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The interference between a uniform reference wave and a speckle object wave results in variable fringe contrast and
background level. Taking these variations into account, we optimize system parameters of phase-shifting speckle
interferometry. The results show that the optimal reference intensity should always be equal to one fourth of the
detector’s saturation level. The optimal reference to the object-intensity ratio shows an increase from one up to, in
most practical cases, six as a chosen interference dynamic range increases from its minimum value. The depen-
dence of a maximal fraction of acceptable measurements on the dynamic range is calculated. Numerical examples
indicate that we may hope for a readout accuracy in the range of 1/50th to 1/100th of a fringe period and still cover
more than half of the image area with acceptable data. These data are taken without spatial averaging and have

maximum resolution.

1. INTRODUCTION

Optical phase-shifting techniques are becoming commonly
used in interferometric measurements since they provide
means of obtaining rapid and accurate phase measurements
over the interferogram.-3 A major reason for the use of
phase-shifting techniques is that measurements can be per-
formed independently of both the variation of fringe con-
trast and the background level. Since these parameters
vary considerably across a speckle pattern, applications of
phase-shifting techniques should result in improvements of
a variety of speckle interferometric measurements as well.

Holographic interferometry and speckle interferometry
usually consist of two separate processes: the recording
(primary) process and the reconstruction (secondary) pro-
cess. In the recording process we register a primary inter-
ference pattern (“fringes”). In the reconstruction process
we display the secondary fringes, which are a result of com-
bined primary interference fringes. Systems can be classi-
fied by the amount of speckle noise that is present. These
systems range from classical interferometers that contain no
speckle noise to systems that analyze primary speckle inter-
ferograms directly. In this paper we shall discuss the latter
systems, of which we point out two major examples: those
that measure at essentially one point (one speckle) at a time,
such as the well-known laser Doppler interferometers,? and
TV-camera two-dimensional recordings, such as electronic
speckle-pattern interferometry (ESPI).> ESPI usually dis-
plays secondary interferograms, but the primary ones are
accessible from the TV camera directly. At the primary
stage, the random intensity and phase variations in the
speckle pattern have to be taken into account as it seems
impossible to average out speckle noise directly, temporally
or spatially, at this stage.®

In order to apply phase-shifting techniques, we should
know how to optimize the setup parameters and how to
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design calculating/measuring procedures. In this paper we
shall quantify these problems by estimating the number of
black and saturating spots/speckles in the image. We do
this by first calculating the optimum of key parameters of
the setups and then finding the fraction of measurements
that is considered to be acceptable when a certain minimum
measurement accuracy is required. To be more concrete, we
may assume that the setup is a specular reference ESPI,
although the analysis applies to other specular reference
wave setups as well, We denote a wave with uniform inten-
sity as a specular reference wave, as opposed to a speckle
reference wave. Previous papers on ESPI and ESPI optimi-
zation® are all based on the statistical first-order moments of
the brightness in the reconstructed image, without consider-
ing the complete distribution function. Phase-shifting
methods are part of the special case in which self-interfer-
ence terms are removed from the signal and in which the
limited dynamic range alone limits fringe contrast. Having
access to the primary interferograms makes it possible to use
level discrimination to remove most of the worst data points.

2. PARAMETERS DEFINING ACCEPTANCE
LEVELS

We assume that the interference pattern, which is due to
interference between a specular (uniform) reference field
and a diffusely scattered (speckled) object field, is fully
resolved by the detector elements. The intensity pattern is
given by the equation

Ix, y,£) =| A + | Aglx, )|
+ 2|A,| |4y(x, ¥)| cos[®(x, y)

where
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A, is the complex reference field,

Ag(x, v, t) is the complex object field,

®(x, y) is the initial phase difference between the object
and the reference field,

A®g(x, y, t) is the induced phase change in the object field
that we want to measure,

A®(t) is the controlled phase shift given by the actual
phase-shifting technique being used.

By using the controlled phase shift A®(t) and the intensity
measurements I(x, y, t) we want to find the induced phase
change A®g(x, y, t). A®q (x, y, t) can be caused by object
movement (deformation/velocity analysis), wavelength
change, or directional change of the object-illumination
wave (contouring), etc.

To illustrate, let us assume that we want to find Ady(x, vy,
t) with intermediate object deformation, as in a holographic
double-exposure recording. We then have to find the total
relative phase between the reference and the object wave
before and after deformation. The difference between these
two phase values gives us the desired phase. If a discrete
four-step phase-shifting technique is applied directly, we
find from Eq. (1) that the phase difference is given by the
equation?

Ady(x, y, t) = arctan[(ls,r/zl - IT/QI)/(IO' -1
= arctan[(I3, o — I o)1y — 1)), (2)

where Iy, I/, I, and I3/, are the four intensity measure-
ments corresponding to the four phase settings 0°, 90°, 180°,
and 270°, respectively, of A®(t). The unprimed values refer
to the intensity levels before deformation, and the primed
values refer to the levels after deformation.

