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Abstract

Two-wavelength holography and phase-shifting interferometry are combined to measure aspheric surface
contours with a variable sensitivity. 1In this technique, the surface is effectively tested at a synthesized
longer equivalent wavelength keq = Xa)‘k/lxa - 4| using measurements made at wavelengths *, and }} where the
difference of the phases measured for a and )‘b yields the modulo 2" phase at * q A mask of point apertures
is placed over the detector array in order to resolve closely spaced fringes. This technique has an rms
repeatability of Xeq/IOO. Limits to this technique are discussed and results are shown.

Introduction

Aspheric optical components are rapidly becoming important to the optical designer. Often the performance of
an optical system will depend on whether it is possible to generate and test an aspheric component. Until
recently, means of generating steep aspherics have not been available. However, with the advent of new
techniques such as diamond-point mac:bining,1 bend and polish,2 and computer—controlled curve generators,3'4
aspherics are now more feasible. The missing link in aspheric production is the measurement of a surface to
know what shape has been generated.

Currently, aspherics are tested using a number of different techniques such as null lenses and computer-
generated holograms.5 A null lens is designed to compensate for the departure of the test surface from a
spherical surface. Each asphere requires a different null lens containing a large number of elements which
must be tested individually as well as a system. A computer—generated hologram serves the same purpose, but
the wavefront is produced by a hologram which has been computer~calculated and drawn using some sort of
plotting device. This technique also produces a one—of-a-kind test, and it is not always possible to obtain a
suitable low-distortion hologram from a plotter. Both of these techniques involve a lot of design for each
asphere tested, can be quite expensive, and are time-comsuming. Other techniques for testing aspheres include
mechanical means (such as a stylus), and shearing interferometry. Mechanical means cannot yield a high enough
precision, and shearing generally only gives information in one direction so that an integration is needed to
determine surface shape.

Another technique worth mentioning is two-wavelength holography (TWH) which uses two visible wavelengths to
produce a long effective wavelength for wayefront contouring of any surface, rough or smooth.® 1t is a good
technique for testing aspheres and steep surfaces because of its variable sensitivity; however, it is not very
precise, and requires an intermediate holographic recording. TWH has also been combined with phase-shifting
interferometry producing a high precision test.’ 1In this technique, a hologram made at one wavelength is
illuminated with a second wavelength. The relative phase in the interferometer is then shifted at the second
wavelength and the phase at a longer, less sensitive, equivalent wavelength can be determined. This technique
is a good step beyond TWH, but it requires making an intermediate hologram before interferogram data is
recorded to calculate phase. )

A simple means of testing a surface with a large departure from a spherical surface is in great need. Such
a system needs to be as flexible in testing aspheres as a Twyman-Green interferometer is in testing spheres.
It should also not need intermediate recordings or the generation of holograms to produce an interferogram of
the test surface. Two-wavelength phase-shifting interferometry (TWPSI) is such a technique.8'9 Surface height
variations of optically smooth surfaces can be determined from the phase data by utilizing computers to record
data and calculate surface errors. This technique is fast and has no intermediate recording step. With TWPSI,
it is possible to directly measure the profiles of deeper surfaces than is possible with a single wavelength by
applying phase measurement to two-wavelength holography.

Theory

In TWH the interferogram at one wavelength )‘a is recorded on photographic film with the test surface in
place, developed, placed back in the original position, and then illuminated with the interferogram produced by
a different wavelength )‘b of the same surface. The interference pattern between these two interferograms is
then spatially filtered to remove unwanted components. The result of this test is an interferogram in which
fringes are spaced as if the surface were tested with an equivalent wavelength given by 6

= 2 . (1)
S

The sensitivity of the test can be varied by changing the two illuminating wavelengths. When the wavelengths
used are produced by argon-ion and HeNe lasers, the equivalent wavelength can be varied over a range of 2 to 50
Hm,
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Phase-shifting interferometry (PSI) is a technique which can determine the shape of a surface or wavefront
by calculating a phase map from the measured intensities. The phase information is obtained by shifting the
phase of one beam in the interferometer by a known amount and measuring the intensity in the interferogram for
many different phase shifts. For the phase calculations used in this paper, the intensity is integrated over
the time it takes to move a reference mirror linearly through a 20 change in phase (usually near 90°) with a
piezo-electric transducer (PZT). Four frames of intensity data are recorded in this manner:

A(x,y) = Igll + yveos(o(x,y) - 30)]

B(x,y) = Ip[l + vcos(¢(x,y) = )]
C(x,y) = Ipll + vcos(4(x,y) + )] (2)
D(x,¥) = Ig[l + vcos(¢(x,y) + 30)] ,

where Iy is the average intensity, and Y is the modulation of the interference term. The phase $ is calculated
using

7 [(A-D) + (B-C)][3(B-C) - (A-D)]

¢ = arctan Brey = (A+D) (3)

at each detected point in the interferogram. The calculation of the phase is independent of the actual amount
the phase is shifted as long as it is linear and o is comstant. This enables the same equations to be used at
many different wavelengths without changing the ramping voltage to the PZT.

