is limited to 611 digits, it is exact and
not just a close approximation that we are used to ob-
taining from calculators and computers. muMATH
treats everything as a string of symbols. All algebraic
operations work on two strings of symbols to give a third
string as the result. The strings can consist of numbers,
letters, or functions.

To use muMATH with Jones calculus to solve pola-
rized light problems, four muMATH packages are re-
quired: arithmetic, algebra, trigonometry, and matrix
manipulation. About 48K of memory is required for
these four packages and storing the Jones matrices de-
scribed below plus memory space to perform the desired
calculations.

II. Jones Calculus

It will be assumed that the reader is familiar with the
use of Jones calculus. For those not familiar several
excellent references exist.45 Our preliminary discus-
sion of Jones calculus will consist only of the listing of
the Jones vectors and matrices required for muMATH
calculations.
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Table I. Jones Vectors for Polarized Light

State of polarization Jones vector

Horizontal P-state 1
(HOR) 0

Vertical P-state 0
(VER) 1

P state at +450 1 | 

(P45) v/ 'I
P state at-45°

(PM45)

Right circularly polarized
(RCIR) an i

Left circularly polarized
(LCIR)

Table I gives the basic Jones vectors for linearly
polarized light oriented horizontally, vertically, at 450,
and right- and left-handed circularly polarized light.
Table II gives the Jones matrices for common polarizers
and wave plates. The Jones matrices for other orien-
tations can be obtained using the rotation matrices
ROTP and ROTM where

ROTP = cos(TH) sin(TH)
-sin(TH) cos(TH)|

ROTM = cos(TH) -sin(TH) (1)

sin(TH) cos(TH)

where TH is the angle of rotation.
If R (0) is the Jones matrix for an element of orien-

tation 00 and R (0) is the Jones matrix for the same el-
ement rotated an angle 0,

R (0) = ROTM R (0) ROTP. (2)

By using Eq. (1) and Table II almost any desired Jones
matrix can be found.

Ill. Use of muMATH

The first step in using muMATH to solve polarized
light problems after a software package consisting of the
arithmetic, algebra, trigonometry, and matrix packages
are put together as described in the muMATH-79
manual' is to type in the vectors and matrices given in
Tables I and II. While this is a tedious process, it needs
to be done only once, since once this package is created,
it can be saved on disk, and it can be the starting point
for future problem solving.

muMATH prompts user input with a question mark
and a space. All user commands must end with a; or
a $. When a $ is used the answer is not typed out. If
HOR is the Jones vector for horizontally polarized light,
we could define HOR with the following statement:

? HOR:11,01;

@ tI, (3)
01.

The first line is the input line (? was typed by the com-
puter), and the second line is the computer's response

showing that it accepted our definition. and I are used
at the beginning and ends of the matrix or vector. As
shown in the next example, [ and I are used at the be-
ginning and ends of rows of a matrix. If HPOL is the
Jones matrix for a horizontal linear polarizer, HPOL can
be defined with the following statement:

? HP0L:I[1,0],[0,0j];

( {[1, ],

[0,011.

Again the second (and third) lines are the computer's
response. In the same manner all the vectors and ma-
trices given in Tables I and II and ROTP and ROTM
can be stored in the program. It should be remembered
that 1/2 is written as 1/2 and not as 0.5. d\/ is written as
2^ ('/2) [or perhaps 2t(/2), depending upon the computer
display]. 7r is written as #PI, e is written as ftE, and
i is #I. Hence expn(iP) is written as #E #I*P.
muMATH knows that #I is the square root of-1 and
that #E represents the base of the natural loga-
rithms.

