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We describe a modified three-flat method. In a Cartesian coordinate system, a flat can be expressed as
the sum of even-odd, odd-even, even-even, and odd-odd functions. The even-odd and the odd-even
functions of each flat are obtained first, and then the even-even function is calculated. All three
functions are exact. The odd-odd function is difficult to obtain. In theory, this function can be solved
by rotating the flat 900, 450, 22.50, etc. The components of the Fourier series of this odd-odd function are
derived and extracted from each rotation of the flat. A flat is approximated by the sum of the first three
functions and the known components of the odd-odd function. In the experiments, the flats are oriented
in six configurations by rotating the flats 1800, 900, and 450 with respect to one another, and six
measurements are performed. The exact profiles along every 450 diameter are obtained, and the profile
in the area between two adjacent diameters of these diameters is also obtained with some approximation.
The theoretical derivation, experiment results, and error analysis are presented.
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Introduction

In a Fizeau interferometer, two flats face each other
and form a cavity. Interference fringes reveal the
optical path difference (OPD) of the cavity, and hence
the relative flatness. In the traditional three-flat
method, 2 the flats are compared in pairs. By rotat-
ing the flats with respect to each other, the exact
profiles along several diameters of each flat are
obtained. A method with more flats and more combi-
nations has been proposed.3 However, with both
methods, only the profiles along some straight lines
can be solved. Several methods have been proposed
to measure the flatness of the entire surface." All
these methods involve tremendous calculations in the
least-squares sense. Thus, the fine structure of the
surface tends to disappear.

In our previous paper9 we modified the tree-flat
method and used the symmetry properties of the odd
and the even functions, especially when the functions
were rotated or flipped, to calculate the entire profile
of each flat with eight measurements. The number
of measurements was twice that of the traditional
three-flat method. In this paper we reduce the
number of measurements to six. Again every point
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of a flat is obtained without using the least-squares
method.

Theory

A function F(x, y) in a Cartesian coordinate system
can be expressed as the sum of an even-odd, and
odd-even, an even-even, and an odd-odd function as
follows:

F(x, y) = Fee + Fo + Foe + F, (1)

where

F.(X y) F(x, y) + F(-xy) + F(x, -y) + F(-x, -y)

F..(x y) F(x,y) - F(-x,y) - F(x, -y) + F(-x, -y)
4

F (X y) =F(x,y) + F(-x,y) - F(x, -y) - F(-x, -y)

F..(x y) F(x,y) - F(-x,y) + F(x, -y) - F(-x, -y)

(2)

Because the flats are facing each other, one flat is
flipped. If two flats are F(x, y) and G(x, y), and the
flat G(x, y) is flipped in x, then the OPD that is
measured equals F(x, y) + G(-x, y). For conve-
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nience, we define two operators [ x and [ ]0:

Flip inx

[F(x,y)y = F(-xy),

Rotate 0

[F(x,y)]0 = F(xcos 0 -y sin 0,x sinO +y cos 0). (3)

The subscripts 2oddO and 2evenO represent the sum
of the odd terms of F0o,20 and the sum of the even
terms of Foo,2 0, respectively. In Eqs. (7), the sub-
script 40 indicates that F,2eveno has a fundamental
frequency of 4 (i.e., a period of 900). Similar to what
was done in Eq. (6), Foo,40 can be divided into two
groups as follows:

Thus [F(x, y)]18 0 =
G(-x, y) = F(x, y) +
operators to Eq. (1),

F(-x, -y), and F(x, y) +
[G(x, y)]x. Applying the two

Foo,4 0 = Foo,40 dd& + Foo,4evenO,

where

[F(x, y)] 180 = Fee + F -Foe -F

[F(X, Y), = Fee-Foo -Foe + Few (4)

A comparison of Eqs. (4) with Eq. (1) shows that the
sign changes on the right-hand side. We can make
use of this fact that the sign changes after a rotation
to solve the odd-even, even-odd, even-even, and
odd-odd parts of a flat. In the next section, it is
shown that the first three parts can be obtained easily
and that the odd-odd part is difficult to solve. To
overcome this problem, we analyze the surface profile
with a Fourier series. In a polar coordinate system,
the profile on a circle centered at the origin is a
function of 0 and has a period of 3600. A periodic
function can be expressed as a Fourier series. It can
be shown that for x

2
+ y

2 = constant, Foe(x, y),
Fee(X, y), Feo(X, y), and F00(x, y), can be expressed as

f i cos(iO), X fj cos( jO), E fm sin(mO), and : fn sin(nO),
respectively, where i, m = odd and j, n = even. In
general, a Fourier series includes infinite frequencies,
and practically only a part of the frequencies can be
solved. The profile can only be approximated by the
sum of the known components of the Fourier series,
and hence the error occurs.

