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Abstract
Two-wavelength  phase-shifting  interferometry  is  a  powerful  technique  for  extending  the  range  of  single-wavelength
interferometry.  This paper discusses three techniques for extending the dynamic range of phase shifting interferometry
without  losing  the  precision  of  a  single  short-wavelength  measurement.   The  techniques  are  derived  using  basic
interferometric principles and the tradeoffs between the different techniques are discussed.  

Introduction
Interferometry  is  an  extremely  powerful  tool  that  provides  measurement  capabilities  ranging  from  Angstroms  to
millions of miles.  While the basic principles of interferometry have been known more than 100 years, the addition of
modern  electronics,  computers,  and  software  has  made  interferometry  an  extremely  useful  technique  for  solving
numerous metrology problems.   With the addition of  phase-shifting interferometry techniques1, 2  interferometric  data
can be transferred to computer memory and sophisticated analysis of the data can be performed.

One  of  the  largest  advantages  of  optical  interferometry  is  also  one  of  its  largest  disadvantages.   Due  to  the  short
wavelength of the light, the sensitivity of a single wavelength interferometric measurement is very high, but also due
to the short wavelength of the light the dynamic range is limited unless additional information is available.  In a single
wavelength interferometric measurement the phase of the light, and hence the phase of the interference pattern, repeats
itself at distance intervals equal to the wavelength. Thus, an optical path difference of d gives the same interferometric
measurement as (n l + d), where n is an integer.  

One good way of eliminating integer wavelength ambiguities in distance or height measurements is to use a white light
scanning interferometer.  If a white light source is used in an interferometer the best contrast interference fringes are
obtained  only  when  the  two  paths  in  the  interferometer  are  equal.   Thus,  if  an  interferometer  is  made  such  the  path
length  of  the  sample  arm  of  the  interferometer  is  varied,  distances  or  height  variations  across  the  sample  can  be
determined by looking at the mirror or sample positions for which the fringe contrast is a maximum.  In this measure-
ment there are no height ambiguities and since in a properly adjusted interferometer the sample is in focus when the
maximum fringe contrast is obtained, there are no focus errors in the measurement of surface microstructure.3-5   The
major drawback of this type of scanning interferometer measurement is that only a single distance or surface height is
being measured at a time and a large number of measurements and calculations are required to determine a large range
of  distance  or  surface  height  values.   Also,  if  the  height  information  is  solely  determined  by  looking  at  the  scan
position for maximum fringe contrast, the measurement has less accuracy than can be obtained by looking at the phase
of the interference fringes.

A  second  excellent  solution  to  solving  the  ambiguities  in  the  measurement  of  the  integer  number  of  wavelengths
present  in  a  distance  measurement  is  to  perform  the  measurement  at  more  than  one  wavelength  and  compare  the
measurement  results  for  the  different  wavelengths  to  determine  the  true  distance.   Performing  an  interferometric
measurement  at  two  or  more  wavelengths  and  comparing  the  phases  of  the  interference  fringes  for  the  different
wavelengths  has  been  described  by  several  authors  during  the  last  100  years.6-12   By  combining  two-wavelength
interferometry with phase-shifting techniques very powerful commercial interference microscopes have been made. 

The  purpose  of  this  paper  is  to  use  basic  interferometric  principles  to  describe  three  ways  of  using  phase-shifting
interferometry  and two-wavelength  interferometry  to  increase  the  dynamic  range of  an  interferometric  measurement.
The techniques are not limited to phase-shifting measurements, but phase-shifting provides a good way of performing
the measurements to high accuracy so two-wavelength measurements can be practical for large path differences. 
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Two-wavelength interferometry and phase-shifting interferometry
In phase-shifting interferometry three or more measurements of the irradiance of the interference fringes are made for
different phase differences between the two interfering beams.  Numerous algorithms can be used for the calculation of
the  phase.   Of  importance  to  this  discussion  is  that  the  tangent  of  the  phase  difference  between  the  two  interfering
beams is determined.  Furthermore, the sign of the cosine of the phase and the sign of the sine of the phase are deter-
mined, so the phase is determined modulo 2p.  As long as the phase difference between adjacent detector points is less
than p (opd less than l/2) discontinuities in the measured phase for adjacent data points can be removed.  One goal of
this paper is to describe methods for increasing the allowable phase difference between adjacent data points.
To simplify this discussion we will assume we can neglect phase changes on reflection so we can write

phase =
2 p

l
opd.

