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If the nonlinearity of the motion of a piezoelectric transducer (PZT) can be described as a quadratic function,
the integrated intensity of one frame in phase shift interferometry can be calculated using the Fresnel
integral. For a PZT with smaller nonlinearity, the rms phase error is almost linearly proportional to the
quadratic coefficient. The effects of PZT nonlinearity on the three- and the four-bucket algorithms are
compared.

1. Introduction

Phase shift interferometry (PSI) techniques have
been widely used in modern phase measurement in-
struments. The basic idea of the PSI technique is
that, if the phase difference between two beams is
made to vary in some known manner, the initial phase
can be derived from three or more intensity measure-
ments. The most common way to vary the phase
difference between two beams is to apply a voltage to a
piezoelectric transducer (PZT) on which the reference
mirror is mounted. The voltage applied is a step volt-
age with equal period and equal increment or a ramp
voltage. Then a series of interferograms is sampled
and the initial phase is solved.

Most current data-reduction algorithms associated
with this technique require that the phase shift be-
tween each of these sampled interferograms equals a
constant, 2/N, where N is an integer.", 2 However
PZT displacement is not always a linear function of
applied voltage. Hence the phase shift between two
samplings is no longer the constant 27r/N. Moreover
the amount of phase shift will vary for each of the N
samplings. Therefore the error in the phase measure-
ment is introduced when using those algorithms which
require the constant phase shift between two sam-
plings. In practice, the PZT nonlinearity is so small
that a quadratic function is sufficient to describe the
PZT displacement. For the integrating-bucket meth-

od,2 the presence of these quadratic terms causes the
intensity integrals to become the Fresnel integral. For
small quadratic terms, the asymptotic form of Fresnel
integrals applies.

Because the four-bucket, N = 4, and three-bucket, N
= 3, algorithms are widely used, the effect of the PZT
quadratic nonlinearity on the phase measurement
with the four- and three-bucket methods will be pre-
sented. The errors caused by these quadratic terms
are periodic as are other errors,3 4in terms of the initial
phase of the measurement, with frequency twice that
of the interference fringes. In certain cases, averaging
measurements made from different initial phases can
be used to reduce these errors.3 It should be noted
that in optical testing the wavefront aberration is mea-
sured relative to a reference wavefront. Therefore the
absolute optical path difference is not important for
most phase measurements. Hence the dc bias is re-
moved when comparison between these phase errors is
made.

II. Sampling the Intensity

Let the intensity of the interference pattern be given
by

I(x,y,t) = a(xy) + b(x,y) cos[0(xy,t)], (1)

where a and b are the bias and modulation of the
intensity at (xy). (x,y,t) is the phase difference be-
tween two beams at (x,y) at a given time t. Because
the reference mirror is mounted on a PZT, as shown in
Fig. 1, the phase difference 4(t) can be expressed as

O(xyt) = k0 (xy) + s1V(t) + S2 V2(t), (2)
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where o, si, and s2 are the initial phase and the linear
and quadratic coefficients of the PZT motion sensitiv-
ity, respectively. The voltage v(t) is a step voltage or a
ramp voltage. From now on, for simplicity, the argu-
ments x and y will be omitted.
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Fig. 1. Scheme of the Twyman-Green interferometer with the
phase measurement technique: (a) ramp voltage in the integrating-

bucket method; (b) step voltage in the phase-stepping method.

For the integrating-bucket method, the voltage ap-
plied is a ramp voltage, therefore the phase difference
at a given time t is

0(t) = 0 + 2rct/T + 2dt 2/T2, (3)

where c and d are the linear and quadratic coefficients,
and T is the period within which the N integrating
intensities are measured. The constant 2 7r is used for
normalization. The normalization is referred to a sit-
uation where a linear PZT is exactly calibrated in order
that the total phase shift is 2 r in period T. In that
situation c is defined as unity and d is zero. Thus for a
linear PZT, which is not exactly calibrated, d is equal
to 0 but c is no longer equal to 1, and a calibration error
will be present in the phase measurement.3 For a
quadratic nonlinear PZT, e.g., d = 0.01, the PZT dis-
placement will be one-hundredth of a wavelength long-
er than that when d is zero. In this paper we will
investigate the effect of PZT quadratic nonlinearity on
the phase measurement. Therefore emphasis will be
put on the errors caused by various quadratic coeffi-
cient d when the linear coefficient c is 1. However the
following derivation is not restricted to the case in
which c is 1. Hence the result in this paper can be
extended to the case where c is not equal to 1.