Because the odd-even, even-odd, and even-even
parts of a flat can be solved easily, as shown in the
next section, here we focus only on F00(x, y). For the
points on a circle centered at the origin, an odd-odd
function in a Cartesian coordinate system is an odd
function of 0 in a polar coordinate system and has a
period of 1800. The function F 0O(x, y) can be ex-
pressed as a Fourier sine series as follows:

Foo(x,y)= f2 msin(2m0), (5)
m=1

where x2 + y2 = constant, f2m is the corresponding
coefficient, and the indices m are natural numbers.
To emphasize that F00(x, y) has a fundamental fre-
quency of 2 (i.e., a period of 180°), a subscript 20 is
added to Fo0 (x, y). Thus Eq. (5) can be rewritten as

Foo = Foo,2 0 = Foo,2odd0 + Foo,2eveno, (6)

where

Foo,2eveno = E fm sin(2m0)
m=even

= 7 f4m sin(4m0) = FOO,4 0,
m=l

F 0 0,20 ddO = f f2m sin(2m0).
m=odd

Foo,4Oddo = f sin(4m0),
m=odd

Foo,4eveno = , f4m sin(4m0).
m=even

(9)

Therefore an odd-odd function can be expressed as
the sum of noddO terms, where n = 2, 4, 8, 16,
32 . That is

Foo,2 0 = Foo,20 dd& + Foo,4OddO + Foo,80 dd&

+ Foo,16ddO + * * . (10)

where the 8oddO and 16oddO terms are defined as
they are in Eqs. (9). It should be noted that each
term includes a broad spectrum of the Fourier sine
series. For example, Foo,2ddo includes the compo-
nents of sin(20), sin(60), sin(100), sin(140), etc., and
Foo,4.ddo includes the components of sin(40), sin(120),
sin(200), sin(280), etc. For a smooth surface, the
odd-odd part can be well represented by the first two
terms of Eq. (10). Applying the rotation operator to
Eqs. (6) and (8), it can be shown that

[Fo0 ,20]90 = Foo,2oddf + Foo,2evenO,

[Foo,40]45 =-Foo,4oddo + Foo,4evenfl

(11)

(12)

where the terms on the right-hand side are defined in
Eqs. (7) and (9), respectively. Comparing Eq. (11)
with Eq. (6), one can see that the sign of Foo,20ddo is
opposite. So are the signs of FO,40ddo in Eqs. (12) and
(8). In the next section, we show that the 2oddO and
4odd0 terms can be solved by rotating the flat 900 and
450, respectively. In theory, the higher-order terms
can be derived by rotating the flat at a smaller angle.
For example, the 8oddO term can be determined by
rotating the flat 22.50. Therefore the entire frequen-
cies of the odd-odd part of a flat can be obtained.
It should be noted that in this paper, no Fourier series
is used to derive the surface. The Fourier series are
given here to provide an insight to the limitation of
this method. The surface is obtained with simple
arithmetic instead.

Algorithm

In this section, we make use of the fact that the sign
(7) changes after a rotation to solve the odd-even, even-

odd, and even-even parts of a flat first and then the
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Fig. 1. Three flats, A(x, y), B(x, y), and C(x, y), of a front view and
a rear view. The coordinate systems indicate the orientations of
the flats.

odd-odd part. Figure 1 shows the three flats, A(x, y),
B(x, y), and C(x, y), of a front view and a rear view.
The coordinate systems indicate the orientations of
the flats. Figure 2 shows the six configurations and
the corresponding measurements. In each configu-
ration, the flat above is a flat of a front view, and the
flat below is flipped in x and is a flat of a rear view.
In some configurations, one flat is rotated 180°, 90°,
or 45° with respect to another flat. The equations of
the six configurations are

Ml =Aee + AO + Aoe + Aeo + Bee Boo- Boe + Beo,

M2 Aee + A - Aoe-Aeo + Bee Boo- Boe + Beo,

M 5 =Aee + A + Aoe + Ae + Cee Coo- Coe + Ceo.

