

College of Optical Sciences THE UNIVERSITY OF ARIZONA®

Introduction to Interferometric Optical Testing

James C. Wyant
College of Optical Sciences
University of Arizona
jcwyant@optics.arizona.edu
www.optics.arizona.edu/jcwyant

Outline

- 1. Basic Interferometers for Optical Testing
- 2. Phase-Shifting Interferometry
- 3. Specialized Optical Tests
- 4. Long Wavelength Interferometry
- 5. Testing of Aspheric Surfaces
- 6. Measurement of Surface Microstructure
- 7. Absolute Measurements
- 8. Concluding Remarks

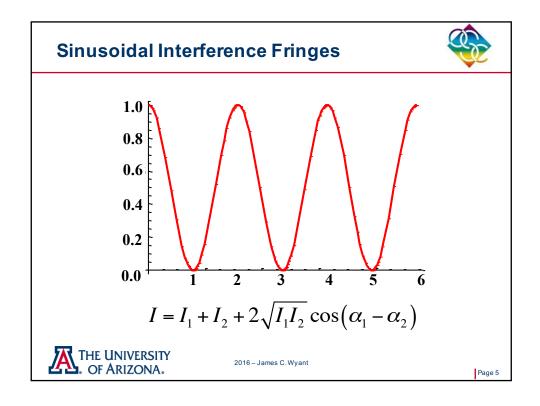
Part 1 - Basic Interferometers for Optical Testing

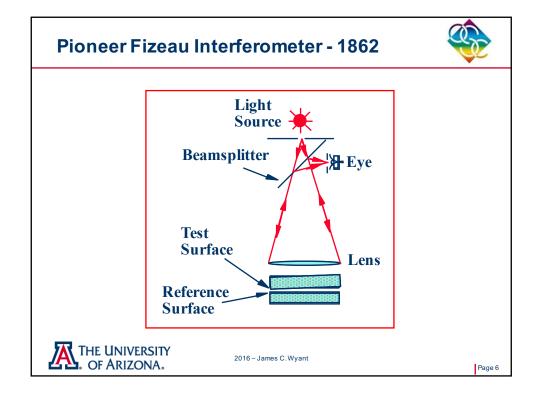
- Two Beam Interference
- Fizeau and Twyman-Green interferometers
- Basic techniques for testing flat and spherical surfaces
- Scatterplate and Smartt Interferometers
- Lateral Shearing Interferometers
- Typical Interferograms

2016 - James C. Wyant

Page 3

Two-Beam Interference Fringes

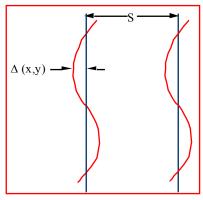

$$I = I_1 + I_2 + 2\sqrt{I_1I_2}Cos(\alpha_1 - \alpha_2)$$


 $\alpha_1 - \alpha_2$ is the phase difference between the two interfering beams

$$\alpha_1 - \alpha_2 = \left(\frac{2\pi}{\lambda}\right)$$
 (optical path difference)

2016 - James C. Wyant

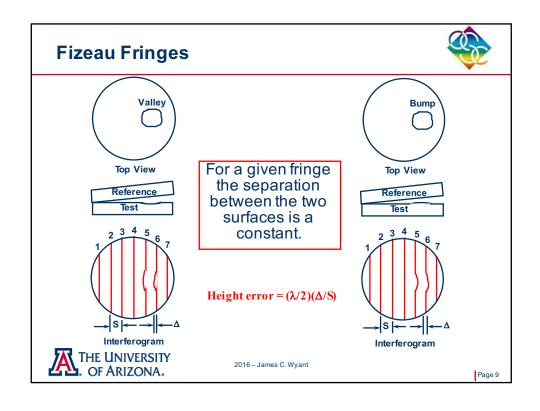
Typical Interferogram Obtained using Fizeau Interferometer

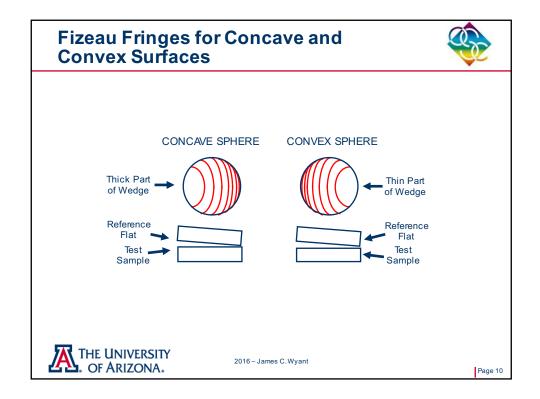


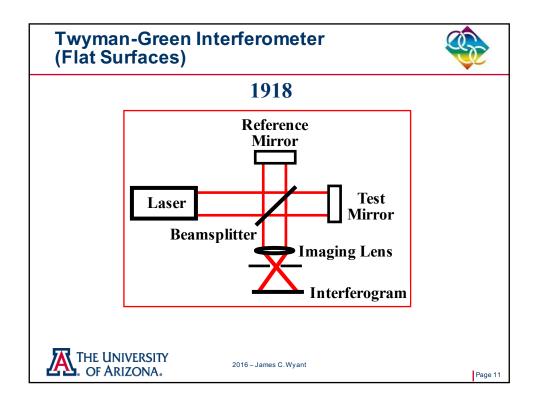
2016 - James C. Wyant

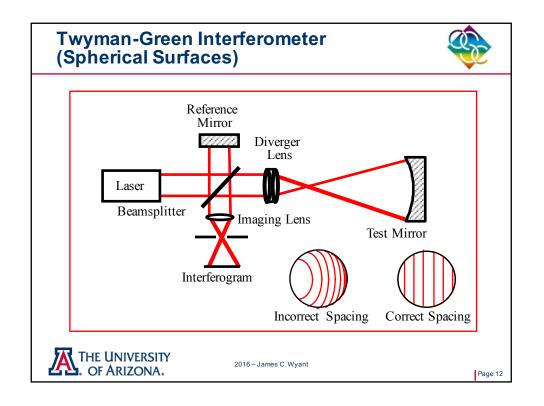
Page 7

Relationship between Surface Height Error and Fringe Deviation

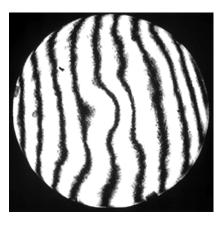




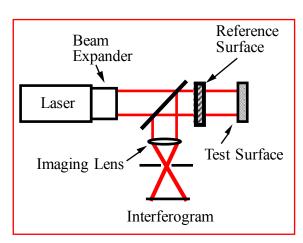

Surface height error = $\left(\frac{\lambda}{2}\right) \left(\frac{\Delta}{S}\right)$



2016 - James C. Wyant



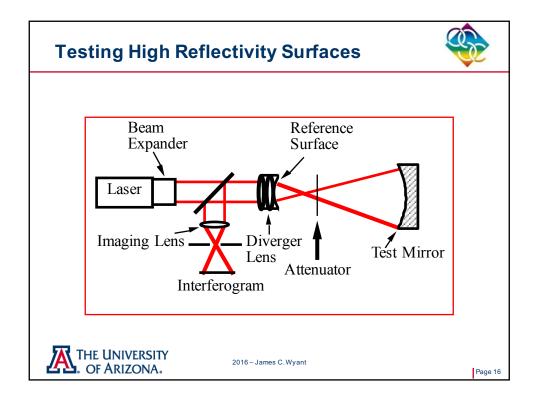
Typical Interferogram

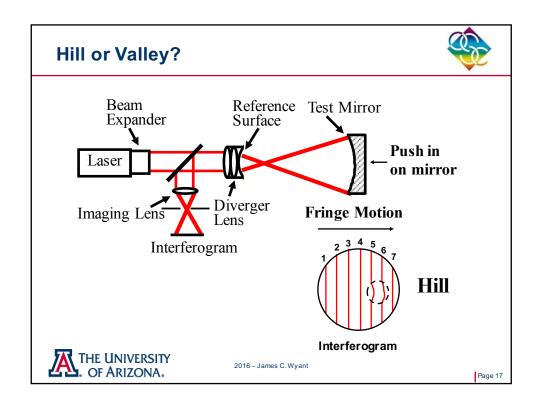


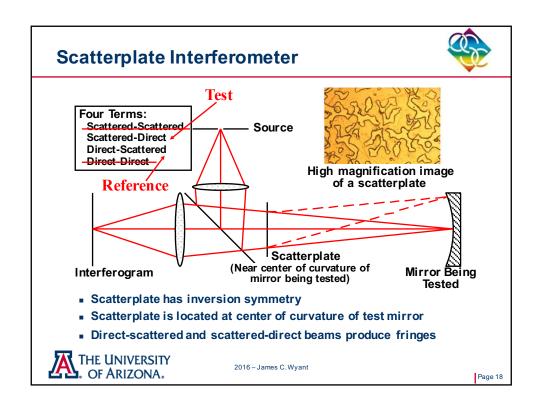
2016 - James C. Wyant

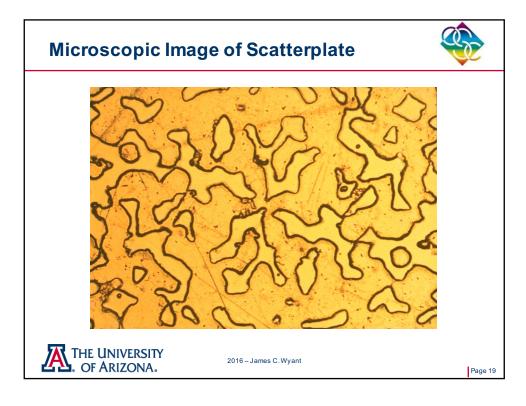
Page 13

Fizeau Interferometer-Laser Source (Flat Surfaces)

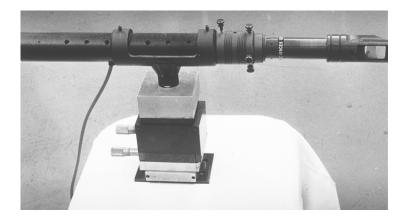




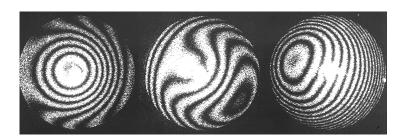

THE UNIVERSITY OF ARIZONA.


