8.0 Testing Curved Surfaces and/or Lenses
8.0 Testing Curved Surfaces and/or Lenses - I

■ 8.1 Radius of Curvature
 – 8.1.1 Spherometer
 – 8.1.2 Autostigmatic Measurement
 – 8.1.3 Newton’s Rings

■ 8.2 Surface Figure
 – 8.2.1 Test Plate
 – 8.2.2 Twyman-Green Interferometer (LUPI)
 – 8.2.3 Fizeau (Laser source)
 – 8.2.4 Spherical Wave Multiple Beam Interferometer (SWIM)
 – 8.2.5 Shack Cube Interferometer
 – 8.2.6 Scatterplate Interferometer
8.0 Testing Curved Surfaces and/or Lenses - II

- 8.2.7 Smartt Point Diffraction Interferometer
- 8.2.8 Sommargren Diffraction Interferometer
- 8.2.9 Measurement of Cylindrical Surfaces
- 8.2.10 Long-Wavelength Interferometry
- 8.2.11 Star Test
- 8.2.12 Shack-Hartmann Test
- 8.2.13 Foucault Knife-Edge Test
- 8.2.14 Wire Test
- 8.2.15 Ronchi Test
- 8.2.16 Lateral Shear Interferometry
- 8.2.17 Radial Shear Interferometry
There are three common ways of measuring radius of curvature of a surface.

8.1.1 Spherometer
8.1.2 Autostigmatic Measurement
8.1.3 Newton’s Rings
A spherometer measures the sag of a surface with great precision. A common spherometer is the Aldis spherometer in which three small balls are arranged to form an equilateral triangle. In the center of the triangle there is a probe mounted on a micrometer. In use, the surface to be measured is placed on the balls, and the probe is brought into contact with the surface. The sag of the surface is measured using a micrometer. Electronic digital output is common.
Calculating Curvature from Sag

If we denote the sag of the surface by \(h \), the distance between the center of the balls \(d \), and the radii of the balls by \(r \), then the radius of curvature of the unknown surface is given by

\[
R = \frac{d^2}{6h} + \frac{h}{2} \pm r,
\]

Where the positive sign is taken when the unknown surface is concave, and the negative sign when convex.

If the balls are arranged to form a triangle of sides \(d_1, d_2, \) and \(d_3 \), the radius of curvature is given by

\[
R = \frac{(d_1 + d_2 + d_3)^2}{54h} + \frac{h}{2} \pm r.
\]
Derivation of Radius of Curvature

R is radius of curvature of surface being measured
r is radius of ball

\[\cos[30^\circ] = \frac{d/2}{a} \]

Therefore, \(a = \frac{d/2}{\cos[30^\circ]} = \frac{d/2}{\sqrt{3}/2} = \frac{d}{\sqrt{3}} \)

\[(R-r)^2 = (R-r-h)^2 + \left(\frac{d}{\sqrt{3}}\right)^2 \]
\[(R-r)^2 = (R-r)^2 - 2h(R-r) + h^2 + \left(\frac{d}{\sqrt{3}}\right)^2 \]

\[R = \frac{d^2}{6h} + \frac{h}{2} + r \text{ if concave} \]
\[R = \frac{d^2}{6h} + \frac{h}{2} - r \text{ if convex} \]

Convex surface
Ring Spherometer

- If a ring spherometer of radius r is used, the radius of curvature is given by
 \[R = \frac{r^2}{2h} + \frac{h}{2}. \]

- The major source of inaccuracy in using a spherometer is determining the exact point of contact between the probe and the surface being tested.