(14)

Therefore all the odd-even and the even-odd parts of
the three flats can be obtained easily as given below:

Aoe + Aeo = (M1 -M2)/2,

Boe + Beo = {[M1 -(M)1 80 ]/2 - (Aoe + Aeo)}x,

Coe + Ceo = [M5 -(M5)180]/2 - (Aoe + Aeo)1X. (15)

To cancel all with the odd-even and the even-odd
parts from M1, M5, and M6, one can rotate the data
1800 with the rotation operation defined in Eqs. (4).
We define ml, M5 , and M6 as

ml = [MI + (Ml)l0]/2 = Aee + Aoo + Bee -Boo,

m5 = [M5 + (M5 )10'5 ]/2 = Aee + A + Cee C,

M6 = [M6 + (M6)180']/2 = Bee + Boo + Cee Coo. (16)

It should be noted that ml, M5 , and M6 include only
even-even and odd-odd functions. From Eqs. (16),
all the even-even parts can be derived easily as given
below:

M2 = A180' + Bx,

M 4 = A45° + Bx,

M 6 = B + Cx. (13)

If one uses Eqs. (1) and (4), M1, M2, and M5 can be

Aee = [l + M5 - M6 + (l + M5 - m6)x]/4,
Bee = [l + (l)X - 2Aee]/2,

Cee = [iM5 + ( 5 )x - 2Aee]/2.

Now all the odd-even, even-odd, and even-even
parts of the three flats are obtained. If we subtract

I I 

Six configurations and the corresponding measurements. In each configuration, the flat below is flipped inx and is a flat of a rear
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M = A + Bx,

M3 = A90° + Bx,

M5 = A + Cx, (17)

A 4 80 A90 A1s A B

Yx x r1 x2 x x

B BX BX BX CX CX

Ml1 M2 M 3 M 4 M5 M 6
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Fig. 2.
view.
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the known even-even parts from Eqs. (16), the three
new equations include only the odd-odd parts and are
linearly dependent. Therefore the odd-odd parts
cannot be solved exactly. From Eq. (6), the three
odd-odd functions, Aoo(x, y), Boo(x, y), and C00 (x, y),
have a fundamental frequency of 2 and can be
expressed as

Aoo = Aoo,20 = Aoo,2oddO + Aoo,2eveno)

Boo = Boo20 = Boo,2oddo + Boo,2evenO)

Coo = Coo,2 0 = Coo,20ddO + Coo,2eveno) (18)

where all 2oddO and 2evenO terms are defined in the
same way as in Eqs. (7). Similarly,

(Aoo,20)90 =-Aoo,2ddo + Aoo,2even0o

(Boo,20)9° = -Boo,2oddo + Boo,2even

(COO,20 )9O° = -Coo,2oddo + Coo,2eveno. (19)

If a flat has only the odd-odd component, the 2oddO
term can be obtained easily by subtracting two mea-
surements that are obtained before and after the flat
is rotated 900 with respect to the other flat, such as Ml
and M3. Because of the subtraction, the contribu-
tion of the surface not rotated is removed, the 2evenO
term of the rotated surface is canceled, and only the
2oddO term remains. This is equivalent to the tech-
nique that opticians have used for years to determine
the astigmatic error of a flat.

Because all of the even-even, even-odd, and odd-
even parts of each flat are obtained, we can subtract
them from M1, M3 , and M6 , respectively. Define m1 ',
M3',- and M6 ' from Fig. 2 as follows:

ml' = M1 -(Aoe + Aeo + Aee)-(Boe + Beo + Bee)X,

M3 '= M3-(Aoe + Aeo + Aee)90 -(Boe + Beo + Bee)X,

M6
t =M6-(Boe + Beo + Bee)-(Coe + Ceo + Cee)X.

(20)

The above equations can be simplified as given below:

M1 ' = Aoo - Boo,

M 3' = (AOO)90 - Booy

M6' = Boo - Coo, (21)

where Aoo = AOO,2 0 , Boo = BOO,2 0 , and Coo = Coo,20- It

should be noted that Eqs. (21) includes only the
odd-odd part of each flat. By substituting Eqs. (18)
and (19) into Eqs. (21) and by using the 90° rotation
operation, all the 2oddO parts of the three flats are
obtained as given below' 0:

Aoo,20dd0 = (Ml' - i 3')/2,
Boo,2odd0 = [(Ml') 90. - m 3 ']/2,

Coo,2oddO = [(M6')90° - M 6' + (M') 9°0 - M3 ']/2. (22)