2016 - James C. Wyant

Fizeau Interferometer-Laser Source (Spherical Surfaces) Beam Reference Surface Laser Diverger Lens Test Mirror Interferogram The University Of ARIZONA. Page 15

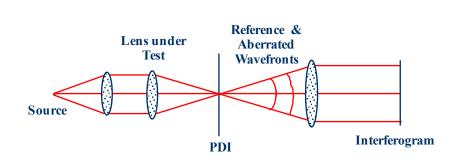


Scatterplate Interferometer



2016 - James C. Wyant

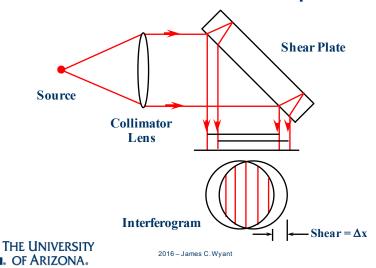
Scatterplate Interferograms



2016 - James C. Wyant

Page 21

Smartt Point Diffraction Interferometer



2016 - James C. Wyant

Lateral Shear Interferometry

Measures wavefront slope

Page 23

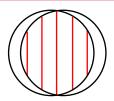
Lateral Shear Fringes

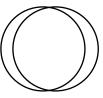
 $\Delta W(x,y)$ is wavefront being measured

Bright fringe obtained when

$$\Delta W(x + \Delta x, y) - \Delta W(x, y) = m\lambda$$

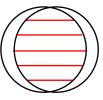
$$\left(\frac{\partial \Delta W(x,y)}{\partial x} \right) = m\lambda$$
Average over shear distance
$$\Delta x = m\lambda$$


Measures average value of slope over shear distance


2016 - James C. Wyant

Collimation Measurement

No wedge in shear plate



Not collimated

Collimated (one fringe)

Vertical wedge in shear plate

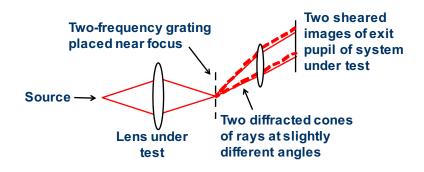
Collimated

Not collimated

2016 - James C. Wyant

Page 25

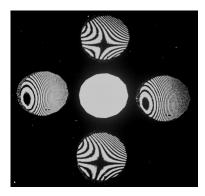
Typical Lateral Shear Interferograms



2016 - James C. Wyant

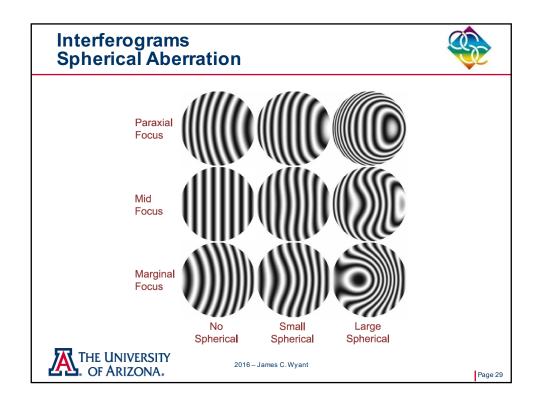
Lateral Shear Interferometer

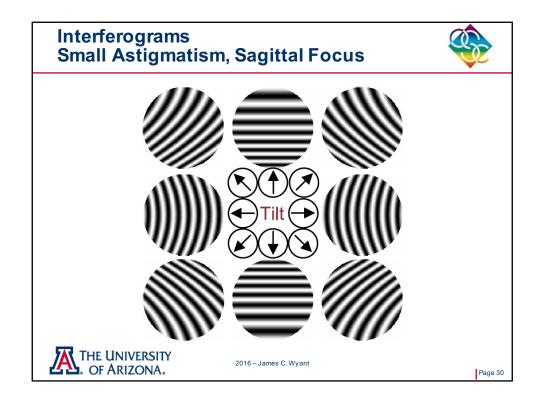
Measures slope of wavefront, not wavefront shape.

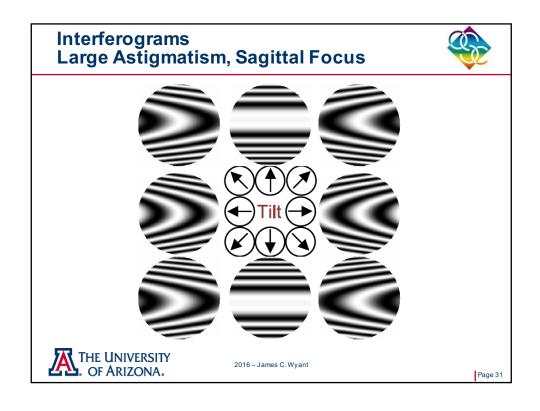


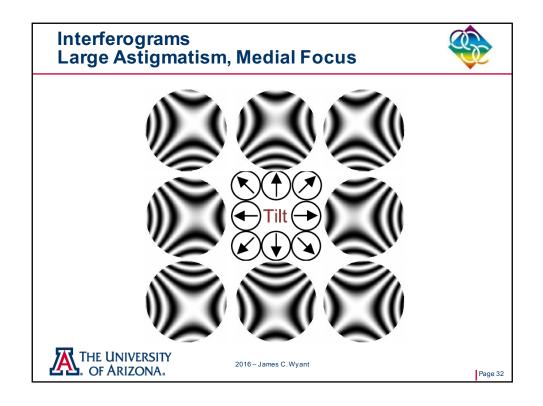
2016 - James C. Wyant

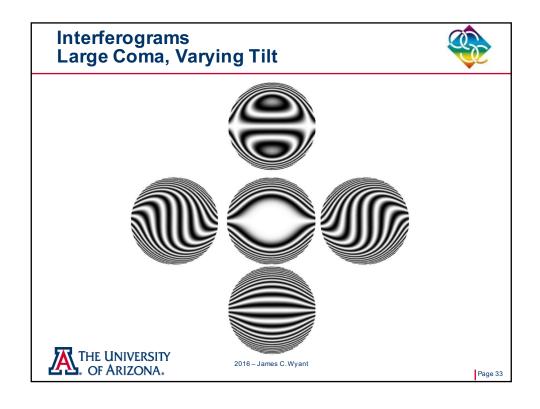
Page 27

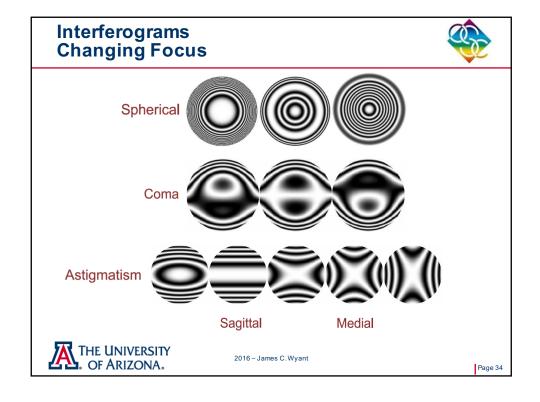

Interferogram Obtained using Grating Lateral Shear Interferometer





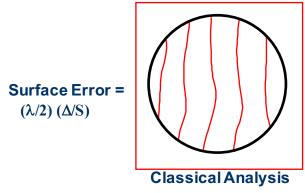



2016 - James C. Wyant



Interferograms Combined Aberrations Sph Coma Aberrations Sph Coma Astig Astig Astig Coma Astig Coma Astig Coma Astig Coma Astig Coma Astig Astig Page 35

Part 2 Phase-Shifting Interferometry

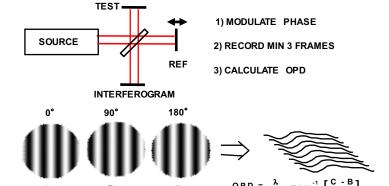

- Classical analysis of interferograms
- Basic algorithms
- Removing phase ambiguities
- Single-shot phase-measurement interferometers

2016 - James C. Wyant

Typical Interferogram

Measure positions of fringe centers.

Deviations from straightness and equal spacing gives aberration.



2016 - James C. Wyant

Page 37

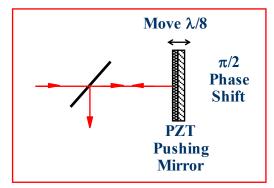
Phase-Shifting Interferometry

THE UNIVERSITY
OF ARIZONA.

2016 - James C. Wyant

Advantages of Phase-Shifting Interferometry

- High measurement accuracy (>1/1000 fringe, fringe following only 1/10 fringe)
- Rapid measurement
- Good results with low contrast fringes
- Results independent of intensity variations across pupil
- Phase obtained at fixed grid of points
- Easy to use with large solid-state detector arrays



2016 - James C. Wyant

Page 39

Phase-Shifting - Moving Mirror

2016 - James C. Wyant

Phase Stepping (Shifting) Interferometry Four-Step Method

$$I(x,y) = I_{dc} + I_{ac} \cos[\phi(x,y) + \phi(t)]$$

measured object phase

$$\begin{aligned} & \mathbf{I_{1}(x,y)} = \mathbf{I_{dc}} + \mathbf{I_{ac}} \cos \left[\phi(x,y)\right] & \phi(t) = 0 & (0^{\circ}) \\ & \mathbf{I_{2}(x,y)} = \mathbf{I_{dc}} - \mathbf{I_{ac}} \sin \left[\phi(x,y)\right] & = \pi/2 & (90^{\circ}) \\ & \mathbf{I_{3}(x,y)} = \mathbf{I_{dc}} - \mathbf{I_{ac}} \cos \left[\phi(x,y)\right] & = \pi & (180^{\circ}) \\ & \mathbf{I_{4}(x,y)} = \mathbf{I_{dc}} + \mathbf{I_{ac}} \sin \left[\phi(x,y)\right] & = 3\pi/2 & (270^{\circ}) \end{aligned}$$

$$Tan[\varphi(x,y)] = \frac{I_4(x,y) - I_2(x,y)}{I_1(x,y) - I_3(x,y)}$$

2016 - James C. Wvant

Page 41

Relationship between Phase and Height

$$\phi(x,y) = Tan^{-1} \left[\frac{I_4(x,y) - I_2(x,y)}{I_1(x,y) - I_3(x,y)} \right]$$
Height Error $(x,y) = \frac{\lambda}{4\pi} \phi(x,y)$

Height Error
$$(x, y) = \frac{\lambda}{4\pi} \phi(x, y)$$

2016 - James C. Wyant

Phase-Measurement Algorithms

Three Measurements

$$\phi = ArcTan \left[\frac{I_3 - I_2}{I_1 - I_2} \right]$$

Four Measurements

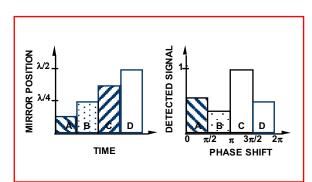
$$\phi = ArcTan \left[\frac{I_4 - I_2}{I_1 - I_3} \right]$$

Schwider-Hariharan Five Measurements

$$\phi = ArcTan \left[\frac{2(I_4 - I_2)}{I_1 - 2I_3 + I_5} \right]$$

Carré Equation

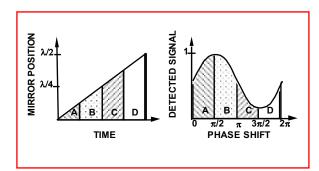
$$\phi = ArcTan \left[\frac{\sqrt{[3(I_2 - I_3) - (I_1 - I_4)][(I_2 - I_3) - (I_1 - I_4)]}}{(I_2 + I_3) - (I_1 + I_4)} \right]$$



2016 - James C. Wyant

Page 43

Phase-Stepping Phase Measurement



THE UNIVERSITY
OF ARIZONA.

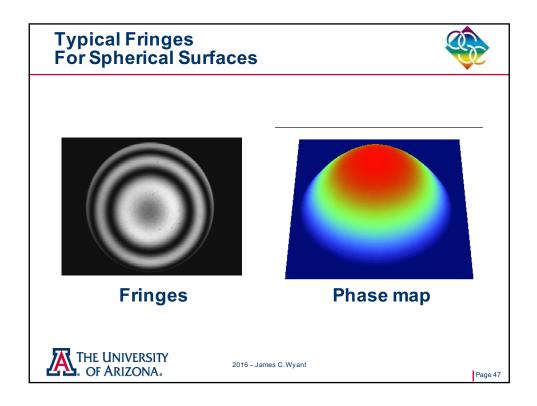
2016 - James C. Wyant

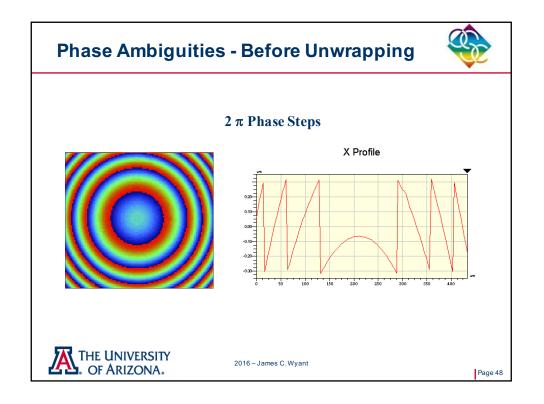
Integrated-Bucket Phase Measurement

2016 - James C. Wyant

Page 45

Integrating-Bucket and Phase-Stepping Interferometry


Measured irradiance given by


$$\begin{split} I_{i} &= \frac{1}{\Delta} \int_{\alpha_{i} - \Delta/2}^{\alpha_{i} + \Delta/2} I_{o} \left\{ 1 + \gamma_{o} Cos \left[\phi + \alpha_{i} \left(t \right) \right] \right\} d\alpha \left(t \right) \\ &= \left\{ 1 + \gamma_{o} Sinc \left[\frac{\Delta}{2} \right] Cos \left[\phi + \alpha_{i} \right] \right\} \end{split}$$

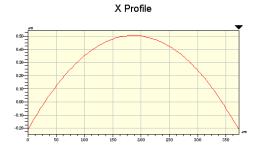
Integrating-Bucket $\Delta=\alpha$ Phase-Stepping $\Delta=0$

2016 - James C. Wyant

Removing Phase Ambiguities

- Arctan Mod 2π (Mod 1 wave)
- Require adjacent pixels less than π difference (1/2 wave OPD)
- Trace path
- When phase jumps by > π
 Add or subtract N2π

Adjust so $< \pi$


2016 - James C. Wyant

Page 49

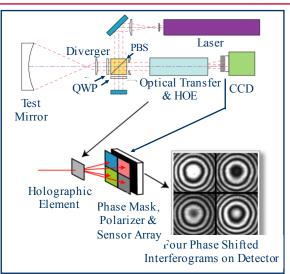
Phase Ambiguities - After Unwrapping

Phase Steps Removed

2016 - James C. Wyant

Error Due to Vibration

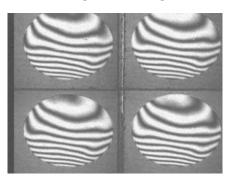
- Probably the most serious impediment to wider use of PSI is its sensitivity to external vibrations.
- Vibrations cause incorrect phase shifts between data frames.
- Error depends upon frequency of vibration present as well as phase of vibration relative to the phase shifting.


