
Testing an optical window of a
small wedge angle: effect of multiple reflections
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Multiple reflections between two surfaces of a window introduce a fixed pattern error in optical
measurements. One way to remove these spurious reflections is to use a reasonably large wedge so that
the interference fringes formed by the two surfaces are too dense for the detector to resolve. However,
this method does not work if the wedge angle is small, e.g., several arcseconds. By tilting both the
window and the return mirror properly, it is possible to remove the effect of multiple reflections of a
window. Theory and experimental results are presented.
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Introduction

Spurious reflections usually introduce errors into the
measurement results obtained with laser phase-
shifting interferometry.1 -7 For a Fizeau interferom-
eter, work has been done to reduce or eliminate the
effect of the multiple reflections between the test and
reference surfaces. For example, Hariharan 3 points
out that if a four-frame phase calculation algorithm is
used, the phase error caused by multiple reflections is
eliminated to a first-order approximation. Bonsch
and Bohme5 give a new algorithm that can completely
eliminate the phase error resulting from multiple
reflections of a test mirror. We show the phase error
caused by the multiple reflections from a retroreflec-
tion.7

When testing a window, one always tilts it to keep
direct reflections from the two surfaces of the window
from entering the interferometer. However, multi-
ple reflections between two surfaces of a window
introduce an error of a fixed pattern in the measure-
ment result, no matter what the window tilt angle
and the window thickness. One way to remove the
effect of these spurious reflections is to have a reason-
ably large wedge angle in the window such that the
interference fringes formed by the two surfaces are
too dense for the detector to resolve. However, this
method does not work if the wedge angle is only
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several arcseconds. In this paper, we present the
theory and results of the experiments we have per-
formed with windows of a small wedge angle.

Theory

For a planar parallel plate or optical window, the
relative amplitudes of the successive internally re-
flected rays are 1, r2, r4 . . . where r is the coefficient
of reflection of the window. If the incident angle is 0,
it can be shown that the optical path difference (OPD)
of two successive rays is equal to 2dn cos(0'), where d
and n are the thickness and the refractive index of the
window, respectively, and 0' is the refractive angle.
For a more general case, dn is the optical thickness or
the integration of the length times the refractive
index along the path. For a small incident angle, the
coefficient of reflection, r, of most optical glass is
about 20%. Therefore the multiple reflections of a
window can be approximated by the first two rays,
i.e., 1 and r2 .

When testing an optical window, a collimated beam
is incident upon the window. The transmitted wave
can be approximated by two rays, 1 and r2. These
two rays are reflected back to the window by the
return flat (RF), which has a coefficient of reflection of
s, as shown in Fig. 1. Between the window and the
RF, the filled-arrow ray has a relative amplitude of s,
and the open-arrow ray has a relative amplitude of
r2s. In the following we show that the tilt of the RF
can alter the effect of the multiple reflections on the
phase measurement. For convenience, we discuss
this effect for two cases: (1) a ray normal to the RF
and (2) a tilted RF.
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Fig. 1. Ray path through a window and reflected by a return flat
(RF). The window is tilted of an angle 0.

Normal to the RF

From Fig. 1, each of the two reflected rays has
multiple reflections inside the window. The multi-
ple reflections of the filled-arrow ray in the window
can be approximated by the first two rays, Et and Eg2.
Because of the low reflectivity of the window, the
multiple reflections of the opoen-arrow ray in the
window are negligible; only the transmitted ray Eg is
significant. Therefore for an incident ray from the
source entering the window, there are three returned
rays, Et, Egi, and Eg2, as shown in Fig. 1. Because of
the nonzero incident angle, the returned rays Egi and
Eg2 are laterally displaced from the original incident
location by approximately d (1 - /n) and go through
different regions of the window, x1 and x2, respectively.
If the thicknesses of the two regions are d, and d2,
respectively, the complex amplitudes of the three rays
are

