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7.1.1 Fizeau Interferometer

The basic use of a Fizeau interferometer for measuring the surface height differences
between two surfaces was described earlier.  If the reference surface is flat, then surface
flatness is being measured.  The figure shows several Fizeau interferograms with various
types and magnitudes of defects.  The drawings were obtained from the Van Keuren Co.

It should be noted that even if two surfaces match for various rotations and translations,
the two surfaces need not be flat; the two surfaces could be spherical, where one is
convex and the second is concave.  To be sure the surfaces are indeed flat, three surfaces
are required, where the interference between any two gives straight equi-spaced fringes.
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the pinhole. To facilitate preliminary adjustment, the screen is used to project
the two pinhole images from the two reflecting plane surfaces. This is accom-
plished by removing the negative lens between the beam divider and the ground-
glass screen. The pinhole image from the reference surface is at the center of
the screen, whereas the one from the surface under test is somewhere on the
screen; by manipulation of this surface, the two spots of light on the screen can
be brought into coincidence. Then the negative lens is inserted in the path, and
the Fizeau fringes are projected on the screen. These fringes can be further
adjusted in direction and number as required. By the use of another beam di-
vider, it is possible to divert part of the beam to a camera for taking a photo-
graph of the fringe pattern. The whole instrument must be mounted on a suitable
vibration-isolated platform.

This instrument can be used for various other applications that are normally
not possible with conventional sources of light. We describe some such appli-
cations in the sections that follow. In addition, many possibilities exist for other
applications, depending on the particular situations involved.

Several commercial Fizeau interferometers have been available for several
years, but probably the two most widely known are the Zygo interferometer
(Forman 1979), shown in Fig. 1.23, and the Wyko interferometer, shown in
Fig. 1.24.

Figure 1.23. Fizeau interferometer manufactured by Zygo Corp. (Courtesy of Zygo, Corp.)
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Figure 1.24. Fizeau interferometer manufactured by Wyko Corp. (Courtesy of Wyko, Corp.)

(1.25)



7.1.2 Twyman-Green Interferometer

The basic use of a Twyman-Green interferometer for measuring surface height variations
was previously described.  The Twyman-Green and Fizeau give the same interferograms
for testing surface flatness; the main advantages of the Twyman-Green are more
versatility and it is a non-contact test, so there is less chance of scratching the surface
under test, while the main disadvantage is that more high-quality optical components are
required.



8.6. RITCHEY-COMMON TEST

According to Ritchey (1904), this test was suggested by a Mr. Common as a
Way of testing large optical flats (Shu 1983). For this purpose a good spherical
mirror is used, with the flat acting also as a mirror, to obtain an apparatus
similar to the one used for the knife-edge test. See Fig. 8.32.

Any small spherical concavity or convexity of the surface under test appears
as an astigmatic aberration in the image of the illuminating point source. The
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Figure 8.32. Geometry of the Ritchey-Common test.

two focal planes associated with the sagittal and tangential foci can be accu-
rately found (by employing the knife-edge test as indicated in Section 8. l), and
with this information the radius of curvature of the surface under test can be
calculated. Of course, any localized deformation or deviation from flatness can
also be observed.

The advantage of the Ritchey-Common test over other methods is that a
reference flat is not needed as in the Newton or Fizeau interferometer. The
autocollimation method requires a paraboloid as large as the largest dimension
of the flat under test. On the other hand, the auxiliary mirror used in the Ritchey-
Common test has a spherical shape, which is the easiest to make and test. An
additional advantage is that the spherical mirror needs to be only as large as the
minor diameter, if it is elliptical, like many diagonal mirrors used in telescopes
or other instruments.

If we measure the astigmatism, we can obtain the magnitude of the concavity
or convexity of the “flat” mirror, but it is assumed that this mirror is spherical,
not toroidal, in shape. If the mirror is not circular but is elliptical, the possibility
that it will develop a toroidal shape while being polished is very high. This
toroidal shape introduces an additional astigmatism that complicates the anal-
ysis. Interested readers can consult the work of Tatian (1967), Silvemail(1973),
and Shu (1983).

The mathematical description given here assumes that the mirror under test
is not toroidal and follows the approach used by Couder (1932) and Strong
(1938), that is, finding the curvature from the Coddington equations for astig-
matism. In what follows it is assumed that the pinhole size source and the wire
travel together, in the same plane. Hence, when evaluating the transversal ray
aberrations, it is necessary to multiply the value obtained in this way by a factor
of 0.5 to get the real value of the transverse my aberrations. However, since
the aberrations of the wavefront arc duplicated in the Ritchey-Common test
because of the double reflection on the optical flat under test, we can conve-
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niently omit the double reflection factor of 2 and the factor 0.5 when calculating
the value of the transversal ray aberrations.

Applying the well-known Coddington equations for astigmatism to a reflect-
ing surface, we find that the sagittal focus of a converging beam incident on an
optical reflecting surface is given (see Fig. 8.33) by

(8.88)

and the tangential focus by

(8.89)

where θ is the angle of incidence at the surface under test and r is the radius of
curvature of the optical surface under test.