From Eqs. (1) and (3), the integrating intensity can
be expressed as

In Jn+l {a + b co 00 + 27rc + 27rd (T ']dt, (4)

where At = TIN for n = 0,1,2,... ,N - 1. For the
phase-stepping method the voltage applied is a step
voltage with equal period and equal increment, so the
intensity is given as

In=a+bco{[00+2rcN+2rd(N)] (5)

where n is the order of step n = 0,1,2,... ,N.

Ill. Fresnel Integral

For the integrating-bucket method, the integrated
intensity will become much more complicated than the
form of Eq. (5) if a quadratic term is present in the PZT
displacement. In this section we will show that the
integration of each bucket can be expressed in terms of

Fresnel integrals. From Eq. (4), the intensity of the
first bucket is given as

A= J { {b cs00 + 27rc (T) + 2d ( )]}dt

= a + b A OS _ T + 2rd ( t + c ]dt
A t L 2d T 2dI

(6)

Changing the variable, the intensity can be expressed
as follows: Let x = tT + c/2d, then

Io a + b ITd cos k0 -2d + 27rdx2lTdx
At c 2d /

2d
+Nb cos(s) N cos(27rdx)dx

2d

Cl1
-Nb sin(s) d N sin(27rdx2)dx,

d

where s = - (7rc2)/(2d). The integral can be simpli-
fied by letting r = 2x@dr:

Io = a +Nb cos(s) aCOS(l T2 )d Nb sin(s) f(( sinZr r2 dT
Iod =\ 2 ) 25/a to \ 2

Nb cos(s) [r1 cos 2) T )d1

= a + Co LJ CO T dT - Cos - T )dT]

Nb sin(s) [r sin 2 dr - sin( L 2dT],
2~ /d [Jo 2 / 0 \2 

(7)

where

= c
S= - 2d'

c

c + 2Cd

N

T 2x~d = 2t@ + c

Both Eqs. (6) and (7) could be expressed for the nth
bucket, instead of restricting both to the first bucket.
The integrals in the brackets of Eq. (7) are Fresnel
integrals. Hence the integrating intensity can be ex-
pressed in terms of Fresnel integrals as

I=a Nb cos(s) [l,) 6co] Nb sin(s) Rcl YCd
o 2= a + d[ (2) - e(°)] - Cd[&(w)-

(8)

where

e(co) J cos( T )dr

S(c) J sin( T )dT
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are known as the Fresnel integrals.5 Similarly, the
integrating intensity of the nth bucket can be ex-
pressed in terms of Fresnel integrals, as given by

In= a+ Nb cos(s) 0(U@n+ -
2 d

-Nb sin(s) [&(-n+l) - S(4) X (9)

where

Wn=c + 2A/2
Cd N

for n = 0,1,2,3,... ,M. The value of M can be larger or
<N.

For the four-bucket method, letting N = 4 in Eq. (9),
the intensities of the consequent buckets can be ex-
pressed as

2b cos(s)
In, = a + [Q16(Wn+1) - (n)

2b sin(s) [cS(ca+i)- (@n)], (10)

d

where

= c + n
Cd 2

for n = 0,1,2,3,4 and s = - (7rc2)/(2d).
The Fresnel integrals @(X) and @(X) can be evaluat-

ed numerically using a series expression. In practice
the normalized linear coefficient c is almost equal to 1
in order that the total phase shift is almost 2ir in period
T, as explained in Sec. II. Therefore the quadratic
coefficient d is <<1 and wn is >>i. Hence the asymptot-
ic expression for the Fresnel integral is necessary to
speed up the calculation.

