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Recent technological innovations have enabled the development of a new class of dynamic (vibration-
insensitive) interferometer based on a CCD pixel-level phase-shifting approach. We present theoretical
and experimental results for an interferometer based on this pixelated phase-shifting technique. Ana-
lyses of component errors and instrument functionality are presented. We show that the majority of error
sources cause relatively small magnitude peak-to-valley errors in measurement of the order of
0.002–0.005�. These errors are largely mitigated by high-rate data acquisition and consequent data
averaging. © 2005 Optical Society of America
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1. Introduction

Phase-shifting interferometry has become ubiqui-
tous for the measurement and characterization of
many types of surfaces including lenses, mirrors,
and aspheres, with various techniques available for
analysis of interference data.1–4 The inherent lim-
itations imposed by vibration in traditional tempo-
ral phase-shifting interferometers have been under
investigation for some time.5,6 In response to these
imposed limitations, there has been a great deal of
work done in the areas of vibration sensitivity sup-
pression as well as exploring vibration-insensitive
instantaneous phase-shifting interferometry.7–16

Recent advances in computing and electronic circuit
capability as well as technological advances in mi-
crofabrication techniques have facilitated the devel-
opment of new technology for the implementation of
a new type of instantaneous phase measurement
system. Systems based on the technology presented
provide a means to make instantaneous phase mea-
surements in broad spectrum applications, which
may enable short coherence sources to be used and

scanning and profiling-type systems with broad-
band or white-light sources to be created. Also, the
technology can be used as a facilitator for dynamic
interferometry in vibration-rich environments such
as machining and manufacturing areas, optical
shops, or in environments with large airflow or
other vibration constraints. This system, based on a
micropolarizer array phase-shifting approach, en-
ables simultaneous acquisition of the phase-shifted
frames using a spatially applied carrier phase shift
at the CCD pixel level. Because the data for phase
calculations are collected during a time scale much
smaller than the vast majority of laboratory and
production environment vibrations, the effects of
the vibration on the phase measurement are essen-
tially frozen in time. This fact makes this system
largely insensitive to the effects of vibration. To
explore the performance capabilities and limita-
tions of the phase sensor, both Twyman–Green and
Fizeau-type interferometers were constructed to
enable laboratory experimentation with this phase-
shifting method. Also, theoretical analyses relating
to this pixelated phase mask method were made. In
this work, some theoretical analyses are presented,
followed by experimental data showing various sys-
tem performance metrics such as a phase-step re-
sponse for the system and the mitigating effects of
the averaging of the measurements. From the ex-
perimentation and modeling work, some conclu-
sions are drawn regarding the limiting factors
involved in phase measurements made with this
technique.

M. Novak (mnovak@optics.arizona.edu) and J. Wyant are
with the Optical Sciences Center, University of Arizona, Tucson,
Arizona 85721. J. Millerd, N. Brock, M. North-Morris, and J.
Hayes are with 4D Technology Corporation, 3280 East Hemi-
sphere Loop, Suite 146, Tucson, Arizona 85706.

Received 12 January 2005; revised manuscript received 18 May
2005; accepted 27 June 2005.

0003-6935/05/326861-08$15.00/0
© 2005 Optical Society of America

10 November 2005 � Vol. 44, No. 32 � APPLIED OPTICS 6861



2. Experimental Setup

The fundamental setup for experimentation is a
polarization-based Twyman–Green interferometer
with a helium–neon laser source �632.8 nm�. A dia-
gram of this type of interferometer is shown in Fig. 1.