Since the phase is being measured modulo 2p the optical path difference, opd, is being measured modulo l.  We can
write
opd = Hn + fL l.

Thus, f is the fractional fringe we are measuring using phase-shifting interferometry and n is an unknown integer that
we will determine using two or more measurements at different wavelengths.  What we are actually measuring is
f@l_D := FractionalPart@opd ê lD

In two-wavelength interferometry we are making two measurements of the fractional fringe using two wavelengths, l1
and l2, to determine f[l1] and f[l2].  If we knew the integral number of fringes present we could calculate the opd.
opdCalculatedl1 := n l1 + f@l1D l1

opdCalculatedl2 := m l2 + f@l2D l2

Neglecting measurement errors

opdCalculatedl1 = opdCalculatedl2

Our problem is that we do not know the integers n and m.  Below we will see three techniques for determining n and m.

Technique 1, Calculated Distances Equal
The first technique described is the easiest to understand, but it will turn out to be the least accurate.  This first tech-
nique makes use of the fact that the measured distance is independent of the wavelength used.  It follows from equa-
tions 0, 0, and 0 that if m = n + D
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n l1 + f@l1D l1 = Hn + DL l2 + f@l2D l2

where n and D are integers.

Solving for n we have

n = -
-D l2 + l1 f@l1D - l2 f@l2D

l1 - l2

We must find D such that n is an integer.  In general there will be more than one D that will solve the above equation to
within the accuracy to which we know the wavelengths and measured fractional fringe.   If the approximate length is
known, the range for n and D are known.  In the absence of any knowledge concerning the range for D the best that can
be done is to pick the smallest value of D for which the above equation is valid.  D can be obtained from the following
if tolerance is an acceptable amount for n to differ from being an integer.   In phase shifting interferometry and good
environmental conditions a reasonable value for tolerance might be 0.001.
D = 0;
While@Abs@FractionalPart@ nDD > tolerance, D = D + 1D;
Print@DD;

In the While function D  will  keep increasing by 1 each time through the loop until  the fractional part of n differs by
less than the tolerance.

Of the three methods described in this paper, this technique has the lowest accuracy because errors in f[l1] and f[l2]
are scaled by l/(l1 - l2), which can be a large number.  Thus any small errors in f[l1] and f[l2] are magnified in the
calculation of n.

Technique 2, Fractional Fringes
The second  technique  described  is  basically  a  computerized  version  of  a  method  called  exact  fractions  described  by
Michelson and Benoît  in  18956.   In  the exact  fractions approach a length is  measured by measuring the excess frac-
tional fringes for two or more wavelengths.  It is assumed that the length is known to within a few half wavelengths.
For our example assume it is known that the length lies between 1209 and 1215 half-wavelengths of the red cadmium
line.   Let  the  excess  fraction  in  red  light  be  known  to  be  0.35.   Then  we  know  the  actual  length  is  1209.35,
1210.35,...,1214.35.  From this information the number of wavelengths of green light is calculated.  A comparison of
the  calculated  number  of  fractional  fringes  for  green  light  with  the  measured  number  shows which  of  the  calculated
lengths is correct.  Additional wavelengths can be used to increase the accuracy and reduce the chances of error.  (This
procedure is described in detail in reference 7).  As described in the reference the technique did not work well with two
beam interferometers because the fractional fringe could not be determined well enough.  The technique worked much
better with multiple beam fringes.  Fortunately, phase-shifting interferometry provides the precision required to do the
measurement well and computers make the calculation easy.

The first step is to calculate the fractional fringe for wavelength l2 from Equation 0 for opdCalculatedl1.

calculated FractionalFringel2 = FractionalPartB
n l1 + f@l1D l1

l2
F

If we had no error this should be equal to the measured fractional fringe for wavelength l2.  That is, in the absence of
error

f@l2D = FractionalPartB
n l1 + f@l1D l1

l2
F

This equation can be solved for n, and the opd can be calculated.  In general there will  be more than one n that will
solve the above equation to within the accuracy to which we know the wavelengths and measured fractional fringe.  If
an  approximate  length  is  known,  the  range  for  n  is  known.   Picking  the  smallest  value  of  n  for  which  the  above
equation  is  valid  and  letting  tolerance  be  the  acceptable  difference  between  the  calculated  fractional  fringe  and  the
measured fractional fringe we could write
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WhileBAbsBFractionalPartB
n l1 + f@l1D l1

l2
F - f@l2DF > tolerance, n = n + 1F;

length = n l1 + f@l1D l1; Print@n, lengthD;

In the While function n will keep increasing by 1 each time through the loop until the calculated and fractional fringe
for l2 differ by less than the tolerance.