According to Eqs. (7) and (8), the 2evenO term of

Eqs. (18) has a frequency of 4 and can be divided into
two halves: 4evenO and 4oddO terms. By using a
similar procedure for deriving Eqs. (20)-(22), the
4oddO term can be obtained by rotating one flat 45°
instead of 900. From M1, M4, and M6 of Fig. 2, we
define ml", M4", and M6 ' as

ml" = Ml-(Aoe + Aeo + Aee + Aoo,20dd0)

-(Boe + Beo + Bee + Boo,2oddo)X,

M4" = M 4 -(Aoe + Aeo + Aee + Aoo,2ddo)45

-(Boe + Beo + Bee + Boo,2oddO)x,

M6" = M 6 -(Boe + Beo + Bee + Boo,2oddo)

- (Co + Ce. +Cee + Coo,2oddOe. (23)

The above equations can also be simplified as given
below:

ml" = Ao0,4 0 - Boo,4 0,

M4" = (Ao, 4 0)45' - Boo,40

M6 r/ = Boo,40 - Coo,4 0. (24)

By using Eq. (12), all the 4oddO terms from Eqs. (12)
and (24) can be obtained as given below:

Aoo,4dd0 = (Ml -M4)/2,

Boo,4.ddO= [(M 1 )450 -m4"/2,

Co00 4oddO = [(M6 ")4 5 ' - M6" + (M') 4 5 - M4 "]/2. (25)

Therefore for the odd-odd part of a flat, the sum of
one half of the Fourier sine series (i.e., the 2oddO
term) is obtained from the 90° rotation group. The
other half is further divided into two halves, and one
of them (i.e., the 4oddO term) is obtained from the 45°
rotation group. After each rotation, one half of the
unknown components of the Fourier sine series of the
odd-odd function is obtained. In theory, the higher-
order terms can be derived by rotating the flat at a
smaller angle. For example, the 8oddO term can be
determined by rotating the flat 22.50. Therefore the
entire frequencies of the odd-odd part of a flat and
hence the entire surface are obtained. In practice, a
rotation angle of less than 45° may cause errors in the
measurement results, because of the difficulty in the
interpolation for the points that are not on the nodes
of the square gride and because of the lengthy
measurement period.

In summary, if the odd-odd parts of the surfaces
can be approximated by 2oddO and 4oddO terms, the
six-measurement algorithm recovers the flats, and
the three flats can be approximated by the equations
below:

A = Aee + Aoe + Aeo + Aoo,2oddO + Aoo,4oddO,

B = Bee + Boe + Beo + Boo,2oddo + Boo,4odd0,

C = Cee + Coe + Ceo + Coo,2oddO + Coo,4oddO, (26)
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where all the terms on the right-hand side are
obtained from Eqs. (15), (17), (22), and (25). It
should be noted that those four equations use simple
arithmetic without a Fourier transform or least
squares. The algorithm of this modified three-flat
method is summarized and given in the following list:

1. The six measurements according to Fig. 2.
2- Aoe + Aeo, Boe + Beo, and Coe + Ceo from Eq. (15).
3. Aee, Bee, and Cee from Eqs. (16) and (17).
4. The 2oddO term of each flat, obtained from Eqs.

(20) and (22).
5. The 4oddO term of each flat, obtained from Eqs.

(23) and (25).
6. The flats approximated by Eq. (26).

Simulation

In simulation, the six measurements can be gener-
ated from three hyperthetic flats. The three flats
are then reconstructed with the algorithm. The
component of the highest angular frequency in the
first 36 Zernike polynomials" is sin(40). When the
three hyperthetic flats are originally generated by
using the first 36 Zernike polynomials, the three
reconstructed flats are exactly equal to the three
original hyperthetic flats, except for the errors result-
ing from limited quantization levels. This shows
that the six-measurement algorithm recovers the
flats as long as the odd-odd parts of the surfaces can
be approximated by 2oddO and 4oddO terms. If the
three hyperthetic flats are generated from higher-
order Zernike polynomials, all the even-even, even-
odd, odd-even, 2oddo, and 4oddO terms can still be
recovered. However, the reconstructed surface is
missing all sin(8n0) terms, where n = 1, 2, 3, ....
To recover the higher-order terms, more measure-
ments with a smaller rotation angle are needed.