Et = s exp i[240(x, y) + r(x, y)],

Egi = r2s exp i[+W(x, y) + Xw(xj, y) + r(x, y)

+ 2dn cos(0')k],

Eg2 = r2 s exp i[+w(x, y) + 4(x 2 , Y) + r(X, )

+ 2d2n cos(0')k], (1)

where k = 2/X and 0' is the refracted angle inside
the window. The clw(x, y) and r(X, y) are the contri-
butions of the window and the RF, respectively. For
a small incident angle 0, the lateral displacement
d0(1 - 1/n) is negligible, i.e., x1 x2. Therefore the
three returned rays, Et, Egj, and Eg2, are close to each
other and can be approximated by the location of the
returned ray, Et. Because the two reflected rays are
normal to the RF, the location of these three returned
rays is close to the original incident ray location x on
the window. If the RF is tilted, these three rays
deviate from the location x, as discussed in the next
section.

If the optical thickness d(x, y)n is a constant over

the entire window, we can substitute W(xj, y) and
4w(x2, y) with W(x, y), and both d1 and d2 with d(x, y),
and the sum of the three rays is

Et + Eg1 + Eg2 = s exp i[2-(xy) + 4y(Xy)]

x f1 + 2r2 exp i[2d(x,y)n cos(0')k]}.

(2)

For a given incident angle 0, the term inside the
curved brackets is a constant over the entire window.
Thus the phase of the resulting wave front is deter-
mined by 2W(x, y) + r(X, y). The multiple reflec-
tions have no effect on the measurement. However,
in reality, the optical thickness d(x, y)n is not equal to
a constant over the window. For example, a change
in d(x, y)n as small as 0.25X can produce a large
change in the phase of 1 + 2r2 exp i[2d(x, y)n cos(0')k].
In all, when the RF is normal to the ray, the vector
sum of the three rays varies with the optical thickness
of a window along its wedge direction, and hence the
resulting wave front and the measurement result
have ripples perpendicular to the wedge direction.

Tilting the RF

In the above discussion, the rays are normal to the
RF. The two reflected rays follow the original ray
path. However, if the RF is tilted at an angle e, the
returned ray Et deviates from the original location x
to x' on the window. When both the window and the
RF are tilted in the same direction, the incident angle
of the returned ray is 0 - 2. If they are tilted in
opposite directions, the incident angle is 0 + 2, as
shown in Fig. 2. Because the three returned rays are
close to each other, we use x' to represent their
locations on the window, and the distance of x' - x is
defined as the walk-off distance. For simplicity, we
assume that the lateral displacement is smaller than
the walk-off distance. It can be shown that the OPD
between two successive rays for Eg2 is equal to
2d(x', y)n cos(0"), where 0" is the corresponding re-
fracted angle for the incident angle of either 0 - 2e or
0 + 2 , depending on the tilt directions. Therefore
the complex amplitudes of the three returned rays are

Et = s exp i[,W(x, y) + 4w(x', y) + r(x, y)],

Egi = r2s exp i[44(x, y) + 4k(x', y) + r(X, y)

+ 2d(x, y)n cos(0')k],

Eg2 = rs exp i[4w(x, y) + 4w(x', y) + r(X, y)

+ 2d(x', y)n cos(0")k], (3)

It should be noted that for Eg, the multiple reflections
occur at x not x', and hence the OPD between two
successive rays is equal to 2d(x, y)n cos(0'), not
2d(x', y)n cos(0"). Mainly because of the change in
the incident angle, the value of 2d(x', y)n cos(0") is
different from that of 2d(x, y)n cos(0'). This makes
it possible to cancel Egi and Eg2 and eliminate the
effect of multiple reflections. The sum of the three
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Fig. 2. Ray path similar to Fig. 1, except the RF is tilted by an angle E. The reflected ray deviates from the original location. Here the RF
is away from the window to show the ray deviation. This deviation can be reduced by moving the RF closer to the window.

rays is expressed as follows:

Et + Eg + Eg2 = s exp i[4W(xly) + W(x',Y) + r(X, y)]

x (1 +r 2 exp i[2d(x,y)n cos(0')k]

p = 2d(x, y)n cos(0')k - 2d(x', y)n cos(0")k,

L = 2r2 s cos((p/2) 1.

