Basic Classical Interferometers

- Plane Parallel Plate
- Fizeau
- Michelson
- Twyman-Green
- Mach-Zehnder
- Lateral Shear
- Radial Shear

Plane Parallel Plate - Point Source

Non Localized fringes

By symmetry, fringes in plane parallel to plate are circular about normal SN
Plane Parallel Plate - Extended Source (Path Difference)

Optical path difference

\[\Delta l = (AB + CB)n - n'AD \]

\[AB = CB = \frac{d}{\cos \theta} \]

\[AD = AC \sin \theta'; AC = 2d \tan \theta \]

\[= 2d \tan \theta \sin \theta' \]

\[n' \sin \theta' = n \sin \theta \]

\[\Delta l = \frac{2nd \cos \theta}{\cos \theta} - 2n' \frac{\sin \theta \sin \theta}{\cos \theta} \]

\[= \frac{2nd}{\cos \theta} [1 - \sin^2 \theta] \]

Plane Parallel Plate - Extended Source (Haidinger Fringes)

Fringes localized at infinity

\[\delta = \frac{2\pi}{\lambda} 2nd \cos \theta \pm \pi \]
Haidinger Fringes

Plane Parallel Plate - Extended Source
(Transmitted Light)

Low reflectance surfaces give low visibility fringes. Transmitted and reflected fringe patterns are complimentary.
Fizeau Fringes - Point Source
(1862)

\[\delta = \frac{2\pi}{\lambda} 2nd \cos \theta \pm \pi \]

- \(d \) is film thickness (function of position)
- \(\theta \) is angle within film (function of position)

Non localized fringes

Fizeau Fringes - Broad Source
(1862)

Fringes localized near film

Near the film rays from source points see approximately same \(d \)

Variations in \(\cos \theta \) reduced if
- a) camera has small aperture focused on film
- b) if \(\theta \approx 0 \), \(\cos \theta \approx 1 \) for moderate spread in \(\theta \)
Classical Fizeau Interferometer

![Diagram of Classical Fizeau Interferometer]

Typical Interferogram obtained using Fizeau Interferometer

![Typical Interferogram Image]
Relationship between Surface Height Error and Fringe Deviation

Surface height error = \(\frac{\lambda}{2} \left(\frac{\Delta S}{S} \right) \)

Fizeau Fringes

For a given fringe the separation between the two surfaces is a constant.

Height error = \(\frac{\lambda}{2} \left(\frac{\Delta S}{S} \right) \)
Newton’s Rings

For m\th dark fringe from center

\[d_m = m\frac{\lambda}{2} \quad \rho_m \approx \sqrt{m\lambda R} \]

Soap Bubbles and Oil Films

For bright fringe

\[\frac{2\pi}{\lambda} 2nd \cos \theta + \pi = m2\pi \]

If \(d > > \lambda \), \(m \) varies greatly for change in \(\lambda \).
If \(d = \text{few} \lambda \), \(m \) varies slowly with \(\lambda \).

Therefore, with thin films see color fringes.
Color changes with variations in thickness and \(\theta \).
Michelson Interferometer (1881)

[Image of Michelson Interferometer diagram]

Michelson Interferometer (Fringes of Equal Inclination - Haidinger)

[Image of Michelson Interferometer diagram with equations]

Bright fringe when \(2d \cos \theta = m\lambda\)
Michelson Interferometer
(Fringes of Equal Thickness)

Michelson Interferometer Fringes

Upper row - Fringes of Equal Inclination
Lower row - Fringes of Equal Thickness
Path differences increases outward from the center
White Light Fringes

Twyman-Green Interferometer
(Flat Surfaces)
Mach-Zehnder Interferometer

Testing samples in transmission

Lateral Shear Interferometry

Measures wavefront slope

Shear Plate

Source

Collimator Lens

Interferogram

Shear $= \Delta x$
Lateral Shear Fringes

\[\Delta W(x, y) \text{ is wavefront being measured} \]

Bright fringe obtained when

\[\Delta W(x + \Delta x, y) - \Delta W(x, y) = m\lambda \]

\[
\left(\frac{\partial \Delta W(x, y)}{\partial x} \right)_{\text{Average over \ shear distance}} \cdot (\Delta x) = m\lambda
\]

Measures average value of slope over shear distance

Collimation Measurement

- **No wedge in shear plate**
 - Not collimated
 - Collimated (one fringe)

- **Vertical wedge in shear plate**
 - Not collimated
 - Collimated
Radial Shear Interferometry

Wavefront is interfered with expanded version of itself

\[
R = \frac{S_1}{S_2}
\]

Analysis of Radial Shear Interferograms

Wavefront being measured

\[
\Delta W(\rho, \theta) = W_{020}\rho^2 + W_{040}\rho^4 + W_{131}\rho^3 \cos \theta + W_{222}\rho^2 \cos^2 \theta
\]

Expanded beam can be written

\[
\Delta W(R\rho, \theta) = W_{020}(R\rho)^2 + W_{040}(R\rho)^4 + W_{131}(R\rho)^3 \cos \theta + W_{222}(R\rho)^2 \cos^2 \theta
\]

Hence, a bright fringe is obtained whenever

\[
\Delta W(\rho, \theta) - \Delta W(R\rho, \theta) = W_{020}\rho^2(1 - R^2) + W_{040}\rho^4(1 - R^4) + W_{131}\rho^3(1 - R^3) \cos \theta + W_{222}\rho^2(1 - R^2) \cos^2 \theta
\]

Same as Twyman-Green if divide each coefficient by \((1 - R^n)\)
Radial Shear Interferogram

- Variable Sensitivity Test
- Large shear - results same as for Twyman-Green
- Small shear - Low sensitivity test