The interferometer was constructed under a positive-
flow clean hood to mitigate the effects of dust and con-
taminants on the optical setup. The coherent noise
brought about by scattering in the instrument was thus
minimized. The He–Ne laser source is spatially filtered
and collimated and then passed through a half-wave re-
tarder used to balance the irradiance in each beam of the
interferometer. Depending on the reflectivity of the test
sample, the half-wave retarder is rotated to achieve an
equal irradiance in the two interfering beams. A polariz-
ing beam-splitter (PBS) cube then reflects a portion of the
incident field and transmits the remaining portion of the
beam. Quarter-wave-plate (QWP) linear retarders with
their fast axes oriented at 45° then transform the linear
polarized light into right- and left-hand circular po-
larized light in the two interferometer arms. These
circular polarized reference and test beams are then
reflected from flat mirrors and passed again through
the QWPs, transforming each into the corresponding
orthogonal linear component. In this way, the light
that was originally transmitted by the PBS is now
reflected, and the reflected light is now transmitted.
The beams, recombined, then pass on to the phase-
sensor portion of the setup. Here, another QWP is
used to transform the linear light into orthogonal
circular components, which are then phase shifted
via the polarizing wire grids in the pixelated mask.

3. Dynamic Interferometer Phase-Sensor Basics

First we provide a basic description of the dynamic
phase sensor specific to our chosen implementation
for the work presented here. The fundamental idea is
to introduce at each pixel a spatially varying known
phase shift to the two beams incident on the phase
sensor. At the pixel level, the beams will undergo
known phase shifts relative to one another depending
on the arrangement of the shift for each of the pixels
at the corresponding camera location. After the or-
thogonally polarized reference and test beams have
been recombined and sent to the phase measure-

ment portion of the interferometer as described in
Section 1, the phase-shift portion of the measurement
sequence takes place. Background on the principle of
the phase shift will be provided next.

It has been shown17 that the irradiance following a
linear polarizer for two incident orthogonal circular
states is given by

I �
1
2 �Ir � Il � 2�Ir Il cos��� � 2��� . (1)

Here I is used to denote the total irradiance behind a
linear polarizer oriented at angle � for two incident
circular polarized beams (denoted r and l for the
right- and left-hand circular polarized electric fields
of the reference and test beams in the interferometer
from Fig. 1). The phase difference between the two
beams originally input is ��, which with a known
reference corresponds directly with the phase of the
test beam (the ultimate knowledge of which is the
goal of the measurement). The phase shift introduced
by the linear polarizer is proportional to the orienta-
tion of the polarizer angle � and is given by 2�. This
proves to be a powerful means with which to manip-
ulate the phase of the beams in an interferometer on
a pixel-by-pixel basis and serves as the foundation for
the pixelated phase mask sensor.

Using this fact, a mask has been fabricated such
that the irradiance is manipulated at each pixel using
a known polarizer angle to produce the desired phase
shifts. These linear polarizers are wire grids with an
approximate 150 nm period, with the wires set at
angles of 0°, 45°, 90°, and 135° for the four desired
phase-shift values. The phase shifts introduced then
correspond to a 0°, 90°, 180°, and 270° relative phase
between the test and the reference beams. Once this
phase-shifting scheme is implemented, conventional
four-bucket phase calculation algorithms can be used
to determine the wavefront phase at a particular
point on the wavefront, provided that the local slopes
are not too great. Figure 2 shows the basic sensor
principal.

Using this type of phase sensor, the test wavefront
Fig. 1. Polarization-based Twyman–Green interferometer used
for pixelated sensor experimentation. HWP, half-wave plate.

Fig. 2. Superpixel layout showing the phase-shift variation with
pixel position.
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phase at points across the CCD may then be calcu-
lated. One basic calculation equation is shown as Eq.
(2), where irradiance values at each given pixel are
used to calculate the tangent of the test beam phase
to within a 2� ambiguity:

tan��� �
I0° � I180°

I90° � I270°
. (2)

4. Phase Calculations and Error Analyses

Next some error analyses that are specific to this
particular method of dynamic interferometry are pre-
sented. Some similar work has been presented else-
where; we show these calculations for completeness.
The phase calculation made with this methodology is
inherently subject to errors associated with the as-
sumption that the phase is constant over a finite
region where in fact this may not be (generally is not)
the case. For example, if we calculate the phase using
a 2 	 2 grid of pixels such as that shown in Fig. 2,
then it is assumed that the phase of the test wave-
front is constant over this area to make the calcula-
tion. This is not necessarily true and results in errors
in the calculated phase value. When the phase is
calculated with a four-bucket approach or a weighted
average approach, the errors can be plotted as a func-
tion of input phase to study the effects.