If we assume that the incident beam is free from astigmatism, that is, s = t,
Eqs. (8.88) and (8.89) can be used to obtain

(8.90)

Figure 8.33. An astigmatic wavefront and its associated focal images. It is to be noted that the
orientations of the images are changed when the setup in Fig. 8.32 is used. That is, the sagittal
image is a horizontal line and the tangential image is a vertical one.
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Now, by denoting s’ = L’ + δ L’ and f’ = L’, and substituting these values in
Eq. (8.90), we have

(8.91)

Since |L’ / δ L’ | > 1, it follows from Eq. (8.91) that, when the sagittal focus is
longer than the tangential focus (δ L’ > 0), the surface under test has a positive
radius of curvature, that is, the surface is convex. On the other hand, when the
sagittal focus is shorter than the tangential focus (δ  L’ < 0), the surface has a
negative radius of curvature and is concave. The sagitta h of a surface with a
diameter D and a radius of curvature r can be approximated by

Using Eq. (8.91) in (8.92) we have

(8.92)

For L’ >> δ L’ (|L’/ δ L’ | >> 1), Eq. (8.93) reduces to

which gives the value for the sagitta of the optical surface under test for any
angle of incidence θ. For the particular case of θ = 45o, the sagitta is given by

(8.95)

Couder (1932 in Texereau 1957) has indicated that an optimum angle for testing
optical flats is θ = 54o45’. Of course, in practice it is more convenient to set
θ = 60o. It is also common practice to use any eyepiece, instead of the knife
edge, to determine visually the positions of the sagittal and tangential foci, by
locating the positions of the patterns shown to the right of Fig. 8.33.

8.7 CONCLUSIONS

AS mentioned in the introduction of this chapter, the examples examined dem-
onstrate the versatility and usefulness of the Schlieren techniques and the related
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phase modulation tests. Of course, the choice of any particular test depends on
the circumstances.
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To appreciate the sensitivity of the test, it is of interest to do a sample calculation.  Let a
flat have a 60-inch diameter, θ = 60o, and L = 200 inches.  If δL’ = 0.01 inch, the sag h =
37.5 microinch (approx 1.7 λ), and r = 106 ft.

It is important to note that if the distance between the two line foci is measured, it is not
necessary to measure the distance between the reference sphere and the flat, nor is it
necessary to know the radius of curvature of the sphere.  However, if only the difference
in curvature of the tangential and sagittal fan is measured for a single focal position, it is
necessary to know both the distance between the flat and the spherical mirror, and the
radius of curvature of the spherical mirror.  Hence, the test is generally performed as
described.

Another important item is that if a null test is obtained, the mirror may not be a flat, it
may be a hyperbola.  To check to make sure that the mirror is flat, the mirror should be
rotated 90o and the test repeated.

Although the Ritchey-Common test is great for measuring the radius of curvature of a
nearly flat surface, it is difficult to measure accurately local irregularities.  Neglecting
higher order effects due to variation in surface angle, if α is the angle of incidence a ray
makes with respect to the surface, and if the surface is tested in double pass, a local
irregularity of height δ will introduce an OPD of

OPD = 4δ cos α

Since α varies over the surface, it becomes difficult to accurately obtain d as a function of
position on the mirror surface.  Also, it should be noted that as the angle of incidence is
increased, the sensitivity of the test to local irregularities decreases.
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This same approach can be used to measure window surface parallelism (wedge).  First
the interferometer is adjusted so a single interference fringe covers the interference field.
Next, the sample to be tested is placed in the cavity.  If the sample has an appropriate
amount of wedge, interference fringes will be observed.  The OPD introduced for a
window of diameter D, refractive index n, and wedge α, is given by

OPD = 2(n-1)αD.

The fringe spacing, S, is then given by

If the sample is tested in a Mach-Zehnder interferometer a similar expression results,
except there is no 2 in the denominator.

A second interferometric technique is to block off one mirror and replace the second
mirror with the sample to be measured.  Thus, the interference fringes result from the
interference of the wavefronts reflected off the two surfaces of the sample.  The fringe
spacing is given by

Table 1 gives fringe spacing S as a function of α for both double pass transmission and
the reflection case.

The next viewgraph shows a convenient setup for measuring window wedge in a phase-
shifting interferometer where it is not necessary to adjust the interferometer for a single
fringe in the absence of a sample.
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S (mm) 1/S (1/mm) S (mm) 1/S (1/mm)
α (sec)

1 126.6 0.008 42.20 0.024
5 25.32 0.039 8.44 0.118

10 12.66 0.079 4.22 0.237
30 4.22 0.237 1.41 0.711
60 2.11 0.474 0.70 1.422

Double Pass
Transmission

Reflection

Table 1.  Fringe spacing as a function of wedge
angle α for n = 1.5, λ = 633 nm
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Measuring Window Wedge
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Transmission
Flat

Return
Flat

Reference
Surface

Window
being
tested

Optics 513 - James C. Wyant

Calculating Window Wedge

Tilt difference
between two
interferograms
gives window
wedge.

αααα = window wedge

αααα
tilt difference
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Calculation of Tilt

d = fringe spacing

Fringes

β = Tilt = λ
d

βx = λ
d x

βy = λ
dy

dx = d / sin θ d y = d / cosθ

θ
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Calculation of Tilt Difference

1 2
Tilt

βx1, βy1

Tilt

βx2, βy2

Tilt Difference= βx1 − βx2( )2 + βy1 −βy2( )2



7.2.2 Autocollimator

The autocollimator is a telescope focused on infinity.  A reticle is projected as a beam of
parallel light from the objective.  A flat front-surfaced mirror in the path of the beam will
reflect back the image of the reticle, which is observed in the focal plane of the
autocollimator.  The position of the image depends upon the relative inclination of the
mirror and the autocollimating telescope.  If the relative inclination varies by an angle θ,
the image actually moves through an angle 2θ.  The instrument, whether it is read from a
graduated reticle or microscope drum, yields a direct value and generally eliminates the
necessity of doubling the reading.

