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Basic Interferometry and 
Optical Testing

• Two Beam Interference
• Fizeau Interferometer
• Twyman-Green Interferometer
• Laser Based Fizeau
• Mach-Zehnder Interferometer
• Typical Interferograms
• Interferograms and Moiré Patterns
• Classical techniques for inputting 

data into computer
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Two-Beam Interference Fringes

I = I1 + I2 + 2 I1I2 cos(α1 −α 2 )

α1 −α2 is the phase difference between 
the two interfering beams

α1 −α2 = (2π
λ

)(optical path difference)



James C. Wyant Page 3

Sinusoidal Interference Fringes

I = I1 + I2 + 2 I1I2 cos(α1 − α2 )
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Classical Fizeau Interferometer
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Typical Interferogram Obtained
using Fizeau Interferometer
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Relationship between Surface
Height Error and Fringe Deviation

Surface height error = (   )(  )λ
2

∆
S

S

∆ (x,y)
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Fizeau Fringes

Height error = (λ/2)(∆/S)

For a given 
fringe the 
separation 

between the 
two surfaces is 

a constant.
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Fizeau Fringes for Concave
and Convex Surfaces
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Twyman-Green Interferometer
(Flat Surfaces)
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Twyman-Green Interferometer
(Spherical Surfaces)
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Typical Interferogram
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Fizeau Interferometer-Laser Source
(Flat Surfaces)
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Fizeau Interferometer-Laser Source
(Spherical Surfaces)
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Testing High Reflectivity Surfaces
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Mach-Zehnder Interferometer
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Laser Beam Wavefront Measurement
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Interferograms
Small Astigmatism, Sagittal Focus

Tilt
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Interferograms
Small Astigmatism, Medial Focus

Tilt
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Interferograms, Large Astigmatism,
Sagittal Focus, Small Tilt

Tilt
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Interferograms, Large Astigmatism,
Medial Focus, Small Tilt

Tilt
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Interferograms
Small Coma, Large Tilt

Tilt
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Interferograms
Large Coma, Small Tilt

Tilt
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Interferograms
Large Coma, Large Tilt

Tilt
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Interferograms
Combined Aberrations

All wavefronts have 
1 λ rms departure 
from best-fitting 
reference sphere.
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16.2. WHAT IS MOIRÉ?

Moiré patterns are extremely useful to help understand basic interferometry and
interferometric test results. Figure 16.1 shows the moiré pattern (or beat pat-
tern) produced by two identical straight-line gratings rotated by a small angle
relative to each other. A dark fringe is produced where the dark lines are out
of step one-half period, and a bright fringe is produced where the dark lines for
one grating fall on top of the corresponding dark lines for the second grating.
If the angle between the two gratings is increased, the separation between the
bright and dark fringes decreases. [A simple explanation of moiré is given by
Oster and Nishijima (1963).]

If the gratings are not identical straight-line gratings, the moiré pattern (bright
and dark fringes) will not be straight equi-spaced fringes. The following anal-

(a) (b)

Observation
Plane

Figure 16.1. (a) Straight-line grating. (b) Moiré between two straight-line gratings of the same
pitch at an angle α with respect to one another.
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ysis shows how to calculate the moire pattern for arbitrary gratings. Let the
intensity transmission function for two gratings f1(x, y) and f2(x, y) be given by

(16.1)

where φ (x, y) is the function describing the basic shape of the grating lines. For
the fundamental frequency, φ (x, y) is equal to an integer times 2 π at the center
of each bright line and is equal to an integer plus one-half times 2 π at the center
of each dark line. The b coefficients determine the profile of the grating lines
(i.e., square wave, triangular, sinusoidal, etc.) For a sinusoidal line profile, 
is the only nonzero term.

When these two gratings are superimposed, the resulting intensity transmis-
sion function is given by the product

(16.2)

The first three terms of Eq. (16.2) provide information that can be determined
by looking at the two patterns separately. The last term is the interesting one,
and can be rewritten as

n and m both # 1

(16.3)

This expression shows that by superimposing the two gratings, the sum and
difference between the two gratings is obtained. The first term of Eq. (16.3)
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represents the difference between the fundamental pattern masking up the two
gratings. It can be used to predict the moiré pattern shown in Fig. 16.1. As-
suming that two gratings are oriented with an angle 2α between them with the
y axis of the coordinate system bisecting this angle, the two grating functions
φ1 (x, y) and φ2 (x, y) can be written as

and

(16.4)

where λ1 and λ2 are the line spacings of the two gratings. Equation (16.4) can
be rewritten as