Although both 2oddO and 4oddO terms include a
broad spectrum of the Fourier sine series, the two
terms do not cover the entire spectrum, and hence the
error occurs when a surface has a white spectrum,
such as the spectrum of a steep spike. If we let one
of the three hyperthetic flats, for instance flat C, have
a local error, then its reconstructed flat C' has some
errors. Figure 3 shows that flat C has a Gaussian
shape bump, 1X peak to valley (pv), centered at
(0.87, 33.75) in a polar coordinate system, where the
pupil of flat C defines a unit circle. The full width at
1/e of the bump is 20% of the pupil diameter. The
shape of this bump is difficult to represent with
Zernike polynomials. The fit error is 0.063X (rms)
and 0.674X (pv). Flat C' reconstructed with the
six-measurement algorithm and flat C" obtained from
the first 36 Zernike polynomials are also shown in
Fig. 3. Flat C' shows a ripple of sin(80). A compar-
ison of flat C' with flat C shows that the ripple is
0.024X (rms) and 0.110X (pv). It should be noted
that with the proposed algorithm, if the width of the
bump is wider or the center of the bump is not at
M*11.25', m = odd integer, the error of flat C' is
much smaller or even equal to zero.

-1.90 -9.59 9.904 9.,51L 1. 91

-9. -9.49 9.94 9.9t 1.0e

w. S~~~~~~~~~~~19

(c) fltwCo obtie fro th fc3 ernik olynomials om fatC

cavity. Flat B is flipped in the horizontal direction

ANv

PZT

CAMERA
Fig. 4. Fizeau interferometer. Flat B is flipped in the horizontal
direction (into paper). A and B, two flats; AR, antireflection
coating; PZT, piezoelectric transducer.
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(into the paper). The back surface of flat B is
polished and has an antireflection coating. Flat B is
shifted by a piezoelectric transducer. The phase-
shifting interferograms are detected by a video cam-
era, and the OPD of the cavity is calculated.'2 From
this configuration, Ml of Eqs. (13) is obtained.
Similarly, the other five measurements are obtained
by placing the flats according to Fig. 2. Figure 5 is
the OPD maps of the six measurements. The data
array of each flat has a size of 286 x 286. The six
arrays are then inserted into the algorithm to calcu-
late the three flats. It takes roughly 100 s to calcu-

M1 (p-v: 0.036, rms: 0.008)

late with a 486 computer. Figure 6 is the surface
profiles of the three flats derived. It is clear that
there are two spikes in flat B, in about the 11 o'clock
direction. In Fig. 5, under close examination, we can
see these two spikes at the corresponding locations in
M1 6, i.e., in roughly the 1 o'clock direction in Ml, M 2,
M3, and M4, and in roughly the 11 o'clock direction in
M6. (These spikes can be seen easily in a scanning
map, which is not shown here, but the spikes are not
so obvious in Fig. 5.) This clearly shows that the fine
structure of a flat is preserved and can be seen with
this algorithm. In Figs. 5 and 6 it should be noted

M 4 (p-v: 0.043, rms: 0.008)

9.59

WYKO

M 2 (p-v: 0.032, rms: 0.006)

-9.98

WYKO

-9.98

WK

M 5 (p-v: 0.077, rms: 0.018)

9.59

-9. 98

WYKO

M3 (p-v: 0.047, rms: 0.008) M 6 (p-v: 0.106, rms: 0.024)

9.5

-9.98 -9.49 9.94 9.59 9.99

HYKO WYKO

Fig. 5. (a)-(f), Optical path difference maps (in waves) of the six measurements, where Mi's correspond to those in Fig. 2.
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Flat A (p-v:0.0420,

-1.9D

WKO

Flat B (p-v:0.0313, rms:0.0034)

-1.9g

M<O

Flat C (p-v:0.1123, rms:0.0232)

WYKO

Fig. 6. (a)-(c) Surface profiles (in waves)
derived from six measurements in Fig. 5.

of flats A, B, and C

that the pv value and the vertical scales vary from
figure to figure. Flat B of Fig. 6 is so flat (0.0313X pv,
0.0034X rms) that the noise dominates, and no obvi-
ous feature can be seen in this figure.

Discussion

To analyze the error, the data arrays of the three flats
in Fig. 6 are inserted into Eqs. (13) to generate six
reconstructed measurements. Using the same algo-
rithm, we reobtain profiles of the three flats. The
three reobtained or reconstructed flats are similar to
their corresponding flats in Fig. 6. The difference

between two corresponding flats is small and close to
the quantization error of the interferometer.

