
One-Dimensional Analysis of Lateral 
Shearing Interferograms

James C. Wyant
Optical Sciences Center
University of Arizona

Introduction
Although techniques have been developed for obtaining the entire wavefront from two lateral shear interferograms, it
is  much easier,  and often sufficient,  to  obtain the wavefront  profile  for  a  single scan across an interferogram.  If  the
shear is sufficiently small a lateral shear interferogram gives the derivative of the wavefront in the direction of shear.
For small shears the wavefront difference function can be fit to a polynomial and this polynomial can be integrated to
obtain the wavefront.  However, as the shear becomes larger it is no longer valid to assume the wavefront difference
function is equal to the derivative.  In these notes we illustrate an analysis method that is valid for both large and small
lateral shear.  The approach is to least-squares fit the wavefront difference function to a polynomial and then set this
polynomial  equal  to  the  finite  difference  wavefront  difference  function  and  solve  for  the  polynomial  coefficients
describing the wavefront in terms of the polynomial coefficients describing the wavefront difference function.

Interferogram data
Figure 1 shows the lateral shear interferogram being analyzed.  A single scan line, parallel to the direction of shear, is
drawn across the interferogram.  The list "shearData" gives the x-coordinates of the intersection of the fringes with the
scan line as well  as the order number of the fringes.   x1,  the left-hand edge coordinate of the lateral  shear interfero-
gram is  measured to  be  7.5  and x2,  the  right-hand edge coordinate,  is  measured to  be  51.5.   The amount  of  shear  is
measured to  be  7.5.   We arbitrarily  picked the  order  number  of  the  fringes  to  initially  increase  in  going from left  to
right  and  the  first  fringe  was  given  an  order  number  of  1.   Changing  the  direction  of  the  increase  in  fringe  order
number  changes  the  sign  of  the  departure.   By simply  looking  at  the  interferogram it  is  impossible  to  determine  the
sign of the departure.  The sign of the departure is determined during the photographing of the interferogram by use of
conventional  interferometric  techniques such as  changing the focus of  the test  setup.   Changing the order  number of
the first fringe results in adding a constant to all the fringe order numbers which would change the slope of the calcu-
lated wavefront.  Since the initial fringe order number is not known, the wavefront slope is not known, but the slope
variation is known.  The effect of picking an incorrect initial fringe order number is eliminated by adjusting the final
data to give a zero overall slope.



Figure 1.  Lateral shear interferogram showing central scan line parallel to the direction of shear.

List giving x fringe position and fringe order number.
shearData = 888, 1<, 89, 2<, 810, 3<, 811.5, 4<, 813.5, 5<, 818, 6<, 823.5, 5<, 827, 4<,

829.5, 3<, 832.5, 2<, 836, 1<, 841.5, 0<, 845.5, 1<, 847.5, 2<, 849, 3<, 850, 4<, 851, 5<<;
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Lateral Shear Interferogram Data
TableForm@shearData,
TableHeadings -> 8None, 8"x position", "Fringe Order Number"<<, TableAlignments -> CenterD

x position Fringe Order Number
8 1
9 2
10 3

11.5 4
13.5 5
18 6

23.5 5
27 4

29.5 3
32.5 2
36 1

41.5 0
45.5 1
47.5 2
49 3
50 4
51 5

It is convenient to normalize the pupil x-coordinates to go from -1 to +1.  Since in the original coordinates the pupil
diameter was 51.5 all pupil coordinates must be divided by 51.5/2 and 1 must be subtracted from the result.  The shear
in the original coordinates was 7.5 and in the new coordinates is 7.5/(51.5/2) or the shear, D, is given by    
shear = 7.5 ê H51.5 ê 2L

0.291262

To make the system symmetrical we will shift one of the two interfering beams to the left by shear/2 and the other
interfering beam to the right by shear/2.  Thus, in the new coordinates we must subtract shear/2 from each x-coordi-
nate.  The new x-coordinates of the fringes are given by
normalization = 51.5 ê 2;

DoBshearData@@i, 1DD =
shearData@@i, 1DD

normalization
- 1 -

shear

2
, 8i, 1, Length@shearDataD<F;
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Lateral Shear Interferogram Data after x - coordinate Normalization
TableForm@Chop@shearDataD,
TableHeadings -> 8None, 8"x position", "Fringe Order Number"<<, TableAlignments -> CenterD

x position Fringe Order Number
-0.834951 1
-0.796117 2
-0.757282 3
-0.699029 4
-0.621359 5
-0.446602 6
-0.23301 5

