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8.2.11 Star Test 

n  The visual examination of the image of a point 
source is one of the most basic and important 
tests that can be performed.   
–  Interpretation of the image is to a large degree a matter of 

experience. 
– Should be a dynamic process where the observer probes 

through focus and across the field.   
– Magnifying power should be such that the smallest 

significant detail subtends 10 to 15 minutes of arc at the 
eye.   

– The numerical aperture of the viewing optics must be 
large enough to collect the entire cone of light from the 
optics under test. 
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Airy Disk 

n  For perfect optics the image of a point source as 
seen at best focus is called the Airy disk.   
– The diameter of the central core is equal to 2.44λf#, where 

f# is the f/number of the converging light beam.   
–  In the visible, the diameter of the central core is 

approximately equal to the f# in microns.   
– The central core contains approximately 84% of the total 

amount of light, while the total amount of light contained 
within the first, second, and third rings is approximately 
91%, 94%, and 95%, respectively.   

–  If the microscope is moved back and forth along the axis, 
the image will be seen to go in and out of focus. A perfect 
image will appear totally symmetrical on opposite sides of 
focus 
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Spot Size – Spherical Aberration 
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The minimum blur diameter is ¼ of this or 
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Spot Size – Astigmatism 
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Blur diameter at circle of least confusion is ½ of this or 
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Spot Size – Coma 
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The sagittal coma is 1/3 of this or 

At y2 =1

d = 4 f #ΔW

Therefore, the minimum spot diameter for third-order spherical, the width of the 
coma image (2/3 the tangential coma), and the diameter of the blur for 
astigmatism that falls halfway between the sagittal and tangential focus are all 
given by 
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Ratio of Geometrical Blur to the Airy Disk 
Diameter 
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It is of interest to look at the ratio of 
geometrical blur to the Airy disk 

diameter. 

That is, the ratio of the geometrical blur diameter to 
the Airy disk diameter is approximately equal to 1.64 

times the amount of aberration in units of waves. 
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Diffraction by a circular aperture as a 
function of defocus for no aberration  

Ref: “Atlas of Optical Phenomena” by 
Cagnet, Francon, and Thrierr. 
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Diffraction by a circular aperture in the 
presence of defocus 

Airy Disk 

1 wave defocus Less than 1 
wave defocus 
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Diffraction by a circular aperture as a function 
of defocus for third-order spherical aberration  
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Diffraction by a circular aperture in the 
presence of third-order spherical aberration  

Paraxial 
focus 

Small distance 
inside paraxial 

focus 

Moderate 
distance from 
marginal focus 

Immediate 
neighborhood 

of marginal 
focus 
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Diffraction by a circular aperture in the 
presence of third-order coma 

6 λ 

2.5 λ 1 λ 
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Diffraction by a circular aperture in the 
presence of astigmatism  

7 λ 

1.5 λ  0.23 λ 
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Diffraction by a circular aperture - astigmatism in 
the neighborhood of the circle of least confusion  

7 λ 

1.6 λ  0.23 λ 
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Star Test - Detecting Chromatic Aberration 

n  In a perfectly apochromatic system a symmetrical 
“white” image is obtained for all focal positions.   

n  If chromatic aberration is present the image color is a 
function of focal position.  In moving away from the 
lens through the paraxial focal plane, a sequence of 
images is observed.   
– Well away from focus, a white flare is observed.   
– As the blue focus is reached, the color balance is seen to 

change as blue light appears to be removed from the flare and is 
concentrated in a core.   

– Farther away from the lens a similar color effect is observed as 
the foci for green and red are reached.   