2016 - James C. Wyant

Page 51

Single-Shot Phase-Measurement Interferometer

- Twyman-Green
 - Two beams have orthogonal polarization
- 4 Images formed
 - Holographic element
- · Single Camera
 - 1024 x 1024
 - 2048 x 2048
- Polarization used to produce 90-deg phase shifts

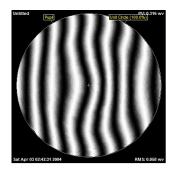


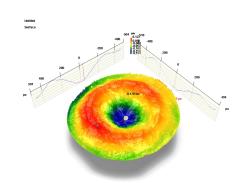
2016 - James C. Wyant

Dynamic Interferometry

Fringes Vibrating

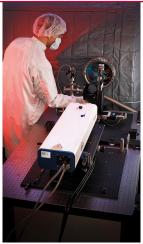
Phase relationship is fixed




2016 - James C. Wyant

Page 53

Measurement of 300 mm diameter, 2 meter ROC mirror


Mirror and interferometer on separate tables!


2016 - James C. Wyant

Testing of Large Optics

Testing on Polishing Machine (Courtesy OpTIC Technium)

2016 - James C. Wyant

Page 55

Pixelated Phase Sensor

- Compacted pixelated array placed in front of detector
- Single frame acquisitionHigh speed and high throughput
- Achromatic
 - Works from blue to NIR
- True Common Path
 - Can be used with white light

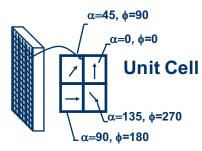
2016 - James C. Wyant

Use polarizer as phase shifter

Circ. Pol. Beams $(\Delta \phi)$ + linear polarizer $\rightarrow \cos (\Delta \phi + 2\alpha)$

Phase-shift depends on polarizer angle

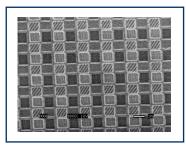
Reference: S. Suja Helen, M.P. Kothiyal, and R.S. Sirohi, "Achromatic phase-shifting by a rotating polarizer", Opt. Comm. 154, 249 (1998).


2016 - James C. Wyant

Page 57

Array of Oriented Micropolarizers

Polarizer array Matched to detector array pixels



2016 - James C. Wyant

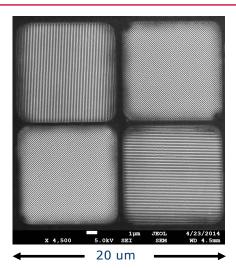
SEM of Patterned Polarizers

10 micron elements

Photolithography used to pattern polarizers

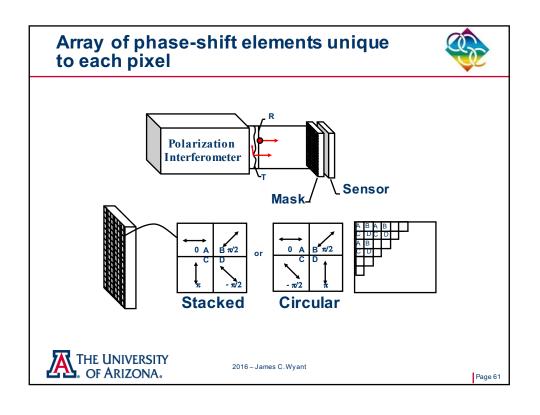
- Ultra-thin (0.1 0.2 microns)
- Wide acceptance angle (0 to 50 degrees)
- Wide chromatic range (UV to IR)

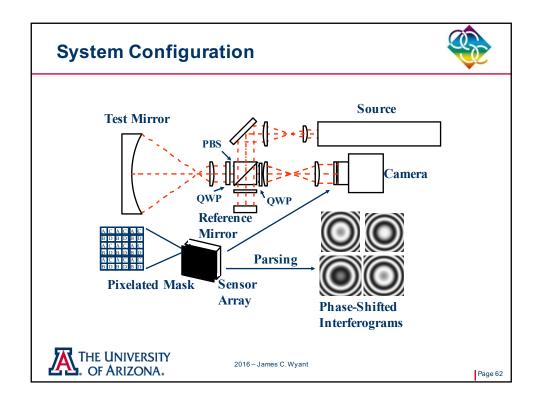
Array bonded directly to CCD

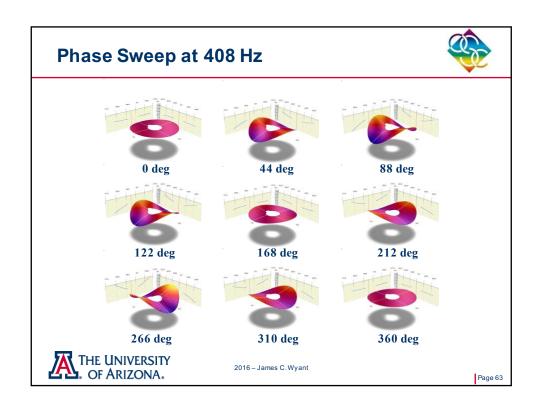


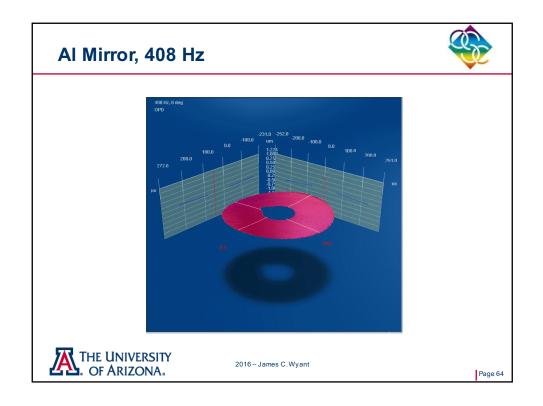
2016 - James C. Wyant

Page 59

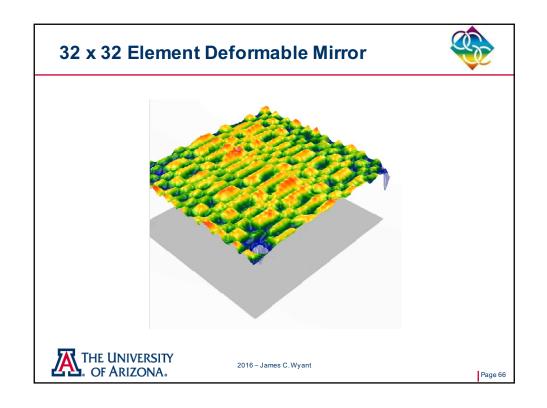

Electron micrograph of wire grid polarizers

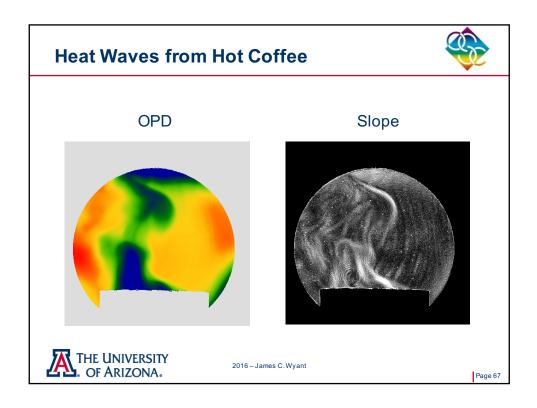


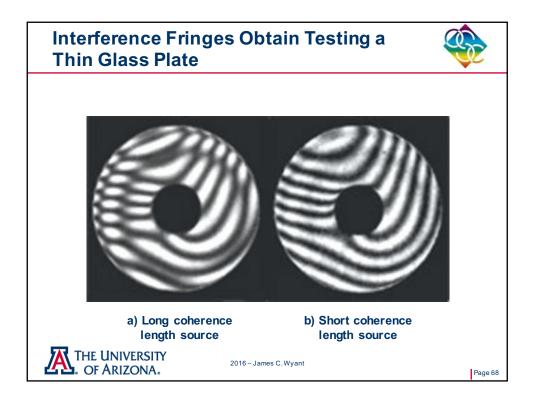


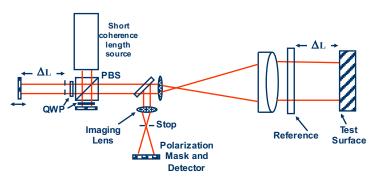

THE UNIVERSITY
OF ARIZONA.

2016 - James C. Wyant







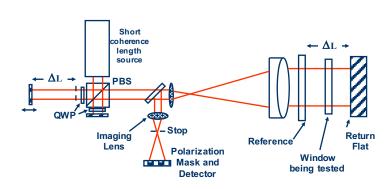


Simultaneous Phase-Shifting Fizeau – Short Coherence Length Source

Interference pattern resulting from long path length source beam reflected off reference and short path length source beam reflected off test surface.

Test and reference beams have orthogonal polarization.

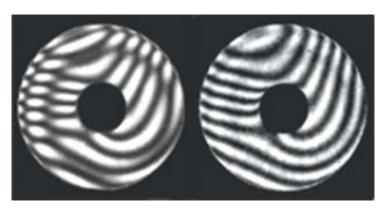
Fewer spurious fringes.



2016 - James C. Wyant

Page 69

Testing Glass Sample – Short Coherence Length Source



2016 - James C. Wyant

Interference Fringes Obtain Testing a Thin Glass Plate

a) Long coherence length source

b) Short coherence length source

2016 - James C. Wyant

Page 71

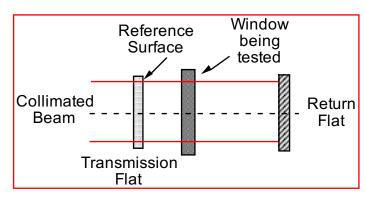
Conclusions – Single Shot Interferometer

- Vibration insensitive, quantitative interferometer
- Surface figure measurement (nm resolution)
- · Snap shot of surface height
- Acquisition of "phase movies"

2016 - James C. Wyant

Part 3 Specialized Optical Tests

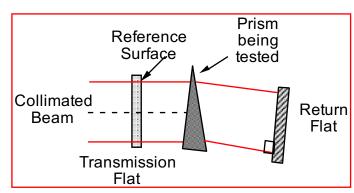
- Testing windows, prisms, and corner cubes
- Measuring radius of curvature
- Measuring index inhomogeneity
- Testing cylindrical surfaces



2016 - James C. Wyant

Page 73

Testing Windows in Transmission

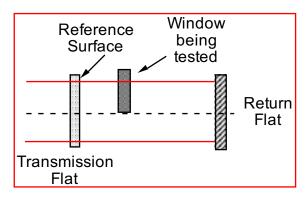

 δt = window thickness variations OPD measured = 2 (n-1) δt

2016 - James C. Wyant

Testing Prisms in Transmission

 $\delta t = error in prism thickness$

OPD measured = 2 (n-1) δt

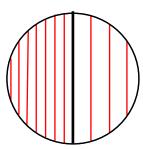


2016 - James C. Wyant

Page 75

Measuring Window Wedge

Tilt difference between two interferograms gives window wedge.



