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ABSTR ACT

This paper describes a method for measuring the absolute flatness of flats. A function in a
Cartesian coordinate system can be expressed as the sum of even-odd, odd-even, even-
even, and odd-odd functions. Three flats are measured at eight orientations; one flat is
rotated 1 80°, 90°, and 45° with respect to another fiat. From the measured results the
even-odd and the odd-even functions of each flat are obtained first, then the even-even
function is calculated. All three functions are exact. The odd-odd function is difficult to
obtain. For the points on a circle centered at the origin, the odd-odd function has a period
of 180° and can be expressed as a Fourier sine series. The sum of one half of the Fourier
sine series is obtained from the 900 rotation group. The other half is further divided into
two halves, and one of them is obtained from the 45° rotation group. Thus, after each
rotation, one half of the unknown components of the Fourier sine series of the odd-odd
function is obtained. The flat is approximateed by the sum of the first three functions and
the known components of the odd-odd function. In the simulation, three flats (each is an
OPD map obtained from a Fizeau interferometer) are reconstructed. The theoretical
derivation and the simulating results are presented.

I. Introduction

In a Fizeau interferometer, two flats face each other and form a cavity. The
interference fringes detected reveal the flatness of the cavity. In the traditional three-flat

od2 the flats are compared in pairs. By rotating the flats with respect to each other,
the exact profiles along several diameters of each flat are obtained. A method with more
flats and more combinations has been proposed.3 However, with both methods, only the
profiles along some straight lines can be solved, and the relationship of these profiles on a
flat has not been defmed. Several methods47 have been proposed to measure the flatness
of the entire surface. All these methods involve tremendous calculations in the least
squares sense. Thus, the fine structure of the surface tends to disappear.

In this paper, we modify the three-flat method and use the properties of the odd and
the even functions, especially when the function is rotated or flipped, to calculate the entire
profile of a flat. Every point of a flat is obtained without using the least squares method.

II. Theory
A function F(x,y) in a Cartesian coordinate system can be expressed as the sum of

an even-odd, an odd-even, an even-even, and an odd-odd function as follows.
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F(x,Y)F+F+F+Feo, (1)
where

F(x,y) = (F(x,y) + F(-x,y) + F(x,-y) + F(-x,-y))/4,
F(x,y) = (F(x,y) - F(-x,y) - F(x,-y) + F(-x,-y))/4, (2)
F(x,y) = (F(x,y) + F(-x,y) - F(x,-y) - F(-x,-y))14,
F(x,y) = (F(x,y) - F(-x,y) + F(x,-y) - F(-x,-y))/4.

Because the flats are facing each other, one flat is flipped. If two flats are F(x,y) and
G(x,y), and G(x,y) is flipped in x, then the measured OPD is equal to F(x,y)+G(-x,y).
For convenience, we define two operators [ ] and [ ]:

Flip in x [F(x,y)]' F(-x,y), (3)
Rotate 0 [F(x,y)]9 F(x cos9 - y sinO, x sinO + y cosO).

Thus, [F(x,y)]'80° = F(-x,--y). From Eq. (1),

it;i \118OO_1 t riX,jj

Figure 1 shows the three flats, A(x,y), B(x,y), and C(x,y), of a front view and a
rear view. The coordinate systems indicate the orientations of the flats. Figure 2 shows
the eight configurations and the corresponding measurements. In each configuration, the
flat above is of a front view, and the one below is flipped in x and is of a rear view. In
some configurations, one flat is rotated 180°, 904),or 45° with respect to another flat. The
equations of the eight configurations are

M1=A+Bx, M2=A18°+B',
M3=A°+Bx, M=A450+Bx,
M5 A180° + C, B + C, (5)

M7 B9° + C, M8 = B45° + C.

Using Eqs. (1) and (4), M1, M2, and M5 can be written as

(6)

Therefore, all the odd-even and the even-odd parts of the three flats can be obtained easily
as given below:

+B = [(M1 - [M1]18)/2 - (A+A)]x, (7)

C + Ceo = [(M5 [M5]1800)/2 - [A + A]1800]'.

To cancel all the odd-even and the even-odd parts from M1, M5, and M6, one can rotate the
data by 180° using the rotation operation defined in Eg. (4). We define m1, m5, and m6 as
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m1 =("i +[M1]1800)/2=A±A+B-B,
m5 = (M5 + [M5]1800)/2 =A + A00 + Cee C (8)

It should be noted that m1, m5, and m, include only even-even and odd-odd functions. All
the even-even parts can also be obtained easily as given below:

A=(m1 +rnc-m+[m1 +m5m]x)/4,
B = (m1 + [mi]x 2A)/2, (9)

Cee (m5 + [m5]X 2A)/2.