- In some spherometers the point of contact is determined by observing the Newton’s ring interference pattern formed between the test surface and an optical surface mounted on the end of the probe. As the probe is brought up to the surface, the ring pattern expands, but when the point of contact is reached, no further motion occurs.
Derivation of Radius of Curvature for Ring Spherometer

For ring spherometer of radius \(r \)

\[
R^2 = r^2 + (R - h)^2 \quad R^2 = r^2 + R^2 - 2hR + h^2
\]

\[
R = \frac{r^2}{2h} + \frac{h^2}{2h}
\]

\[
R = \frac{r^2}{2h} + \frac{h}{2}
\]
8.1.2 Autostigmatic Measurement

- A travelling microscope with a vertical illuminator is often used to measure the curvature of a surface directly.
- The instrument consists of a normal microscope configuration with a small beamsplitter placed behind the objective. A light source is placed off to the side of the beamsplitter by a distance equal to the separation of the eyepiece reticle from the beamsplitter.
- If the microscope is focused on a surface, an image of the source will be projected on the surface, and reimaged in the plane of the reticle by the microscope objective.
Autostigmatic Test for Measuring Surface Curvature

To measure the radius of curvature of a surface, the microscope is first focused on the surface, and then on the center of curvature of the surface. The separation of the two focus positions is equal to the radius of curvature of the surface.
Measuring Convex Surfaces

A convex surface can be measured using an auxiliary positive lens.
Perform Measurement using Interferometer and Radius Slide

Two positions which give null fringe for spherical mirror.
8.1.3 Newton’s Rings

- A Fizeau interferometer can also be used to measure radius of curvature of a surface. A surface having a long radius of curvature can be compared interferometrically with a flat surface to yield Newton’s rings.

- When viewed from above we see a series of concentric rings around a central dark spot. If R is the radius of curvature of the surface being measured, the radius ρ_m of the m^{th} dark ring from the center is given by

$$\rho_m = \sqrt{m\lambda R}$$
Measuring Shorter Radius of Curvature

Use reference surface of approximately the same radius of curvature as the surface being measured

\[\Delta R = \frac{4m\lambda R^2}{d^2} \]
8.2 Measuring Surface Figure of Curved Surfaces

8.2.1 Test Plate

- We previously described the Fizeau interferometer for measuring surface flatness. The exact same procedure can be used to measure the surface figure of a curved surface, even an aspheric surface, if a reference surface is available. The interferograms as analyzed in the same manner as described above.

- It should be noted that the two surfaces must have nearly the same radius of curvature if the resulting interferogram is to have a sufficiently small number of fringes to be analyzed.
8.2.2 Twyman-Green Interferometer (LUPI) (Spherical Surfaces)
Typical Interferogram
Comments on Twyman-Green (LUPI)

- A Twyman-Green interferometer with a laser source is sometimes called a LUPI (Laser Unequal Path Interferometer)

- The good features of the LUPI are
 - Any size concave optics can be tested
 - The two paths in the interferometer do not have to be matched as long as the conditions for coherence are satisfied
 - Surface contours are obtained just as for a test plate
 - The test is a noncontact test.

- The disadvantages are
 - The test is sensitive to vibration and turbulence
 - Expensive
Reducing Bad Effects of Vibration

- Mounting the reference mirror on the surface being tested can reduce bad effects of vibrations. In this case the vibrations are coupled and the interference pattern will become much more stable.
- If the mirror is close to the interferometer a pencil or meter stick can be placed on top of the mirror and the interferometer to couple vibrations.
8.2.3 Fizeau Interferometer-Laser Source (Spherical Surfaces)
Testing High Reflectivity Surfaces

- Laser
- Beam Expander
- Imaging Lens
- Interferogram
- Diverger Lens
- Reference Surface
- Attenuator
- Test Mirror
- Imaging Lens
Hill or Valley?