IV. Result

For a four-bucket method, the simple arctangent
formula is widely used to solve the phase,2

tan - . (11)
IO - I2

Substituting the intensities in Eq. (10) into this formu-
la, the resulting phase 0 differs from the initial phase
00. Because the intensity is a function of the initial
phase 4)o, the phase error 4) - 00 is also a function of 4)o.
Varying the initial phase 4)o from 0° to 3600 and evalu-
ating the phase error 0 - 00, a nearly sinusoidal phase
error is obtained, as illustrated in Fig. 2, curves T1 and
T2. Curve Ti is obtained using the first four-bucket
intensities, Io, I,, I2, and 13 of Eq. (10); curve T2 is from
the last four, I,, I2, I3, and I4. The initial phase for the
first four intensities differs from the initial phase for
the last four intensities by ,900. The amplitudes of
two phase error curves T1 and T2 are not equal, but
they are -180° out of phase. Therefore averaging two
measurements made from the first four-bucket and
the last four-bucket intensities will tremendously re-
duce the phase error. It should be noted that there is a

30 180 270
INITIAL PHASE (degree)

Fig. 2. Phase error caused by quadratic nonlinearity. Curve T1 is
the phase error for various initial phases, obtained using Eq. (11) and
the first four-bucket intensities; curve T2 obtained from the last
four-bucket intensities instead. Curves C1 and C2 are the corre-
sponding phase errors from Eq. (12). The linear and quadratic

coefficients c and d equal 1 and 0.01, respectively.

dc bias for each phase error curve. Because the abso-
lute phase value is not important, the dc bias is re-
moved when comparing the phase error curves. A
similar result is obtained if the intensities of the phase-
stepping method in Eq. (5) are used.4

Carr6's formula, shown below, has been used to cor-
rect the linear calibration error6 7 8

U -I2) + (Io-13)][3(Il - I2) - (Io -3)]1
ta U (1+12) -(I +3) (12)

From this formula and the intensities in Eq. (10),
similar results are obtained, as illustrated in Fig. 2,
curves C1 and C2. Therefore averaging two measure-
ments can be used to reduce the phase error as for
curves T1 and T2. It should be noted that the ampli-
tudes of curves C1 and C2 are much smaller than those
of curves T1 and T2.

The rms of phase errors for the initial phase 00
ranging from 00 to 3600 can be used to represent the
PSI rms error caused by the PZT quadratic nonlinear-
ity. The rms phase error, obtained using Eq. (11) or
Eq. (12) and removing the dc bias, for various quadrat-
ic coefficients is shown in Fig. 3. Curves A and A' are
the rms phase error from Eq. (11). Curve A' is the
result of averaging two measurements made from the
first four and the last four buckets. When the qua-
dratic coefficient d is <0.1, the rms phase error is
almost linearly proportional to the value of d for both
curves A and A'. Similar results can be perceived for
curves B and B' obtained using Eq. (12) instead.

The three-bucket algorithm, which has a phase shift
of ,120° for each bucket, is given as

tan-1 -3(- IO) q

where the integrated intensity In can be obtained by
letting N = 3 in Eq. (9). Curve P in Fig. 4 is the phase
error obtained using the first three-bucket intensities
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Fig. 3. Resulting rms of phase error for various quadratic coeffi-
cients. Curve A' is obtained using Eq. (11) and averaging two
measurements in which the initial phase difference between the two
measurements is .900. Curve A is obtained from Eq. (11) but
without averaging. Curves B and B' are the corresponding results

obtained using Eq. (12) instead.

Io, II, and I2; curve Q is from the last three buckets I,
I2, and I3. The two sets have an 1200 difference in
the initial phases, not 900 as in the cases of Fig. 2. The
amplitudes of these two nearly sinusoidal curves are
not equal and are 120° (or 2400) out of phase with
each other. Because of this 1200 out of phase, instead
of the 1800 out of phase in Fig. 2, averaging two mea-
surements made from the first three buckets and the
last three buckets can only slightly reduce the error.

V. Discussion

Comparing the phase error curves T1 with C1 in Fig.
2, it is seen that the error caused by the quadratic
nonlinearity when using Eq. (12) is smaller than the
error when using Eq. (11). This can be explained as
follows: In Fig. 2 the two coefficients c and d are 1 and
0.01, the quadratic PZT displacement better fits the
straight line with c> 1 and d = O. Therefore, Eq. (11),
which assumes the phase shift for each bucket to 900,
will suffer from a larger error than Eq. (12) does, which
can adjust for the linear calibration error.