Now all the odd-even, the even-odd, and the even-even parts of the three flats are
obtained. If we subtract the known even-even parts from Eq. (8), it can be shown that the
odd-odd parts can not be solved. Fortunately, for the points on a circle centered at the
origin, an odd-odd function in a Cartesian coordinate system is an odd function of 0 in a
polar coordinate system and has a period of 1800. Thus, F(x,y) can be expressed as a
Fourier sine series as follows.

F(x,y) = 2m sin(2m0), (10)
m=1

[F(x,y)]90° = -; 2m sin(2m0) + : 2m sin(2m0),
m—odd m=even

where x2 + y2 = constant, 2m is the corresponding coefficient, and the indexes are nature
numbers. To emphasize that F00(x,y) has a fundamental frequency of 2 (i.e., a period of
180°), a subscript 20 is added to F(x,y). Thus, Eq (10) can be rewritten as

F,29 = F,do + F,,ven9, (11)
= Fcy,2d0 + F,venø,

where

Foo,venO = m sin(2m0) = 4m sin(4m0) = F,40, (12)
m=even m=1

F,2de = 2m sin(2m0).
m=odd

The subscripts 2odd0 and 2even0 represent the sum of the odd terms of F0020 and the
sum of the even terms of F,20, respectively. It should be noted that in Eq. (11) FJdo
of [F00,29]90° has an opposite sign of that of F0029. The subscript 40 of Eq. (12)
indicates that F,2evenO has a fundamental frequency of 4 (i.e., a period of 90°), and can
be divided into two groups as follows.

F,49 = Fyj4yJ9 + F,4evenO, (13)
[F340]45° = Fyj,4j9 + F,4even8,

where
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F,4do = : 4rn sin(4m0), (14)
m=odd

F4evenO = : 4m sin(4m0).
m=even

Therefore, an odd-odd function can be expressed as the sum of moddO terms where m =2,
4, 8, 16, 32, . That is

F0 =Fdo+ F,4j9 + + + , (15)

where the 8oddO and l6oddO terms are defined as in Eq. (14). It should be noted that each
term includes a very broad spectrum of the Fourier sine series. For example, F00 2OddO
includes the components of sin(20), sin(60), sin(100), sin(140), etc. For a smooth
surface, the odd-odd part can be well represented by the first two terms of Eq. (15).

From the above discussion, the three odd-odd functions, A(x,y), B(x,y), and
C(x,y), have a fundamental frequency of 2 and can be expressed as

A = A00,20
= oo,2oddO AvenO,B =B,29 = + B,venO, (16)

coo = coo,20
= C,2dO +

where all 2oddO and 2evenO terms are defined in the same way as in Eq. (12). If a flat has
only the odd-odd component, the 2oddO term can be obtained easily by subtracting two
measurements which are obtained before and after the flat is rotated 90° with respect to the
other flat, such as M1 and M3. Because of the subtraction, the contribution of the surface
not rotated is removed, the 2evenO term of the rotated surface is canceled, and only the
2oddO term remains. Because all the even-even, the even-odd, and the odd-even parts of
each flat are obtained, we can subtract them from M1, M3, M, and M7, respectively. The
difference includes only the odd-odd part. Define m'1, m'3, m'6 and rn'7 as follows:

m'1 =A,20 - B,20,
900m3=[A20] -B20, (17)

m'6 = B00,20
-

C00,20,
m7 = [B00,20]90°

-
C00,20.

All the 2oddO parts of the three flats are obtained as given below:

A00,2oddo = (rn'1 - m'3)/2,
B00,2de = (rn'6 - m'7)/2, (18)

C00,2Jdo = ([m7190° - m'6)/2.

The 2evenO term of Eq. (16) can be divided into two halves: 4evenO and 4odd0 terms.
The 4oddO term can be obtained by rotating one flat 450 instead of 900. Using a similar
procedure for deriving Eqs. (17) and (18), we define rn"1, rn"4, rn"6 and rn"8 as
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rn"1 = -Boo
m = [A40] - B40, (19)
rn"6 B,49 - C00,40,

H 450m 8 oo,40 - 'oo,4O

Then, all the 4oddO terms can be obtained as given below:

= (rn"i -
= (rn"6 - m"8)f2, (20)

C00,d0 ([m"8]5° - m"6)/2.

In summary, the sum of one half of the Fourier sine series (i.e., 2oddO term) is
obtained from the 90 rotation group. The other half is further divided into two halves, and
one of them (i.e., 4oddO term) is obtained from the 45° rotation group. Thus, after each
rotation, one half of the unknown components of the Fourier sine series of the odd-odd
function is obtained. The higher order terms can be derived by rotating the flat at a smaller
angle. For example, the 8oddO term is determined by rotating 22.5°. If the odd-odd
component of the flat can be approximated by the first terms as are those in Eq. (15), the
three flats can be approximated by the equations below:

A =A+ Aoe +A+ Aoo,2oddo +
(21)

where all the terms on the right hand side are obtained from Eqs. (7), (9), (18), and (20).