While almost any other Jones matrix that is wanted
can be obtained using muMATH and the matrices in
Table II, plus the rotation matrices, there are a few that
are used often enough that it makes sense to calculate
them once and store them for future use. For example,
the matrix of a retarder of retardation phase P having
a fast axis at angle TH from the horizontal is frequently
used. From Eq. (2) it follows that to obtain this matrix
we need to multiply matrix ROTM times matrix RETH

Table 11. Jones Matrices for Common Polarizers and Waveplates

Optical element

Horizontal linear polarizer
(HPOL)

Vertical linear polarizer
(VPOL)

Linear polarizer at +450
(POL45)

Linear polarizer at -450
(POLM45)

X/4 plate, fast axis vertical
(QWV)

X/4 plate, fast axis horizontal
(QWH)

X/2 plate, fast axis vertical
(HWV)

A/2 plate, fast axis horizontal
(HWH)

Retarder, fast axis vertical
(retardation phase = P)
(RETV)

Retarder, fast axis horizontal
(retardation phase = P)
(RETV)

Jones matrix

1 

I 0 1

1 1 1

2 1 1 1 1

11 1 -11

2 1 1 0

expn(i7r/4) 0 -i

expn(-iir/4) 0
0i

expn(+iir/2) 0 -1

10 0

expn(-iir/2) 0-1

expn(iP/2) 1 0
10 expn(-iP)I

expn(-iP/2) 1 0
10 expn(iP)I
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times matrix ROTP. The command used to obtain this
matrix, which will be called RETTH (retarder at angle
TH), and the computer's response is given in Fig. 1.

Figure 1 illustrates the main drawback of using mu-
MATH; it is difficult to read computer written equa-
tions. Fortunately, with experience the equations be-
come easier to read. For the reader's convenience, the
computer's response given in Fig. 1 can be rewritten
as
RETTH

1cos2(TH) expn(-iP/2) + expn(iP/2) sin2(TH)

cos(TH) sin(TH) expn(-iP/2) - expn(iP/2) cos(TH) sin(TH)

cos(TH) sin(TH) expn(-iP/2) - expn(iP/2) cos(TH) sin(TH)J

sin2(TH) expn(-iP/2) + expn(iP/2) cos2(TH) I

? RETTH:ROTM.RETH.ROTF';

f? {CCOS(TH)-2/#E-(#I*F'/2)+#E-(*I*F/2)*SIN(TH)-2, COS(TH)*SIN(
TH)/#E(4I*F/2)-#E(*I*F/2)*COS(TH)*SIN(TH)J,

£COS(TH)*SIN(TH)/#E-(I*F'/2)-E-(I*F'/2)*COS(TH)*SIN(TH),
SIN(TH)^2/#E-(#I*F/2)+#E-(#I*F'/2)*COS(TH)-2]}

Table Ill. Effect of Control Variables in Algebra Packane on Algebraic
Expressions1

Control Transformation produced Transformation produced
variable with positive value with negative value

NUMNUM A(B+C) AB+AC AB+AC A(B+C)

DENDEN - 1_______ 1 _____

DENDEN A(BCV AB+AC AB+AC AB+C)

DENNUM B+C B C B C B+C
A A A A A A

NUMDEN A 1 1 A
B+C B C B C B+C

A A A A

BASEXP A(B+C) - ABAC ABAC -AB+C

EXPBAS (AB)c-ACBC ACBc - (AB)c

PWREXPD (A + B)2 - A2 + 2AB (A + B)- 2

+B2 1

(A2 + 2AB+B2)

Table IV. Effect of Control Variable NUMNUM on Algebraic Expressions2

Value of
NUMNUM Example

0 3A(B+C)(D+E)-3A(B+C)(D+E)
2 and its multiples A(3B + 3C)(D + E)
3 and its multiples -3(AB + AC)(D + E)
5 and its multiples -3A[D(B + C) + E(B + C)]
6(=2-3) -(3AB+3AC)(D+E)
10 (= 2- 5) -A[D(3B + 3C) + E(3B + 3C)]
15 (=3-5) -3(ABD+ABE+ACD+ACE)
30(=2.3-5) -3ABD+3ABE+3ACD+3ACE
-2,-3, -6 Same as 2, 3, 6 except factor out instead of

distribute

While the above expression for RETTH is correct, it
can be simplified somewhat. While some of this sim-
plification could be done by hand, we will let the com-
puter do all the work. To do this simplification, the
control variable must be changed. Table III gives a list
of the control variables contained in the algebra package
and illustrates the effect of assigning positive or negative