+ r2 exp i[2d(x',y)n cos(o")k]1,

where

O' = cos-{[l - sin2(0)/n2]1/2),

0" = cos-{[l - sin2 (0 - 2E)/n211/2}.

(4) It is clear that the phase error is extreme when the
sum of three rays is tangent to the circle of a radius L,
as shown in Fig. 3. The two extremes of the errors
are +/-sin'(L/ Etj) in radians. Therefore the
peak-to-valley value (p-v) of the phasor error is

(5)

From Eq. (4), we can see that the resulting wave front
is modulated by Egi and Eg2. Because the three rays
have the same polarization, they can be manipulated
as phasors. It can be shown that the error caused by
multiple reflections is determined by the magnitude
and the angle of the sum phasor, Egi + Eg2, as shown
in Fig. 3. In the following, we refer frequently to
this sum phasor. The angle between the phasors Egi
and Eg2 is important in determining the magnitude of
the sum phasor. For convenience, we define a quan-
tity p as the angle between Egi and Eg2 and L as the
magnitude of the sum phasor, Eg + Eg2. Because
Egi and Eg2 have the same magnitude, p and L can be

Phase error (p-v)

= 2 sin'1[2r2 cos(p/2)]l in radians

=I sin-1[2r2 cos(qp/2)]/rrI in fringes. (7)

Therefore (a) when p = oddrr, both L and the error
are zero, and (b) when p = evemvr, L = 2r2s and the
error is maximum. If the coefficient of the reflection
is 20%, i.e., r 2

= 4%, then the phase error (p-u) =
0.0254 fringe. Figure 4 shows that L is a function of
the tilt angle e of the RF for different thicknesses.

For simplicity, we assume that the walk-off is
negligible or that the window has an equal thickness
in the direction of the walk-off, e.g., the x direction.
Hence d(x, y) = d(x', y) = d. Using Eqs. (5) and (6),
we obtain

p = 2dnk{[1- sin2(0)/n2]1/2

- [1 - sin2 (0 - 2e)/n2 ]1/21.

Fig. 3. Sum of three phasors, Et + Egi + Eg2. The magnitude (L)
and the angle () of the sum phasor, Egi + Eg2, determines the
error caused by the multiple reflections. The phase error (p-v) =
12 sin-1(L/ IEt I) I in radians.

It is important to note that because the term in the
curved bracket is a very small number, a small change
in thickness does not change the value of p. The
values of L and p are listed in Table 1 for different tilt
angles 0 and E, where n = 1.5, X = 633 nm, and d = 10
mm or 20 mm. It should be noted that whenever E =

0°, p always equal zero, regardless of the tilt and the
thickness of the window. For this case, the error is
maximum, unless the variation of the optical thick-
ness over the entire window is much less than 1X.

If e • 0, p can be any value according to Eq.
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Fig. 4. L/sr 2 , a function of e (in degrees), ford = 20 mm, n =

(8). For a given 0 and , a slight increment in the
window thickness, e.g., Ad = 2, increases the OPD
between two successive internally reflected rays by
2Adn, i.e., 6X. The angle of each phasor Egi and Eg2
increases by 12rr for n = 1.5. Because the angles of
both phasors Egi and Eg2 increase by the same
amount, the angle of the sum phasor also increases by
12iT. For example a window has an equal thickness
in the x-direction and a wedge of 2X in they direction.
If this window is tilted in the x direction, then the
angle of the sum phasor Egi + Eg2 varies with the y
direction by 12ir, but the angle p between the two
phasors does not vary with the y direction, and
remains unchanged. Therefore if p oddr, then
the resulting wave front shows 6 horizontal fringes,
i.e., a ripple of 6 cycles in the y direction. On the
other hand, if the RF is tilted such that p = oddrr,
then Egi and Eg2 cancel each other, as if there were no
multiple reflections.