In comparison with phase measurements in the secondary
interferograms of conventional holography,® we have to de-
termine one more parameter, the initial phase difference
®(x, y) between the object and the reference wave. Howev-
er, the direct access to the primary interferograms gives us
the freedom of selecting any of the possible combinations
between them. But most of all, we get rid of the slow inter-
mediate processes such as the photographic and thermoplas-
~ tic ones.

In response to the exposure pattern of Eq. (1) we assume
that the detector (the TV camera in ESPI) responds linearly
within its dynamic range. Since electronic noise will be
added to the signal, to apply equations like Eq. (2) we re-
quire that

(1) The total intensity always be less than the detector
saturation level I,

(2) The modulation depth that is due to phase shifting
be larger than a certain level I .

This lower level I i, is given by the phase accuracy that we
require from our measurements. Reference 7 discusses how
the phase accuracy of classical interferometers depends on
the ratio between signal and additive noise and the limited
quantization levels in an analog-to-digital conversion.
These results are valid for each position x, y in a speckle
interferogram as well. To give an example based on four
discrete phase steps, we assume that additive electronic
noise is limiting our measurement accuracy. Reference 2
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shows that if each intensity measurement is made with a
signal I (peak modulation depth) to rms noise ratio (I/ay,),
the rms phase error is equal to

A® = 1/y2(I/a,). (3)

In a speckle interferogram this signal-to-noise ratio varies
from point to point, and we see from Eq. (1) how the signal
varies with the amplitude |Ay(x, y)|. If we tolerate a maxi-
mum phase error of Ad,,, we can find from Eq. (3) the
minimum value [ that is expected to be useful. This value
we have already denoted by I ;.. That is,

Ly, = —2 @
e ‘/§A q’max

We now return to the two general conditions, (1) and (2),
which have to be fulfilled before we get acceptable phase-
shifted measurements. We have mathematically

D: 4,1 +[Ag(x, I + 2] A] |4, )] <1, (B)

I
2): 2|4, |Agx, y)| > Iy, = —2% ; (6)
where the useful dynamic range D is defined as the ratio
between saturation level I, and minimum peak-to-peak ex-
cursion of the cross-interference term.
By rearranging Eq. (5), we get

@ [Aglx, 9| < (T, —1A,). (M

From conditions (6) and (7) we therefore expect the phase-
shifting methods to give acceptable data if the amplitude of
the diffuse object field fulfills the combined condition

IC
Zﬁm <[4y, y)| < (\/—: =14,D. (8)

In this expression the acceptance levels are defined by the
three parameters |A,|, the field amplitude of the uniform
reference field; I, the saturation level of the detector; and D,
which is the dynamic range of the cross-interference signal
variations. This range, D, can be related to the phase accu-
racy as shown by Eq. (4) and expression (6).

3. FRACTION OF ACCEPTABLE
MEASUREMENTS

In a specular reference wave setup, only |Ag| is a random
function denoting the field amplitude of the speckle pattern.
To find the fraction of measurements that fall within the
limits of expression (8) we first have to find the probability-
distribution function of |Ao|. From textbooks on speckle
statistics (see, e.g., Ref. 9) we know that in most practical
cases the distribution function of the object intensity| Ao |2 is
given by the well-known negative exponential function, that

is,
o _ 1 _le|2
P,(|A|D = ——<IO> expl: T , 9)

where (I) is the statistical average of the intensity|A4g|2.

The distribution of object amplitudes|Aq| can be derived
from Eq. (9) by a direct-probability transformation, as given
by, e.g., Ref. 10, to give
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Fig.1. This graph shows the probability of the speckle field ampli-
tude. The unit of the amplitude scale is equal to the square root of
the expectation value of the speckle intensity.

21 A [A,l?
A - —_— — .
p(|Ad) A exp[ T (10)

By direct inspection we see that this function is, apart from a
trivial constant, equal to the derivative of the positive part of
the Gaussian distribution function, also called the normal
function. It is worthwhile to point out that this function
shows that field amplitudes close to zero are relatively rare.
A graph of the function is shown in Fig. 1. By integrating
between the limits given by expression (8) we get the fraction
F of acceptable measurements expressed by the integral

_[WElAD 9 x?
F(A,1,D) = J . mexp[—ﬁo—)]dx. 1)
1|4,

By integrating we get the result

IZ
F(A, I.D) =exp| - ————
(- 1eD) p[ 16D2|Ar|2(10>:|

(L= 14,1
- exp[— T] (12)

To recast this result into a more manageable form we intro-
duce the normalized parameters

A 2
r = reference to object-intensity ratio = I<I—'l> )
0
R = normalized reference to 4 |42
saturation-intensity ratio ETT

c

(13)