– For overcorrected color, the colors appear in the opposite order. 
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Lateral Chromatic Aberration 

n  The chromatic errors in an off-axis image are 
most spectacular in visual testing.   

n  The lateral separation of the images in red and 
blue light gives directly the amount of lateral 
chromatic aberration.   

n  If the red image is found to lie at a greater 
distance from the axis than the blue image, 
negative or undercorrected lateral color is 
present, while for overcorrected lateral color, the 
blue image is a greater distance from the axis 
than the red image. 
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8.2.12 Shack-Hartmann Test 

Hartmann Screen 

#1 #2 

Geometric Ray Trace 

Photographic Plates 

Geometrical ray trace that measures angular, transverse, 
or longitudinal aberrations from which numerical 
integration can be used to calculate the wavefront 
aberration. 

Classical Hartmann Test 
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Hartmann Test of Parabola Outside Position 
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Hartmann Test of Parabola Inside Position 
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Shack-Hartmann Lenslet Array 
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Shack-Hartmann Lenslets 
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Shack-Hartmann Movie 

Movie showing results 
obtained using Shack-

Hartmann test to measure 
atmospheric turbulence. 

Movie showing stellar 
speckle image 
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Shack Hartmann Test - Comments 

n  Air turbulence will average out as long as 
integration time is long compared to period of 
turbulence 

n  Holes in Hartmann screen large enough so 
diffraction does not limit measurement 
accuracy, but not so large surface errors are 
averaged out 

n  Test often used for adaptive optics 
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8.2.13 Foucault Knife-Edge Test 

Surface to be Tested 

Knife Edge 

Slit Source 

Eye 
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Ray Picture of Foucault Knife-Edge Test 

Observed Pattern 

Focus 

Knife Edge 

Knife Edge 

Knife Edge 
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Shadows for Third-Order Spherical 

ΔW =W040 x2 + y2( )
2
+
εzh

2

2R2
x2 + y2( )

d = − R
h
∂ΔW
∂y

=
−4RW040y x2 + y2( )

h
−
εzhy
R

y = 0 x2 + y2 = − εzh
2

4R2W040

ρ =
−εzh

2

4R2W040

"

#
$

%

&
'

1/2

Boundary of geometrical shadow is given by 

If the knife edge is on the axis, d=0, and the solution is 

One solution is straight line and second is circle of radius  
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Third-Order Spherical 
Knife-Edge on Optical Axis 

Knife edge near 
paraxial focus 

Knife edge partway 
between paraxial and 

marginal focus 

Knife edge near 
marginal focus 
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Knife-Edge Not on Optical Axis 

A B 

A 

Knife-edge 
ahead of 

marginal focus 

B 

Knife-edge 
behind of 

paraxial focus 
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Shadows for Third-Order Coma 
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If the knife edge is parallel to the x-axis we get an ellipse 

If the knife edge is parallel to the y-axis we get a hyperbola 
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Knife-Edge Test Pattern Due to Coma 

Inside paraxial focus At paraxial focus 

Knife edge parallel x-axis 

Inside paraxial focus At paraxial focus 

Knife edge parallel y-axis 
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Shadows for Third-Order Astigmatism 
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If the KE is parallel to either the x-axis or the y-axis we get 

Which are straight lines, so the astigmatic wavefront 
would be indistinguishable from a spherical wavefront.  

Put KE at an angle α to the x-axis then  
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Angle of shadow changes as 
KE moved along axis 



Page 31 

Knife Edge at Angle 

Along the knife edge
εy =mεx + b

m =
Sin α[ ]
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Foucault Knife Edge Test - Comments 

n  Advantage of test is simplicity 
n  Disadvantage is that it is sensitive to slopes, not 

wavefront, and measures slopes in a single 
direction with single orientation of KE. 

n  While it is possible to get numbers from the KE 
test, it is generally used as a qualitative test. 

n  An improvement would be a phase KE with 
transmits both sides with a phase difference 
between the two halves of 180o.  The diffraction 
pattern is symmetric, and the boundary centers 
are easier to determine. 
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Density Knife Edge 
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Phase Knife Edge 
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8.2.14 Wire Test 

Same as knife edge test, except knife edge is 
replaced with a wire. 