Two models were created to study these effects.
This was accomplished by modeling a tilted wave-
front across an array of four or nine pixels associated
with superpixels composed of 2 	 2 or 3 	 3 grids.
The associated phase calculation was then made for
varying degrees of tilt. For the 2 	 2 calculation, Eq.
(2) is sufficient. The 3 	 3 calculation is only slightly
more complex. Each of the components of the phase is
determined by a weighted average that is calculated
as the 3 	 3 pixel grid is examined across the entire
data array. The 3 	 3 grid looks like a repetition of
the several various phase shifts with either one, two,
or four components added and averaged to give the
true value at the center of the 3 	 3 grid. One form of
this grid (there is a different permutation of the grid
depending on the grid center pixel) is shown in Fig. 3.

This phase grid is repeated over the extent of the
CCD array used to do the imaging and measurement
in the interferometer. As can be seen from Fig. 3,
there are four common sine terms, two similar cosine
and sine terms, and also one cosine term that stands
alone with the highest weight for this particular grid
(the center point in the grid has a weight of 1.0 for the
calculation). Equation (3) shows the calculation for
this 3 	 3 pixel arrangement:

Here the indices refer to the row and column number
of the pixel in the 3 	 3 grid, respectively. The 2,2
pixel containing the cosine term is shown in the de-
nominator with the weight of 1.0; the other weights
are distributed according to the average for each case
determined by the number of similar pixels in the
grid. We present the phase calculation errors for two
different organizations of this grid, namely, a stacked
orientation where 180° out-of-phase terms are verti-
cally spaced and a circular orientation where the 180°
out-of-phase terms are located diagonally across and
displaced by one row in the matrix. Similar
errors due to tilt and consequent methods of compen-
sation have been explored for conventional phase-
shifting interferometry. Here we show the analogous
effect for the pixelated phase-shift approach. The cal-
culations shown are representative of the errors seen
for the case of a tilted wavefront across the aperture
of the instrument. The magnitude of tilt per pixel
affects the magnitude of the error in the phase mea-
surement. From Figs. 4(a) and 4(b) we see that the
phase-dependent error is approximately an order of
magnitude larger for the stacked algorithm calcula-
tion than for the circular algorithm calculation.

There are other sources of error associated with the
instrument under study. Some of the interesting
sources of error include polarizer angle and extinc-

tan��� �
1�4 �4 � sin��1,1� � sin��1,3� � sin��3,1� � sin��3,3� � � 1�2 �2 � sin��2,1� � sin��2,3� �

1�2 �2 � cos��1,2� � cos��3,2�� � �1 � cos��2,2��
. (3)

Fig. 3. Phase grid for 3 � 3 weighted average phase calcula-
tion.
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tion errors, errors in retardance for the wave plates
used to create the orthogonally polarized reference
and test states, and instrument retrace error. Next
we present analyses related to each of these effects.

A. Quarter-Wave-Plate Retardance Errors

We examine next the effects of imperfect retarders in
the formation of the circularly polarized orthogonal
reference and test beams. It is often the case that the
retardance for such elements is out of specification by
a few percent, up to as much as 15%–20% for poorly
fabricated parts. In this subsection we look at the
effects of such errors on the phase calculation.

To make the calculation analyses necessary to de-
termine the effects of QWP errors, a closed-form ex-
pression for the matrix form of a rotated linear
retarder was sought, including errors in axis orien-
tation for the wave plates, and as well errors in the
retardance values of the wave plates. This matrix is
shown in Eq. (4):

In this matrix the retardance of the wave plate is
represented as �. The error in the retardance is

. The symbol � is used to denote the orientation of
the fast axis of the retarder, and ε is the error in this
orientation. Using this form of the rotated retarder,

the amplitudes of the electric field for each pixel in
a pixelated mask-based interferometer were then
calculated in the presence of various errors. For the
case of axis alignment, the results were not criti-
cally affected. For the case of retardance variation,
we see results that may prove significant for even
small values of retardation error. The key then is to
understand the possible magnitude of the effect and
also the mitigating factors and averaging capability
of the interferometer. To illustrate the effects, the
error in calculated phase is plotted against �t (the
unknown test phase) for two values of retardance
error. The plots are shown in Fig. 5.