Technique 3, Equivalent Wavelength
The third technique is  equivalent to what was done above, except now the path lengths are determined in terms of a
quantity called the equivalent wavelength, leq, which is calculated from the two wavelengths l1 and l2, used in the
measurement.

If we take the difference between the phases for the two wavelengths we have

phasel1 - phasel2 = 2 p
1

l1
-

1

l2
opd

It is convenient to write this as

phasel1 - phasel2 =
2 p

leq
opd

where

leq =
l1 l2

Abs@l2 - l1D
;

We can write the fractional fringe difference for the two wavelengths as

f@l1D - f@l2D =
opd

leq

We can calculate
opdInitial := leq Hf@l1D - f@l2DL

The plot of opdInitial shown below shows there are discontinuities.
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l1 = 0.5085824; l2 = 0.6438472;
Plot@opdInitial, 8opd, 0, 5<, Filling Ø Bottom, Evaluate@plot2doptionsDD

For this example
leq = 2.42;

To  take  care  of  the  discontinuities  leq  must  be  added  or  subtracted  to  the  appropriate  data  points.   Since  for  this
example l2 > l1 we will add leq whenever the difference becomes negative.
opdCalculated := If@opdInitial < 0, opdInitial + leq, opdInitialD

Plot@opdCalculated, 8opd, 0, 5<, Filling Ø Bottom, Evaluate@plot2doptionsDD

Now  the  phase  difference  repeats  at  intervals  equal  to  leq  and  we  can  measure  path  differences  as  large  as  leq/2
without  any  ambiguities.   In  conventional  single  wavelength  phase  shifting  interferometry  the  opd  between  adjacent
data points must be less than l/2 for no wavelength ambiguities in the opd.  Using the equivalent wavelength approach
the dynamic range is now increased such that now the opd between adjacent data points can be as large as leq/2 for no
wavelength ambiguities.
As pointed out in reference 12, while the above results are correct, and it is often convenient to use the concept of an
leq,  this  concept  does  not  use  all  the  known  information  since  not  only  is  f[l1]-f[l2]  known,  but  both  f[l1]  and
f[l2] are known modulo 1.  The following is one way to make use of this information.

Next we will calculate our first estimate of the integer number of wavelengths present for wavelength l1.

We can calculate
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nl1Estimate = IntegerPartB
opdCalculated

l1
F;

Then our first guess of the opd is

opdEstimate = Hnl1Estimate + f@l1DL l1

The correct value for the integer number of wavelengths present for l1 is

nl1Correct = IntegerPartB
opdCalculated + n leq

l1
F where n = 0, 1, 2, 3, ...

and

opdCorrect = IntegerPartB
opdCalculated + n leq

l1
F + f@l1D l1

The problem is that we do not know the value of n.  However, n can be found since the fractional fringe order number
for l2 calculated using the above length must be equal to the measured fractional fringe number.  That is

FractionalPartB
HIntegerPart@HopdCalculated + n leqL ê l1D + f@l1DL l1

l2
F = f@l2D

The problem now is to determine n such that the above is correct.  The following shows one way of doing this.

n = 0;

WhileBAbsB

FractionalPartB
HIntegerPart@HopdCalculated + n leqL ê l1D + f@l1DL l1

l2
F - f@l2DF >

tolerance, n = n + 1F; Print@nD;

Thus, if the noise is sufficiently low the opd difference between adjacent data points can be larger than leq/2.  How-
ever,  if  the  noise  is  low  enough  to  increase  the  dynamic  range  between  adjacent  data  points  to  more  than  leq/2,  it
should be possible to use different wavelength pairs to increase leq and obtain the same increased dynamic range.

Summary
Several techniques exist for increasing the dynamic range of an interferometric test by using two or more wavelengths
while still keeping the accuracy of a single wavelength.  While these techniques have been known for some time, their
usefulness depend upon the low noise, high accuracy, measurements made possible using modern electronics, comput-
ers, and software.
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