(16.5)

where   is the average line spacing, and     is the beat wavelength between
the two gratings given by

(16.6)

Note that this beat wavelength equation is the same as that obtained for two-
wavelength interferometry as shown in Chapter 15. Using Eq. (16.3), the moiré
or beat will be lines whose centers satisfy the equation

(16.7)

Three separate cases for moiré fringes can be considered. When λ1 = λ2 = λ,
the first term of Eq. (16.5) is zero, and the fringe centers are given by

(16.8)

where M is an integer corresponding to the fringe order. As was expected, Eq.
(16.8) is the equation of equi-spaced horizontal lines as seen in Fig. 16.1. The
other simple case occurs when the gratings are parallel to each other with α =
0. This makes the second term of Eq. (16.5) vanish. The moiré will then be
lines that satisfy

(16.9)
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16.3. MOIRÉ AND INTERFEROGRAMS

Now that we have covered the basic mathematics of moiré patterns, let us see
how moiré patterns are related to interferometry. The single grating shown in
Fig. 16.1 can be thought of as a “snapshot” of a plane wave traveling to the
right, where the distance between the grating lines is equal to the wavelength
of light. The straight lines represent the intersection of a plane of constant phase
with the plane of the figure. Superimposing the two sets of grating lines in Fig.
16.1 can be thought of as superimposing two plane waves with an angle of 2α
between their directions of propagation. Where the two waves are in phase,
bright fringes result (constructive interference), and where they are out of phase,
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dark fringes result (destructive interference). For a plane wave, the “grating”
lines are really planes perpendicular to the plane of the figure and the dark and
bright fringes are also planes perpendicular to the plane of the figure. If the
plane waves are traveling to the right, these fringes would be observed by plac-
ing a screen perpendicular to the plane of the figure and to the right of the
grating lines as shown in Fig. 16.1. The spacing of the interference fringes on
the screen is given by Eqn. (16.8), where λ is now the wavelength of light.
Thus, the moiré of two straight-line gratings correctly predicts the centers of
the interference fringes produced by interfering two plane waves. Since the
gratings used to produce the moiré pattern are binary gratings, the moiré does
not correctly predict the sinusoidal intensity profile of the interference fringes.
(If both gratings had sinusoidal intensity profiles, the resulting moiré would still
not have a sinusoidal intensity profile because of higher-order terms.)

More complicated gratings, such as circular gratings, can also be investi-
gated. Figure 16.4b shows the superposition of two circular line gratings. This
pattern indicates the fringe positions obtained by interfering two spherical
wavefronts. The centers of the two circular line gratings can be considered the
source locations for two spherical waves. Just as for two plane waves, the spac-
ing between the grating lines is equal to the wavelength of light. When the two
patterns are in phase, bright fringes are produced; and when the patterns are
completely out of phase, dark fringes result. For a point on a given fringe, the
difference in the distances from the two source points and the fringe point is a
constant. Hence, the fringes are hyperboloids. Due to symmetry, the fringes
seen on observation plane A of Fig. 16.4b must be circular. (Plane A is along
the top of Fig. 16.4b and perpendicular to the line connecting the two sources
as well as perpendicular to the page.) Figure 16.4c shows a binary representa-
tion of these interference fringes and represents the interference pattern obtained
by interfering a nontilted plane wave and a spherical wave. (A plane wave can
be thought of as a spherical wave with an infinite radius of curvature.) Figure
16.4d shows that the interference fringes in plane B are essentially straight equi-
spaced fringes. (These fringes are still hyperbolas, but in the limit of large
distances, they are essentially straight lines. Plane B is along the side of Fig.
16.4b and parallel to the line connecting the two sources as well as perpendic-
ular to the page.)

The lines of constant phase in plane B for a single spherical wave are shown
in Fig. 16.5a. (To first-order, the lines of constant phase in plane B are the
same shape as the interference fringes in plane A.) The pattern shown in Fig.
16.5a is commonly called a zone plate. Figure 16.5b shows the superposition
of two linearly displaced zone plates. The resulting moiré pattern of straight
equi-spaced fittings illustrates the interference fringes in plane B shown in Fig.
16.4b.