As can be seen from Fig. 5, an error of ��20 in
retardance produces approximately 0.007� peak-to-
valley error in the calculated phase. The magnitude
of these errors is consistent with functional instru-
ment performance, and the effect it has on phase
measurement can be mitigated to a large extent
by averaging. This key benefit of a high data-

acquisition rate may be utilized to reduce the error
associated with phase-dependent errors of many
types, independent of error cause. This is due to the
fact that, as vibration tends to move the starting
phase (via piston) for the test wavefront, several mea-

M � �exp�1�2 i �
 � ����cos2	 ��

180 � �
� exp�1�2 i �
 � ��� sin2	 ��

180 � �
�
� i sin	��

90 � 2�
 sin	
 � �

2 

� i sin	��

90 � 2�
 sin	
 � �

2 

exp��1�2 i �
 � ����exp�i �
 � ��� cos2	 ��

180 � �
 � sin2	 ��

180 � �
��. (4)

Fig. 4. (a) 3 � 3 circular pixel grid algorithm showing the corresponding expected error. (b) 3 � 3 stacked pixel grid algorithm showing
the corresponding expected error. w�p, waves per pixel.
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surements may be made and averaged to null out the
effects of these types of phase-dependent error.

B. Polarizer-Related Errors

Next we examine the effects of variations in the po-
larizing elements used in the interferometer. Since
the phase shift produced for each pixel is dependent
on the linear polarizer orientation and also the irra-
diance at the pixel, it is useful to understand how
variation in the polarizers affects the phase measure-
ment capability of the interferometer.

1. Polarizer Alignment Errors
The alignment of the polarizers in the mask with
respect to the local Cartesian coordinate system de-
termines the phase shift imparted to the light inci-
dent on the polarizer. This was shown in Eq. (1). If
one or more of the polarizers is oriented at an angle
other than optimum for the phase shift desired, there
will be an error in the phase shift produced by the
mask at that point. In Fig. 6 we present one such
phase-dependent error, in this case for misalignment
of the 45° polarizing wire grid. This error would arise
in the instrument if the wire-grid polarizer oriented
at a 45° nominal axis angle was misaligned during
the fabrication of the mask.

The magnitude of the error associated with a 0.5°
polarizer misalignment suggests that this will not be a
significant contribution to overall instrument error.

This is due to the fact that the error is approximately
1 order of magnitude smaller than the errors associ-
ated with QWP axis misalignment and would likely be
masked by the larger errors associated with other sys-
tem components. It is also likely that a 0.5° alignment
error would not be overlooked during the polarizer
fabrication process, implying that the actual errors to

be expected due to polarizer alignment may be smaller
still. These errors would then likewise be mitigated to
a large extent by averaging during measurement.

2. Polarizer Extinction Ratio Errors
Next we examine more closely the effects of imper-
fect diattenuation for the wire-grid polarizers used
in the instrument. This imperfection manifests it-
self mainly in the failure to completely extinguish
light that should be blocked by the polarizer due to
its E field orientation. As stated previously, this
leads to stray amplitude and phase light entering
into pixels and contributing to an irradiance error
at that pixel. In this subsection we examine the
effects of these imperfections on measurement ca-
pability.

A perfect linear polarizer will exhibit a diattenua-
tion of 1.0, where the polarizer passes with 100%
efficiency radiation aligned with its preferred direc-
tion and blocks 100% of the radiation polarized in the
orthogonal sense. We examine two cases, first the
case of equal, nonideal diattenuation for the polariz-
ers. Second, we examine the effects for uniform po-
larizers in three of the four pixels making up a 2
	 2 superpixel. In the first case, we see only a mod-
ulation effect; in the second, we see a nonlinear error
in the phase calculation.

