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ABSTRACT

The testing of spherical surfaces using the three-measurement technique outlined by Jensen requires very precise
alignment of the sphere relative to the interferometer. An easier technique for the absolute measurement of spherical
surfaces has been developed which does not require the precise alignment of the Jensen technique and uses only two
measurements. As long as the test surface does not contain any aberrations with odd symmetry, these aberrations can be
subtracted from the measurement and an absolute measurement of the test surface can be obtained. This paper describes and
compares these two techniques and shows results of testing a A112 P-V (jeak-to-valley) sphere (N.A.=0.4) using both
techniques with a phase-measuring Fizeau interferometer. These measurement techniques are repeatable to waves P-
V.

1. INTRODUCTION

The absolute measurement of spherical surfaces is important with optics specified to be as least as good as X/10
peak-to-valley (P-V), where ? is the test wavelength. A number of techniques have been described in the literature.15 A
technique widely used with phase-measuring interferometry was first described by Jensen,2 and then further discussed by
Bruning,3 Truax,4 and Elssner et aL5 This technique has the advantage of giving the absolute shape of the sphere under
test independent of the reference surface and diverger optics as long as the test surface is aligned correctly. The main
disadvantage of this technique is the requirement that the test surface be aligned so that it can be rotated and keep the fringe
pattern unchanged. A simpler technique has been developed which does not require this precise alignment and requires only
two measurements. The result is not exactly an absolute measurement, but as long as the test surface has even symmetry,
the test can be absolute.

2. THREE..POSITION ABSOLUTE
MEASUREMENT TECHNIQUE

The technique of absolute measurement of
spherical surfaces as described by Jensen2 requires three
separate measurements of the surface under test. These
three measurements are depicted in Fig. 1 . The first
measurement is with the test surface at the focus of the
diverger lens (also known as the catseye position). The
second measurement is with the test surface positioned
such that its center of curvature is at the focus of the
diverger lens. The third measurement is taken after
rotating the test surface 180° about the optical axis.
Mathematically, these three measurements can be written
as
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Figure 1 . Measurement setups for absolute testing of
spherical surfaces.



Wfus =Wf+ [wdV + WdiV] (1)

woo = Wsurf+ Wref + (2)

W1o=Ws;+Wref+Wthv ' (3)

where W refers to a wavefront, surf refers to the test surface, ref refers to the optics in the reference arm of the interferometer
and the reference surface, and div refers to the optics in the test arm of the interferometer minus the test surface including the
diverger lens. A bar over a wavefront indicates a 1800 rotation of that wavefront. These three measurements can then be
used to solve for the test surface using

Wsurf= [00 + Wi800 Wfocus Wfocus] (4)

which is simpiy calculated with additions, subtractions, and 1800 rotations of the three measurements. If a large number of
similar spheres are to be tested, then the aberrations in the interferometer and errors due to the reference surface can be
obtained by calculating

Wref+
= [00 -

W1800 + Wfocus + Wf] . (
This reference wavefront can then be subtracted from measurements of subsequent test spheres as long as the radii of
curvature are similar. If there is a large difference in radii of curvature, a new reference wavefront must be measured. This
technique will work with both Twyman-Green and Fizeau interferometers.

The necessary alignments to perform this procedure have been outlined by Elssner et al.5 First of all, the optical
axis is defmed by the first measurement in the catseye position with the fringes nulled. The detector in the interferometer
needs to be aligned so that it is centered on the optical axis. Next, the test surface needs to be aligned relative to the optical
axis. This is the tricky part. In order to rotate the test surface by 1800 without altering the fringe pattern, the vertex of the
sphere must lie on the optical axis, the axis of rotation defined by the rotation stage must coincide with the optical axis,
and the center of curvature of the test surface must lie at the focus of the diverger lens. Figure 2 shows a drawing of the
possible misalignments for testing a sphere in a Fizeau interferometer, and Fig. 3 shows the test and reference surfaces after
alignment. Elssner et al. state that a mount with a minimum of eight degrees of freedom is required to do this alignment as
long as the test surface has been centered in its mount. We have found that six degrees of freedom is sufficient in order to
rotate the test surface by 1800 and keep the fringe pattern within 2 fringes of being nulled. Figure 4 shows a mount
containing eight degrees of freedom to test a sphere. The sphere is mounted to an x-y stage which is used to center the
sphere on the rotation axis. A five-axis mount is used to align the axis of rotation with the optical axis of the
interferometer. The tip-tilt of the five axis is not always necessary. It ensures that the sphere is being tested at its center.
In addition, it is advantageous to have a separate mount with a flat for the measurement at the catseye position. This makes
it easier to take all the data quickly once the sphere has been aligned relative to the interferometer. The flat needs tip-tilt
and z translation for fine positioning.