In classical interferometry, in which both waves are uniform,
they should have equal intensity. At the point of construc-
tive interference, the total intensity should be equal to the
saturation level. When R in Egs. (13) equals 1, it represents
the optimum reference intensity value that we would expect
from a classical interferometer. By inserting Egs. (13) into
Eq. (12) we finally find the fraction of acceptable measure-
ments expressed by the normalized parameters D, r, and R,
as follows:
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r 2
F(r,R,D) = exp[— DZRZ] - exp[—.r( ﬁ - 1)2] - (14)

4, MAXIMAL FRACTION OF ACCEPTABLE
MEASUREMENTS

The fraction F in Eq. (14) has a maximum for a certain
optimum reference-to-object intensity ratio r, which can be
found by differentiation of F, giving

-_1 a
ot = G =5 ln( b), (15)

where

a= 1 s b= _2_ -1 2.
D?R? NI
By inserting rop into Eq. (14) we see that the optimized
fraction will be equal to

‘F(R, D) = exp|— r,a] — exp[— roptb] ) (16)

where rop is given by Eq. (15).

To find the overall maximum of F with respect to both rqp;
and the normalized reference to saturation-intensity ratio R,
having only the dynamic range D as a parameter, we have to
take the derivative of F(R, D) with respect to R in Eq. (186).
We first substitute Eq. (15) for rqy and then rearrange Eq.

(16) to give
ln(—a)
_\b/ | (17)

glﬁ a

\ b b
F(R,D) = exp| ——F& | — exp| —
(5

G-

By denoting the ratio a/b as ¢ we can take the following
derivative to maximize F:

[ éc 6F
2 =20, 18
o6R ) oR éc (18)
In this equation either d¢/dR or 6F/5c or both have to be zero
to maximize F. By insertion it turns out that the condition
dc/6R equals zero is sufficient. Written out, this becomes

()

_5£.=
oR D2R2 __2___1 2
VR

With the numerator in this equation equal to zero we find
the two roots:

R=1, R=4 (20)

Here R = 1 represents a maximum of F. This is certainly a
simple result:

(1) We get an optimum value of R that is equal to 1.
This means that the reference intensity in a specular refer-
ence-wave setup, independently of the dynamic range D,
should always be equal to the optimum value of a classical
interferometer in which the object speckle field is replaced
by a uniform one, i.e., a reference intensity equal to the
saturation level divided by four.
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Fig. 2. The optimized fraction F(D) of acceptable data and the
optimal reference to object intensity ratio rop (D) are shown as a
function of the dynamic range D. D is an interference dynamic
range defined as the ratio between the detector’s saturation level
and the minimum of the acceptable peak-to-peak excursion of the
cross-interference term.

(2) At the same time the optimum reference-to-object
intensity ratio from Eq. (15), with R = 1 inserted, is equal to
D2
(D?-1)

(3) Inserted into Eq. (16), these values give an overall
maximum fraction of acceptable measurements that de-

pends on the detectors’ dynamic range D only. This maxi-
mum is equal to

F(D) = (1 - i)exp[_ln(ﬂ]. (22)

ropt(D) = In (D?). (21)

D? (1-D?%

Inthelimit D = 1, Eq. (22) shows that the F(D) = 0. This
trivial limit shows that if only intensity variations in which
the acceptable values have a peak-to-peak value larger than
the saturation level, then no measurements gre acceptable.
As the dynamic range D increases from 1, more and more
measurements become acceptable. This is graphically
shown in Fig. 2, where the maximal fraction F of Eq. (22) is
shown as a function of D. In Fig. 2 we also see how the
optimal reference-to-object intensity ratio ron(D) increases
from a minimum of 1 to 6 as D increases from 1 to 20.

5. NUMERICAL EXAMPLES

With classical interferometers we expect to get reliable data
from all pixel elements. In aspeckle interferometer we deal
with a random distribution of intensity causing some of the
pixel elements to saturate and others to fail to give fringe
modulation above noise level.

Therefore with classical interferometers we may rely on
data from neighbor pixel elements also to build up a continu-
ous phase map automatically without 27 ambiguities. On
the other hand, with speckle interferometers this is not so
straightforward. From what we have calculated, the maxi-
mum number of acceptable measurements depends directly
on the dynamic range D of the cross-interference signal. As
shown by Eq. (4) and expression (6), this range can be relat-
ed to the required phase accuracy and the detector’s dynam-
ic range, which is the ratio between saturation level and rms
noise. Explicitly, we have the equation [using Eq. (4) and
expression (6)]
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1 (1.
D=—[—=)A%,,, (23)

where the number of discrete phase steps is assumed to be 4.
Let us consider the three examples: a vidicon TV camera
with I./o, = 50, a linear-detector array camera with I./o, =
150, and a photomultiplier tube with I./¢, = 1000. By use of
Eq. (23), the maximum fraction F(D) in Eq. (22) can be
written as a function of A®,,,. Correspondingly, with I./c,
= 50, 150, and 1000 inserted, the scale of the abscissas in Fig.
2 will be equal to 1.62°, 0.54°, and 0.08° phase accuracy,
respectively. )