However, the difference between the two corre-
sponding measurements of the six measurements and
the six reconstructed measurements is not small.
In theory, if the flats and the environment remain
unchanged during the multiple measurements, the
two corresponding measurements should have no
difference. This difference represents the measure-
ment reproducibility error, which is mainly due to the
changes in the environment during the long period of
measurements and the changes of the surfaces dur-
ing the rotation manipulation. This error can also
be observed by the following procedure. First per-
form a measurement with two flats. Then remove
the flats, replace them in the original orientation, and
perform a second measurement. The difference be-
tween the two measurements is the measurement
reproducibility error. For an environment that is
not well controlled, this is the dominating error
source compared with other error sources as de-
scribed below.

Because both 2oddO and 4oddO terms include a
broad spectrum of the Fourier sine series, the fine
structure on a test flat can be seen in the resulting
surface. However, because the two terms do not
include the entire spectrum of the Fourier series, the
reconstructed surface may have errors. This error is
prominent for a flat with steep spikes, as shown in
Fig. 3. Moreover, the rotation operation [ ]45 in Eqs.
(23) and (25) requires interpolation for the points not
on the nodes of a square grid array. This may also
introduce small errors. The decentering of the rota-
tion and the flip operations may be another error
source. In experiments, the six measurements have
different tilts and pistons. Because the tilt and the
piston are not of interest, they can be subtracted from
Eqs. (13) or (15). This does not affect the rest of the
equations. From the experiments, we find that the
measurement reproducibility error is the major limit-
ing factor of the accuracy of this method. For the
three flats, there are four basic configurations.4
However, this method has six measurements. It
becomes an overconstrained condition, and one can
use an iteration method to reduce this measurement
reproducibility error.

It is interesting to compare this method with the
traditional three-flat method. If the flat is shrunk to
a straight-line body along the y-axis, only four out of
the set of six measurements are left, as follows:

M1 = A + Bx = A(y) + B(y),

M2= A180' + Bx = A(-y) + B(y),

M5 = A + Cx = A(y) + C(y),

M6 = B + Cx = B(y) + C(y). (27)

From Ml, M5, and M6, we are able to solve A(y), B(y),
and C(y). This resembles the traditional three-flat-
method result. It can be shown that for a two-
dimensional flat, if only the profiles along the diame-
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ters are of interest, the four measurements, Ml, M4,
M5, and M6, are necessary for solving the exact
profiles along the diameter of every 450 angle. No
approximation is used for these diameters; the pro-
files along the diameters are obtained exactly, regard-
less of the profile of the flat. Adding two more
measurements, the profile in the area between two
adjacent diameters of these diameters is also obtained
with some approximation; i.e., the odd-odd part of a
flat is approximated by 2oddO and 4oddO terms. The
other three parts are obtained exactly. If a measure-
ment with a smaller rotation angle is taken, the
higher-order component can be obtained. In theory,
if the angle is infinitesimal, all the components, and
hence the exact profile of the entire flat, can be
acquired.

Conclusion

Using the symmetry properties of odd and even
functions, the flat is decomposed to four components:
odd-even, even-odd, even-even, and odd-odd. The
first three are obtained easily. The odd-odd one can
be analyzed as a Fourier sine series and is divided into
several groups. For a flat, the higher frequency
components of the Fourier series are small in general.
The odd-odd function can be well approximated by
the 2oddO and the 4oddO terms. It should be noted
that the 2oddO and the 4oddO terms are obtained with
simple arithmetic instead of a Fourier transform.

In conclusion, the flat is calculated using simple
arithmetic without a Fourier series expansion, least
squares, or a Zernike fit. With six measurements,
the profiles along the four diameters of a flat are
exact: 0, 450, 900, and 1350. The relationship
among these profiles is also defined exactly. Because
the flat is approximated by the sum of the odd-even,
even-odd, and even-even functions and the known
components of the odd-odd function, the area be-
tween two adjacent diameters is missing sin(8n0)
components, where n = 1, 2, 3 .... These higher-
order terms can be derived by rotating the flats at
smaller angles. As long as the odd-odd parts of the
surfaces can be approximated by 2oddO and 4oddO
terms, the six-measurement algorithm can be used to
measure the flats.

We thank Lianzhen Shao of Tucson Optical Re-
search Corporation in Tucson, Arizona, for pointing
out the redundancy of the eight measurements and
suggesting six measurements.
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