Fig. 1. Calculation of matrix of a
retarder of retardation P having a
fast axis at an angle TH from the

horizontal.

values to the control variables. Table IV illustrates in
detail how the value of a control variable NUMNUM
changes the result. To change the value of a control
variable, such as NUMNUM, to say 3, we can use the
command

? NUMNUM:3;. (6)

If we want to find the expression for RETTH now that
NUMNUM is 6, we can use the command

? EVAL(RETTH);. (7)

The control variables are described in sufficient detail
in the muMATH-79 manual. It should be obvious that
proper selection of the control variables can greatly
simplify complicated expressions, while at the same
time poor choice of the control variables can make the
expression more complicated. This author can testify
that little thought is required to change a simple one-
line expression into an extremely complicated, but
correct, eight-line expression. While initially the op-
timum use of control variables is difficult, after a little
experience it becomes much easier. However, an easier
way to select the proper control variables is described
next.

The default values of the algebraic control variables
are

NUMNUM = 6
NUMDEN = 0

PWREXPD = 0

DENNUM = 6 DENDEN = 2
EXPBAS = 30 BASEXP = -30.

As expected, for many operations, these values for the
control variables are acceptable. The command
FLAGS( ); will print out the current values of the
control variables. Three additional commands give the
control variables temporary assignments. These three
temporary control variables assignments appear to be
almost always sufficient, and additional variation of the
algebraic control variables is rarely needed. The first
command, EXPAND (expr), evaluates expr to yield a
fully expanded denominator distributed over the terms

1 October 1981 / Vol. 20, No. 19 / APPLIED OPTICS 3323

(5)



? FCTR(RETTH);

2 {cECOS(TH)-2/E(I*F/2)+E-(I*F'/2)*SIN(TH)-w2, (/#E-(I*F'/
2)-#E'(*I*P/2))*COS(TH)*SIN(TH)),

E(1/#E-(I*F/2)-#E-(I*F'/2))*COS(TH)*SIN(TH), SIN(TH)-2/#E
-(#I*P/2)+#E-(#I*P/2)*COS(TH)-21>

' TRGEXFD(*ANS,5);

e {CCOS(TH)-2/#E-(#I*F'/2)+#E-(#I*F'/2)*SIN(TH)-2, SIN(2*TH)/(2
*$E-(I*F'/2))-#E-(#I*P/2)*SIN(2*TH)/2],

ESIN(2*TH)/(2*#E-(4I*P/2))-#E-(#I*P/2)*SIN(2*TH)/2, SIN(TH
)-2/#E-(#I*F'/2)+tE-(#I*F'/2)*COS(TH)-2l}

? TGEXF'D(#ANS,-7);

2 {-#I*COS(TH)-2*SIN(F'/2)+*I*SIN(TH)-2*SIN(P/2)+COS(TH)-2*COS
(F'/2)+COS(P/2)*SIN(TH)-2, -I*SIN(2*TH)*SIN(F'/2)3,

E-#I*SIN(2*TH)*SIN(F'/2), I*COS(TH)-2*SIN(F'/2)-#I*SIN(TH)-
2*SIN(P/2)+COS(TH)-2*COS(F'/2)+COS(F'/2)*SIN(TH)-2l)

? TRGEXF'D(#ANS,3);

2 {-I*COS(2*TH)*SIN(F'/2)+COS(F'/2), -I*SIN(2*TH)*SIN(F'/2)3,
[-#I*SIN(2*TH)*SIN(P/2)p I*COS(2*TH)*SIN(P/2)+COS(F'/2)3)

Fig. 2. Simplification of matrix
RETTH given in Fig. 1.

of a fully expanded numerator. The second command,
EXPD (expr), evaluates expr to yield a fully expanded
numerator over a fully expanded denominator. The
third command, FCTR (expr), evaluates expr to yield
a semifactored numerator over a semifactored denom-
inator. EXPD followed by FCTR is often useful in
simplifying expressions. Sometimes it is useful to work
on only a numerator or a denominator of an expression.
The commands NUM (expr) and DEN (expr) return
only the numerator or the denominator of an expression,
so the numerator or denominator can be worked on
separately.