The accuracy of an autocollimator for measuring angles is 1 sec of arc or less.  Electronic
autocollimators are made that have an accuracy of 0.01 sec of arc.  Needless to say, for
measurements having this accuracy, vibrations and air turbulence can cause much
trouble.

To measure surface parallelism, one simply uses an autocollimator to observe the
reflections off the two surfaces of a sample and measures the angular distance between
the two reflections.  If α is the wedge angle, the angular distance between the two
reflected beams is 2nα.  As described above, the calibration of the autocollimator often
already accounts for the factor of 2.



Autocollimator

Light
Source
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Eyepiece

Eye
Objective

Beamsplitter
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Testing Prisms in Transmission
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δδδδt = error in prism thickness
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Testing 90-Degree Prisms

Test Parameters
1. Surface accuracy of each face

2. Accuracy of angles

3. Material homogeneity

4. Transmitted wavefront
accuracy
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Angle Accuracy of 90-Degree Prisms

ε = θ
2n

ε = angle error

θ = beam
deviation
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Testing 90-Degree Prisms
(Single Pass)

Tilt difference between two interferograms gives
error in 90-degree angle.

Errors in collimated beam do not cancel.
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Calculating error in 90-Degree Prism
(Single Pass)

Tilt difference 
between two 
interferograms 
gives prism 
angle error. ε = prism angle 

error

ε
tilt difference

4n
= 
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Testing 90-Degree Prisms
(Double Pass)

Transmission 
Flat

90-Degree 
Prism

Reference 
Surface

Collimated 
Beam

Beam 
Block ε = prism angle 

error

ε
x tilt in interferogram

4n= 

Errors in collimated beam cancel.



7.3.2 Goniometer

The most general instrument for measuring prism angles is the precision goniometer.  A
goniometer consists of a collimator, telescope, and a sample table, all arranged so they
rotate about a common vertical axis.  Divided circles on the underside of the instrument
can accurately measure the angles of the collimator and telescope.

The goniometer is usually used in the autocollimating mode to measure the geometrical
angles between the various faces of the prism under test.  The addition of photoelectric
systems to the goniometer has improved the acuity of setting by a factor of from 5 times
to 10 times.  An accuracy of such a photoelectric system can be better than 1 sec of arc.



Figure 18.2. Goniometer.



C

FIG. 223.
Pyramidal Error of Prisms.

Pyramidal Error.
In Fig. 223a, let the plane ABC be perpendicular to OA, and let

AP be drawn perpendicular to BC, meeting it in P. If we join OP.
then the angle AOP is a measure of the pyramidal error.

In order to measure this possible error, it is desirable to use a
goniometer, such as that shown in Fig. 210, but with a graticule in
the eyepiece of the form given in Fig. 223b. The telescope is directed
towards faces AB and AC in turn, and the levelling screws of the
prism table, together with the tilt of the telescope in a vertical plane,
are adjusted so that the back reflected image of the horizontal graticule
line falls on the real horizontal line in each case. When this
adjustment has been effected, the edge AO of the prism must be
perpendicular to the optical axis of the telescope.

If, now, the telescope is directed towards the face BC the displace-
ment of the back-reflected horizontal line image can be measured on
the vertical angular scale; this displacement will be equal to twice the
angle AOP.



7.3.3 Autocollimator

The autocollimator described previously is used primarily for measuring prisms that are
retroreflective, such as roof prisms and corner cube prisms.  For example, if the angle of
a roof prism is different from 90o by an angle ε, the two images will be seen in the
eyepiece having a separation 2(2nε).  The measurement is especially useful since its
accuracy does not depend upon the angle of the entrance face, and thus no precise
positioning of the prism is required.

See Fig. 213 and 214.

To determine the sign of the error put the prism on an optical flat.  You should get the
same error as before, except for the n factor.  Tilt the prism as shown, and if the two
images come together the exterior angle must be > 90o, and if the images continue to
separate the exterior angle must be <90o.

To determine the absolute vales of the 45o angles the prism should be rested on the three
balls as shown in Fig. 215.  To prevent confusion from the other reflected images you
may have to put some Vaseline on surfaces other than the hypotenuse.  Having noted the
reading of the reflected image on the eyepiece scale, the prism is now removed and
placed on the three steel balls, such that the face AC now occupies that previously
occupied by BC; the reading on the scale is again noted.  The angular amount thus read
off will represent twice the difference in angle between A and B.  By observing the
direction in which the image has moved, it can be shown which is the larger of the two
angles, and since the value of the 90o angle is known, the true values of the 45o angles
can be determined.

Sixty-degree angles can be measured as shown in Fig. 216.  The prism is rested on the
three balls and the auto-collimator arranged to receive light reflected from the face AB.
The reflected image line is read on the eyepiece scale; the prism is then turned around so
that the angle occupies the position previously held by A and the reading again taken on
the scale.  The difference in angle as given on the scale will be equal to twice the
difference between angle A and angle C.  Similarly, by placing angle B in the position of
angle A, the difference of B from A may be obtained.  Hence B and C can be expressed
in terms of A in the equation A + B + C = 180o.  Having therefore determined the
absolute value of angle A, those for B and C may also be obtained.

A + B + C = 180o

2(A-C)=α        2(A-B)=β        C=(2A-α)/2       B=(2A-β)/2

A+A+A-α/2-β/2 = 180 o

A=(180o+α/2+β/2)/3



FIG. 213.

FIG. 215. FIG. 216.
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Test Parameters
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Interferogram for Perfect
Corner Cube (Single Pass)

6 interferograms obtained.

Straight fringes obtained
for perfect corner cube.
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Analyzing Corner Cube
Interferograms (Single Pass)

6 interferograms obtained.