Superimposing two interferograms and looking at the moiré or beat produced
can be extremely useful. The moiré formed by superimposing two different
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Plane B

Figure 16.4. Interference of two spherical waves. (a) Circular line grating representing a spher-
ical wavefront. (b) Moiré pattern obtained by superimposing two circular line patterns. (c) Fringes
observed in plane A. (d) Fringes observed in plane B.
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Figure 16.4. (Continued)

interferograms shows the difference in the aberrations of the two interfero-
grams. For example, Fig. 16.6 shows the moiré produced by superimposing
two computer-generated interferograms. One interferogram has 50 waves of tilt
across the radius (Fig. 16.6a), while the second interferogram has 50 waves of
tilt plus 4 waves of defocus (Fig. 16.6b). If the interferograms are aligned such
that the tilt direction is the same for both interferograms, the tilt will cancel and
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(b)
Figure 16.5. Moiré pattern produced by two zone plates. (a) Zone plate. (b) Straight-line fri
resulting from superposition of two zone plates.

only the 4 waves of defocus remain (Fig. 16.6c). In Fig. 16.6d, the two in
ferograms are rotated slightly with respect to each other so that the tilt will
quite cancel. These results can be described mathematically by looking at
two grating functions:

nges

inter-
not
the
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(b)

(d)

Figure 16.6. Moiré between two interferograms. (a) Interferogram having 50 waves tilt. (6) In-
terferogram having 50 waves tilt plus 4 waves of defocus. (c) Superposition of (a) and (b) with no
tilt between patterns. (d) Slight tilt between patterns.

and

A bright fringe is obtained when

(16.16)

(16.17)

If α = 0, the tilt cancels completely and four waves of defocus remain; oth-
erwise, some tilt remains in the moiré pattern.
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Figure 16.7 shows similar results for interferograms containing third-order
aberrations. Spherical aberration with defocus and tilt is shown in Fig. 16.7d.
One interferogram has 50 waves of tilt (Fig. 16.6a), and the other has 55 waves
tilt, 6 waves third-order spherical aberration, and -3 waves defocus (Fig.
16.7a). Figure 16.7e shows the moiré between an interferogram having 50
waves of tilt (Fig. 16.6a) with an interferogram having 50 waves of tilt and 5
waves of coma (Fig. 16.7b) with a slight rotation between the two patterns.
The moiré between an interferogram having 50 waves of tilt (Fig. 16.6a) and
one having 50 waves of tilt, 7 waves third-order astigmatism, and -3.5 waves
defocus (Fig. 16.7c) is shown in Fig. 16.7f. Thus, it is possible to produce
simple fringe patterns using moiré. These patterns can be photocopied onto
transparencies and used as a learning aid to understand interferograms obtained
from third-order aberrations.

A computer-generated interferogram having 55 waves of tilt across the ra-
dius, 6 waves of spherical and -3 waves of defocus is shown in Fig. 16.7a.
Figure 16.8a shows two identical interferograms superimposed with a small
rotation between them. As expected, the moiré pattern consists of nearly straight
equi-spaced lines. When one of the two interferograms is slipped over, the
resultant moiré is shown in Fig. 16.8b. The fringe deviation from straightness
in one interferogram is to the right and, in the other, to the left. Thus the sign
of the defocus and spherical aberration for the two interferograms is opposite,
and the moiré pattern has twice the defocus and spherical of each of the indi-
vidual interferograms. When two identical interferograms given by Fig. 16.7a
are superimposed with a displacement from one another, a shearing interfero-
gram is obtained. Figure 16.9 shows vertical and horizontal displacements with
and without a rotation between the two interferograms. The rotations indicate
the addition of tilt to the interferograms. These types of moiré patterns are very
useful for understanding lateral shearing interferograms.

Moiré patterns are produced by multiplying two intensity-distribution func-
tions. Adding two intensity functions does not give the difference term obtained
in Eq. (16.3). A moiré pattern is not obtained if two intensity functions are
added. The only way to get a moiré pattern by adding two intensity functions
is to use a nonlinear detector. For the detection of an intensity distribution given
by I1 + I2, a nonlinear response can be written as

(16.18)

This produces terms proportional to the product of the two intensity distribu-
tions in the output signal. Hence, a moiré pattern is obtained if the two indi-
vidual intensity patterns are simultaneously observed by a nonlinear detector
(even if they are not multiplied before detection). If the detector produces an
output linearly proportional to the incoming intensity distribution, the two in-
tensity patterns must be multiplied to produce the moiré pattern. Since the eye
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(b)
Figure 16.8. Moire pattern by superimposing two identical interferograms (from Fig. 16.7a). (a)
Both patterns having the same orientation. (b) With one pattern flipped.

is a nonlinear detector, moiré can be seen whether the patterns are added or
multiplied. A good TV camera, on the other hand, will not see moiré unless
the patterns are multiplied.