To align the sphere so that it can be rotated 1800 without changing the fringe pattern requires a high-quality
rotation stage. Stages with aluminum races and ball bearings do not repeatably return to the same location after rotation.
A simple means of alignment involves looking at the rotation of the return spot from the sphere in a focal plane compared
to the return spot from the reference surface as the sphere is rotated. Figure 5illustrates the location of the two return spots
as the sphere is rotated. This procedure starts with the two spots on top of one another. After a 1800 rotation, the sphere x-
y position is adjusted to bring the sphere return spot halfway back to the position of the reference spot. The sphere is then
rotated back l800 and 5-axis x-y position is adjusted to line up the two spots. This procedure is continued until there is no
noticeable movement of t!ie spot as the sphere is rotated. At this point, the fringe pattern can be observed and the same
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procedure followed until the fringe pattern is stationary as the sphere is rotated. With a good rotation stage, this alignment
procedure is sufficient to measure spherical surfaces with NA's (numerical apertures) of 0.5 or less to ?/2O P-V. To
perform a high accur:.y measurement, good optics (at least A/1O P-V)are necessary so that the rays transverse the same
path back through the interferometer after reflecting from the sphere.

3. TWO-POSITION ABSOLUTE MEASUREMENT TECHNIQUE

Because the alignment gets much more difficult as the NA gets larger, a simpler technique was developed. This
technique only requires two measurements. These two measurements are given by eqs. (1) and (2). When measurement 1 is
subtracted from measurement 2, the result is the wavefront due to the surface plus an error term due to the diverger,

Woo - Wfus= urf [Wdiv Wdiv] (6)

For aberrations with even symmetry, such as defocus, spherical, and astigmatism, the error term is zero because these

4 / SPIE Vol. 1332 Optical Testing and Metrology ill: Recent Advances in Industrial Opticallnspection (1990)

Center of
Curvature

Optical
Axis

Aligned Reference Surface

Figure 2. Possible misalignments include position of
reference surface, sphere vertex, sphere center of

curvature, and axis of rotation, all relative to the optical
axis, and the location of the sphere along the optical axis.

Aligned
Sphere

Removable
Flat Mirror

Figure 3. Sphere aligned with reference flat.
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Figure 4. Mount with necessary degrees of freedom to align
sphere to rotate 1800 and keep fringes.
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aberrations cancel out (Wdiv = The difference of the two measurements then becomes

woo - Wfus =
Wsurf (7)

For aberrations with odd symmetry such as coma, the error term is not zero "div \Vj). Because the odd aberrations

add, the difference between the two measurements will be

woo - Wfus =
Wsurf+ . (8)

Since most spherical surfaces do not have coma in them, and because a misalignment of the spherical test surface would not
induce coma into the measurement, it can be assumed that any coma in the measurement should be due to interferometer or
the diverger lens. As long as the coma is assumed to be in the interferometer and not in the test surface, it can be subtracted
from the measurement to yield the test surface independent of the interferometer. For higher-order aberrations, those with
even symmetry will cancel while those with odd symmetry will not cancel and should be subtracted as long as they are not
in the test surface.

If it can not be assumed that there is no coma in the test surface, it may be found by additional simple
calculations. Assuming only third-order aberrations, the coma due to both the interferometer and the test surface is found by
rotating the data set by 1800, and subtracting this from the original data set. This causes the defocus, spherical, and
astigmatism to cancel and leaves twice the coma. It should be noted that the coma due only to the test surface can only be
found by including a third measurement as in the Jensen technique. However, for quick and easy to set up measurements
yielding surface shape in the range of A/1O to ?./15 P-V, this technique is very useful. If greater accuracy is required, the
Jensen technique is better to use. It should be noted that for /2O P-V measurements, the quality of the optics in the
interferometer becomes critical.

4. RESULTS

To compare the two techniques, a 0.4 NA sphere was tested in a Fizeau interferometer with a diverger lens having
an F/1.1 spherical reference surface. The source was a Helium-Neon laser operating at 0.6328 jim. Both algorithms were
implemented using phase-measurement interferometry techniques using a CCD-TV camera and a 68030-based computer. A
single measurement of the sphere is shown in Fig. 6 with an
rms of 0.014 waves and a P-V of 0.121. Tilt and power have
been subtracted from this measurement because they are
functions of the alignment which are not part of the test
surface. All measurement results have been evaluated over
95% of the aperture, and tilt and power have been subtracted.
A flat placed at the focus of the diverger lens in the catseye
position shows that there is 0.522 waves P-V of coma
present in the interferometer as seen in Fig. 7a. With third-
order coma subtracted from this measurement, there is a
noticeable odd aberration having a three-point symmetry with
a P-V of 0.121 waves. This aberration can be expressed in
polynomial form using the 9th and 10th Zernike
polynomials which have a functional form given by

p3cos3O and p3sin3O
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INTERVAL = 0.025
RMS = 0.014 WAVES
P-V=0.121 WAVES

Figure 6. Single measurement of sphere.
power removed.