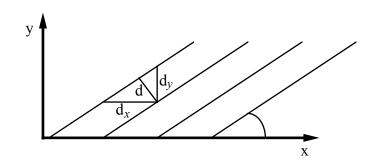
2016 - James C. Wyant

Calculating Window Wedge

Tilt difference between two interferograms gives window wedge.

 α = window wedge

$$\alpha = \frac{\text{tilt difference}}{2(n-1)}$$



2016 - James C. Wyant

Page 77

Calculation of Tilt

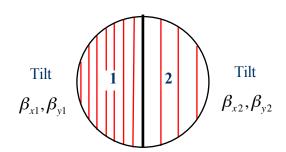
d = fringe spacing $d_x = d / \sin(\theta)$ $d_y = d / \cos(\theta)$

$$\mathbf{d}_{x} = d / \sin(\theta)$$

$$d_y = d / \cos(\theta)$$

$$\beta = Tilt = \frac{\lambda}{d}$$

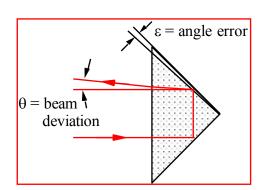
$$\beta_x = \frac{\lambda}{d}$$


$$\beta_x = \frac{\lambda}{d_x} \qquad \beta_y = \frac{\lambda}{d_y}$$

2016 - James C. Wyant

Calculation of Tilt Difference

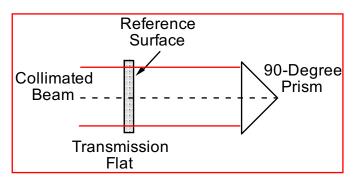
Tilt Difference =
$$\sqrt{(\beta_{x1} - \beta_{x2})^2 + (\beta_{y1} - \beta_{y2})^2}$$



2016 - James C. Wyant

Page 79

Angle Accuracy of 90-Degree Prisms


$$\varepsilon = \frac{\theta}{2n}$$

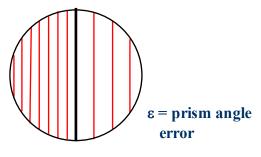
THE UNIVERSITY
OF ARIZONA.

2016 - James C. Wyant

Testing 90-Degree Prisms (Single Pass)

Tilt difference between two interferograms gives error in 90-degree angle.

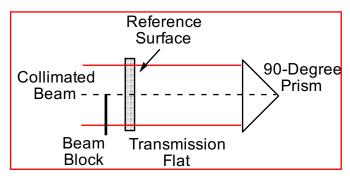
Errors in collimated beam do not cancel.


2016 - James C. Wyant

Page 81

Calculating Error in 90-Degree Prism (Single Pass)

Tilt difference between two interferograms gives prism angle error.

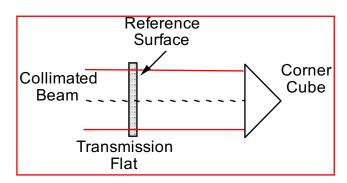

$$\epsilon = \frac{tilt\ difference}{4n}$$

2016 - James C. Wyant

Testing 90-Degree Prisms (Double Pass)

$$\varepsilon = \frac{\text{x tilt in interferogram}}{4n} \qquad \begin{array}{c} \varepsilon = \text{prism angle} \\ \text{error} \end{array}$$

Errors in collimated beam cancel.

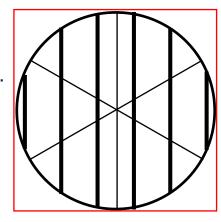


2016 - James C. Wyant

Page 83

Testing Corner Cubes (Single Pass)

Errors in collimated beam do not cancel.


2016 - James C. Wyant

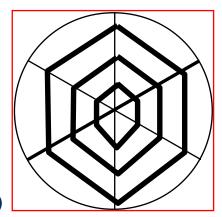
Interferogram for Perfect Corner Cube (Single Pass)

6 interferograms obtained.

Straight fringes obtained for perfect corner cube.

2016 - James C. Wyant

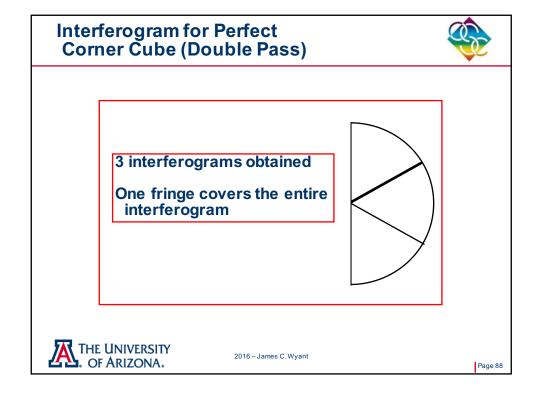
Page 85


Analyzing Corner Cube Interferograms (Single Pass)

6 interferograms obtained.

Tilt difference between any 2 interferograms gives one angle error in corner cube.

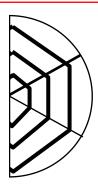
n is refractive index of corner cube.



Error = Tilt difference/(3.266 n)

2016 - James C. Wyant

Testing Corner Cubes (Double Pass) Reference Surface Collimated Beam Transmission Block Flat Errors in collimated beam cancel.

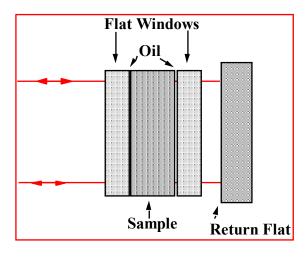

Analyzing Corner Cube Interferograms (Double Pass)

3 interferograms obtained.

Tilt of each interferogram gives one angle error in corner cube.

n is refractive index of corner cube.

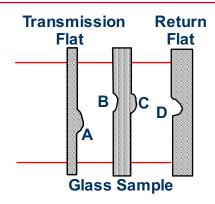
Error = Tilt/(3.266 n)



2016 - James C. Wyant

Page 89

Measuring Index Inhomogeneity (Classical Technique)


THE UNIVERSITY

OF ARIZONA

2016 - James C. Wyant

Measuring Index Inhomogeneity Without Oil-On Plates

4 Measurements Required

Surface Errors in Test Optics and Glass Sample Cancel.

2016 - James C. Wyant

Page 91

Measuring Index Inhomogeneity

1. Measure light reflected from front surface of sample.

$$\mathsf{OPD1} = 2(\mathsf{B-A})$$

2. Measure light through sample and reflected off second surface.

$$OPD_2 = 2(B-A)+2n_0(C-B)+2\delta$$

3. Measure through sample and reflected off return mirror.

$$OPD_3 = 2(B-A)+2n_0(C-B)+2(D-C)+2\delta$$

4. Remove sample and measure cavity.

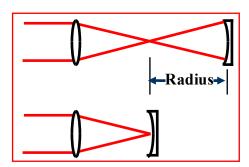
$$OPD4 = 2(D-A)$$

 $\delta = [no(OPD3-OPD4)-(no-1)(OPD2-OPD1)]/2$ = (n-no)T

2016 - James C. Wyant

Index Inhomogeneity Test Results

RMS: 0.168 wv P-V: 0.711 wv wv: 632.8nm



2016 - James C. Wyant

Page 93

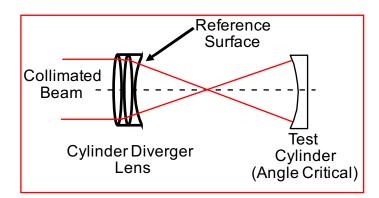
Measuring Radius of Curvature

Two positions which give null fringe for spherical mirror.

2016 - James C. Wyant

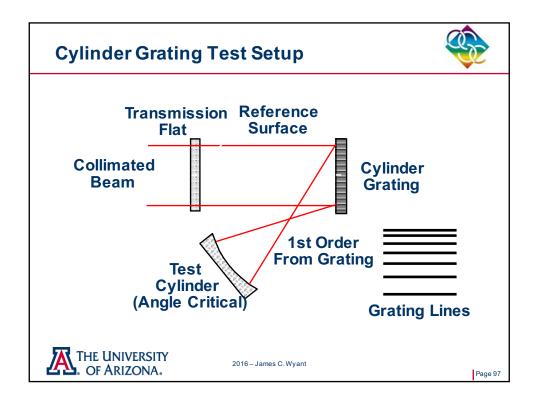
Cylindrical Surface Test

- Need cylindrical wavefront
 - Reference grating: Off-axis cylinder
 - Cylinder null lens: Hard to make
- Direct measurement No modifications to interferometer
- Concave and convex surfaces
- Quantitative phase measurement



2016 - James C. Wyant

Page 95


Cylinder Null Lens Test Setup

2016 - James C. Wyan

Part 4 Long Wavelength Interferometry

- Wavelengths of primary interest
- Test infrared transmitting optics
- Test optically rough surfaces

2016 - James C. Wyant

Wavelengths of Primary Interest

- 1.06 microns Reduced sensitivity
- 10.6 microns
 Reduced sensitivity
 Test infrared transmitting optics
 Testing optically rough surfaces

2016 - James C. Wyant

Page 99

1.06 Micron Source Interferometer

- Diode Pumped Yag Laser Excellent coherence properties
- Normal Optics
- Normal CCD Camera

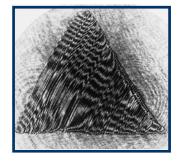
Conventional interferometry techniques work well.

2016 - James C. Wyant

10.6 Micron Source Interferometer

- Carbon Dioxide Laser **Excellent coherence properties**
- Zinc Selenide or Germanium Optics
- Bolometer

Conventional interferometry techniques work well.



2016 - James C. Wyant

Page 101

Reduced Sensitivity Testing

0.633 microns wavelength 10.6 microns wavelength

Testing Rough Surfaces

Assume surface height distribution is Gaussian with standard deviation σ .

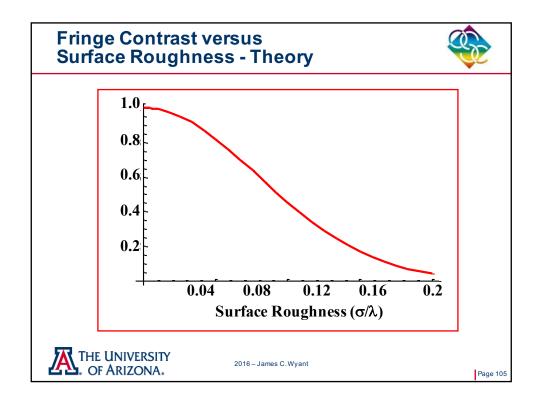
The normal probability distribution for the height, h, is

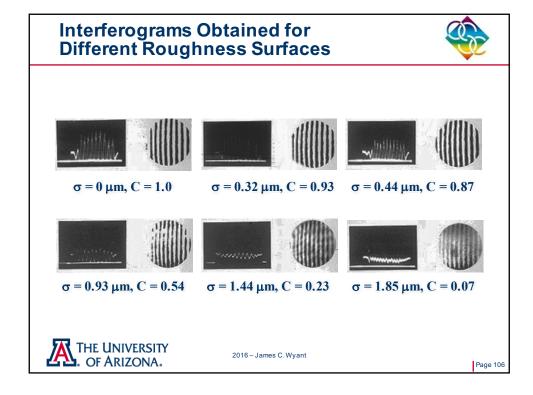
$$p(h) = \frac{1}{(2\pi)^{1/2}\sigma} \exp\left(-\frac{h^2}{2\sigma^2}\right)$$

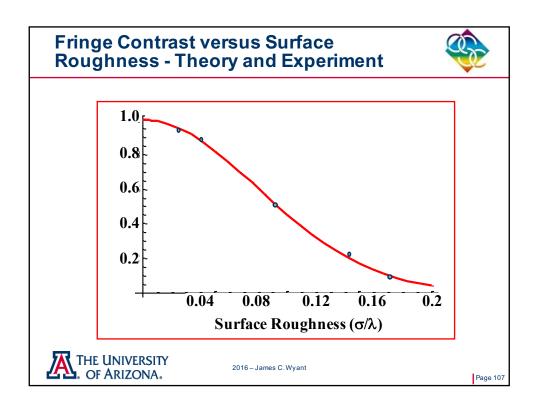
2016 - James C. Wyant

Page 103

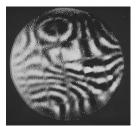
Fringe Contrast Reduction due to Surface Roughness

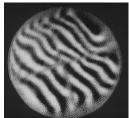

The fringe contrast reduction due to surface roughness is


$$C = \exp\left(-8\pi^2 \frac{\sigma^2}{\lambda^2}\right)$$


Reference: Appl. Opt. <u>11</u>, 1862 (1980).