To examine these effects, a matrix form for the
general linear polarizer with diattenuation coeffi-
cient � and orientation angle � was derived. This
matrix form is shown in Eq. (5):

In the matrix D, � represents the angle of the po-
larizer axis from horizontal and � represents the
diattenuation factor difference from 1.0. A 90% di-
attenuator would then have a value of 0.1 for �.

To examine the situation, the effect of a 90% diat-
tenuator in the place of perfect polarizers for each
subpixel in a superpixel was examined. Using the

D � 	 �1 � �� cos2��� � � sin2���
�1 � �� cos��� sin��� � � sin��� cos���

�1 � �� cos��� sin��� � � sin��� cos���
� cos2��� � �1 � �� sin2��� 
. (5)

Fig. 5. Error in calculated phase for QWP retardance errors of
0.05� and 0.1�.

Fig. 6. Phase error due to 45° polarizer misalignment.
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appropriate values for � as described previously,
appropriate phase shifts are introduced at each of
the pixels making up a superpixel. Equations (6)
show the four irradiance values calculated theoret-
ically in this case for a general test wavefront phase
�t for a diattenuation coefficient � � 0.1, given the
four different polarizer angles for a 2 	 2 super-
pixel:

I1 � 0.82 � 0.8 sin��t�,
I2 � 0.82 � 0.8 cos��t�,
I3 � 0.82 � 0.8 sin��t�,
I4 � 0.82 � 0.8 cos��t�.

(6)

As can be seen from these functional forms of the
irradiance, the net effect is a decrease in the fringe
contrast (noted by the less than unity coefficients for
the sinusoidal terms). However, if one uses standard
four-bucket techniques to calculate the phase of the
test beam from these irradiance values [see Eq. (2)],
one obtains directly tan��t�. The effect is therefore
one of reduced fringe contrast. For this relatively
high value of � (0.1 in this case), the modulation is
reduced by 20% from the ideal situation.

The error in calculation becomes more pro-
nounced when there are different diattenuation fac-
tors associated with the polarizers for each pixel in
the group. To examine this case, we present the
effect of one of the superpixel quadrants exhibiting
a high level of diattenuation imperfection while the
other quadrants are treated as perfect linear polar-
izers. This would be analogous to an error in the
processing of one of the polarizer pixel elements
during the mask fabrication process. Since each of
the pixel orientations is fabricated all at once and
independently from the other pixel types in the
mask, it is possible to have a defect inherent to one
of the process steps that would lead to this type of
effect. The result is that the process error affects
only one of the polarizer types in the pixelated
mask, and there is a resulting phase-dependent er-
ror. This phase-dependent error is plotted in Fig. 7.

In this plot the phase is plotted over a span of 2� rad,

and the error is seen to peak at approximately 0.002�
for diattenuation � � 0.1. The form of the error ex-
hibits some characteristics similar to nonlinear de-
tector errors. The magnitude is such that it is
realistic to expect this not to be a critical factor in
instrument performance. Larger diattenuation im-
perfections could become detrimental to measure-
ment accuracy and should therefore be avoided by
ensuring the accuracy of the polarizer fabrication
process.

5. Experimentation

Next we discuss the irradiance step response and
present experimental results related to the phase-
step response and reduction of error components
through averaging. These metrics are good indicators
of interferometer performance.

A. Irradiance Step Response

The irradiance step response can be thought of as
the effect of the edge of the test part on the mea-
surement. For a 2 	 2 pixel grid calculation, the
edge pixel must be removed from the calculation
(where there is no light from the test part reflected
back into the interferometer). In the 3 	 3 case, this
effect extends two pixels in from the edge. It is
necessary to eliminate data from the edge so as to
avoid ringing in the phase calculation at the edge of
the optic under test, which would manifest as false
surface error data.

B. Phase-Step Response

One interesting instrument performance metric for
an interferometer is the response to a phase step. The
ideal response would occur over the span of one pixel,
a simple binary transition from low to high phase. In
practice, however, there are limitations due to the
spatial nature of the phase calculation. In this sub-
section we present the calculation of phase for a per-
fectly input wavefront step subjected to the pixelated
mask phase-shifting technique described, as well as
actual experimental results for the response to a
quarter-wave step.