Laser

Beam Expander

Reference Surface

Test Mirror

Push in on mirror

Imaging Lens

Diverger Lens

Interferogram

Fringe Motion

1 2 3 4 5 6 7

Hill

Interferogram
Comments on Laser Based Fizeau

- The advantages of the laser based Fizeau compared to the Twyman-Green are
 - Quality requirements on diverger lens are less because of common path feature so cost is less

- The disadvantages are
 - Not as flexible
 - Not as light efficient
 - Common path makes it more difficult to do certain types of phase-shifting, such as the use of polarization techniques
8.2.4 Spherical Wave Multiple Beam Interferometer (SWIM)

- Two high reflectance surfaces being compared in a Fizeau interferometer can yield sharp, high-finesse multiple-beam interference fringes.
- Must be careful about walk-off between the multiple beams.
Both the reference surface and the surface being tested must be coated.

A lens placed at the common center of curvature of the two surfaces images one surface onto the other.

A single longitudinal mode laser is required.
Walkoff Problem

The lens placed at the common center of curvature of the two surfaces is very important since, without it, any surface deformation in the mirror being tested or any displacement of the two centers of curvature will cause beam walkoff, which greatly reduces the fringe finesse.

Fringe Shifts in Multiple-Beam Fizeau Interferometry

Computed and observed fringe profiles
R = 98.4%, Fringe spacing = 6.4 mm, air gap = 4mm, \(\lambda = 514.5\)nm

8.2.5 Shack Cube Interferometer

Shack Cube Interferometer
Comments on Shack Cube Interferometer

- Only 1 good surface required.
- Single longitudinal mode laser required.
- Accessory optics required for testing lenses or convex surfaces.
- Thin absorber, such as a pellicle, is required for testing coated surfaces.
- Lower cost, but not as flexible as Twyman Green or regular laser based Fizeau interferometer.
8.2.6 Scatterplate Interferometer

- Requires no high quality optics
- Common path
 - Less sensitive to vibration
 - Less sensitive to air turbulence
 - Source can be almost anything including a white light source
- Scatterplate
 - The critical component is the scatterplate
 - Must have inversion symmetry
 - Can easily(?) be made
Scatterplate Interferometer

- Scatterplate has inversion symmetry
- Scatterplate is located at center of curvature of test mirror
- Direct-scattered and scattered-direct beams produce fringes
Microscopic Image of Scatterplate
Lateral Displacement Introduces Tilt
Longitudinal Displacement Introduces Defocus

Center of curvature

Image of A
Scatterplate Interferometer
Scatterplate Interferograms
Scatterplate Interferograms

- 647.1 nm
- 520.8 nm
- 476.2 nm
- All λ’s except red

- Absorptive scatterplate
- 568.2 nm, rotating ground glass
- 520.8 nm, rotating ground glass
- 476.2 nm, rotating ground glass
OPD is zero for fringe passing through hot spot. That is, the fringe passing through the hot spot is always the “zero order” fringe.

Image of source on interferogram must be smaller than the fringe spacing. One-half fringe spacing is about the largest practical size.

If laser used as source there are speckles in interferogram. Speckles can be eliminated if the laser beam is focused on a rotating ground glass.

If scatterplate is too large, off-axis aberrations will reduce fringe contrast and can cause error. If two small, resolution bad and speckles can become too large. 0.5 to 1 cm diameter is typical size.
Making a Scatterplate – Two Techniques

- Recording a speckle pattern
 - Illuminate a piece of ground glass with a laser beam and record speckle pattern on film or photoresist.
 - After first exposure rotate recording medium 180° to within 1 arc sec and make a second recording. This gives us the inversion symmetry we want.

- Generate on computer
 - Use electron beam recorder to record computer generated scatterplate pattern

θ determines speckle size and scattering angle of scatterplate
Scatter Fringes of Equal Thickness

It is possible to test an optical system by means of white-light interference between two or more wave-fronts which have been scattered by equivalent obstacles out of the same collimated beam.

Consider, for example, an optical system in which a small portion of the field is strongly illuminated with white light. If a screen of moderate scattering power (say, a microscope slide which has been aluminized while in contact with a piece of lens tissue) is introduced into the entrance pupil, then the observer sees the remainder of the field stop illuminated by a diffuse diffracted halo. If a second exactly conjugate screen is placed in the exit pupil so that it appears identical with the image of the first screen except for imaging errors and for some relative displacement, white-light fringes are formed on the field stop by the two scattered beams.