Tilt difference between any
2 interferograms gives
one angle error in corner
cube.

n is refractive index of
corner cube.

Error = Tilt difference/(3.266 n)
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Corner Cube
(Single Pass OPD)

RMS: 0.045 P-V: 0.191
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Testing Corner Cubes
(Double Pass)
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Errors in collimated beam cancel.
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Interferogram for Perfect
Corner Cube (Double Pass)

3 interferograms obtained

One fringe covers the entire
interferogram
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Analyzing Corner Cube
Interferograms (Double Pass)

3 interferograms obtained.

Tilt of each interferogram
gives one angle error in
corner cube.

n is refractive index of corner
cube.

Error = Tilt/(3.266 n)Error = Tilt/(3.266 n)



7.5 Testing of Diffraction Gratings

1) Ghosts

Periodic errors in spacing of grating grooves (result from errors extending over large areas of grating).

2)  Satellites

False spectrum lines close to parent line (result from a small number of misplaced grooves in a localized part of

the grating).

3)  Scattered light

4)  Efficiency

5)  Direct wavefront testing using interferometer

For reflection gratings use Twyman-Green or Fizeau and for transmission gratings use Mach-Zehnder.

For perfect straight line grating

x
�������
Dx

= m; Dx = line spacing; m = integer;

Errors in lines

x
�������
Dx

+
d@x, yD
�������������������

Dx
= m

d@x, yD = error in line position

Compare with interferogram or hologram

Ë
-Ì k x Sin@qD representsamplitudeof tilted plane wave

Ë
Ì k Dw@x,yD representswavefronthaving aberrationDw@x, yD

Irradiance of interference pattern given by

i = io H1 + Cos@k x Sin@qD + k Dw@x, yDDL
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For bright fringe

x Sin@qD
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l
+
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l
= m

Therefore, for grating the aberration in the first order in units of waves is

d@x, yD
�������������������

Dx

Nth order will have N times as much aberration.
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In this letter an interferometric method of measuring

plotter distortion is described. A common method of
measuring plotter distortion is to draw a known pattern,
such as straight lines, and scan this pattern with a micro-
densitometer. This is a precise method of measuring dis-
tortion; however, it is a time consuming process; and it
gives distortion only along the microdensitometer scan
lines. The technique described below gives a contour
map for the whole plot showing lines of constant distor-
tion in a particular direction. By combining two contour
maps for distortion in two orthogonal directions, the dis-
tortion in any arbitrary direction can be found. If the
plotter distortion is repeatable and the plotter is comput-
er controlled, once the distortion is known it can be elimi-
nated as described by Fercher et al.1,2

As will now be shown, if a plotter draws straight lines
the plot can be thought of as a hologram produced by in-
terfering two plane wavefronts. The plotter distortion
produces the same effect on the plot as aberration in one
of the plane wavefronts would produce on the hologram.
If a plotter were to draw perfectly straight lines perpen-
dicular to the x direction, the equation of. the straight
lines would be (x / ∆ x) = M, where ∆ x is the line spacing
and M is an integer, 0, 1, 2, and so forth. Because of
plotter distortion, the lines are never perfectly straight.
Let the distortion in the x direction be δ x (x, y). Thus a
point that should have the x coordinate x will have the x
coordinate x +  δ x (x, y). Therefore, the equation of the
lines drawn by the plotter will be

(1)

Now consider the interference pattern (or hologram)
formed by interfering two wavefronts. If a tilted plane
wave, which can be represented as e -ikxsin θ, where k =
2π/λ, and λ is the wavelength, and an aberrated plane
wave represented as exp[ik φ (x, y)] are interfered, a bright
fringe is obtained every time the phase difference between
the two interfering wavefronts is a multiple of 2π. That is, a
fringe of order M is obtained when kx sin θ + k φ (x, y) =
2π M. Dividing through by 2π yields

Equations (1) and (2) show that the plot of distorted
straight lines can be thought of as a hologram made by in-
terfering a tilted plane wave with an aberrated plane
wave. A distortion 6x equal to the average line spacing,
Ax, corresponds to one wave of aberration. For example,
if the plot lines are spaced 500 µ, a distortion of 500 µ cor-
responds to one wave of aberration. The above results
can also be considered in terms of detour phase as pre-
viously described in the literature.3,4

If the plot is recorded on photographic film and illumi-
nated with a plane wave, several diffracted orders will be
produced, just as would be produced by a diffraction grat-
ing or hologram. The first order will be an aberrated
plane wave. The aberration function in units of waves is
equal to [δ x(x, y) / ∆ x]. As for a regular hologram, the second

Two incident
p l a n e  w a v e s  2

+N order of beam 1
-N order of beam 2

Fig. 1. Experimental setup for testing plot.

order will have twice as much aberration, the third order
will have three times as much, etc5,6,7 In general the
Nth diffracted order will have N times as much aberration
as the first order. If the Nth diffracted order is interfered
with a plane wave, the resulting interferogram gives plot-
ter distortion in the same manner as Twyman Green in-
terferometers give wavefront aberration.

Figure 1 shows a convenient setup for testing a plot.
Either the plot or a photo reduced version of the plot is
illuminated with two plane wavefronts. The plot is reim-
aged as shown. A spatial filter (small aperture) is placed
in the focal plane of the reimaging lens. The two plane
wavefronts are incident upon the plot at the appropriate
angle such that the +N order as produced by beam 1 and
the -N order as produced by beam 2 pass thru the spatial
filter. The number of fringes in the resulting interfero-
gram is selected by adjusting the tilt of the two illuminat-
ing plane waves. If the lines drawn by the plotter are
spaced a distance Ax, a fringe error in the interferogram
corresponds to a distortion error of an integer multiple of
∆ x / 2N in the plot. In general, any two diffracted orders
can be interfered. It is convenient to pick ±N, because,
if the two incident plane waves have the same intensity,
the two interfering wavefronts have the same intensity
and good contrast interference fringes are obtained.

