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This paper describes some practical methods to calibrate the phase shifter in phase-shifting interferometry
(PSI). The phase shifter used in the experiment is a piezoelectric transducer (PZT) that has a nonlinearity
of <l%. Using the quantitative method described in this paper, the repeatability in the measurement of the
phase-shifting angle is ˜9.046o rms, and the 3σ 3σ value is 0.139o. A calibration-insensitive phase calculation
algorithm is discussed and compared with other synchronous detection equations (e.g., the three-bucket or
the four-bucket method). Experimental results verify the calibration-insensitive mechanism of the self-cal-
ibrating algorithm.

I. Introduction

The high measurement accuracy of the electronic
phase-measurement techniques makes phase-shifting
interferometry (PSI)1-3 very useful for interferometric
optical testing. Well-known advantages of the PSI
include (1) high measurement accuracy, (2) rapid
measurement, (3) good results even with low contrast
fringes, (4) results independent of intensity variations
across the pupil, (5) phase obtained at a fixed grid of
data points, and (6) the polarity of the wave front can
be determined. The basic idea of PSI is that, if the
phase difference between the two interfering beams is
made to vary in some known manner such as changing
in discrete steps (stepping) or changing linearly with
time (ramping), three or more measurements of the
intensity distribution across the pupil for different
phase shifts between the interfering beams can be used
to determine the phase distribution across the pupil.
The most common way to vary the phase difference
between the two interfering beams is to mount the ref-
erence mirror on a piezoelectric transducer (PZT) and
change the voltage to the PZT. In practice, it is easier
to take the data while the phase difference varies lin-
early with time rather than in discrete steps; if discrete
steps are used, a sufficient delay must exist between
changing the phase and taking data for any transients
to damp out.

The calibration of the PZT for proper phase shift
between data frames is a very important issue if good
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phase measurement results are to be obtained using
PSI. 3 Although this paper focuses on the discussion of
methods for PZT calibration, it may be applied to other
techniques to introduce phase shifts. Two fundamental
problems associated with the motion of the PZT-driven
reference mirror are unknown sensitivity of the PZT,
where the reference mirror may not move to the right
position to introduce an expected amount of phase shift
(e.g., 90o) unless a careful calibration has been done
first, and nonlinearity of the PZT (since the equations
used for phase calculations are based on an assumption
that the PZT is linear in its motion, this problem can
introduce a considerable error if the nonlinearity is
large). Both problems will generate a kind of sinusoidal
phase error that has twice the spatial frequency of the
interference fringes if conventional synchronous de-
tection equations are used to calculate the phase of the
wave front under test. Figure 1 illustrates a typical
result where the phase shift between frames is supposed
to be 90o but is actually 88o.

Two commonly used methods to move the PZT are
stepping and ramping. Stepping involves moving the
reference mirror in several discrete steps and then
taking and storing the intensity readings in the com-
puter before the mirror moves to the next position.
Ramping means to move the reference mirror at a rate
linearly with time. The computer reads the intensity
readings out of the integrating detector array as the
reference mirror moves. Each detector pixel will in-
tegrate the intensity over a time interval that depends
on the number of integrating buckets used for the phase
calculation. For the four-bucket method, the time in-
terval of integration is selected so the phase changes by
π/2 during one integration interval.

Two methods proposed earlier for PZT calibration
are the “phase-lock” method and the “sinusoidal ex-
trema sensing” method as described by Koliopoulos.2

The phase-lock method has the advantage that pre-
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Fig. 1. Phase error vs phase for a phase step of 88o rather than 90o.

calibration of the PZT, either for incorrect sensitivity
or nonlinearity, is not required. But this method re-
quires extra electronics (e.g., a nonintegrating detector)
and the phase-stepping angle must be 90o rather than
another value. Also, this method can be used for phase
stepping only.

The extrema sensing method is precalibration work
that occurs before any phase measurement. It uses the
integrating detector array itself to monitor the intensity
variations over a phase interval a little larger than 2π
while the PZT is ramping. Then the intensity variation
function on any pixel can be used to convolve with a
bipolar function to find the zero crossing positions
(phase = n π). To locate positions where the phase is
equal to (2n + 1)π/2, another discrete convolution is
needed to get the second derivative. Because of the
discrete nature of the convolution, a linear interpolation
is also needed to get the true zero crossing position.
Since the PZT may not move uniformly across the pupil,
many points across the pupil must be monitored to
characterize the PZT. This requires more time, and
greater error caused by air turbulence may occur.