Where the first screen is seen imaged without sensible error, for example, by a plane mirror, the fringes observed are of equal inclination, well-known examples being Newton’s diffusion fringes and Quotelet’s rings. If, on the other hand, the first screen is being imaged by an imperfect system and is adjusted to nominal coincidence with its fellow, corresponding fringes of equal optical thickness are produced. Light scattered by the first screen suffers distortion by the system to form the error wave-front; but the second or reference wave-front is substantially free from error since its parent beam has traversed that system in concentrated fashion. The fringe pattern therefore represents the wave-front error with which the entrance pupil is being imaged on to the exit pupil, a bright achromatic fringe covering those portions of the field for which the transit time is the same as for the directly illuminated patch.

The practical possibilities of these fringes of equal thickness do not seem to have been explored. For optical testing they have one advantage in that they do not lose contrast in the presence of considerable tilt or asphericity. Of particular interest is their application to imaging systems of unit magnification such that one screen is (1) imaged by a through type or autostigmatic system on to an identical replica; (2) imaged back on to itself enantiostatically; or (3) repeatedly imaged on to itself in a multiple-beam arrangement.

Preliminary experiments on the first two types suggest that the fringes may be useful for testing large mirrors, camera lenses and microscope objectives, and possibly for interference microscopy. The fact that the fringes are self-compensating for path-length and, in the second case, for odd azimuthal errors suggests various engineering applications. Further investigation is taking place.

J. M. Burch

H. H. Wills Physical Laboratory,
Royal Fort, Bristol 8.
Dec. 9.
Difficult to phase-shift because both test and reference beams traverse the same path

Two approaches for phase-shifting
- Focus unscattered beam on mirror mounted on PZT
- If Test and Reference Have Orthogonal Polarization then Phase-Shifting is Possible
Phase-Shifting Scatterplate Interferometer

- **Source**
- **Scatterplate** (near center of curvature of mirror being tested)
- **Mirror Being Tested**
- **Mirror on PZT**
Phase-Shifting Scatterplate Interferometer

- Phase shift between x and y polarizations produced by applying voltage to E/O Cell.
- Direct beam passes through a 1/4 wave-plate twice and direction of polarization rotated 90°. X and y polarizations switched.
- Polarizer passes one direction of polarization (say x).
- Must correct for phase error produced by 1/4 wave-plate.

Phase-Shifting Scatterplate Interferometer

- Circularly polarized light incident.
- $\lambda/4$ plate used to change handedness of direct beam.
- Rotating analyzer changes phase shift between left-handed and right-handed test and reference beams.
- Must correct for phase error produced by 1/4 wave-plate.

Birefringent Scatterplate Makes Phase Shifting Possible

- Scatterplate is Made of Calcite
- Oil Matches Ordinary Index of Calcite
- Scattering is Polarization Dependent
Generated using six step process

1. Clean substrate
2. Spin coat with Photoresist
3. Expose
 - Holographic
 - Photomask
4. Develop
5. Etch with 37% HCl
 - Diluted 5000/1 in DI
6. Remove Photoresist
Photomask Exposure

- Desired pattern is designed in computer
- Pattern is written into chrome on a quartz substrate using an electron beam
- UV source illuminates photoresist only where chrome has been removed
Phase-Shifting Scatterplate Interferometer