If the spatial filter shown in Fig. 1 is removed from the
setup, the shape of the fringes in the interferogram is un-
changed; however the contrast of the fringes is reduced.
The interferogram obtained in this case is the moire, be-
tween the plot and the interference fringes formed by in-
terfering plane waves 1 and 2.

Fig. 2. Laser beam recorder plot.
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the photo reduction lens is being measured. This
suggests using this technique for measuring lens distor-
tion. If a straight line pattern having either essentially
zero distortion, or at least known distortion, is photo-
graphed and the resulting transparency is placed in this
setup, the distortion produced by the photo reduction lens
can be obtained.

Figure 2 shows a plot drawn by a laser beam recorder.
The diameter of the plot was approximately 20 cm and
the spacing of the lines or dots was approximately 1200
µ m. The plot was photoreduced to a diameter of 2 cm.
A two-dimensional dot pattern was drawn so distortion
in both the horizontal and the vertical direction could be
measured. The vertical lines give distortion in the hori-
zontal direction, and the horizontal lines give distortion in
the vertical direction.

Figure 3 shows results obtained measuring distortion in
the x direction. The spatial filter shown in Fig. 1 was po-
sitioned to pass diffraction orders produced by the vertical
lines. The tilt between the two incident plane waves was
adjusted to produce the interference fringes shown. The
fringe positions were measured and this data was put into
a computer, which took out the tilt to obtain the contour
map shown. The lines in the contour map are lines of
constant distortion in the x direction. Since the lines on
the original plot were spaced 1200 µ and ±3rd diffraction
orders were interfered, one fringe error in the interfero-
gram corresponds to a distortion error of 1200 divided by
6, or 200 µ. By combining the results shown in Fig. 3 with
similar results obtained for distortion in the y direction,
the distortion in any desired direction can be found. If
the plotter distortion is repeatable and the plotter is com-
puter controlled, once the distortion is determined it can
be eliminated.

Figure 4 shows a very interesting distortion error. The
vertical lines drawn by the plotter in some cases were dis-
placed horizontally about 80 µ from the correct position.
Since the lines drawn by the plotter were spaced 1200 µ,
it was very difficult to see the 80− µ horizontal displace-
ment in the plot. However, by using the technique de-
scribed in this paper the error became very obvious, as
shown in the figure. In summary, this letter describes an
interferometric method of measuring plotter distortion in
which an interferogram is obtained giving plotter distor-
tion in the same manner as Twyman Green interferograms
give wavefront aberrations. Each interferogram gives dis-

Error in vertical lines

Fig. 3.
Distortion in x direction (200 µ m per wave).
Top: Error in vertical lines.
Bottom: error in vertical lines; peak-to-peak,
error = 0.69 wave = 138 µ m; RMS error = 0.13 wave = 26 µ m.

A good feature of the experimental setup shown in Fig.
1 is that if the plot is recorded on a photographic plate,
the plate need not be extremely flat. If the two plane
wavefronts are incident on the emulsion side of the plate,
the two diffraction orders of interest will both see the
same thickness variations. Thus, thickness variations in
the plate will not affect the final interferogram.

It should be noted that if a photo reduced version of the
plot is used in the test setup, instead of the actual plot,
the combined distortion produced by both the plotter and Fig. 4. Error in laser beam recorder lines (200 µ m per fringe).
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tortion in a particular direction. From two interfero-
grams, giving distortion in two orthogonal directions, the
distortion in any desired direction can be obtained. The
technique can also be used to measure lens distortion.

The authors are indebted to the referee who pointed out
Refs. 1 and 2.
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Abstract. We describe three methods to measure the inhomogeneity of a
window material. The first method immerses the window in a liquid be-
tween two planes. However, this method is inconvenient for some appli-
cations. The second method measures the optical figure of the front sur-
face and then measures the return wavefront that transmits through the
window and reflects from the rear surface of the window. The advantage
of this method is that it can remove the contributions of both the surface
figures and the return fiat plus the system error of the interferometer. The
disadvantage is that a small wedge must be fabricated between the two
surfaces to eliminate spurious interference. The third method derives the
inhomogeneity of the window material by measuring the optical figure of
the front surface of the window and then flipping the mirror to measure
the back surface. The advantage of this method is that it is not necessary
to have a wedge between the two surfaces. The disadvantage of the window-
flipping method is that the contribution of system error can increase.

Subject terms: optical window inhomogeneity; optical testing; index of refraction.
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1. INTRODUCTION
The deformation of a transmitted wavefront through a window
is due to a combination of the inhomogeneity of the window
material and the figures of both surfaces of the window. Several
methods have been proposed to measure the inhomogeneity. l-5

In theory, if both surfaces are much better than the amount of
the homogeneity of interest, any deformation of the wavefront
is due to the inhomogeneity of the window material.

Opticians, however, want to know the inhomogeneity of a
window material before precision polishing is done. Adachi et
al.’ immersed a fine ground optical material into a cavity filled
with a liquid of the same refractive index as the window. They
were able to eliminate the contribution of both surfaces and
measure the inhomogeneity of the window. The disadvantage
of this method is that the use of a liquid is inconvenient for some
applications. However, if both surface figures of the window
are known, it is possible to derive the inhomogeneity of the
window material. With the aid of a digital interferometer, it is
possible to measure the figures of the two surfaces and store this
information for later use. By mathematically manipulating the

Paper 09120 received Dec. 24, 1990; revised manuscript received Feb. 16,
1991; accepted for publication Feb. 16, 1991. This paper was presented at the
OSA annual meeting, November 1990, Boston, Massachusetts.
© 1991 Society of Photo-Optical Instrumentation Engineers.

data, we can subtract the contribution of both surfaces from the
transmitted wavefront.