In addition to the algebraic control variables there is
a trigonometric control variable, TRGEXPD, that is
extremely useful. TRGEXPD controls the use of
multiple angle and angle sum expressions and replace-
ment of trig functions by complex exponentials. The
default value of TRGEXPD is 0. When TRGEXPD is
a positive multiple of 2, tangents, cotangents, secants,
and cosecants are replaced by corresponding expres-
sions involving sines and cosines. Negative multiples
of 2 have the opposite effect. If TRGEXPD is a posi-
tive multiple of 3, integer powers of signs and cosines are
expanded in terms of sines and cosines of multiple an-
gles. For example, when TRGEXPD = 30, cos 2(X)
[1 + cos(2x)]/2. A negative multiple of 3 has the op-
posite effect. TRGEXPD = 30 is useful in proving
most trig identities and appears to be extremely useful
in simplifying algebraic expressions containing trig
functions.

If TRGEXPD is a negative multiple of 5, sines and
cosines of angle sums and differences are expanded in
terms of sines and cosines of nonsums and nondiffer-

ences. For example, if TRGEXPD = -15, cos(x + y)
cos(x) cos(y) - sin(x) sin(y). If TRGEXPD is a

positive multiple of 7, sines and cosines are converted
to complex exponentials. For example, when
TRGEXPD = 14, then cos(x) - [#E (#I*x) + 1/
#E (#I*x)]/2. If TRGEXPD is a negative multiple
of 7 the opposite transformation is obtained.

Changing the value of an option variable does not
affect the values of the expressions which have already
been evaluated. After changing the value of
TRGEXPD, or other variables, it may be necessary to
use EVAL to get the desired effect. For the control
variable TRGEXPD, a temporary change of its value
can be obtained with the command TRGEXPD (expr,
N), where now expr is evaluated with TRGEXPD set
equal to N.

We now have enough background material to simplify
our expressions for RETTH. There is of course no
unique answer. The preferred final form and approach
depend somewhat upon the person doing the simplifi-
cation. One simplification procedure is illustrated in
Fig. 2.

Looking at Fig. 1, or Eq. (5), it appears as though the
first step in the simplification process should be to
factor RETTH. Since the expression is already com-
pletely expanded, expanding before factoring will not
change the results. The answer obtained using
FCTR(RETTH); is stored as #ANS. After the com-
puter does the expansion, it appears as though it would
be good to use a trig identity to change a product of a
sine times a cosine into a double-angle trig function.
This is accomplished by using TRGEXPD (#ANS,5).
Next it appears as though it would be advantageous to
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? A:HWTH.RCIR;

e {-I*COS(2*TH)/2-(1/2)-SIN(2*TH)/2-(1/2)p
-#I*SIN(2*TH)/2-(1/2)+COS(2*TH)/2-(1/2)}

7 FCTR(A);

e {-(#I*COS(2*TH)+SIN(2*TH))/2-(1/2)v
(-#I*SIN(2*TH)+COS(2*TH))/2-(1/2)}

? A:#ANS$

7 TRGEXPD(AP7);

e -- I/(2-(1/2)*#E-(2*#I*TH)),
1/(2-(1/2)*#E-(2*#I*TH)))}

Fig. 3. Example showing that a rotating halfwave plate frequency
shifts circularly polarized light.

convert complex exponentials into sines and cosines,
which is accomplished with the command
TRGEXPD(#ANS,-7);. It appears as though the
new #ANS can be simplified if integer powers of sines
and cosines are expanded in terms of sines and cosines
of multiple angles. The new #ANS obtained is ac-
ceptable as the final value of RETTH, so RETTH is set
equal to #ANS.