2016 - James C. Wyant





Infrared Interferograms of Off-Axis Parabolic Mirror in Chronological Order

2016 - James C. Wyant

10.6 Micron Wavelength Interferometer

2016 - James C. Wyant

Page 109

Part 5 Testing of Aspheric Surfaces

- Description of aspheric surfaces
- Techniques for testing aspheric surfaces
- Requirements for use of optical analysis software in optical testing
- Limitations of current aspheric testing techniques

2016 - James C. Wyant

Aspheric Surfaces

Aspheric surfaces are of much interest because they can provide

- Improved performance
- Reduced number of optical components
- Reduced weight
- Lower cost

2016 - James C. Wyant

Page 111

Conics

A conic is a surface of revolution defined by means of the equation

$$s^2 - 2rz + (k+1)z^2 = 0$$

Z axis is the axis of revolution. k is called conic constant. r is the vertex curvature.

$$s^2 = x^2 + y^2$$

2016 - James C. Wyant

Sag for Conic

$$z = \frac{s^2 / r}{1 + [1 - (k+1)(s/r)^2]^{1/2}}$$

$$s^2 = x^2 + y^2$$

2016 - James C. Wyant

Page 113

Sag for Asphere

$$z = \frac{s^2 / r}{1 + [1 - (k+1)(s/r)^2]^{1/2}} + A_4 s^4 + A_6 s^6 + \dots$$

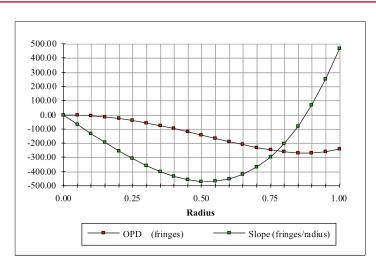
$$s^2 = x^2 + y^2$$

k is the conic constant r is the vertex radius of curvature A's are aspheric coefficients

2016 - James C. Wyant

Difficulty of Aspheric Test

Slope of aspheric departure determines difficulty of test



2016 - James C. Wyant

Page 115

Wavefront Departure and Slope versus Radius

THE UNIVERSITY
OF ARIZONA.

2016 - James C. Wyant

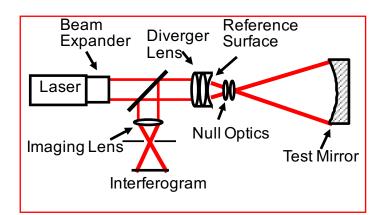
Aspheric Testing Techniques

Null Tests - Perfect optics give straight equally spaced fringes

Conventional null optics
Computer generated holograms

 Non-null Tests - Even perfect optics do not give straight equally spaced fringes

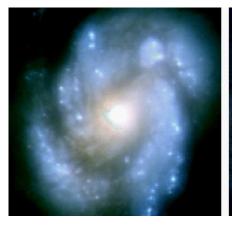
Deflectometry (SCOTS)
Shack-Hartmann
Lateral shear interferometry
Radial shear interferometry
High-density detector arrays
Sub-Nyquist interferometry
Long-wavelength interferometry
Two-wavelength holography
Two-wavelength interferometry
Tilted wave interferometry
Stitching interferograms
Scanning interferometry



2016 - James C. Wyant

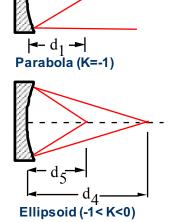
Page 117

Conventional Null Optics

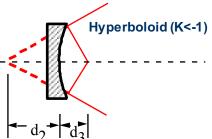


2016 - James C. Wyant

Hubble Pictures (Before and After the Fix)

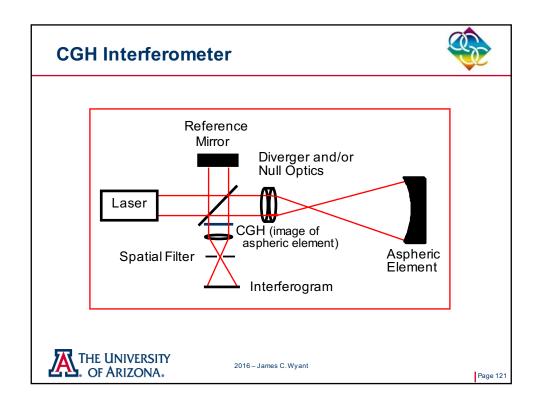


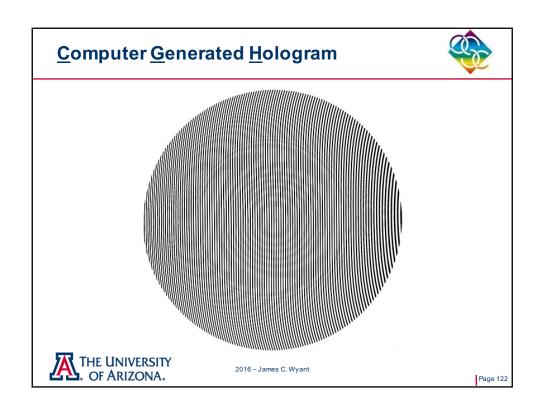
2016 - James C. Wyant


Page 119

Null Tests for Conics

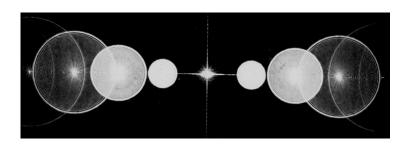
THE UNIVERSITY
OF ARIZONA.



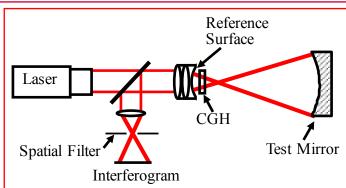

$$d_1 = r/2$$

$$d_2, d_3 = \frac{r}{K+1} \left(\sqrt{-K} \pm 1 \right)$$

$$d_4, d_5 = \frac{r}{K+1} \left(1 \pm \sqrt{-K} \right)$$


2016 - James C. Wyant

Light in Spatial Filter Plane



2016 - James C. Wyant

Page 123

CGH Used as Null Lens

- Can use existing commercial interferometer
- Double pass through CGH, must be phase etched for testing bare glass optics
- Requires highly accurate substrate

2016 - James C. Wyant

Error Source

- Pattern distortion (Plotter errors)
- Substrate surface figure
- Alignment Errors

2016 - James C. Wyant

Page 125

Pattern Distortion

- The hologram used at mth order adds m waves per line;
- CGH pattern distortions produce wavefront phase error:

$$\Delta W(x,y) = -m\lambda \frac{\varepsilon(x,y)}{S(x,y)}$$

 $\varepsilon(x,y)$ = grating position error in direction perpendicular to the fringes; S(x,y) = localized fringe spacing;

For m = 1, phase error in waves = distortion/spacing

0.1 μm distortion / 20 μm spacing -> $\lambda/200$ wavefront

2016 - James C. Wyant

Plotters

- E-beam
 - Critical dimension 1 micron
 - Position accuracy 50 nm
 - Max dimensions 150 mm
- Laser scanner
 - Similar specs for circular holograms

2016 - James C. Wyant

Page 127

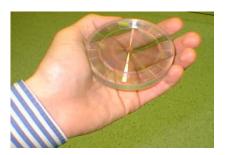
Solving Substrate Distortion Problems

- Use direct laser writing onto custom substrates
- Use amplitude holograms, measure and back out substrate
- Use an optical test setup where reference and test beams go through substrate

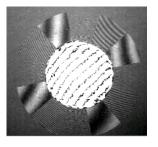
2016 - James C. Wyant

Alignment Errors

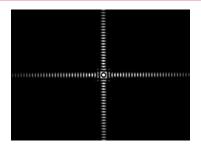
- Lateral misalignment gives errors proportional to slope of wavefront
- Errors due to longitudinal misalignment less sensitive if hologram placed in collimated light
- Alignment marks (crosshairs) often placed on CGH to aid in alignment
- Additional holographic structures can be placed on CGH to aid in alignment of CGH and optical system under test


2016 - James C. Wyant

Page 129


Use of CGH for Alignment

Commonly CGH's have patterns that are used for aligning the CGH to the incident wavefront.

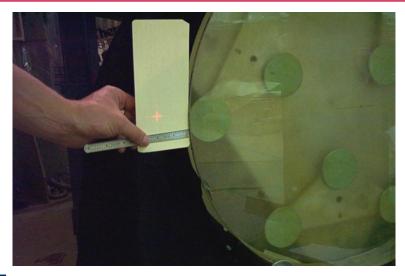


Using multiple patterns outside the clear aperture, many degrees of freedom can be constrained using the CGH reference.

2016 - James C. Wyant

Projection of Fiducial Marks

- The positions of the crosshairs can be controlled to micron accuracy
- The patterns are well defined and can be found using a CCD
- Measured pattern at 15 meters from CGH. Central lobe is only 100 µm FWHM



2016 - James C. Wyant

Page 131

CGH Alignment for Testing Off-Axis Parabola

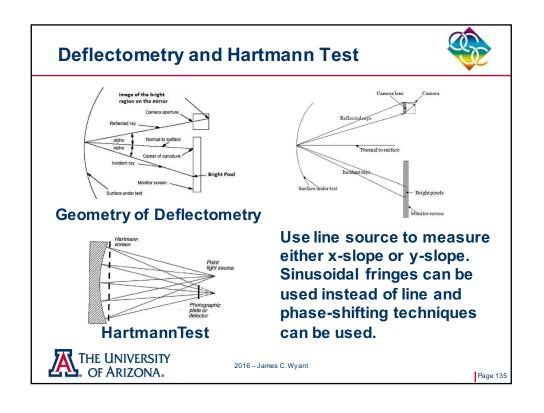
THE UNIVERSITY
OF ARIZONA.