Schwider et a1.5 measured the contribution of the rear surface
with the wavefront transmitted through the window and reflected
by the rear surface. Thus, they were able to remove the contri-
butions of both surfaces, the return flat, and the system error of
the interferometer with four measurements. Since the transmitted
wavefront is used, we call this the transmission method. One
disadvantage of this method is that a wedge has to be fabricated
between the two surfaces to eliminate the spurious reflection.
On the other hand, it is a straightforward procedure to measure
the rear surface of the window by flipping the window and then
removing its contribution to the transmitted wavefront. We call
this the window-flipping method. However, the contribution of
the system error can increase with this method.

In the following sections we compare the mathematical der-
ivations for the transmission method and the window-flipping
method and show the experimental results of the three methods.
We also discuss the error analysis in details.

2. THREE MEASUREMENT METHODS
2.1. Liquid immersion method
The liquid immersion method uses two optical flats to form a
cavity filled with a liquid. A window is dipped into a liquid that
has the same refractive index as the window material. The liquid
must be stable to perturbations and be harmless. The transmitted
wavefront through the cavity reflects off a flat, and the return
wavefront is measured with a digital interferometer. The con-
tribution of the cavity is removed by taking the difference of
two measurements with and without the window in the cavity.

2.2. Transmission method
In this section, we summarize the procedure given by Schwider
et a1.5 An interferometer measures the return wavefront of light
after it is transmitted through a window, is reflected by a flat,
and is returned. The return wavefront is the sum of the contri-
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butions of the inhomogeneity of the window material, the figures
of both surfaces of the window, and the return flat. Because
both surfaces and the return flat are not absolutely flat, the errors
due to the surfaces must be removed to determine the inho-
mogeneity. The procedure, shown in Fig. 1, is as follows:

Therefore,

1. Remove the window and adjust the return flat to obtain a
reflection from the return flat C.

2. Insert the window. Adjust the return flat to get a reflection
from the return flat C through the window.

3. Measure the wavefront reflected from the front surface A
of the window.

4. Adjust the window to obtain the reflection from the rear
surface B.

Thus the wavefront deviation A due to the inhomogeneity can
be obtained. When the thickness of the window is given, the
variation of the refractive index can be calculated. The constant
in the equation affects only the bias of the variation, which is
not important with respect to the inhomogeneity. It should be
noted that the system error S is eliminated in Eq. (2), in addition
to the errors due to the front surface A, the rear surface B, and
the return flat C.

Expressed mathematically, 2.3. Window-flipping method

(1)

The general practice is to measure the two surfaces of the window
separately. The front surface is easy to measure. However, for
the rear surface, we must flip the window about an axis, e.g.,
the x axis, and make a measurement, as shown in Fig. 2, step
4’. This requires a flipping mechanism to ensure that the images
on the detector overlap before and after flipping the window.
After obtaining the measurement wavefront, M'4 in step 4’, we
flip M'4 mathematically about the x axis to obtain M '4. Thus,

Here Ml, M2, M3, and M4 are the measured wavefronts in each
of the above steps; A, B, and C are the surface errors of the
front surface, the rear surface, and the return flat, respectively;
and A is the wavefront deviation due to the inhomogeneity of
the window, i.e., material contribution. The average or nominal
refractive index is n0 and kl-4 are arbitrary constants because
only the relative phase is measured in each measurement. Fi-
nally, S is the contribution of the system error. From Eq. (l),
multiplying (M2 - Ml) and (M4 - M3) by two factors n0 a n d
n 0 - 1, respectively, then

The bold letters denote the transformation of the array flipping
180 degrees about then axis, i.e., M '4(x,y) = M'4(x,-y), B(x,y)
= B(x,-y), and S(x,y) = S(x,-y). It should be noted that
there is a minus sign with B due to the window flipping.

From Eqs. (1) and (4)

(2)

Fig. 1. The measurement procedure for the transmission method.

(4)

(5)

Fig. 2. The measurement procedure using the window flipping
method.
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Thus,

(6)

It is clear that the system error does not vanish unless it is
antisymmetric about the axis of flipping (e.g., the x axis). Be-
cause of the window flipping, the system error is not canceled,
but can actually increase.

3. EXPERIMENT
We measured a round window of SFL57, 10 mm thick and
50 mm in diameter, and a rectangular window of BK7, 63 mm
long by 38 mm wide by 50 mm thick using a digital interfer-
ometer. The windows were measured in the direction along the
thickness. The peak-to-valley (p-v) values of the surface figures
of both windows are between 0.75 wave and 1.50 waves. Figure
3 shows the interference fringes of the front and the rear surfaces
and the return wavefront reflected by the return flat with the
SFL57 window. Figures 4(a), 4(b), and 4(c) are the measured
inhomogeneity of glass SFL57 obtained with the three methods.
The figure clearly shows that there is a delta distribution in the
homogeneity. Figure 5 is another measurement result with the
transmission method, where the window was rotated by an angle
of 30 deg. Mathematically rotating Fig. 5, and comparing it with
Fig. 4(a), the difference is 0.010 wave rms, as shown in Fig. 6.
Because of the size of the BK7 window, it was not tested with
the liquid immersion method. Figures 7(a) and 7(b) show the
measured inhomogeneity of glass BK7 with the transmission
method and with the window-flipping method. The figure clearly
shows that there is a cylindric distribution along the longest
dimension in the homogeneity. From Figs. 4 and 7, the wave-
front deviations due to the inhomogeneity of SFL57 and BK7
are about 0.75 wave, where the interval cycle of the isometric
contour is 0.007 wave. Thus, the variation of the refractive index
is about 5 x 10-5 and 1 x 10-5 for SFL57 and BK7, respectively.