III. Algorithm
The algorithm of this modified three-flat method is given in the following list.

1. The eight measurements according to Fig. 2.
2. A00+,B00+B,andC00+CfromEq.(7).
3. A , B, and C from Eqs. (8) and (9).
4. Define A', B', and C' equal to the sum of the above steps.

A' = A+ A00 + A,
B'=B+B00+B, (22)
C' = C+ C00 + C.

5. The 2oddO term of each flat is obtained as follows.

A00,de = (M1 - M3 - A' +

Boo,do = (M6 - M7 - B' + [B']900)/2, (23)

C00,2do = ([M7190° - M6 - [C'Y)/2.
Steps 6 and 7are similar to Steps 4 and 5 except for 450rotatiOn, instead of 90°.
6. Defme A", B", and C" equal to the sum of the above steps.

A" =A+A00 +A+A0020,
B" = B+ B00 + B+ B00,2do, (24)
C" = C+ C00 + C+ C00,2do.

7. The 4odd0 term of each flat is obtained as follows.

SPIE Vol. 1776 Interferometry: Surface Characterization and Testing (1992)! 77



Aoo,4oddO = (M1 - M4 - A" + [A"J450)/2,

B,4do = (M6 - M8 - B" + [B"]450)/2, (25)

coo 4oddO = ([M8]'5° - M6 - [C"]x)/2.
8. The flats are approximated by the sum of Eqs. (24) and (25).

Iv. Simulations

In the simulation, three flats (each is an OPD map obtained from a Fizeau
inteiferometer) are used for the three input flats to generate eight measurements. Figure 3
shows the three flats (A, B, C) and the reconstructed flats. The differences are dominated
by quantization errors of the Fizeau interferometer. If synthetic flats which are generated
from the first 36 Zernike polynominals8 are used, the flats can be reconstructed completely,
because the highest frequency in 0 is 4. This shows that the eight-measurement algorithm
recovers the flats as long as the odd-odd pans of the surfaces can be approximated by
2oddO and 4oddO terms. If synthetic flats are generated from higher order Zernike
polynominals, all the even-even, the even-odd, the odd-even, the sin(2m0), and the
sin(4m0) terms, where m = 1, 3, 5,..., can still be recovered. But, the coefficients of the
reconstructed surfaces corresponding to sin(8n0), n = 1 , 2, 3,.. ., are canceled and equal to
zero. To recover the higher order terms, more measurements with a smaller rotation angle
are needed. It should be noted that the cos(2n0) terms of the Zernike polynominals, where
n = 1 , 2, 3,. .., are even-even functions in a Cartesian coordinate system and can be
recovered completely.

V. Discussion and Conclusion

Using the properties of odd and even functions, the flat is decomposed to four
components: odd-even, even-odd, even-even, and odd-odd. The first three are obtained
very easily. The odd-odd one is divided into several groups from the Fourier sine series.
Because the higher frequency components of the Fourier series are small in general, the
odd-odd function can be well approximated by the 2oddO and the 4oddO terms. It should
be noted that because both 2oddO and 4oddO terms include a very broad spectrum of the
Fourier sine series, the fine structure on a test flat can be seen in the reconstructed surface.
However, since the entire spectrum of the Fourier series is not included, the reconstructed
fine structure may have errors. Moreover, in the eight-measurement algorithm, the rotation

operation [ in Eq. (25) requires interpolation for the points not on the nodes of a
square grid array. This may also introduce small errors. Besides the two error sources,
the long period of time for the multiple measurements may be another error source. In
experiments, the eight measurements have different tilts and pistons. Because the tilt and
the piston are not of interest, they can be subtracted from Eqs. (5) or (7). This does not
affect the rest of the equations. In conclusion, the profiles along the four diameters of a flat
are exact: o, 45(), 90° and 135°. The relationship among these profiles is also defined
exactly, unlike the traditional three-flat method. Because the entire surface of a flat is
approximated by Eq. (21), the area between two adjacent diameters is missing sin(8m0)
components. These higher order terms can be derived by rotating the flats at smaller
angles.
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Fig. 1 Three flats, A(x,y), B(x,y), and C(x,y), of a front view and a rear view. The
coordinate systems indicate the orientations of the flats.
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Fig. 2 Eight configurations and the corresponding measurements. In each
configuration, the flat below is flipped in x and is of a rear view.
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Flat A

Reconstructed
Flat A

Fig. 3(a) Isometric contour of Flat A (top) and its reconstructed flat (bottom).
The interval is 0.005 wave.
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Flat B

Reconstructed
Flat B

Fig. 3(b) Isometric contour of Flat B (top) and its reconstructed flat (bottom).
The interval is 0.005 wave.
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Flat C

Reconstructed
Flat C

Fig. 3(c) Isometric contour of Flat C (top) and its reconstructed flat (bottom).
The interval is 0.004 wave.
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