Because e << 0 << 1 in most cases, p from Eq. (8)
can be approximated by 4dkOE/n, where 0 and E are in
radians. The condition of p = mrr is of most interest

Table 1. Values of 9 and L for Different Tilt Angles 0 and e (in Degrees)
for a Window Thickness of 10 mmn or 20 mm and a Refractive Index of

1.5 at 633 nm

E

0 d = lOmm d = 20mm p L

- 0 0 0 2r 2s
0.5 0.06853 0.03633 7r 0
0.5 0.12474 0.06853 27r 2r 2s
1 0.03756 0.01912 Tr 0
1 0.07266 0.03756 2,Tr 2r 2s
2 0.01930 0.00970 0
2 0.03825 0.01931 27r 2r 2s

0.04 0.06 0.08
1.5, X = 633 nm, and 0 = 0.50 (solid curve) and 1 (dashed curve).

for minimizing (for m = odd) or maximizing (for m =
even) the effect of multiple reflections. Using the
above approximation, we obtain 4dkOE/n = mr, for 0
and e in radians. Therefore the phase error is either
zero or maximum when the tilt angles 0 and e satisfy
one of the following conditions:

dOE/Xn odd x 0.000406, forerror= 0, (9)

dHe/Xn even x 0.000406, for error (p-v) 2r2 /T,

(10)

where the error is in fringes, 0 and e are in degrees, d
is in millimeters, is in nanometers, and r is the
coefficient of reflection. From Eqs. (9) and (10), if
n = 1.5 and X = 633 nm, then dOE = 0.386m, where m
is a natural number. The results of this equation for
m = 1 and 2 correspond to those in Table 1 for p = wT
and 2, respectively. This approximation reveals
the inversely proportional relationship among d, 0,
and e and is convenient for estimating the proper tilt
angles for the window and the RF. If E = 0 < 1, p in
Eq. (8) can be approximated by 2dk(20 - E)E/n, where
0 and E are in radians.

Experiment

In the experiment, a laser phase-shifting Fizeau
interferometer was used, as shown in Fig. 5. The
source is an HeNe laser at 633 nm. The transmis-
sion flat (TF) has a clear aperture 15 cm in diameter
and can be displaced along the ray direction with a
piezoelectric transducer to introduce the proper phase
shift. The two coordinate systems in the RF and the
detector indicate the relationship between the win-
dow and the intensity pattern on the detector. In
both coordinate systems, the x direction is in the
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Fig. 5. Top view of laser phase-shifting interferometer. Source,
HeNe at 633 nm; BS, beam splitter; TF, transmission flat (fused
silica); RF, return flat (fused silica); AR, antireflection coating;
PZT, pizoelectric transducer.

plane of the paper, and the y direction is normal to
plane of the paper. Both RF and TF are fused silica.
The window is a BK7 plate (20 mm thick and 150 mm
in diameter) with a wedge angle of 1.725 arcsecs.
If this wedge is oriented in the vertical direction, it
can be shown that this window introduces 6 horizon-
tal fringes in the transmitted wave front.