Another alternative of the extrema sensing technique
is storing and displaying four sets of 1 - D intensity
profiles across the array for different phase shifts. The
extrema position can then be located either visually or
by using differentiating techniques. If the phase shifts
are 90°, the first and the third or the second and the
fourth intensity profiles should be 180o out of phase.
To get a higher accuracy of the PZT calibration, a dif-
ferentiating technique is needed. If the mirror surface
is not good enough, high frequency structure on the
intensity profile will make the differentiating technique
troublesome and confusing. In this paper some prac-
tical ways to perform PZT calibrations are described.
These methods usually give better results for ramping
the PZT rather than stepping it.

II. Linear PZT
When the nonlinearity of the PZT is zero, one can

average two sets of measured phase data that were cal-
culated from two sets of intensity readings that are 900

offset with respect to each other. For example, by using
successive π/2 phase shifts, four sets of intensity read-
ings, A, B, C, and D, can be obtained. Using the “three
measurement of four-bucket” algorithm,” A, B, and C

Fig. 2. Display of five frames of phase-shifted fringe patterns for
PZT calibration: (a) β = 90°, (b) β = 96o.

can generate one set of phase data while B, C, and D can
generate another set. Since the sinusoidal calibration
error has spatial frequency twice that of the fringe
pattern, the error can be canceled by simply averaging
these two sets of phase data. Of course, the complete-
ness of the cancellation depends on how close the offset
phase angle is to 90o. Furthermore, unless the non-
linearity is zero, the cancellation will not be 100%.

III. Small Nonlinearity of the PZT
In general, even good quality PZTs have a small

amount of nonlinearity ranging from <l% to a few
percent. Since these PZTs also have some hysteresis
and thermal drift that make the small amount of non-
linearity not repeatable, it is difficult to calibrate this
small and nonrepeatable nonlinearity. Some practical
ways to do the PZT calibration (assuming that the
nonlinearity of the PZT is small enough that the equa-
tions for phase calculation still work) follow.

A. Display Five Intensity Frames
The simplest method to provide an estimate, within

±3o, of the phase shift is to display five phase-shifted
intensity profiles of tilt fringes simultaneously on the
screen of the monitor. If the PZT is calibrated well
enough that the phase shifts are exactly 90°, the last
intensity profile will coincide with the first and the eye
cannot see any offset between the two as known in Fig.
2(a). But when phase increments are not 90°, the last
profile will deviate from the first and can be detected
visually. If the offset is about a quarter of the phase
increment, the phase-shifting angle is ˜90° ± 6o.
Figure 2(b) shows the five intensity profiles when the
phase-shifting angle is equal to 96o. An accuracy of
±3o is possible by simply adjusting the knob on the PZT
driver and making the offset as small as possible.

B. Use Equations to Calculate the Phase-Shifting
Angle

Equation (1) can be used to calculate the phase-
shifting angle at each pixel to obtain a more accurate
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value. From Eq. (l), which is the equation of the in-
tensity distribution of an interferogram, four unknowns
(including the phase-shifting angle β) can be found:

(1)

Thus, one needs at least four intensity readings to solve
for β. As mentioned in Ref. 3, if the phase shifts are
arranged as 0, β,3β, and 4β, then β can be solved easily.
Since we are ramping the PZT and have five buckets (A,
B, C, D, and E), if the first two and last two buckets are
used we should be able to calculate β in the same way.
The required four buckets are

Rewriting them we have

From Eqs. (6) through (9), β can be solved as

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Note, when A - E and B - D are very small, the un-
certainty of β becomes larger. If the PZT has some
amount of nonlinearity, it behaves like a singular point.
This problem can be solved by putting several tilt
fringes across the array and averaging all the calculated
values of β. This method is much more accurate than
the previous one because it provides numerical results.
By measuring β a hundred times, the standard deviation
is ~0.046o and the 3σ value is ~0.139o.