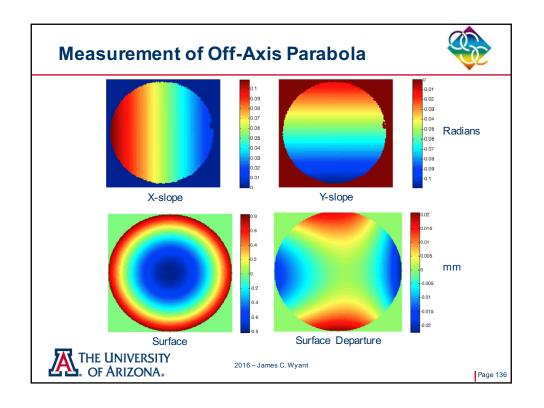
2016 - James C. Wyant

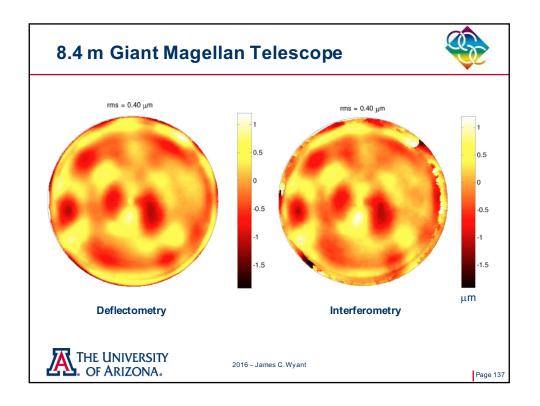
Holographic test of refractive element having 50 waves of third and fifth order spherical aberration

2016 - James C. Wyant

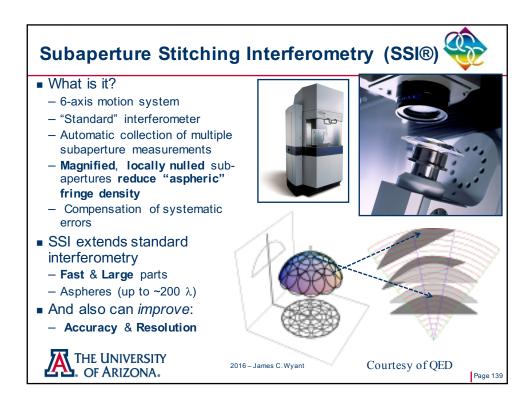
Page 133

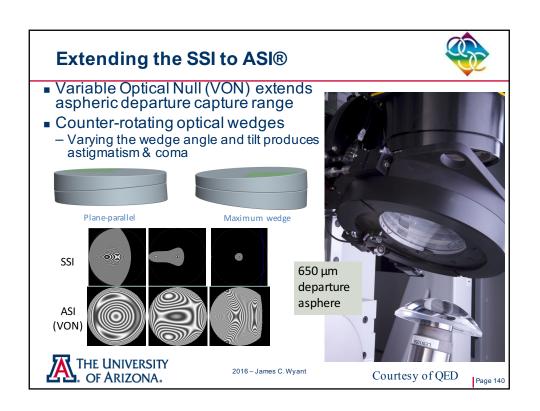

Deflectometry (SCOTS Test)



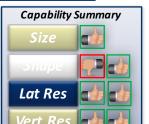

- Hartmann test in reverse
- Measures slope
- Accuracies in the range of 100 200 nrad (rms) have been achieved
- Ref: Su, Parks, Wang, Angel, and Burge, "Software configurable optical test system: a computerized reverse Hartmann test", Appl. Opt, 49(23), 4404-4412, (2010).
- Ref: Su, Wang, Burge, Kaznatcheev, and Idir, "Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach", Opt. Express 20(11), 12393-12406 (2012).
- Ref: Häusler, Faber, Olesch, and Ettl, "Deflectometry vs. Interferometry", Proc. SPIE. 8788, Optical Measurement Systems for Industrial Inspection VIII 87881C (May 13, 2013) doi: 10.1117/12.2020578.

2016 - James C. Wyant



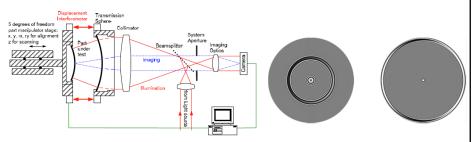

Stitching Interferograms

- Perform sub-aperture test of aspheric and stitch together interferograms.
- Trade-off between overlap between interferograms and number of interferograms required.
- Much easier to describe than to obtain accurate results.


SSI/ASI: Summary

- What is it good for?
 - Flexible no dedicated nulls
 - High departure
 - Large NA or CA
 - High vertical resolution
 - High lateral resolution
 - Compensation of systematic errors
- What are its key limitations?
 - Inflection points
 - High slope deviations
 - 3rd order spherical uncertainty

2016 - James C. Wyant



Courtesy of QED

Page 141

Zygo Verifire Multi-Zone Aspheric Tester

- Measure 6 to 200 sub-measurements of concentric zones.
- Measure distance of every zone from from center point of spherical reference surface.
- · Measure distance to apex of part.
- Stitching of overlapping apertures not required.
- The results represents surface-deviation in normal direction.

Reference: M. F. Kuechel, "Interferometric measurement of rotationally symmetric aspheric surfaces," in "Proc. SPIE 7389, Optical Measurement Systems for Industrial Inspection VI, 738916," (2009).

2016 - James C. Wyant

Verifire Asphere Spec (from Zygo brochure)

Aspheric Shape⁽⁷⁾ Axially symmetric concave or convex shape with specular surface and a measurable apex

Departure from $$\operatorname{\textsc{Up}}$$ to 10 μm asphere design

Departure from vertex sphere R0

Approximately 800 μm

Part Diameter⁽⁸⁾

1 mm to 130 mm

Simple $\leq 1 \text{ nm } (\lambda/600) \text{ RMS}$

Repeatability^(2,3)

Surface $\leq 5 \text{ nm } (\lambda/125) \text{ RMS}$

Measurement Repeatability^(2,4)

Height Resolution 0.08 nm

Cycle Time⁽⁵⁾ 2 - 8 minutes (typical)

2016 - James C. Wyant

Page 143

Lens Analysis Software

- Must know precisely how optics in test setup change aspheric wavefront.
- Must know effects of misalignments, so errors due to misalignments can be removed.

2016 - James C. Wyant

Basic Limitations of Aspheric Testing

- Must get light back into the interferometer
- Must be able to resolve the fringes
- Must know precisely the optical test setup

This is the most serious problem

2016 - James C. Wyant

Page 145

Part 6 - Measurement of Surface Microstructure

- Non-Contact Optical Profilers
- White Light Interferometry
- Vertical Scanning Optical Profilers

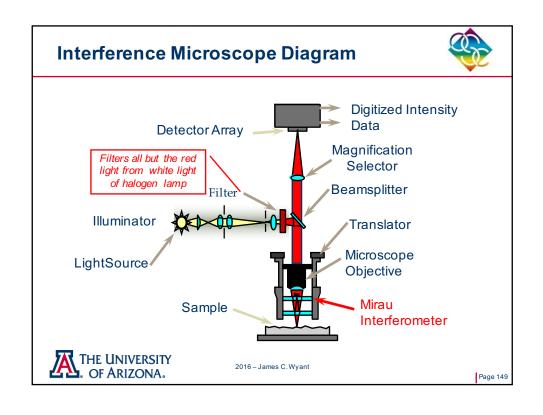
2016 - James C. Wyant

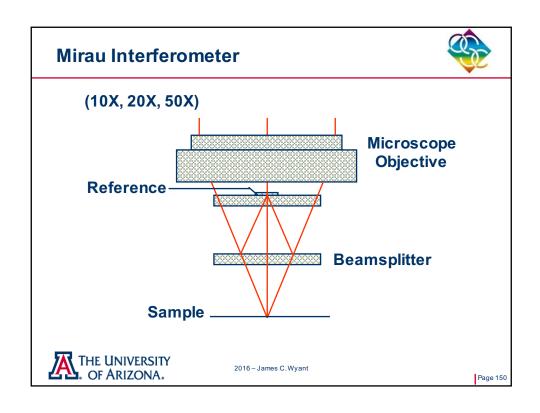
Non-Contact Optical Profilers for Measurement of Surface Microstructure

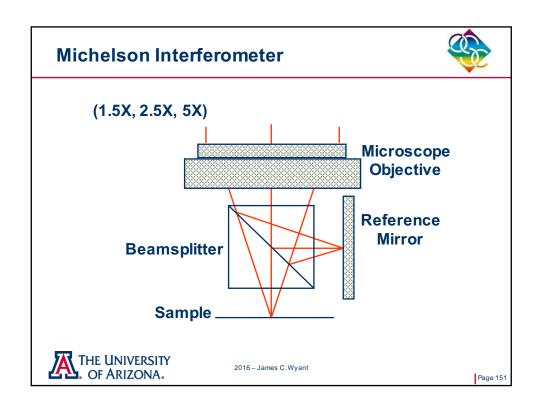
- Non-contact measurement
- 2D or 3D surface topography
- Visual qualitative surface inspection
- Vertical resolution suitable for superpolished optics
- Fast measurement and analysis

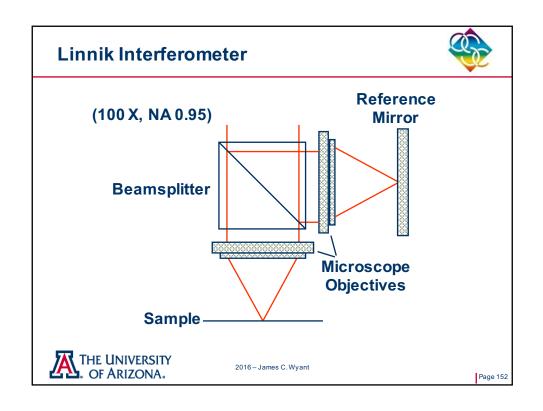
2016 - James C. Wyant

Page 147


Advantages of White Light over Laser Light




- Lower noise
 - No spurious fringes
- Multiple wavelength operation Measure large steps
- Focus easy to determine



2016 - James C. Wyant

Interference Objectives

Mirau

- Medium magnification
- Central obscuration
- Limited numerical aperture

■ Michelson

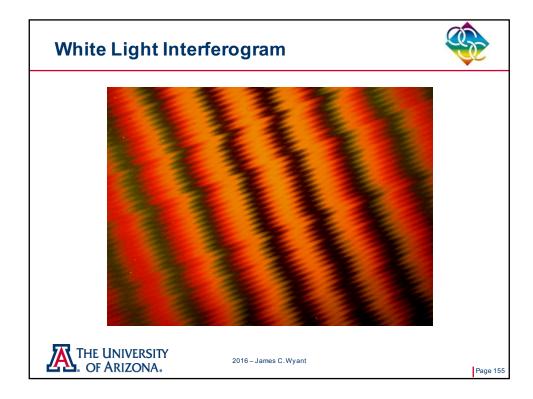
- Low magnification, large field-of-view
- Beamsplitter limits working distance
- No central obscuration

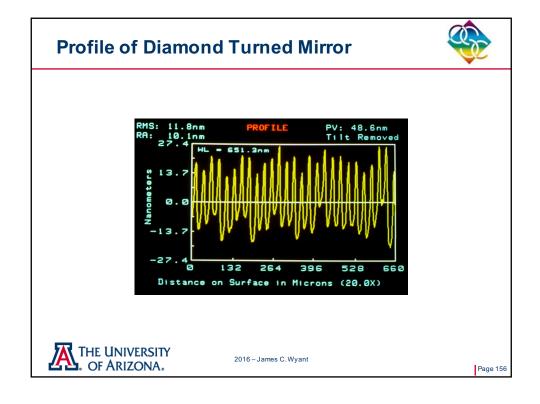
Linnik

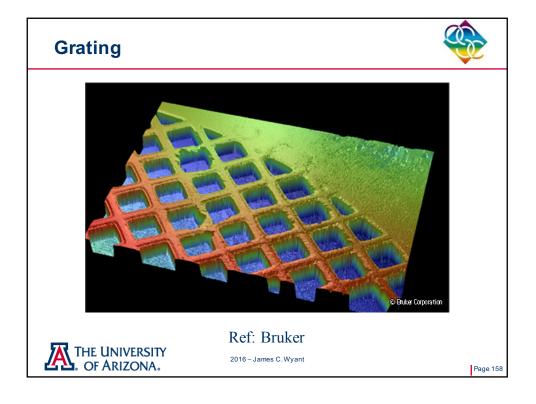
- Large numerical aperture, large magnification
- Beamsplitter does not limit working distance
- Expensive, matched objectives

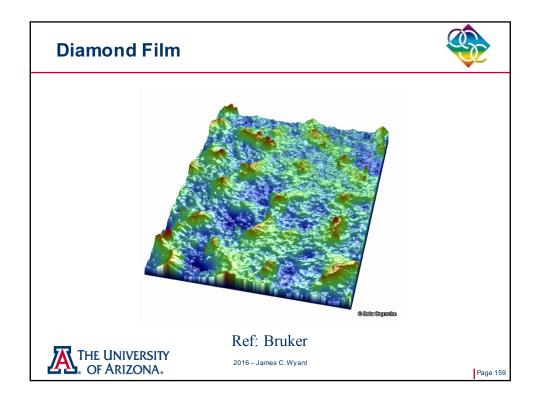
2016 - James C. Wyant

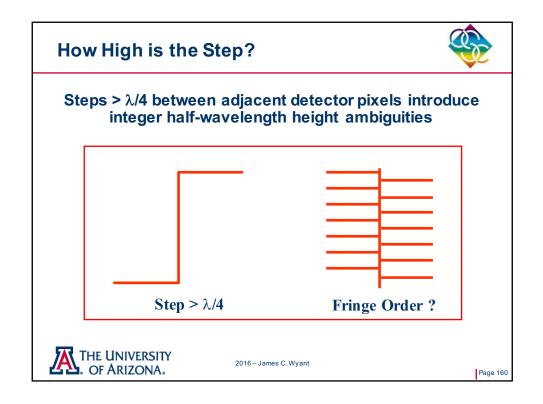
Page 153


Optical Profiler




THE UNIVERSITY OF ARIZONA.