Figures 4(a) and 4(b) are very similar to each other, but
compared to Fig. 4(c) they have a greater power, i.e., more
fringes. The reason why Fig. 4(c) has fewer fringes is that the
liquid used in the liquid immersion method has a refractive index
approximately equal to 1.785, at 589.3 nm, which does not
match that of the window material. Figures 4 and 7 clearly show
that there is a delta distribution in the homogeneity in the SFL57
window and a cylindric distribution in the BK7 window. We
believe that this delta distribution occurred while the sample was
prepared, and that the cylindric distribution occurred in the melt-
ing and/or annealing process. Figure 6 is the difference between
two measurements; one of them is rotated mathematically. The
figure shows the footprint of the three-chuck mount. Thus, the
measurement accuracy in this experiment is about 0.010 wave
rms, and is limited by the mounting mechanism. If the mea-
surement is performed carefully, 0.005 wave rms can be achieved.
The similarity among the results using all three methods shows
that the transmission method works very well.

4. DISCUSSION
Here we discuss the error sources and the measurement accuracy.
The first error source is the interferometer random noise, as
explained below. The contribution of the window to the trans-
mitted wavefront is

(7)

(a)

(c)
Fig. 3. Interference fringes of an SFL57 window. (a) Front surface,
(b) rear surface, (cl return wavefront reflected by a return flat.

where n(x,y) is the refractive index, and T(x,y) is the window
thickness. Both are functions of x and y. For simplicity, only x
is used. Therefore, the variation of the optical path difference
(OPD) over the pupil of the window is

(8)

where n0 is the average refractive index, TO is the nominal or
average thickness, and OPD0 is the average OPD equal to
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(n0 - 1)T0. The refractive index variation n(x) equals n(x) -
n0. The thickness variation t(x), equal to T(x) - T 0, is equal
to the difference of the front and rear surfaces plus the wedge
of window, if it exists. However, the effect of the wedge is

(a)

(c)
Fig. 4. The measured inhomogeneity of glass SFL57 with (a) the
transmission method, (b) the window-flipping method. and (c) the
liquid immersion method. The interval of the isometric contour is
0.07 wave. (a) p-v = 0.711 wave, rms = 0.166 wave. (b) p-v = 0.793
wave, rms = 0.166 wave. (c) p-v = 0.646 wave, rms = 0.141 wave.
The figures clearly show that there is a delta-shaped distribution of
the homogeneity.

equivalent to the tilt of a wavefront, which is not important and
usually not measured. Hence, (n0 - l)t(x) equals the wavefront
deviation due to the thickness variation, and        is equal to
the wavefront deviation due to the inhomogeneity. In Eq. (8),
the cross term,        , is dropped because it is too small
compared to the other two terms.

From Fig. 1, M2(x) - Ml(x) equals the contribution from
the window. Also, from Eq. (l),

(9)

There is a factor 2 in the denominator, because M2(x) and
M l(x) are the returned wavefronts, which go through the win-
dow and the cavity twice. Comparing Eq. (9) with Eq. (8), we
can see that

and (10)

Fig. 5. The measured inhomogeneity of the SFL57 window with the
transmission method where the window was rotated 30 deg. The
interval of the isometric contour is 0.07 wave, p-v = 0.725 wave,
and rms = 0.164 wave.

Fig. 6. The difference between Fig. 4(a) and Fig. 5 shows the effect
of the three-chuck mount. Figure 5 is mathematically rotated to
match the orientation of Fig. 4(a).
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where the constant is dropped because only the variation is of
interest. Thus the wavefront deviation A(n) due to the inho-
mogeneity is equal to the refractive index variation n(x) - n0

times the thickness of the window T0. If the thickness of the
window T0 is given, from Eq. (l0), n(x) - n0 can be obtained
as follows:

(11)

It is important to know that the peak-to-valley value of Eq. (11)
gives the maximum variation of n.

From the right-hand side of Eq. (3), the rms error δ1 for the
measurement of the material contribution due to the random
noise is equal to

(12)

where ε is the rms error for a phase measurement due to the
random noise, i.e., the repeatability of the interferometer. Thus,
for n0 = 4, the rms error is 3.5ε, and for n0 = 1.6, the rms
error is 1.2ε. In Eq. (11),       determines the refractive
index variation. Similarly,           gives the measurement accuracy
of the refractive index variation. Because δ1 is limited by the
interferometer, the thicker the window, the more accurate the
result. Note that ∆ and δ1 in Eqs. (11) and (12) have the same
unit of dimension in waves, and that          and        are dimen-
sionless.

For example, a window of T0 = 10 mm and n0 = 1.6 is
measured at 633 nm. If the maximum wavefront deviation A
due to the inhomogeneity is 0.16 wave, peak to valley, from
Eq. (ll), the maximum variation of n equals 10 x 1 0-6. Typ-
ically, glass of good homogeneity6 has a maximum variation of
n d equal to ±5 x 10 -6, which are the extremes of the refractive
index, and whose difference equals 10 x 1 0-6. If the inter-
ferometer has a repeatability ε = 0.002 wave rms, then from

(a)

(b)
Fig. 7. The measured inhomogeneity of glass BK7 (a) with the trans-
mission method and (b) the window flipping method. The figure
clearly shows that there is a cylindric distribution along the longest
dimension in the homogeneity. The interval of the isometric contour
is 0.07 wave. (a) p-v = 0.722 wave, rms = 0.118 wave. (b) p-v =
0.715 wave, rms = 0.118 wave.