There are six more Jones matrices that are used fre-
quently enough that it is convenient to store them in the
program. (Storing too many items in memory reduces
the memory available for calculations, which results in
additional computation time.) The six matrices are
quarterwave and halfwave plates at 45' (QW45,
QWM45, HW45, and HWM45) and quarterwave and
halfwave plates at angle TH (QWTH and HWTH).
While these six matrices can be found in Ref. 4 as well
as several other references, they can be easily calculated
from the matrices already stored. As an example il-
lustrating the use of muMATH, we will calculate the
matrix representing a halfwave plate with the fast axis
oriented at an angle of 45° with respect to the horizontal
direction. As mentioned above, we will call this matrix
HW45.

We have two convenient ways to calculate HW45
using matrices already stored in the program. One way
is to operate on QWH with the rotation matrices ROTM
and ROTP, where TH is set equal to #PI/4. The sec-
ond technique is to evaluate RETTH with TH equal to
#PI/4 and P equal to #PI. The procedure for using
this second method for finding QW45 is illustrated
below:

? TH:#PI/4$

? P:#PI$

? HW45:EVAL(RETTH);

@ao0, -#I],
[-#I, 0]}

? TH:'TH$

? P:'P$.

In the last two steps TH and P are set back to their
unbound (undefined) condition. It is important that
these last two steps are included, since otherwise for
future calculations TH is set equal to #PI/4, and P is
set equal to #PI.

The other five matrices mentioned above can be
found using the same technique. Once these matrices
are stored in memory, our program should be saved for
later use so we do not have to go through the setup
procedure again. (The muMATH-79 manual describes
the procedure for storing the program for future use.)

Now that we have our Jones calculus muMATH
program, let us use it to solve an example polarized light
problem. The example to be illustrated is that a ro-
tating halfwave plate will frequency shift circularly
polarized light. Figure 3 shows the solution. In
memory, we have stored the expression for a halfwave
plate at angle TH, HWTH. In the first command line
we operate on right-handed circularly polarized light
with HWTH. The result can be simplified somewhat
by factoring out 2 (1/2) from each expression. To
achieve this, we use the command FCTR( ). We ob-
tained the desired result, so let us replace A with
FCTR (A). The answer of FCTR (A) has been stored
as #ANS,so A:#ANS$ replaces A with FCTR (A). It
appears as though the new expressions for A can be
simplified by expressing cos and sin as complex expo-
nentials. To do so, we need to reevaluate with
TRGEXPD set equal to 7. In the last command line we
try this, and we get the desired result. Right-handed
circularly polarized has been converted to left-handed
circularly polarized light, and the phase of both x and
y components have been multiplied by expn(-i2TH).
That is, a rotating halfwave plate where TH is linearly
proportional to time, say TH = t, will frequency shift
the transmitted light.

IV. Conclusions

It is this author's experience that muMATH-796 is
extremely useful for solving problems using Jones cal-
culus. Problems considerably more complicated than
the ones given in the examples have been solved using
the same procedures illustrated in the examples. While
at first the process appears mysterious, after a little
experience the proper values of the control variables to
be used, in particular the value of TRGEXPD and when
to use FCTR or EXPD, become readily apparent.
Sometimes an incorrect choice is made, however; if the
algebra is done by hand we sometimes choose the in-
correct trig identity, expansions, or factoring. When
this is done, we simply go back a step or two and begin
again. The thought process used is similar to what we
would do if we were to do the algebra by hand. How-
ever, the advantage is that now we just have to decide
what to do, and the computer does the work. Probably
the biggest advantage is that the computer does not
make a mistake in algebra as we easily can. While the
expression may not be as simple as we might like, it is
at least correct. The time required to perform each
command is from a few seconds to perhaps a minute, or
more, if an especially complicated expression is being
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evaluated or the computer memory is nearly full. The 2. G. Williams, The muSIMP/muMATH-79 Symbolic Math System,
biggest problem with using muMATH is that the Byte 5,328 (1980).
equations are not as easy to read as they would be if they 3. M. Schindler, Math Package for 1ACs does Algebra, Calculus,
were handwritten. While the expressions do become Electronic Design, 34 (7 June 1980).mucheasrl oread with experience, the awkward way W W. A. Shurcliff, Polarized Light (Harvard U. P., Cambridge, 1966),mueh easier to pre. Wit einie te wak way P 109.
the equations are written is definitely the weak point 5. E. Hecht and A. Zajac, Optics (Addison-Wesley, New York, 1974),
of the entire process. p. 268.