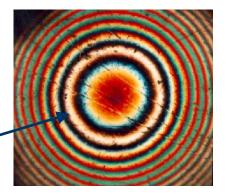

2016 - James C. Wyant



Diamond Turned Mirror RMS: 20.2nm SURFACE WVLEN: 652.7nm RCrv: 150.2mm P-v: 156nm Orientation Orientation

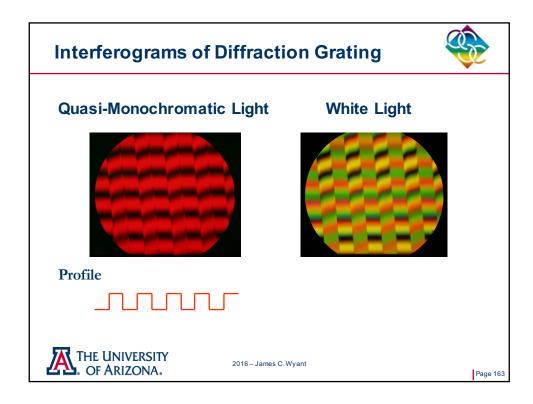
White Light Interferometry

- Eliminates ambiguities in heights present with monochromatic interferometry
- Techniques old, but use of modern electronics and computers enhance capabilities and applications


2016 - James C. Wyant

Page 161

White Light Interference Fringes



- Fringes form bands of contour of equal height on the surface with respect to the reference surface.
- Fringe contrast will be greatest at point of equal path length or "best focus."

2016 - James C. Wyant

Two Wavelength Measurement • Measure Beat Frequency • Long Effective Wavelength 1st Wavelength 2nd Wavelength Beat - Equivalent Wavelength Wavelength 2nd Wavelength Beat - Equivalent Wavelength 2nd Wavelength Beat - Equivalent Wavelength Page 164

Two Wavelength Calculation

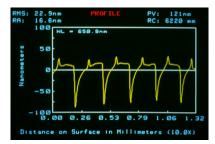
Equivalent Wavelength

$$\lambda_{eq} = \frac{\lambda_1 \lambda_2}{\left| \lambda_1 - \lambda_2 \right|}$$

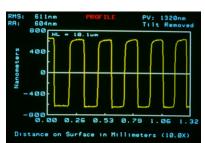
Equivalent Phase

$$\varphi_{eq} = \varphi_1 - \varphi_2$$

No height ambiguities as long as height difference between adjacent detector pixels < equivalent wavelength / 4

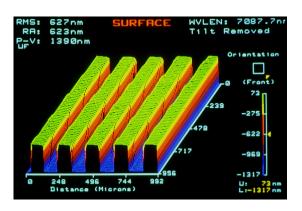

2016 - James C. Wyant

Page 165


Diffraction Grating Measurement

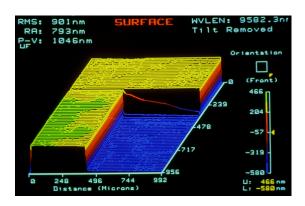
Single wavelength (650 nm)

Equivalent wavelength (10.1 microns)



2016 - James C. Wyant

3-D Two-Wavelength Measurement (Equivalent Wavelength, 7 microns)



2016 - James C. Wyant

Page 167

Two-Wavelength Measurement of Step

THE UNIVERSITY
OF ARIZONA

2016 - James C. Wyant

Wavelength Correction

Compare

- Heights calculated using equivalent wavelength
- Heights calculated using single wavelength

 λ eq heights single λ heights

Add N x $\lambda/2$ to heights calculated using single wavelength so difference $< \lambda/4$

2016 - James C. Wvant

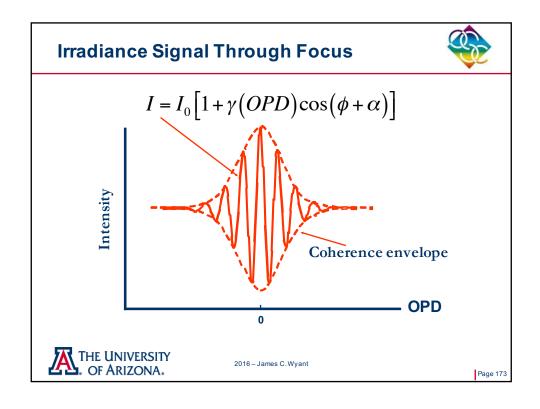
Page 169

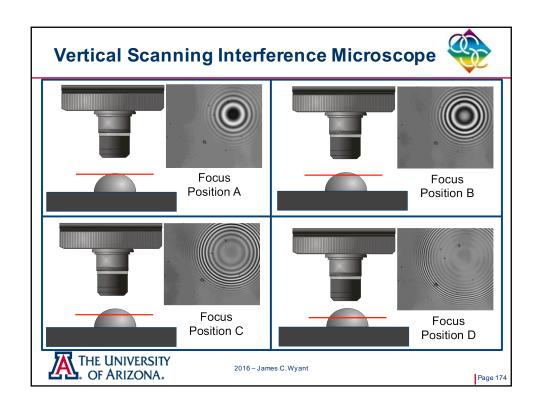
Wavelength Correction Measurement of Step

2016 - James C. Wyant

Principles of Vertical Scanning Interferometry

- A difference between the reference and test optical paths causes a difference in phase.
- Best fringe contrast corresponds to zero optical path difference.
- Best focus corresponds to zero optical path difference.


2016 - James C. Wyant


Page 171

Page 172

Interference Microscope Diagram Digitized Intensity Data Detector Array-Magnification Selector Beamsplitter Illuminator 💢 Translator Microscope Light Source Objective Mirau Interferometer Sample THE UNIVERSITY OF ARIZONA.

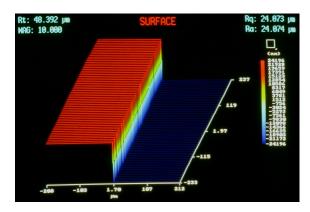
2016 - James C. Wyant

White Light Interferograms

Focus Position A

Focus Position B

As the scan moves different areas of the part being measured come into focus (have zero OPD or maximum contrast between fringes). A determination of the point of maximum contrast and knowledge of the scan position allows a reconstruction of the surface shape.



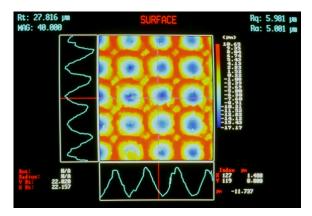
2016 - James C. Wyant

Page 175

Step Measurement

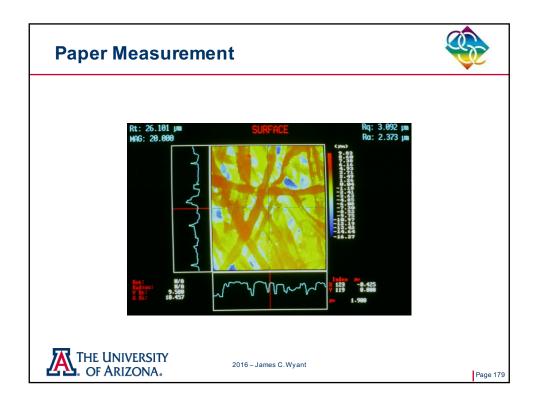
2016 - James C. Wyant

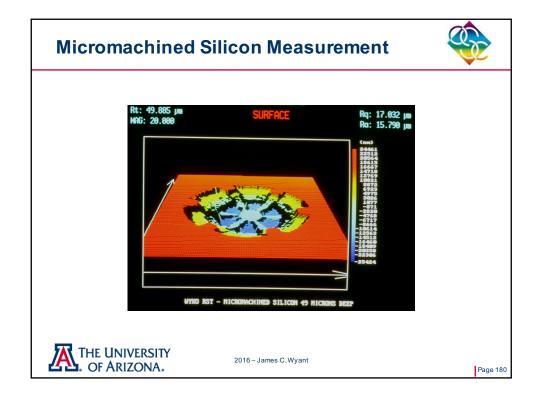
Print Roller



2016 - James C. Wyant

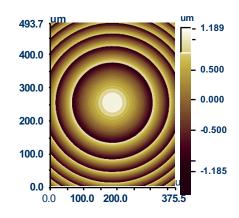
Page 177


Print Roller Measurement



THE UNIVERSITY OF ARIZONA.

2016 - James C. Wyant

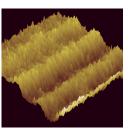

Binary Optic Lens

Surface Stats:

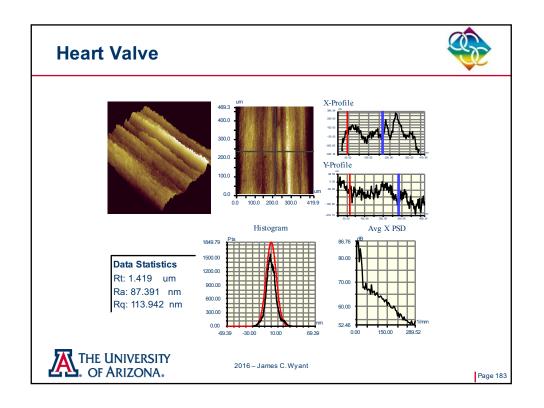
RMS: 561.30 nm PV: 2.37 um

2016 - James C. Wyant

Page 181

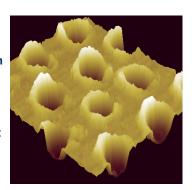

Chatter Seen on Camshaft

Surface Stats:


Rq: 872.06 nm Ra: 693.90 nm Rt: 7.47 um

Terms Removed: Cylinder & Tilt

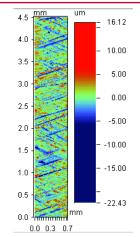
2016 - James C. Wyant


Pits in Metal

Size: 248 X 239 Sampling: 1.70 um

Surface Stats: Rq: 5.07 um Ra: 3.44 um Rt: 31.05 um Terms Removed:

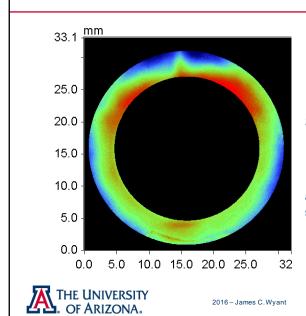
Tilt


2016 - James C. Wyant

Six Stitched Data Sets of Inside of Engine Bore

Insight 2000 measuring inside of engine bore

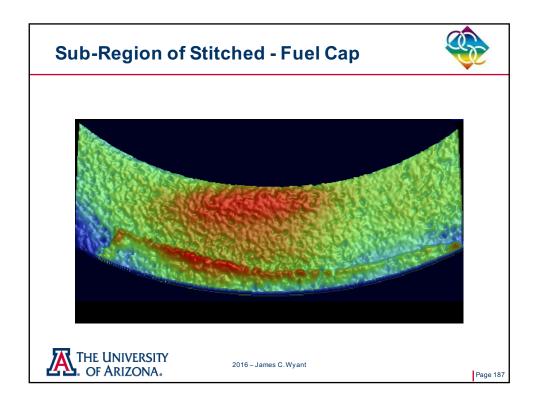
 $Ra = 1.69 \mu m, Rz = 27.87 \mu m, and Rt = 38.54 \mu m$