Eq. (12) the measurement rms error δ1 = 0.0024 wave, and
       = 0.15 x 10 -6. Thus, the measurement error is about 1.5%.

Another error source is the error of the refractive index input.
In Eq. (2), (M2 - Ml) and (M4 - M3) are multiplied by two
factors that are determined by the refractive index. This refrac-
tive index usually is the nominal value nn from a glass catalogue,
and is not necessarily equal to the average refractive index of
the window material under test. Substitute nn and nn - 1 for
the two factors mentioned above, then

(13)

Note that if the refractive index input n n is not equal to the
average refractive index no, then an error occurs. Therefore, the
rms error δ2 for the measurement of the material contribution
due to the error of the refractive index input can be expressed as

(14)

For instance, if the discrepancy between the refractive index
input and the average refractive index n0 - nn = 0.002, which
is the maximum deviation for a melt from the value stated in a
glass catalogue,6 and the thickness variation (B - A)rms = 2
wave, then δ2 is about 2.004 wave. For the same example above,
      = 0.25 x 10-6 . From Eq. (14), the smaller the error of
the refractive index input, the smaller the measurement error of
the refractive index variation. Note that both δ1 and δ2 are
independent of the average thickness of window.

The typical and maximum values of the variation of the re-
fractive index and the corresponding errors of the homogeneity
measurement are summarized and tabulated in Table 1. In the
above experiment, for the SFL57 window that is 10 mm thick,
the peak-to-valley value of the wavefront deviation is about 0.75
wave. Thus, the maximum variation of n for SFL57 is about
50 x 10 -6. For the BK7 window that is 50 mm thick, the peak-

Table 1. The typical and maximum values of the variation of the
refractive index and their corresponding wavefront deviation and
errors of the homogeneity measurement.

T0 = 10 mm, 1 wave = 633 nm.
(1)The refractive index deviation for a melt from the value n n stated in a glass

catalogue 6, where no is the average refractive index.
(2)δ2 is due to the error of the input refractive index, where (B-A),, = 2

waves.
(3) δ1 is due to the interferometer repeatibilty, and depends on no, not no-nn.

For ε = 0.002 wave rms and n0 =1.6, from Eq. (12) δ1 equals 1.2ε.
(4) The degree of the refractive index variation over the pupil.
(5) The peak-to-valley value of the wavefront deviation ∆ (x) due to

inhomogeneity for a window 10 mm thick. ∆ (x) = T0[n(x)-n0].
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to-valley value of the wavefront deviation is also about 0.75
wave. Because the BK7 window is much thicker than the SFL57
window, the maximum variation of n for BK7 is much smaller
than that of SFL57, approximately equal to 10 x 10-6. There-
fore, the refractive index of BK7 is much more uniform than
that of SFL57. It is obvious but important that the peak-to-valley
value of the wavefront deviation is also dependent on the size
of the window and not just the thickness. In brief, for the same
window material, the larger and thicker the piece, the more
difficult it is to obtain a uniform refractive index.

When the window-flipping method is used, from Eq. (6), the
two errors mentioned above still exist. Besides those, we see
that the system error could contribute the greatest part of the
measure error, if S + S is not equal to zero. For the same
window of T0 = 10 mm and n0 = 1.6 measured at 633 nm, if
the system error Srms = 0.01 wave, δ is on the order of 0.01
wave. Thus, δ / T0 = 0.6 X 1 0-6.

5. CONCLUSION
The advantage of the oil immersion method is that the surface
only needs to be fine ground. The disadvantage of this method
is that the use of a liquid is inconvenient for some applications.
It should be noted that the refractive index of oil must be as
close as possible to that of the window material. However, oil
of a higher refractive index is difficult to obtain.

The two major error sources for the transmission method are
the random noise of the interferometer system and the discrep-
ancy between the refractive index input and the refractive index
averaged over the pupil of the test window. The contributions
of the two error sources have approximately the same magnitude.
The contribution from the first error source is linearly propor-
tional to the interferometer repeatability. For the second error
source, the resulting error is linearly proportional to the error of
the refractive index input. Both error sources are independent
of the average window thickness. Therefore, the measurement
accuracy of the refractive index variation is inversely propor-
tional to the thickness. Hence, in order to obtain the most ac-
curate measurement, we should use the thickest window plate,
the least noisy interferometer, and the best estimated refractive
index.

The advantages of this transmission method are as follows:
(1) The contributions due to the figure errors of both surfaces
of the window, the return flat, and the system error are removed
completely. (2) It is easy to mathematically process the data
because only the operations of multiplication and differencing
are necessary. (3) It is easy to take a measurement because
neither a flipping mechanism nor liquid is needed. The disad-
vantage of this method is that it requires both surfaces to be
polished within a few fringes, and a small wedge must be fab-
ricated between the two surfaces to eliminate the spurious in-
terference .

For the window-flipping method, the system error contributes
the greatest part of the measurement error, because the system

error is not canceled. The two error sources mentioned above
still exist for this method. The advantage of this method is that
because the two surfaces are measured in reflection completely
independently, the spurious reflection from the back surface can
be blocked by spreading a coating on the measured surface.
Therefore, it can test a window that has no wedge between the
two surfaces.
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