The optical path difference (OPD) between the reference and object wavefronts is given by

oPD(x,y) = HED L (%)

where X2 is the effective wavelength for the phase ¢. OPD is related to object surface height by a
multiplicative factor, which is one-half for a double-pass interferometer like the Twyman-Green. 27 phase
ambiguities are smoothed by comparing adjacent pixels and adding or subtracting multiples of 27 until the
difference between adjacent pixels is less than 7. The wavefront's phase between adjacent pixels must not

change by more than 7 (one-half wave of OPD) for the 27 ambiguities to be handled correctly. This limits the

number of fringes measurable across the test surface, thereby governing the test sensitivity.

Extension of the measurement range of phase-shifting interferometry over the range of two-wavelength

holography requires a closer look at TWH. The interferogram obtained with two-wavelengths in TWH has an
intensity distribution given by6

I(x,y) = 1 + cos[ZTf OPD(x,y) [}1— - %b:lil , (5)
a

where this expression assumes unit amplitudes, no tilt between the object and reference beams, and OPD refers
to the optical path difference. The phase is given by the argument of the cosine term and can be written as

I OPDGGLY) .« 4,(x,9) - $p(,¥) ”

baq(x:y) =
eqlx,y eq

where ¢, and ¢ are the phases measured for A, and XAp. The difference of the phases measured at the two
wavelengths yields the phase associated with the equivalent wavelength. In order to remove 27 ambiguities
from the equivalent wavelength data, the phase difference between two adjacent pixels of the equivalent phase
must be less than T (keq/z in OPD).

To measure phase at an effective wavelength A,, using two shorter wavelengths under computer control, the
following algorithm is used. First, the computer takes four frames of data at A, while shifting the phase in
the interferometer. Next, the phase shifter is returned to its original position, the illumination is switched
from A, to Ay, and four more data frames are taken while shifting the phase the same as for A,. The phases ¢,
and ¢y, are calculated modulo 27 using Eq. (3) and then subtracted to yield ¢,q modulo 27. Phase ambiguities
are then removed using an integration routine. This approach is very simple, and easily implemented using
existing phase—-measurement equipment.

Limitations to TWPSI

There are three limitations which need to be considered. Firstly, steep surfaces cause very closely spaced
fringes which may not be resolvable by the detector. Therefore, a modulation of the fringe intensity may not
be detected resulting in phase calculation errors. Secondly, the uncertainty in the measurement is
proportional to the equivalent wavelength. This causes the signal-to-noise ratio of the measurement to be
reduced at longer wavelengths. Finally, chromatic aberrations in the system cause errors and lots of "noise"
in the equivalent wavelength measurement. Ways of reducing these limitations are discussed in this section.

102 / SPIE Vol. 645 Optical Manufacturing, Testing, and Aspheric Optics (1986)



When a fringe pattern is recorded by a detector array, discrete voltages are output representing the average
intensity incident upon the detector element over the integration time. As the relative phase between the
object and reference beams is shifted, the intensities read by point detectors should change as shown in Fig.
la. If the interference data are sampled such that there are two detector elements for each fringe (each
half-wave of OPD), then the wavefront can be reconstructed. However, if the fringe pattern is not sufficiently
sampled, the wavefront cannot be correctly reconstructed as shown in Fig. 1b where there is more than 1/2
fringe per detector. When the area of the detector is finite, the detector reads the average fringe intensity
over its area as shown in Fig. lc. As long as there is less then one-half of a fringe per detector element,
the intensity will be modulated. However, if there is 1 fringe over the area of the detector element there
will be no modulation (Fig. 1ld). Thus, the detector size influences the recorded fringe modulation, whereas the
detector spacing determines if the wavefront can be reconstructed without phase ambiguities.