Tilt and



INTERVAL = 0.10
RMS = 0.076 WAVES
P-V = 0.522 WAVES

Figure 7a. Catseye measurement. Tilt and power
removed.

where p is the normalizedradius and 0 is the azimuthal angle. Using the three-position measurement technique of Jensen
(Eqs. (4) and (5)), the errors in the interferometer showing the quality of the collimating lens, the diverger lens, and the
reference surface are 0.084 waves P-V as seen in Fig. 8a. This means that the interferometer optics are good to A/12 P-V.
The spherical test surface is shown in Fig. 8b and has 0.081 waves ()./12) P-V. Using the two-position measurement
technique described in this paper, a measurement with tilt, power, and third-order coma subtracted is shown in Fig. 9. It has
a P-V of 0.200 waves and has an error present with the same noticeable three-point symmetry seen in the measurement
taken at the catseye position. This error is obviously not in the test surface and can be subtracted. Figure 10 shows a
wavefront generated from the Zernike 9 and 10 polynomial coefficients of the wavefront shown in Fig. 9. This error term
has a P-V of 0.102 waves. Once this error term is subtracted from the two-position absolute measurement of Fig. 9, the
test sphere has a P-V of 0.089 waves as shown in Fig. 11. This compares very favorably to the three-position
measurement. The orientation of the test surface is the same for both measurements. Notice the roll-off in the lower left
corner of both results. Both techniques show that the sphere is better than ?/10 P-V and even though the numbers are not
exactly the same, gross errors on the surface are the same in both measurements. These measurements are repeatable to

waves P-V.
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INTERVAL = 0.05
RMS = 0.027 WAVES
P-V=0.243WAVES

Figure 7b. Catseye measurement. Tilt, power and
coma removed.

INTERVAL = 0.025
RMS = 0.010 WAVES
P-V = 0.084 WAVES

INTERVAL = 0.025
RMS = 0.01 1 WAVES
P-V = 0.081 WAVES

Figure 8a. Three-position absolute reference
showing errors in reference and diverger.

Tilt and cower removed.

Figure 8b. Three-position absolute measurement of
sphere. Tilt and power removed.



S. CONCLUSION

The three-position measurement technique for absolute measurement of spherical surfaces requires critical
alignment of the test surface and a very good rotation stage. It theoretically has a very high precision and accuracy, but is
hard to do. A faster and simpler technique for the absolute measurement of spherical surfaces has been introduced which
does not require the precise alignment of the Jensen technique. It requires only two measurements instead of three, and a
complex mount for rotating the test object and retaining fringes is not required. The test assumes that there is no coma (or
higher order aberrations with odd symmetry) introduced by the test surface so that odd aberrations may be subtracted from
the measurement. This is not strictly an absolute test, but for the measurement of high NA surfaces which need to be at
least A/1O P-V, it is sufficient in most cases. It is easy to measure spherical surfaces to A/1O P-V. Xf20 P-V can be done,
but it must be done with care and high quality diverging optics (better than A/1O P-V) must be used.

6. REFERENCES

1 . G. Schultz and J. Schwider, "Interferometric testing
of smooth surfaces," Prog. in Opt. 13, 93-167 (1976).

2. A. E. Jensen, "Absolute calibration method for
Twyman-Green wavefront testing interferometers," J. Opt.
Soc. Am. 63, 1313A (1973).

3. John Bruning, "Fringe scanning interferometers", in
Optical Shop Testing, edited by D. Malacara (Wiley, New
York, 1978), pp. 409.

4. Bruce E. Truax, "Absolute interferometric testing of
spherical surfaces," SPIE Proc. 966 (1988).

5. Karl-Edmund Elssner, R. Burow, J. Grzanna, and R.
Spolaczyk, "Absolute sphericity measurement," App!. Opt.
28, 4649-4661 (1989).

INTERVAL = 0.025
RMS=0.011 WAVES
P-V = 0.089 WAVES

SPIE Vol. 1332 Optical Testing and Metrology ill: RecentAdvances in Industrial Opticalinspection (1990) / 7

INTERVAL = 0.050
RMS = 0.024 WAVES
P-V = 0.200 WAVES

INTERVAL = 0.025
RMS = 0.018 WAVES
P-V=0.IO2WAVES

Figure 1 0. Zernike 9 and 1 0 coefficients of two-
position measurement.

Figure 9. Two-position measurement with tilt, power,
and coma removed.

Figure 1 1 . Two-position measurement with tilt, power,
coma, and Zemike 9 and 10 removed.