The theoretical phase-step response was tested us-
ing a perfect quarter-wave step as the input to the
phase calculation algorithm. Figure 8 shows a profile
of the resulting phase-step output of the calculation
algorithm. The slope of the calculated phase front
shows this transition occurring over two pixels.

It is interesting to compare these theoretical calcu-
lations with experiment. A PhaseCam interferometer
from 4D Technology was used to measure a quarter-
wave step in the laboratory. To compare this result
with the theoretical calculations, a cross section of
the measurement shown was examined for the width
of the transition of the phase step. The result is plot-
ted in Fig. 9.

As can be seen, the experimental data agree well
with the prediction of the two-pixel-wide phase-step
response. This is inherent in the phase calculation
mechanism due to the spatially separated nature of
the phase-shift steps of the pixelated phase mask.

Fig. 7. Phase-dependent error plot for � � 0.01 linear diattenua-
tor.
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C. Mitigating Effects of Averaging

To show the effects of the error sources on real mea-
surement data, a set of experiments were completed
where a single measurement was compared with the
averaged result of several measurements. To show
that the phase-dependent errors can be nearly elim-
inated by averaging, we first made single measure-
ments and then compared the results with an
average of many consecutive (high-acquisition-rate)
measurements. Through the piston of the starting
phase inherent in the measurements due to vibra-
tion, the phase of the double-frequency error varies
randomly; in the limit as we increase the number of
measurements, the double-frequency fringes are re-
duced accordingly.

A flat mirror of good quality ���20 peak to valley)
was measured for the following experiment. Fig-
ure 10 shows the straight tilt fringes obtained using
a pixelated interferometer and this flat mirror in a
standard Fizeau test configuration.

As can be seen from the fringes in Fig. 10, the
mirror is relatively high quality and there is good
fringe contrast. The measurements made here were
performed under a positive pressure flow hood with
some air turbulence and vibration inherent in the
setup due to the airflow motor. A single measurement
was taken and analyzed to show the effects of fringe

print-through on the data. This result is shown in
Fig. 11.

The double-frequency error is apparent here for the
3.5 fringes of tilt between the reference flat and the
test mirror shown in Fig. 10. Here we see seven
fringes of printthrough in this unaveraged single-
measurement case. In theory, when several measure-
ments are averaged one would expect to see a
decreased sensitivity to this type of error. This is due
to the change in the relative starting phase imparted
by the vibration from the airflow hood or other envi-
ronmental factors. This change in starting phase will

Fig. 8. Calculated phase-step transition showing a two-pixel
transition.

Fig. 9. Cross section of the phase-step measurement showing a
two-pixel response as seen in the theoretical calculation.

Fig. 10. Tilt fringes obtained from a flat mirror under test.

Fig. 11. Analysis of a single measurement of a flat mirror show-
ing a double-frequency fringe print-through. WV, waves.
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in theory tend to cause an overall averaging to zero of
the print-through. Figure 12 shows the resulting
analysis data for an average of 16 measurements for
the same optical surface under test.

As can be seen from Fig. 12, there is little if any
remaining indication of double-frequency error in the
data. The overall shape of the surface remains the
same with a peak-to-valley error of the order of
��20. However, the sinusoidal shape of the print-
through has been averaged out from the resulting
data.

6. Conclusions

We have shown both theoretical and experimental
performance for a micropolarizer array-based simul-
taneous phase-shifting interferometer. We have dem-
onstrated a theoretical phase-step response and
experimental agreement with the theoretical value of
the response. Calculation-based and also component-
based limitations to the values of the measured wave-
front phase have been shown, and we demonstrated
that component errors introduce errors comparable
in magnitude to phase calculation errors. We then

showed that to a great extent the effects of the com-
ponent errors may be mitigated by the averaging of
several measurements, enabled by the high rate of
data acquisition of the vibration-insensitive system.
This suggests that an overall performance limitation
may be found in the stray radiation due to diffraction
or other stray-light sources in the system.

We extend our gratitude to 4D Technology, Inc.,
for support of this work.
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