Third-order spherical 
wire on axis 
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Wire Test 
Third-order spherical, wire off axis 
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Wire Test 

Wire test experimental results 
for parabolic mirror tested at 

center of curvature 

Close-up showing diffraction 
pattern 
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Wire Test - Comments 

Wire test better than knife-edge test for quantitative 
measure, but not as good for qualitative  
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8.2.15 Ronchi Test 

Convergent Wavefront 

Ronchi Ruling 

Eye 

A low frequency grating is substituted for knife 
edge or wire.  The test can be understood by 
considering the Ronchi ruling as equivalent to 
multiple wires. 
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Ronchi Test of Perfect Lens 
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Ronchi Test – Third-Order Spherical 
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Ronchigrams From the Lab 

Margy Green, 2002 
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Ronchi Test Patterns for Third-Order Coma 
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Ronchi Test Patterns for Astigmatism 
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Ronchi Test Using Extended Diffuse Source 

Surface to be Tested 

Ronchi Ruling 

Diffuse Source 

Eye 
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Ronchi Test - Comments 

n  The advantages are that the test is simple and 
will work with a white light source 

n  Disadvantage is that it does not give the 
wavefront directly, and for a single Ronchi ruling 
orientation slope in only one direction is obtained 

n  The diffraction effects are very troublesome and 
limit the accuracy of the test 



Created by 
Margy Green, 2003 
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8.2.16 Lateral Shear Interferometry 

Measures wavefront slope 

Source 

Collimator 
Lens 

Interferogram 

Shear Plate 

Shear = Δx 
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Lateral Shear Fringes 

Measures average value of slope 
over shear distance 

Δ W x , y ( )  is wavefront being measured 

Bright fringe obtained when 
Δ W ( x + Δ x , y ) - Δ W ( x , y ) = m λ 

∂ Δ W x , y ( ) 
∂ x Average over 

shear distance 

⎛  

⎝  
⎜  

⎞  

⎠  
⎟  ( Δ x ) = m λ 
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Collimation Measurement 
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Typical Lateral Shear Interferograms 
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Lateral Shear Interferometer 

Measures slope of wavefront, not wavefront shape. 

Two diffracted cones 
of rays at slightly 
different angles 

Two-frequency grating 
placed near focus  

Source 

Lens under 
test  

Two sheared 
images of exit 
pupil of system 
under test 
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Interferogram Obtained using 
Grating Lateral Shear Interferometer 
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Rotating Grating LSI (Variable Shear) 
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Rotating Grating LSI 
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Shearing Interferograms (Different Shear) 
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Polarization Interferometers 

Wollaston Prism Savart Plate 
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Polarization Lateral Shear Interferometer 

Polarizer at 
45 degrees 
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Convection currents in vicinity of candle flame  
observed with polarization interferometer 



Page 60 

Convection currents in vicinity of candle flame  
observed with polarization interferometer 
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Defects of glass plate observed with  
polarization interferometer 
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White Light Grating Interferometer 

Separation between +1 and –1 orders is proportional to the 
wavelength.  Therefore, fringe spacing same for all wavelengths.  

Midpoint between sources independent of wavelength, so fringe 
position independent of wavelength 

Source 

+1 orders 

  Red Light 

Blue Light 

-1 orders 

Blue Light 

Red Light Grating 
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Two-Frequency 
White Light Grating Interferometer 

Separation between the first orders of the two gratings is proportional to 
the wavelength.  Therefore, fringe spacing same for all wavelengths.  

Achromatizing grating must be added to make midpoint between sources 
independent of wavelength, so fringe position independent of wavelength. 

Source 
First orders 

Grating Freq. 1 

Grating Freq. 2 

Two-Frequency Grating 

Achromatizing Grating, 
average frequency of two-

frequency grating 

Equivalent system 
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White Light Extended Source  
Lateral Shearing Interferometer 

Periodic source, then periodic coherence function.  Period 
of coherence function proportional to wavelength.  
Therefore, shear should be proportional to wavelength. 