-0.0970874 4
0 3

0.116505 2
0.252427 1
0.466019 0
0.621359 1
0.699029 2
0.757282 3
0.796117 4
0.834951 5

Least Squares Polynomial Approach
One technique for analyzing a scan across a lateral shear interferogram first involves a least squares fit of the wave-
front difference function data shown in Table 2 to a polynomial such as

wdf@x_, nMax_D := ‚
n=0

nMax-1

b@nD xn

For sufficiently small shears, the polynomial can be integrated to give the wavefront profile; however, for large shears,
correction terms must be applied.  If, in one dimension, the wavefront is written as

Dw@x_, nMax_D := ‚
n=1

nMax

a@nD xn

the wavefront difference function, v, can be written as

v@x_, nMax_D := ‚
n=1

nMax

a@nD x +
D

2

n

- x -
D

2

n

Rather  than  integrating  wdf[x,  nMax]  to  find  Dw[x,  nMax],  a  better  approach  is  to  set  v[x,  nMax]  equal  to  wdf[x,
nMax] and solve for the a[n]'s in terms of the b[n]'s.  One approach for performing this calculation is shown below.

ü Solving for a[n]'s in terms of the b[n]'s
We will first find the difference between v[x, nMax] and wdf[x, nMax].  For our example we will let nMax = 4.  The
expression below finds the difference  and groups the coefficients for each power of x from x1to xnMax.
nMax = 4;
ans = CoefficientList@v@x, nMaxD - wdf@x, nMaxD, xD;

Since the difference is equal to zero for all values of x, we can set each coefficient equal to zero and solve for the a's.
Do@a@iD = Ha@iD ê. Flatten@Solve@ans@@iDD ã 0, a@iDDDL, 8i, 1, nMax<D

The resulting equations for a[n] are 
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Print@"Spherical a@4D ", Apart@a@4DDD;
Print@"Coma a@3D ", Apart@a@3DDD;
Print@"Defocus a@2D ", Apart@a@2DDD; Print@"Tilt a@1D ", Apart@a@1DDD;

Spherical a@4D
b@3D

4 D

Coma a@3D
b@2D

3 D

Defocus a@2D
b@1D

2 D
-
1

8
D b@3D

Tilt a@1D
b@0D

D
-

1

12
D b@2D

Simple integration would have given only the first term in each expression above.  Using the fact that a lateral shearing
interferometer involves a finite-difference, rather than a derivative, makes it possible to obtain better results when the
shear is not extremely small.

ü Analyzing data given in Table 2
The shearData can be fit to a polynomial as shown below.
D = shear;

Do@b@i - 1D = 0, 8i, 1, nMax<D;
fitShearData = FitAshearData, 91, x, x2, x3=, xE

3.05051 - 10.0708 x - 0.0916631 x2 + 17.7765 x3

b@0D = 3.05051; b@1D = -10.0708; b@2D = -0.0916631; b@3D = 17.7765;
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ü Print wavefront difference function

These coefficients can be plugged into the expression for the wavefront difference function, wdf[x, nMax] and the
results plotted as shown below.
Plot@wdf@x, nMaxD, 8x, -1, 1<, Evaluate@plot2doptionsDD
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ü Print wavefront coefficients

The wavefront coefficients can be printed out.  Since the wavefront difference function was calculated only through
order 3, the wavefront is calculated through order 4.
Print@"Spherical a@4D ", Apart@a@4DDD;
Print@"Coma a@3D ", Apart@a@3DDD;
Print@"Defocus a@2D ", Apart@a@2DDD; Print@"Tilt a@1D ", Apart@a@1DDD;

Spherical a@4D 15.2582

Coma a@3D -0.104903

Defocus a@2D -17.9354

Tilt a@1D 10.4756
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ü Plot wavefront

The following shows a plot of the wavefront.
Plot@Dw@x, nMaxD, 8x, -1, 1<, Evaluate@plot2doptionsDD
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Removing tilt we get
Plot@Dw@x, nMaxD - Dw@x, 1D, 8x, -1, 1<, Evaluate@plot2doptionsDD
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Plotting only the 4th order coefficient yields
Plot@Dw@x, 4D - Dw@x, 3D, 8x, -1, 1<, Evaluate@plot2doptionsDD
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