From Figs. 2 and 4, the phase error curves are nearly
sinusoidal with frequency twice that of the interfer-
ence fringes. This could be due to the fact that the
tangent function, used to calculate the phase, has a
period of 1800 which is /2 in terms of optical path
difference. Therefore there are two ripples for each
Jntpference fringe. This explains why most of the

:jus phase errors in the PSI have twice the spatial
irequency. 3 ,4,8,9

Because the phase error has frequency twice that of
the interference fringes, if the phase shift is 900 for

3

P

0 
0 90 180 270 360

INITIAL PHASE (degree)

Fig. 4. Phase error caused by quadratic nonlinearity. Curves P and
Q are the phase error, from Eq. (13), of two cases where the initial
phases differ by 120°. The arrow on curve Q corresponds to that
on curve P; they are -240° degree out of phase in terms of the
sinusoidal curve. The linear and quadratic coefficients c and d

equal 1 and 0.01, respectively.

each bucket (i.e., N = 4), the phase error curves will be
1800 out of phase for two measurements made from the
first four and the last four buckets. Therefore averag-
ing these two measurements can reduce the phase er-
ror. The effect of averaging two measurements on the
reduction of the phase error is shown in Fig. 3.

For the larger d, e.g., d > 0.1, the rms error increases
at a rate larger than that for d < 0.1; curve A' is not
straight but curved upward. The reason is that for
large d, e.g., 0.1, the initial phase difference between
two measurements made from the first four buckets
and the last four buckets is quite different from 900.
Therefore the nearly sinusoidal phase error curves are
not 180° out of phase with each other. Hence, for
larger d averaging two measurements cannot reduce
the error as much as for small d. This also explains
curves B and B' obtained by using Eq. (12).

In Fig. 2, the initial phase difference between the
first four buckets and the last four buckets is 90°.
Therefore, in principle, curve T2 can be obtained by
shifting curve T1 to the left by 900 in terms of initial
phase, i.e., x axis. The amplitude difference between
curves T1 and T2 is due to the fact that the first four
buckets have a smaller error in the phase shift for each
bucket than the last four buckets. The phase shift
sum should be 3600 for either four buckets, but actual-
ly the sum is 363.60 for the first four buckets and
365.40 for the last four buckets. Therefore the ampli-
tude of curve T1 is smaller than curve T2. This is also
true for curves C1 and C2.

Similarly, in Fig. 4, the initial phase difference be-
tween the two sets of measurements, which result in
curves P and Q, respectively, is ~120°. Therefore,
curve Q can be obtained by shifting curve P to the left
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by 1200. Due to twice the spatial frequency in the
phase error, phase error curves P and Q should be 2400
out of phase with each other, as illustrated by the
arrows in Fig. 4. Thus averaging two sets of measure-
ments, obtained using Eq. (13), does not have as much
effect on error reduction as using Eq. (11). Therefore
the three-bucket method is not a good choice from the
point of error reduction.

VI. Conclusion

If the PZT displacement can be described as a qua-
dratic function, the integrating intensity can be calcu-
lated using the Fresnel integral. Hence the phase
error caused by the PZT nonlinearity can be analyzed.
The error is periodic with frequency twice that of the
interference fringes. Because the absolute phase is
not important in optical testing, the dc bias is removed.
For the PZT with smaller nonlinearity, the rms phase
error is almost linearly proportional to the quadratic
coefficient d. Because of the 1200 phase shift for the
three-bucket method, the averaging cannot reduce the
phase error as much as with the four-bucket method.
With the four-bucket method, using the simple arctan-
gent formula and averaging two measurements can
have as small an amount of error as using the Carr6
formula without averaging. However the argument of
arctangent in the Carr6 formula is much more compli-

cated than that in the simple arctangent formula.
Therefore a convenient way to reduce this error is to
take two measurements with the four-bucket method
in the simple arctangent formula, and average them.
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OPTICAL FIBER MEASUREMENT SYMPOSIUM PROCEEDINGS
The 1986 Optical Fiber Measurements Symposium, held in
September 1986 in Boulder at NBS, brought together over 300
representatives from 17 countries to present 34 papers.
Topics of the 29 contributed papers spanned the full range
of measurements necessary to specify an optical fiber, with
a heavy emphasis on dispersion and mode-field diameter
measurements in single-mode fibers. The five invited
papers summarized the state of the art and looked to
related and future measurement problems in the
characterization of sources, detectors, specialty fibers,
and planar waveguide devices. Summaries of the papers are
presented in the Technical Digest: Symposium on Optical
Fiber Measurements 1986 (SP 720), available from the
Superintendent of Documents, U.S. Government Printing
Office, Washington, D.C. 20402, for $8 prepaid; order by
stock no. 003-003-02772-3.
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