Extended 
source Coherence 

Function 
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White Light Interferograms 

Shearing interferogram 
obtained using tungsten 
arc source. 

Shearing interferogram 
obtained using 60 watt 
incandescent bulb with Ronchi 
ruling in front of bulb. 
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One-Dimensional Analysis of Lateral 
Shearing Interferograms 

n  It is often sufficient to obtain the wavefront 
profile for a single scan across an interferogram.   

n  If the shear is sufficiently small a lateral shear 
interferogram gives the derivative of the 
wavefront in the direction of shear.  For small 
shears the wavefront difference function can be 
fit to a polynomial and this polynomial can be 
integrated to obtain the wavefront.  

n  As the shear becomes larger it is no longer valid 
to assume the wavefront difference function is 
equal to the derivative.   
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One-Dimensional Analysis of Lateral 
Shearing Interferograms – Larger Shear 

n  This approach for analyzing LSIs that is valid for 
both large and small lateral shear  
– Least-squares fit the wavefront difference function to a 

polynomial and then set this polynomial equal to the 
finite difference wavefront difference function. 

– Solve for the polynomial coefficients describing the 
wavefront in terms of the polynomial coefficients 
describing the wavefront difference function. 
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Determine Wavefront from Wavefront 
Difference Function 
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Wavefront difference 
function from interferogram 

Wavefront can be written as 

Wavefront difference function can be written as 

Solve for a’s in term of the b’s 
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Solve a’s in terms of b’s 

Spherical       a 4[ ]        b[3]
4Δ

Coma            a 4[ ]        b[2]
3Δ

Defocus         a 4[ ]        b[1]
2Δ

   -   1
8
Δb 3[ ]

Tilt                a 4[ ]        b[0]
Δ

   -   1
12
Δb 2[ ]

Simple integration would have given only the first 
term in each expression above.  Using the fact that a 
lateral shearing interferometer involves a finite-
difference, rather than a derivative, makes it possible 
to obtain better results when the shear is not 
extremely small. 
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Results 

Wavefront Difference Function Wavefront 

Wavefront minus Tilt 4th Order Portion 
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Shack Approach for Analyzing LSIs 

n  Wavefront difference function can be thought of 
as convolving the wavefront with an odd-impulse 
pair separated the shear distance. 

n  The Fourier transform of a convolution is the 
product of the two Fourier transforms. 

n  Divide the Fourier transform of the WDF by the 
FT of the two delta functions (2 i Sin()). 

n  Do an inverse transform to get the wavefront. 

Ref: Ronald Gruenzel, JOSA, 66, No. 12, 1341 (1976). 
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Lateral Shear Interferometer - Comments 

n  The advantages are that the test is simple 
n  Disadvantage is that it does not give the 

wavefront directly, and for a single direction of 
shear slope in only one direction is obtained 
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8.2.17 Radial Shear Interferometry 

Wavefront is interfered with expanded 
version of itself 

S 1 

S 2 
Radial Shear = R = S1S2

Laser 

2S 2 
2S 1 
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Analysis of Radial Shear Interferograms 
Wavefront being measured
ΔW ρ,θ( )=W020ρ2 +W040ρ4 +W131ρ3 cosθ +W222ρ2 cos2θ

Expanded beam can be written
ΔW Rρ,θ( ) =W020(Rρ)2 +W040(Rρ)4 +W131(Rρ)3 cosθ
+W222(Rρ)2 cos2 θ

Hence,  a bright fringe is obtained whenever
ΔW ρ,θ( )− ΔW Rρ,θ( )=W020ρ2(1− R2) +W040ρ4(1 − R4)
+W131ρ3(1− R3)cosθ +W222ρ2(1− R2) cos2 θ

Same as Twyman - Green if divide each coefficient by (1- Rn)
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Radial Shear Interferometer - Comments 

n Variable Sensitivity Test 
– Large shear - results same as for 

Twyman-Green 
– Small shear - Low sensitivity test 