6. muMATH-79 for CP/M operating systems as well as the TRS-80
References can be purchased from Microsoft, 400 108th Ave., N.E., Bellevue,
1. The muSIMP/muMATH-79 Reference Manual (The Soft Wash. 98004. (CP/M is a trade mark of Digital Research, and

Warehouse, Honolulu, Haw., Mar. 1980). TRS-80 is a trade mark of Radio Shack, a Tandy Corp.)

PUBLICATION BRIEF
Patent-Term Extension

", -. Proposals to extend patent terms for products subject to premarketing regula-
2 2 tions would, if implemented, provide additional incentives for conducting phar-

* maceutical research and development. But evidence is insufficient to determine
, whether these incentives by themselves would appreciably increase pharmaceutical

by innovation.
-x , Patents were intended to promote innovation by providing inventors with the right0

thi to exclude others from making, using, or selling a patented invention. Because drug
developers usually obtain patents before their drugs have been approved by the Food

.2 and Drug Administration, the length of the approval process can directly affect the
> length of time during the patent term that a new pharmaceutical is marketed (the effec-

tive patent term).
it Go: Drug developers believe that pharmaceutical research is becoming less profitable

.. as a result of shorter effective patent terms, governmental actions encouraging com-
° petition from drugs generically equivalent to drugs with expired patents, and higher
3 ciS costs of research.

5 <:, To date, the profits of the pharmaceutical industry have remained high, revenues
O have increased steadily, and R&D expenditures have increased to levels which more
u ': than compensate for the inflation in biomedical research costs. However, the effects

' of the decline in effective patent terms and the increased competition resulting from
<Government actions may not have been fully felt.

Patent-term extension has numerous implications for society, industry, and inno-
vation. The extension would increase the attractiveness of research on drugs for large

E o markets; it would not increase the economic attractiveness of research on drugs for
, 7; small markets.

O AsAd Drugs with extended patent terms would generate additional revenues when the
iL I e majority of the proposed extensions are to begin in the 1990's. The long-term stability

< of the relationship between R&D expenditures and revenues suggests that increases
, in research activities would not occur until that time and that 8 or 9 percent of the addi-

tional revenues generated would be spent on R&D activities. Industry spokesmen
H Ac maintain that increased R&D expenditures could be expected sooner because firms

° n would make their research decisions on the basis of anticipated increases in revenues.
X As a result of patent-term extension, the prices of drugs whose patents are ex-

E. tended would be higher during the extended period than they would have been without
t O the extension. Consumers would, however, benefit if more and better pharmaceuticals
.: c were developed. It is expected that both the benefits and the additional costs would af-

E > fect the elderly and the chronically ill more than other segments of society.
-O O ° Patent-term extension would delay and in some cases prevent the entry of firms
- = primarily selling drugs that are generically equivalent to drugs with expired patents.

-The revenues of these firms are determined by the remaining market value of drugs
o c with expired patents-and because of reduced marketing time, the remaining market

values would be reduced.
O. N° Copies of the OTA report, "Patent-Term Extension and the Pharmaceutical Industry" are

( ci available from the U.S. Government Printing Office. The GPO stock number is 052-003-00842-4;
i ' the price is $4.25. Copies of the full report for congressional use are available by calling 4-8996.
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