First we look at the intensity pattern of the sum of
the three returned rays, Et + Egi + Eg2, by removing
the TF from Fig. 5. The window is tilted such that
no direct reflections from the front and the rear
surfaces of the window enter the detector. The tilt
orientation of the window can be categorized into two
cases: (a) perpendicular to the window wedge direc-
tion and (b) parallel to the window wedge direction.
For convenience, we orient the window such that its
wedge is in they direction and the window is tilted in
either the x direction or they direction. For case (a),
the window is tilted 0 = 0.50 in the x direction.
Figure 6 shows the intensity patterns when the RF is
not tilted in the x direction, = 0, or when the RF is
tilted in the x direction, E = 0.03633°, respectively.
In Fig. 6(a), the intensity pattern has faint but
obvious horizontal interference (ghost) fringes. In
Fig. 6(b), these ghost fringes disappear. These two
tilt angles correspond to p = O and Tr, respectively, as
given in Table 1 for d = 20 mm. Increasing the tilt
of the RF to 0.06853°, these ghost fringes reappear.
In case (b), the window is tilted in the y direction
(0 = 0.5°). In this case, the window tilt direction is
parallel to the window wedge direction. When the
RF is not tilted in they direction, E = 0, or when the
RF is tilted in the y direction, E = 0.03633°, respec-
tively, we obtain the same results as those in Fig. 6.
From both Figs. 6(a) and 6(b), as long as the RF is
tilted in the same plane as that for the filt of the
window, the interference ghost fringes can disappear
easily, regardless of the orientation of the wedge of
the window. On the other hand, whenever E = 00,

the interference ghost fringes cannot be removed.
To measure the phase of the resulting wave front of

the three return rays, Et + Egi + Eg2, the TF is put
back into the interferometer. Figure 7 shows the

(b)

Fig. 6. Intensity patterns obtained with RF and a window. The
window has a wedge in they direction and is tilted in thex direction
(0 = 0.50). In (a) the RF is not tilted in the x direction, and in (b)
the RF is tilted 0.03633° in the x direction.

intensity patterns corresponding to those in Fig. 6,
when the TF is tilted to give several vertical fringes.
The wedge is in the y direction, and the window is
tilted 0.50 in the x direction. In Fig. 7(a), it is clear
that there are several vertical main fringes and six
ghost horizontal fringes are the same as those in Fig.
6(a). On the other hand, when the RF is tilted
0.03633° in the x direction, the ghost fringes disap-
pear as shown in Fig. 7(b). Figure 8 shows the
cross-sections in the y direction of the two measured
wave fronts obtained from Fig. 7. In Fig. 8(a), the
ripples correspond to the ghost fringes in Figs. 6(a)
and 7(a). The peak to valley of the phase error
caused by the multiple reflections is about 0.025X.
In Fig. 8(b), there is no evidence of ripples.

Figure 9 shows the intensity distribution maps of a
12 cm x 8 cm thin fused-silica plate. The maps are
obtained using the same interferometer in Fig. 5
without a TF, for different tilt angles of RF. In Fig.
9(a), the RF is not tilted, and there are several curved
ghost fringes that are a fixed pattern caused by the
multiple reflections. It should be noted that these
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Fig. 7. Intensity patterns corresponding to those in Fig. 6, when
the TF is tilted to give several vertical fringes. In (a) the RF is not
tilted, and in (b) the RF is tilted properly.

ghost fringes bend sharply around the boundary of
the plate because of the rapid thickness variation at
the edges. On the other hand, when the RF is
properly tilted, the ghost fringes disappear, as shown
in Fig. 9(b). Then the TF is put back into the
interferometer and is tilted to give several horizontal
fringes. Figure 10(a) is the intensity pattern when
the RF is not tilted, and there are several horizontal
main fringes and some ghost fringes that are the
same as those in Fig. 9(a). Figure 10(b) is the
intensity pattern when the RF is tilted properly and
the ghost fringes disappear.

Discussion

When a window is tested, the cavity formed by the TF
and the RF is almost always measured first, and then
the window is inserted into the cavity. Typically
both the TF and RF are adjusted such that the ray is
normal with respect to them. Because the wedge
angle (e.g., 5 arcsec) is so small, after inserting the
window the ray is still normal to the RF (i.e., e = 0).
Therefore the measured wave front always shows an
error of ripple, no matter what the thickness and the

FIG BB
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Fig. 8. Cross-sections in the y-direction of the two measured wave
fronts obtained from Fig. 7. In (a) the RF is not tilted, and in (b)
the RF is tilted properly.

tilt of the window may be. As shown in Figs. 6(a)
and 7(a), whenever the RF is normal to the rays, the
error caused by the multiple reflections is maximum.
To remove the effect of multiple reflections, the RF
must be tilted by an angle in either the same direction
as or the opposite direction from that for the tilted
window, as explained below.