In deformation analysis we find the difference between
two phase values, and the resulting phase accuracy will be a
factor of 1/y/2 less than the phase accuracy of one phase
measurement alone. Therefore these examples show that
with the vidicon TV camera we expect no measurements to
have an accuracy better than 2.29° (i.e., 1/160th of a fringe).
With the linear-detector array and the photomultiplier tube
the corresponding numbers would be 0.76° and 0.11°, re-
spectively. From Fig. 2 we see that half of the measure-
ments have an accuracy better than D = 2.1, that is, half of
the TV camera area will contribute with an accuracy better
than 2.1 X 2.29° = 4.8° (i.e., 1/80th of a fringe). With the
same TV camera, 90% of the area will be measured with an
accuracy of 16° or better.

In order to produce automatically a continuous phase map
from a speckle interferogram and still resolve 2 ambigu-
ities, we have to compare phase measurements from neigh-
bor pixel elements. As in classical interferometry,” we may
require that the phase difference between next-neighbor
measurements be less than #. Assume that we want to
resolve 27 ambiguities along a line across a TV image or
along a linear-detector array. With A®,,, = 7 and /o, =
150 inserted into Egs. (22) and (23), we find that the 2«
ambiguities fail to be resolved in only 1 of 7000 trials.

These examples, therefore, indicate that the 2« ambigu-
ity, the fringe-order count, can generally be solved by ac-
cepting all data within the maximum dynamic range D,
which corresponds to the maximum allowed phase inaccura-
cy of = (i.e., half a fringe). With a large majority of 27
ambiguities resolved, we can then repeat the procedure with
a smaller dynamic range D by selecting other acceptance
levels (see Section 2). Thereby the most inaccurate mea-
surements are rejected and better phase accuracy is ob-
tained for the remaining ones. Consequently, by using the
results of the initial less accurate measurements, the 2=
ambiguities are resolved for the large majority of the most
accurate ones.

6. DISCUSSION AND CONCLUSION

In order to make fast and efficient instrumentation of holo-
graphic/interferometric setups, we should consider analyz-
ing the interference pattern directly without an intermedi-
ate reconstruction step. In ESPI these primary interfero-
grams are coming directly from the TV camera, and by
means of a digital frame grabber they are also present in
electronic and digital form. However, to analyze a two-
dimensional speckle interferogram, we require that phase
values across the image be kept track of, a problem that,
according to our knowledge, has not been experimentally
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solved. In order to get rid of 27 ambiguities of induced
phase values, the randomness of the phase in the speckle
field has to be dealt with. The numerical examples in Sec-
tion 5 indicate that we may both hope for an accuracy in the
range of 1/50th to 1/100th of a fringe and still cover more
than half of the image area with acceptable data. Although
we may always count fringe orders by direct observation, the
the numerical examples also indicate that fringe-order
count, the 2= ambiguity, can automatically be taken care of.

In the research reported in this paper we have, by first
optimizing the setup parameters, calculated the maximal
fraction of measurements that we regard as being accept-
able. These results show that the dynamic range, which
may also include a limited number of quantization levels, is
the key parameter for obtaining a large fraction of measure-
ments in a speckle interferometer. Point detectors, such as
P-I-N diodes and photomultiplier tubes, usually have a
large dynamic range. In systems depending on point detec-
tors, we consequently seldom measure at positions where
data have to be rejected. For example, with a dynamic
range (saturation level divided by rms noise) of 1000 and
worst accuracy corresponding to 1/100th of a fringe, only
0.5% of randomly positioned detectors will fail. Conse-
quently, with a backup of only one parallel detector, the
possibility that both detectors will fail at the same time is
only 2.5 X 1073%. (The probability that n parallel detectors

fail at the same time goes as the nth power of the probability

that one of them will fail.)

Finally, we point out that we have assumed the speckle
pattern to be fully resolved. This is not the case in practice,
and we expect the real fraction of acceptable measurements
to be slightly less than the maximum that we have calculat-
ed, because the effective dynamic range then decreases.
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However, it is also worthwhile to point out the generality of
our results: independent of the required phase accuracy,
and as in classical interferometry, the maximum fraction of
acceptable measurements is obtained with a reference inten-
sity that is equal to one fourth of the saturation level. The
optimal reference-to-object intensity ratio repy increases
with the dynamic range and is always larger than one.

* Present address, Conoptica a/s, Tonstadgrenda 252, N-
7075 Tiller, Norway.
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