POINT SAMPLED POINT SAMPLED
A) A®=0 A®=n/2 B) A®=0 A®=m/2
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A®=0 A®=n/2 A®=0 Ad=m/2
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Figure 1: A) Sufficient sampling with point detectors showing high modulation of the intensity as the interferometer's
relative phase is shifted by x/2. B) Undersampling with point detectors showing aliasing of fringe pattern with
detector spacing where wavefront cannot be reconstructed. C) Sufficient sampling with finite-sized detectors with
<1/2 fringe over the detector area. D) Undersampling with finite-sized detectors showing no intensity modulation.

Pringe modulation is a fundamental problem in all phase-shifting techniques8,1l making the ratio of the
detector size to the fringe spacing important. If many fringes are incident upon a single detector element, the
intensity measured will be an average over the detector area. When the phase is shifted, these points will not
be modulated sufficiently to get an accurate phase reading. The modulation y of a detected point is determined

using

JEN— B-C A-D)}2 B+C) - (A 2
Y=/1112=%\/[( ) * M2 ¥ 1@ - 2 -

where 20 is assumed to be near 90°. If the modulation of a data point is less than a threshold Iyj,, that data
point is flagged as bad; otherwise, the point is considered good and the phase of the wavefront is calculated
at that point. In the examples shown in the next section, there are detector points where this occurs. These
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points are discarded during the calculations using Eq. (7). The spacing between detectors dictates the ultimate
measurement sensitivity because of the 27 ambiguities; but this can be overcome by simply changing the
equivalent wavelength.

60 ym

To ensure sufficient sampling to yield high intemsity modulation as the | |
phase is shifted, the size of the detector should be small compared to the
fringe spacing. This is accomplished by imaging a mask of small apertures . . -
onto the face of the detector array. The mask in Fig. 2 consists of 5 ym 5 um J_ = -

square apertures separated by the detector spacing.

The signal-to-noise (S/N) ratio of the equivalent wavelength phase data
depends upon the wavelength, If there are 10 waves of departure at a = s 8 s
wavelength of 500 nm, there will be only 1/2 of a wave departure at an
equivalent wavelength of 10 um. Phase—-shifting techniques are usually
precise (or repeatable) to an rms of about A/100, and the precision is .
proportional to the effective wavelength of the measurement. At 500 nm .
A/100 will be 5 nm meaning that features smaller than 5 nm in extent
cannot be measured. At 10 ym /100 precision would be 100 nm. Thus, a
S/N ratio of 1000 at 5 nm ends up as a S/N of 5 at 10 ym. This scaling has
been refered to as an error magnification,8 and is proportional to the
square of the ratio of the two wavelengths. If ambiguities in the single
wavelength measurement can be resolved by comparison to the equivalent
wavelength data, the signal-to-noise ratio of the measurement can be
significantly enhanced.

Figure 2: Mask of 5 pm square
apertures separated by detector
spacing used to increase the
modulation of closely spaced fringes.

The largest errors in the phase maps can be attributed to chromatic aberration. Any glass elements in the
interferometer will have dispersion which may produce a wavelength dependence of the system aberrations. When
the interferograms change size or shift laterally with wavelength because of chromatic aberration, the
equivalent wavelength phase can have errors due to lack of a point-by-point correspondence between the phase
maps at each wavelength. To reduce errors due to chromatic aberration, all glass elements should be
achromatized for the wavelengths in use. A small amount of chromatic aberration can be tolerated, but it
should not shift the location of the incident fringes by more than one-half of a fringe or change the size of
the interferogram by more than a pixel in order to have good results.

If the interferometer is corrected for the two colors in use, the equivalent wavelength data can be directly
used to remove ambiguities in one of the single-wavelength phase measurements. As long as the noise due to
chromatic aberration is less than one-half of the measurement wavelength (A, or 1), then the number of 2n's
to add to the single-wavelength measurement can be determined by direct point-by-point comparison with the
integrated equivalent wavelength phase. If a direct comparison is not possible, the equivalent wavelength data
can be modified by removing the tilt and piston due to chromatic before correction.!

Thus, the limitations to TWPSI can be reduced by using a mask of point apertures to increase intensity
modulation, correcting the interferometer for chromatic aberration, and by correcting ambiguities in the single-
wavelength data using the equivalent wavelength data as a reference. This enables the wavefront phase to be
reconstructed over the range of the equivalent wavelength test, and have the precision obtainable using a
shorter measurement wavelength.