Figures 6(b) and 7(b) clearly show that the effect of
multiple reflections is eliminated when the RF is
tilted properly by the same angles as derived from Eq.
(9). It should be noted that not only the angle but
also the direction of tilt is important. For conve-
nience, we define the tilt direction by the change of
the normal of the tilted surface before and after the
tilt. Therefore tilting in the x direction means the
normal of the surface moves in the x direction. If
the tilt direction of the RF is not parallel to that of the
window, there is an angle between those two direc-
tions. The new incident angle of the ray reflected by
the RF is equal to the magnitude of the vector
difference of these two tilts. For E << 0 << 1, if the
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(b) (b)

Fig. 9. Intensity patterns obtained with RF and a thin fused silica Fig. 10. Intensity patterns corresponding to those in Fig. 9, when
window. In (a) the RF is not tilted, and in (b) the RF is properly the TF is tilted to give several horizontal fringes. In (a) the RF is
adjusted. not tilted, and in (b) the RF is tilted properly.

two directions are perpendicular, then the new inci-
dent angle is almost equal to the original one. Hence
the tilt of the RF has no effect, and the ghost fringes
do not disappear in this situation. In the experi-
ment, it can be easily shown that when the tilts of the
window and the RF are in perpendicular directions
(such as one in the x direction and the other in the
y direction), the ghost fringes do not disappear.

In the derivation of Eqs. (8)-(10), we assume that
the walk-off is negligible or that the window has an
equal optical thickness for the two locations sepa-
rated by the walk-off distance. A simple situation is
that the material of the window is uniform and the
two surfaces are absolutely flat. This equal optical
thickness condition can be achieved by tilting both
the window and the RF in a direction (x direction)
perpendicular to the orientation of the wedge
(y direction), e.g., case (a). In fact, what is important
is that the difference of the optical thickness for two
points separated by the walk-off distance needs to be
constant. A constant change of the optical thickness
is equivalent to adding a constant angle between
phasors Egi and Eg2. This is equivalent to the case

where the tilt of the window is parallel to the wedge
direction of the window, as shown in case (b). If the
material of the window is uniform and the two
surfaces are absolutely flat, then the thickness differ-
ence, resulting from a wedge, over the walk-off dis-
tance is equal to a constant ro, i.e., d(x', y) - d(x, y) =
To. From Eq. (6),

p = 2nkd(x, y){[1- sin2(0)/n21/2

- [1 - sin2 (0 - 2e)/n2 ]/ 2} - 2nkTo. (11)

For certain 0 and E values, the condition of p = Tr can
be achieved. This is why the ripples can disappear
when the tilt of the window is parallel to the wedge
direction of the window.

In reality, the optical thickness in both the x and y
directions could vary. If the material of the window
is not uniform or the two surfaces are not absolutely
flat, then the difference of d(x', y) - d(x, y) varies over
the pupil, i.e., d(x', y) - d(x, y) = To + A'r, where Ar is
the optical thickness variation minus the nominal
wedge height over the walk-off distance (i.e., x' - x).
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Equation (6) becomes

p = 2nkd(x,y)[1- sin2(0)/n2]1/2

- 2nk[d(x,y) + To + AT][1 - sin2(0 - 2E)/n2]1/2.

