Basic Classical Interferometers

- Plane Parallel Plate
- Fizeau
- Michelson
- Twyman-Green
- Mach-Zehnder
- Lateral Shear
- Radial Shear

Plane Parallel Plate - Point Source

By symmetry, fringes in plane parallel to plate are circular about normal SN

Optics 505-James C. Wyant
Page 1

| Plane Parallel Plate - Extended Source |
| :---: | :---: |
| (Path Difference) |

Plane Parallel Plate - Extended Source (Haidinger Fringes)

Optics 505-James C. Wyant
Page 2

Plane Parallel Plate - Extended Source (Transmitted Light)

Low reflectance surfaces give low visibility fringes.
Transmitted and reflected fringe patterns are complimentary.

Fizeau Fringes - Point Source

 (1862)

$$
\delta=\frac{2 \pi}{\lambda} 2 n d \cos \theta \pm \pi
$$

d is film thickness (function of position) θ is angle within film (function of position)

Fizeau Fringes - Broad Source (1862)

Fringes localized near film
Near the film rays from source points see approximately same d
Variations in $\cos \theta$ reduced if
a) camera has small aperture focused on film
b) if $\theta \approx 0, \cos \theta \approx 1$ for moderate spread in θ

Optics 505-James C. Wyant

Classical Fizeau Interferometer

Typical Interferogram obtained using Fizeau Interferometer

Optics 505-James C. Wyant
Page 5

Relationship between Surface Height Error and Fringe Deviation

Surface height error $=\left(\frac{\lambda}{2}\right)\left(\frac{\Delta}{\mathrm{S}}\right)$

Fizeau Fringes

Optics 505 - James C. Wyant
Page 6

For m th dark fringe from center
$d_{m}=m \frac{\lambda}{2} \quad \rho_{m} \approx \sqrt{m \lambda R}$

Soap Bubbles and Oil Films

For bright fringe

$$
\frac{2 \pi}{\lambda} 2 n d \cos \theta+\pi=m 2 \pi
$$

If $\mathrm{d} \gg \lambda, m$ varies greatly for change in λ. If $\mathrm{d}=$ few λ, m varies slowly with λ.

Therefore, with thin films see color fringes.
Color changes with variations in thickness and θ.

Optics 505-James C. Wyant
Page 7

Optics 505-James C. Wyant
Page 8

Michelson Interferometer Fringes

Upper row - Fringes of Equal Inclination
Lower row - Fringes of Equal Thickness
Path differences increases outward from the center

Twyman-Green Interferometer (Flat Surfaces)

Optics 505-James C. Wyant
Page 10

Testing samples in transmission

Lateral Shear Interferometry

Optics 505-James C. Wyant
Page 11

Lateral Shear Fringes

$\Delta W(x, y)$ is wavefront being measured
Bright fringe obtained when
$\Delta W(x+\Delta x, y)-\Delta W(x, y)=m \lambda$

Measures average value of slope over shear distance

Collimation Measurement

Analysis of Radial Shear Interferograms

Wavefront being measured
$\Delta \mathrm{W}(\rho, \theta)=W_{020} \rho^{2}+W_{040} \rho^{4}+W_{131} \rho^{3} \cos \theta+W_{222} \rho^{2} \cos ^{2} \theta$

Expanded beam can be written
$\Delta \mathrm{W}(R \rho, \theta)=W_{020}(R \rho)^{2}+W_{040}(R \rho)^{4}+W_{131}(R \rho)^{3} \cos \theta$
$+W_{222}(R \rho)^{2} \cos ^{2} \theta$
Hence, a bright fringe is obtained whenever
$\Delta \mathrm{W}(\rho, \theta)-\Delta \mathrm{W}(R \rho, \theta)=W_{020} \rho^{2}\left(1-R^{2}\right)+W_{040} \rho^{4}\left(1-R^{4}\right)$
$+W_{131} \rho^{3}\left(1-R^{3}\right) \cos \theta+W_{222} \rho^{2}\left(1-R^{2}\right) \cos ^{2} \theta$
Same as Twyman- Green if divide each coefficient by $\left(1-\mathrm{R}^{\mathrm{n}}\right)$

Radial Shear Interferogram
- Variable Sensitivity Test - Large shear - results same as for TwymanGreen - Small shear - Low sensitivity test
Opicis 85.5 Lames C. Wyamt

Optics 505 - James C. Wyant
Page 14