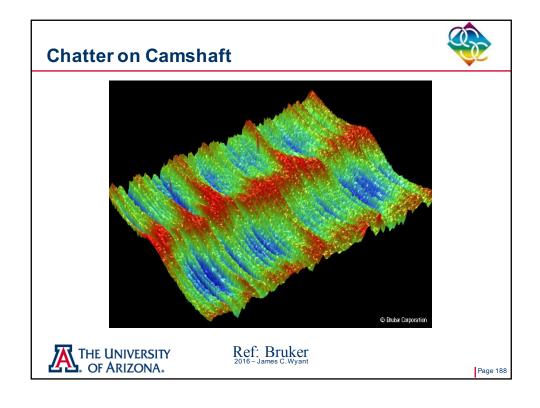


2016 - James C. Wyant

Page 185

Stitched Measurement - Fuel Cap





VSI mode

Surface statistic

Ra=26.32 microns Rq=32.72 microns Rt=246.42 microns array size 1251x1107 sampling 25.5 microns

Woven Cloth

Page 189

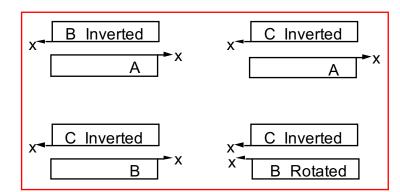
Part 7 Absolute Measurements

- Absolute measurement of flats
- Absolute measurement of spheres
- Absolute measurement of surface roughness

2016 - James C. Wyant

Absolute Surface Shape Measurement

- Removing system aberrations & reference surface effects
- Improves measurement accuracy
- Tests for
 - Flats
 - Spheres
 - Surface roughness



2016 - James C. Wyant

Page 191

Measurements Required for Three-Flat Test

2016 - James C. Wyant

Three-Flat Test Equations

Make 4 Measurements

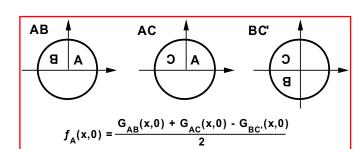
$$G_{AB}(x,y) = f_A(x,y) + f_B(-x,y)$$

$$G_{AC}(x,y) = f_{A}(x,y) + f_{C}(-x,y)$$

$$G_{AC}(x,y) = f_A(x,y) + f_C(-x,y)$$

 $G_{BC}(x,y) = f_B(x,y) + f_C(-x,y)$

$$G_{BC'}(x,y) = f_B(-x,-y) + f_C(-x,y)$$



2016 - James C. Wyant

Page 193

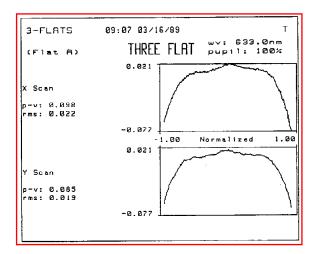
Three-Flat Test - X Line

$$f_{B}(x,0) = \frac{G_{AB}(x,0) - G_{AC}(x,0) + G_{BC}(x,0)}{2}$$

$$f_{c}(x,0) = \frac{-G_{AB}(x,0) + G_{AC}(x,0) + G_{BC}(x,0)}{2}$$

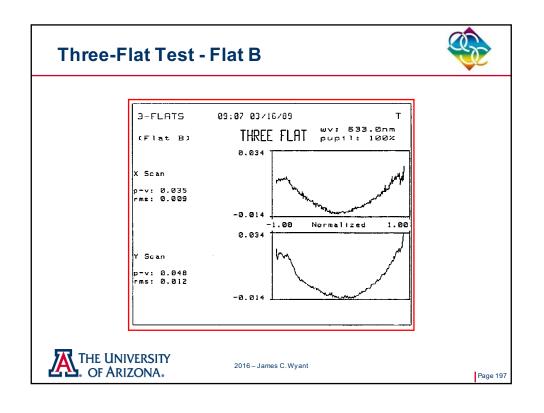
2016 - James C. Wyant

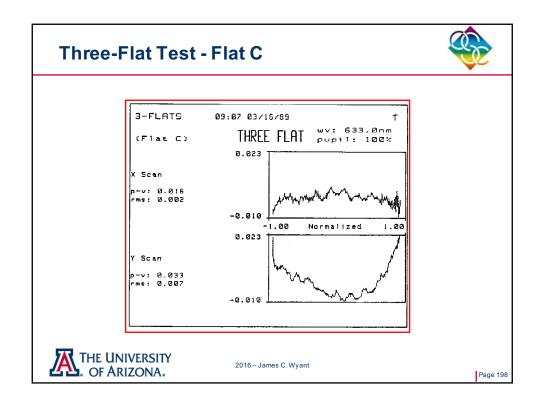
Three-Flat Test - Y Line



2016 - James C. Wyant

Page 195


Three-Flat Test - Flat A

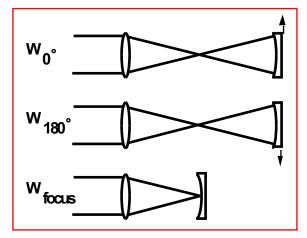


THE UNIVERSITY
OF ARIZONA.

2016 - James C. Wyant

Absolute Sphere Testing

- Separate interferometer errors from errors in spherical mirror being tested.
- Three measurements required.



2016 - James C. Wyant

Page 199

Absolute Sphere Testing (Measurements Required)

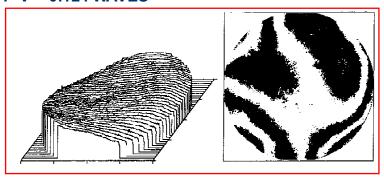
2016 - James C. Wyant

Absolute Sphere Testing (Equations)

$$\begin{aligned} W_{focus} &= W_{ref} + \frac{1}{2} \Big[W_{div} + \overline{W}_{div} \Big] \\ W_{0^o} &= W_{surf} + W_{ref} + W_{div} \\ W_{180^o} &= \overline{W}_{surf} + W_{ref} + W_{div} \end{aligned}$$

COMBINE 3 MEASUREMENTS

$$W_{surf} = \frac{1}{2} \left[W_{0^o} + \overline{W}_{180^o} - W_{focus} - \overline{W}_{focus} \right]$$

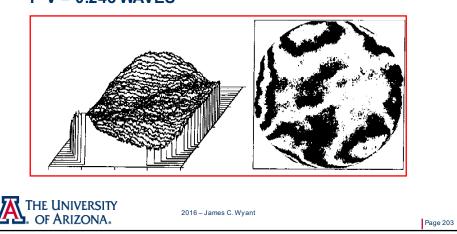

2016 - James C. Wyant

Page 201

Single Measurement of Sphere

TILT, POWER REMOVED INTERVAL = 0.025 RMS = 0.014 WAVES P-V = 0.121 WAVES

FIZEAU INTERFEROMETER, F/1.1 REF. SPHERE

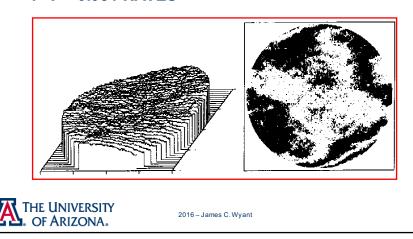


2016 - James C. Wyant

Flat at Focus f/1.1 Diverger


TILT, POWER, COMA REMOVED INTERVAL = 0.05 **RMS = 0.027 WAVES** P-V = 0.243 WAVES

Absolute Reference

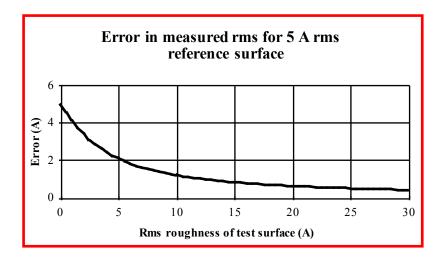

TILT, POWER REMOVED INTÉRVAL = 0.025 RMS = 0.010 WAVES P-V = 0.084 WAVES

Absolute Measurement of Sphere

TILT, POWER REMOVED INTERVAL = 0.025 RMS = 0.011 WAVES P-V = 0.081 WAVES

Absolute Surface Roughness Measurement Assumptions

Page 205


- Surface height is random
- Statistics do not vary over surface
- Each measurement = Test + Reference
- Test and reference uncorrelated

2016 - James C. Wyant

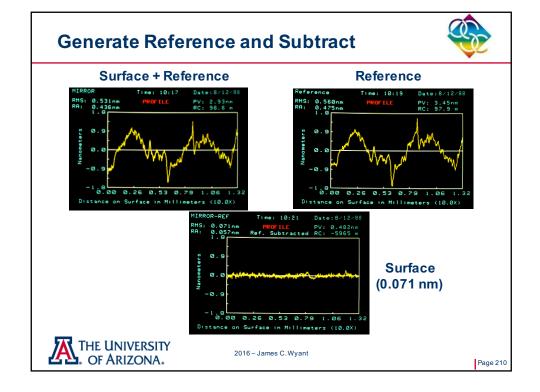
2016 - James C. Wyant

Page 207

Subtraction of Errors due to Reference Surface

- Perfect mirror
- Generate reference
- Absolute rms measurement

2016 - James C. Wyant


Generate Reference

- Average many measurements
- Move random surface > correlation length between measurements
- Effects of random surface reduce as square root of number of measurements

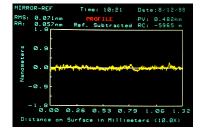
2016 - James C. Wyant

Absolute RMS Measurement

- Make 2 measurements where surface moved > correlation length between measurements
- Subtract measurements and divide by square root of 2
- Reference cancels and obtain
- RMS of test surface

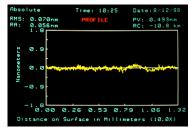
$$Diff = Test_1 + (-Test_2)$$

$$RMS_{Test} = \frac{1}{\sqrt{2}}RMS_{Diff}$$


2016 - James C. Wyant

Page 211

Generate Reference and Absolute RMS Comparison



Generate Reference

RMS = 0.071 nm

Absolute RMS

RMS = 0.070 nm

2016 - James C. Wyant

Part 8 – Concluding Remarks

- Limitations of Direct Phase Measurement Interferometers
- Most Important to Remember
- References

2016 - James C. Wyant

Page 213

Limitations of Direct Phase Measurement Interferometers

- Accuracy generally limited by environment
 - -Vibration
 - -Turbulence
- Measurement of surface roughness less limited by environment because path differences small
- Single-shot phase-measurement interferometers greatly reduce the effects of vibration and turbulence effects can be averaged out.

2016 - James C. Wyant

Remember

- If you make optics you have to be able to test the optics because you cannot make optics any better than you can test.
- If you purchase optics you need to test the optics you buy to make sure the optics meet the specs.
- If you let the supplier know you are going to test the optics when you receive them you will get better optics.

2016 - James C. Wyant

Page 215

References

D. Malacara, Ed.
Optical Shop Testing

W. Smith

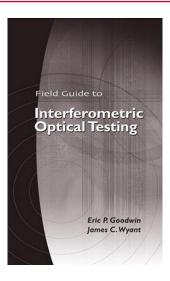
Modern Optical Engineering

Kingslake, Thompson, Shannon, and Wyant, Ed. Applied Optics and Optical Engineering, Vols. 1-11

Goodwin and Wyant, Field Guide to Interferometric Optical Testing

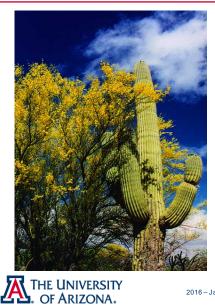
Optical Society of America Optics Infobase

SPIE


Digital Library

2016 - James C. Wyant

Field Guide to Interferometric Optical Testing (Published by SPIE)



2016 - James C. Wyant

Page 217

Thank you for taking the short course!

2016 - James C. Wyant