(12)

By tilting the window and the return flat (0 and E), we
can obtain the following condition:

2nkd(x, y)[ - sin2(0)/n2 ]1/2 - 2nk[d(x, y) + ro]

x [1 - sin2 (0 - 2E)/n2 ]1 /2 = T, (13)

and hence Eqs. (12) and (7) become

(p = Tr - 2nkA'T

x [1 - sin2 (0 -2E)/n2]/2

Tr - 2nkAT, (14)

phase error (p-v) = I sin-1[2r2 cos(Tr/2 - nkAr)]/rr I
= 12r2nkA'T/7rJ, infringes (15)

respectively. Because the walk-off distance is con-
stant, AT is equivalent to the walk-off distance times
the difference between the slope of the optical thick-
ness in the walk-off direction and the nominal slope in
the same direction. For a small walk-off distance or
for smooth surfaces, the typical value of A'T/X is much
less than 0.01, and hence p I Tr and the phase error
caused by AT is negligible. Therefore even if the
thickness difference for two points over the walk-off
distance varies slightly over the pupil, the ghost
fringes can disappear when the tilt angles are ad-
justed properly. For example the window used in
the experiment has several curved fringes, as shown
in Fig. 9a. This indicates that the window has a
wedge approximately in the x direction, and the
optical thickness is not the same in all directions
(showing curved fringes). For this window, we are
still able to remove the effect of multiple reflections,
as shown in Figs. 9b and 10b.

To effectively remove the ghost fringes, we propose
the following procedure for a Fizeau interferometer.
This procedure can also be applied to a Twyman-
Green interferometer, where the reference mirror is
equivalent to the TF:

1. Tilt the TF by a large angle to avoid the
complexity. Adjust the RF such that it is normal to
the collimated beam.

2. Insert the window into the cavity, and orient
the wedge in one direction. Choose a proper tilt
angle 0 for the window. Tilt the window at this
angle in any direction. (Tilt in the direction that
gives the smallest AT, e.g., perpendicular to the wedge
direction, is preferred, but it is not critical.) An
intensity pattern with a faint interference pattern
can be observed, such as in Fig. 6(a).

3. Tilt the RF in the same direction as or the
opposite direction from that for the tilted window.

The faint interference pattern in step 2 disappears
and then appears repeatedly when the tilt angle
increases. The angle correspondingto the first disap-
pearance of the interference pattern should be chosen
because it introduces the smallest walk-off. This tilt
angle corresponds to e in Eq. (9) for odd = 1.

4. Adjust TF to form the main interference fringes.

When the fixed pattern has several fringes, the
disappearance of the fringes in step 3 is obvious, and
this procedure is easy to follow. However, if the
wedge angle is so small and the surfaces are so flat
that the ghost interference pattern is about one
fringe or less in step 2, then it might be difficult to
observe the disappearance of the fringe in step 3.
For this case, the angles of 0 and E need to be
measured accurately. One should note that after
the window is inserted, the collimated beam is slightly
tilted because of the wedge and is no longer normal to
the RF. Moreover, tilting the TF may also cause the
collimated beam to change its direction slightly,
because some TF's have a wedge. These make the
measurement of E more difficult, because the tilt
angle E is measured with respect to the transmitted
collimated beam direction.

In all, when the tilt angles of the RF and the
window are properly adjusted, and both are tilted in
the same plane, the interference ghost fringes can be
removed effectively, regardless of the orientation of
the wedge of the window and the fringes patterns, as
shown in Figs. 6-10. Moreover, a smaller walk-off
gives a smaller AT and hence a smaller error.
Similarly, a smaller lateral displacement introduces a
smaller error. To ensure that the lateral displace-
ment and the walk-off distance are small, one needs to
tilt the window at an angle that is just enough to keep
the ray from entering the interferometer and also to
place the RF close to the window.

Conclusion

When an optical window is being tested, a collimated
beam is transmitted through the window and then is
reflected back by a return flat (RF). The window is
always tilted and the incident angle to the window is
not zero. If the RF is tilted slightly, the reincident
angle of the ray reflected by the RF is different from
the original incident angle. To effectively remove
the ghost fringes, one needs to tilt the RF in the same
plane as that for the tilt of the window, regardless of
the orientation of the wedge of the window. We have
shown that the effect of multiple reflections of the
window can be removed by tilting both the window
and the RF properly. This method allows us to
measure a window with a small wedge angle of several
arcseconds, without using antireflective coatings on
both surfaces.
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