Experiment

To illustrate this technique, phases of steep

TEST SURFACE

wavefronts were measured using a . Twyman—-Green

interferometer (Fig. 3) with a PMS tunable HeNe 1laser 'MCEG'E%G“’—’-‘“’ DIVERGER
source. A test surface is placed in one arm of the RETICON |

interferometer, and a flat mirror controlled by a PZT is DETECTOR! / N\

placed in the other. An achromatic diverging lens is ARRAY I @;

used to match the curvature of the base sphere for the

. . MASK
aspheric surface. Interferograms are recorded using a FIBER
Reticon 100x100 diode array with a fiber optic window WINDOW ﬁ PZT
coupled to an HP-320 computer. The fiber optic window ACTUATED
is used to enable the mask to be imaged directly onto MIRROR
the detector array when it is placed in contact with the Figure 3: Experimental setup for testing an aspheric
window. A zoom lens images the test surface onto the surface using two-wavelength phase-shifting
fiber window. The wavelengths used in this experiment interferometry.
are 594 nm, 604 nm, 612 nm, and 633 nm from the tunable
HeNe laser yielding the equivalent wavelengths shown in Ao (¥m) 0.633 0.612 0.604 0.594
Table 1. €q
Table 1: Equivalent wavelengths using PMS tunable 0.633 o 18.527  13.271 9.714
HeNe laser. 0.612 18.527 --- 46.783 20.423
0.604 13.271 46.783 - 36.246
0.594 9.714 20.423 36.246 ---

104 / SPIE Vol. 645 Optical Manufacturing, Testing, and Aspheric Optics (1986}




Fig. 4 shows the interferogram of the aspheric surface under test at 633 nm. When this surface is tested
using data at a single wavelength, there are ambiguities in the phase which cannot be resolved (see Fig. 5).
This is because the OPD of the wavefront is changing by more than one-half of the measurement wavelength
between adjacent detector elements. When modulo 2w phase measurements are taken at wavelengths of 633 nm and
594 nm and then subtracted, phase ambugiuites can resolved as shown in Fig..6a. At the equivalent wavelength
of 9.7 um, the asphere has a peak-to-valley (P-V) departure of 0.867 waves and an rms of 0.119. Since phase
ambiguities are resolvable, the OPD must be changing by less than half a wave between adjacent detector
elements.

Date: BI/23/86
P~y 18.872

Figure 4: Interferogram of aspheric Figure 5: Result of trying to remove
surface under test at 633 nm. ambiguities in the phase calculated at
633 nm from surface of Fig. 4.

With the PMS laser many different equivalent wavelengths can be obtained. Figure 6 shows the same test
surface as measured at three different equivalent wavelengths. WNote that as the equivalent wavelength is
increased, the noise also increases. This is due to the error magnification. The noise in the interferometer
system is measured to be about A/15 in (P-V), and A/100 in rms independent of what wavelength is used. Thus,
as the equivalent wavelength gets longer, the P-V of the test surface will get smaller as will the signal-to-
noise ratio. At )‘eq=20'4 um, the P-V of 0.332 waves and rms of 0.052 waves scale well in comparison to the
results at 9.7 um. If a real steep surface were measured, one could take measurements at a series of
wavelengths and work backwards through shorter and shorter equivalent wavelengths until ambiguities in the
single wavelength phase were corrected.l3

A) B) C)

Figure 6: Calculated phase at different equivalent wavelengths for surface of Fig. 4 showing magnification of
noise with wavelength. A) Xeq=9.7 . B) leq=20.4 um. C) leq=46.8 um.

Conclusions

Two~wavelength techniques are very valuable for the testing of steep surfaces such as aspheres because of
the variable measurement sensitivity attainable by changing the wavelengths. The technique presented in this
paper is very straightforward and easy to implement. It's precison is limited by the equivalent wavelength. In
order to increase the precision of the measurement, the single-wavelength phase data can have its 2r¢
ambiguities resolved using the integrated two-wavelength phases. The range of the measurement can be
increased by using point detectors to sample fringes with a closer spacing than the detector size. Since the
interferograms at each wavelength are recorded and then combined inside the computer, the intermediate
recording step of two-wavelength holography is unneeded. This makes the techmique a more convenient means of
testing than TWH. Using the computer means there are no errors due to fringe digitization, and further analysis
on the phase data may easily be done. The technique of manipulating primary interferograms inside a computer
to produce a secondary interferogram from double-exposure measurements has many applications besides TWPSI,
one of which is phase measurement with double-exposure holography.
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