C. PZT Calibration-Insensitive Algorithm
Since the accuracy of the phase value calculated from

the conventional phase-calculation algorithms (e.g.,
three-bucket or four-bucket) is quite sensitive to PZT
calibration as shown in Fig. 3, the PZT must be precal-

4-BUCKET ALGORITHM

- 3-BUCKET ALGORITHM

ANGLECOMPENSATED ALGORITHM
0.01

Fig. 3. Averaged rms phase error vs different phase-shifting angles
β β for three different phase calculation algorithms.

ibrated to ensure there is no drift from the required
phase-shifting angle. Also, most PZTs have some
nonuniformity in their motion such that some tilt will
be introduced and nonuniform phase shift will be
present across the pupil. Of course, a higher quality
PZT driver provides three independent gain controls
to compensate for the nonuniformity; but it is best if an
algorithm intrinsically insensitive to PZT calibration
is obtained. The key point is to make sure that the
equation for phase calculations contains a phase-
shifting angle term to automatically compensate for
variations of phase-shifting angle β. Next, the deri-
vation of the equation of the PZT calibration insensitive
algorithm for ramping is given. If the phase-shifting
angle is β and the phase starts shifting at −2β, the four
integrated buckets look like

Rewriting these equations we have

Let
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Fig. 4. Surface roughness measurement vs different phase-shifting
angle β β for both the four-bucket algorithm and the phase-shifting

angle compensated algorithm.

PHASE SHIFTING ANGLE COMPENSATED ALGORITHM

U = B - C , M = T - W ,

V = A - D , N = 3 U - V ,

W = A + D , P = U + V ,

T = B + C , Q = V - U .

From Eqs. (15) through (18) one has

(19)

or

Although Eq. (20) can be used to calculate β, the results
are worse than that of the four measurement of five-
bucket method mentioned earlier. The phase value can
be obtained from Eqs. (15) through (18) and given by

(21)

Note that in Eq. (21) the factor (tan β) is included in the
phase calculation, thus it can automatically compensate
any deviation of phase-shifting angle β caused by bad
calibration or nonuniform motion of the PZT. Re-
writing Eq. (21) we have

(22)

or

(23)

This result is the same as that shown in Carré’s papers
in 1966, although he derived it for the phase stepping
method and phase shifts of 4πα. The quadrant for φ
is determined by checking the sign of U and M as de-
fined above. Figure 3 shows a computer simulation
result for averaged phase error (in rms) vs different
phase-shifting angles for three different phase calcu-
lation algorithms. Both three-bucket (120o phase shift)
and four-bucket (90o phase shift) algorithms are quite
sensitive to calibration error, but the phase-shifting
angle compensated algorithm is not sensitive to this
kind of error over a wide range of β. It is interesting to
note that, for the calibration-insensitive algorithms, the
averaged phase error is minimum for β = 110o (and not

3052 APPLIED OPTICS / Vol. 24, No. 18 / 15 September 1985

90o as might be expected). This result is quite close to
Carré’s prediction.5 Some experimental results are
shown in Fig. 4 to verify the theoretical predictions. Six
or seven tilt fringes are sampled by the linear detector
array; the rms values of the surface roughnesses are
compared for the four-bucket algorithm and the cali-
bration-insensitive algorithm for different values of β.
If the dc bias term, which is caused by surface rough-
ness, is subtracted out, the effect of the PZT calibration
error is obviously worse for the four-bucket algorithm;
but for the calibration-insensitive algorithm the result
is quite repeatable for the variation of β from 80o to
115o.

IV. Conclusions
In conclusion, the phase measurement error is sen-

sitive to calibration error if conventional synchronous
detection equations of PSI are used to do the phase
calculations. By displaying five phase-shifted tilt fringe
patterns, the phase shifting can be determined with an
accuracy of ±3o. The numerical method discussed in
this paper can provide a better repeatability with a
standard deviation of ~0.046o and the 3σ value is
~0.139o. If the calibration-insensitive algorithm is
used, the averaged phase error is quite small (<λ/3600)
as the phase-shifting angle changes from 60o to 160o as
shown in Fig. 3. Another advantage of this algorithm
is that the problem of pupil-dependent shifter sensi-
tivity is eliminated. One disadvantage of the algorithm
is that a longer calculation time is needed because of the
complexity of the phase calculation equation.
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