16.4. HISTORICAL REVIEW

Since Lord Rayleigh first noticed the phenomena of moiré fringes, moiré tech-
niques have been used for a number of testing applications. Righi (1887) first
noticed that the relative displacement of two gratings could be determined by
observing the movement of the moiré fringes. The next significant advance in
the use of moiré was presented by Weller and Shepherd (1948). They used
moiré to measure the deformation of an object under applied stress by looking
at the differences in a grating pattern before and after the applied stress. They
were the first to use shadow moiré, where a grating is placed in front of a nonflat
surface to determine the shape of the object behind it by using the shape of the
moiré fringes. A rigorous theory of moiré fringes did not exist until the mid-
fifties when Ligtenberg (1955) and Guild (1956, 1960) explained moiré for
stress analysis by mapping slope contours and displacement measurement, re-
spectively. Excellent historical reviews of the early work in moiré have been
presented by Theocaris (1962, 1966). Books on this subject have been written
by Guild (1956, 1960), Theocaris (1969), and Durelli and Parks (1970). Pro-
jection moiré techniques were introduced by Brooks and Helfinger (1969) for
optical gauging and deformation measurement. Until 1970, advances in moiré
techniques were primarily in stress analysis. Some of the first uses of moiré to
measure surface topography were reported by Meadows et al. (1970), Takasaki
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(b)

(c) (d)
Figure 16.9. Moiré patterns formed using two identical interferograms (from Fig. 16.7a) where
the two are sheared with respect to one another. (a) Vertical displacement. (b) Vertical displace-
ment with rotation showing tilt. (c) Horizontal displacement. (d) Horizontal displacement with
rotation showing tilt.

(1970), and Wasowski (1970). Moiré has also been used to compare an object
to a master and for vibration analysis (Der Hovanesian and Yung 1971; Gasvik
1987). A theoretical review and experimental comparison of moiré and projec-
tion techniques for contouring is given by Benoit et al. (1975). Automatic com-
puter fringe analysis of moiré patterns by finding fringe centers were reported
by Yatagai et al. (1982). Heterodyne interferometry was first used with moiré
fringes by Moore and Truax (1977), and phase measurement techniques were
further developed by Perrin and Thomas (1979), Shagam (1980), and Reid



Classical Interferogram Analysis

• Elementary analysis of interferograms

• Computer analysis of interferograms

• Elementary analysis of interferograms

• Computer analysis of interferograms

Typical Interferogram

Classical Analysis
Measure positions of fringe centers.

Deviations from straightness and  
equal spacing gives aberration.

Surface Error = 
(λ/2) (∆/S)



Elementary Interferogram Analysis

Estimate peak to valley (P-V) by 
looking at interferogram.

Dangerous to only estimate P-V 
because one bad point can make 
optics look worse than it actually is.

Better to use computer analysis to 
determine additional parameters 
such as root-mean-square (RMS).
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Computer Analysis of
Interferograms

Largest Problem
Getting interferogram data into 

computer

Solutions
• Graphics Tablet
• Scanner
• CCD Camera
• Phase-Shifting Interferometry
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Automatic Interferogram Scanner

One solution
Video system and computer 

automatically finds locations of 
two sides of interference fringe 
where intensity reaches a given 
value.

Fringe center is average of two 
edge locations.
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Video system and computer 
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two sides of interference fringe 
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value.
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edge locations.

Digitization



Computer Analysis Categories

• Determination of what is wrong 
with optics being tested and what 
can be done to make the optics 
better.

• Determination of performance of 
optics if no improvement is made.

• Determination of what is wrong 
with optics being tested and what 
can be done to make the optics 
better.

• Determination of performance of 
optics if no improvement is made.

Minimum Capabilities of
Interferogram Analysis Software

• RMS and P-V
• Removal of desired aberrations
• Average of many data sets
• 2-D and 3-D contour maps
• Slope maps
• Spot diagrams and encircled energy
• Diffraction calculations - PSF and MTF
• Analysis of synthetic wavefronts

• RMS and P-V
• Removal of desired aberrations
• Average of many data sets
• 2-D and 3-D contour maps
• Slope maps
• Spot diagrams and encircled energy
• Diffraction calculations - PSF and MTF
• Analysis of synthetic wavefronts
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