Phase-Shifting Scatterplate Interferometer
Phase-Shifted Fringe Pattern

Frame 1

Frame 2

Frame 3

Frame 4
Surface Measurement Using Phase-Shifting Scatterplate Interferometer

Surface Statistics:
Ra: 46.78 nm
Rq: 55.31 nm
Rz: 237.37 nm
Rt: 251.29 nm

Set-up Parameters:
Size: 451 X 431
Sampling: 0.00 mm

Processed Options:
Terms Removed:
None
Filtering:
None
Measurement Comparison

Scatterplate

RMS = 0.008738 Waves
PV = 0.03750 Waves

WYKO 6000

RMS = 0.008738 Waves
PV = 0.03405 Waves
Scatterplate Interferometer

Generates “synthetic reference wave” from point diffracting element
Changing Tilt and Defocus of PDI
Changing Tilt Reduces Fringe Visibility

The major disadvantage of the PDI is that the amount of light in the reference beam depends on the position of the pinhole.
Other Testing Configurations

Place the PDI at the location where the source is imaged.
PDI Test Results

Interferogram of 0.6-m Cassegrain telescope with a laser source.

Interferogram of 1.5m Mount Palomar telescope with a star as source.

How Do We Phase Shift?

- Two basic techniques
 - Use diffraction gratings
 - Use polarization techniques
Phase-Shifting Point Diffraction Interferometer (Modified Smartt Interferometer)

- Spatially coherent illumination by pinhole diffraction
- Coarse grating beam splitter
- Grating translation produces phase-shifting

Ref: J. Bokor
Multichannel Phase-Shifted PDI

Measurement Results
Use of Half-Wave Plate PDI

Aberrated Focus Spot
Clear Pinhole
Test Wavefront
Half-Wave Plate Semitransparent Region
Reference Wavefront
One Experimental Setup of Half-Wave Plate PDI

Ref: Robert M. Neal and James C. Wyant
Liquid-Crystal PDI

Plastic microsphere in liquid crystal

Fig. 1. Schematic of the LCPDI.
Test Results

Five phase shifted frames

Lithium Niobate Crystal PDI

Pinhole etched in lithium niobate

Ref: P. Ferraro, M. Paturzo, and S. Grilli, 1 March 2007 SPIE Newsroom
Instantaneous Phase-Shifting PDI

Synthetic reference wave is p-polarized
Transmitted test beam is s-polarized
Wavefront can be measured in a single shot!
Finite Conducting Grids
“wire grid polarizer”

- Wire grid horizontal
- Wire grid vertical
- Substrate
Single Layer PDI Example

Focused Ion Beam Milling

3um
Polarization PDI Multilayer Design

Input polarizer (x) → Substrate → Output polarizer (y) → Diffracting aperture

Pol. rotation (45 deg x-y plane)

Contrast ratio >1000:1, independent of input polarization

500 nm
Air Flow Measurement

Simultaneous Interferograms Phase Map
8.2.8 Sommargren Diffraction Interferometer

Phase Shifting Diffraction Interferometer (PSDI) configured to measure the surface figure of a concave off-axis aspheric mirror.
Detail of the Diffracted and Reflected Wavefronts at the End of the Fiber
8.2.9 Measurement of Cylindrical Surfaces

- Need cylindrical wavefront
 - Reference grating: Off-axis cylinder
 - Cylinder null lens: Hard to make
- Direct measurement - No modifications to interferometer
- Concave and convex surfaces
- Quantitative - phase measurement
Cylinder Null Lens Test Setup

Reference Surface

Collimated Beam

Cylinder Diverger Lens

Test Cylinder (Angle Critical)
Cylinder Grating Test Setup

Transmission Flat
Reference Surface

Collimated Beam

Cylinder Grating

1st Order From Grating

Test Cylinder (Angle Critical)

Grating Lines
8.2.10 Long-Wavelength Interferometry

- Wavelengths of primary interest
- Test infrared transmitting optics
- Test optically rough surfaces
Wavelengths of Primary Interest

- 1.06 microns
 Reduced sensitivity

- 10.6 microns
 Reduced sensitivity
 Test infrared transmitting optics
 Testing optically rough surfaces
1.06 Micron Source Interferometer

- Diode Pumped Yag Laser
 Excellent coherence properties
- Normal Optics
- Normal CCD Camera

Conventional interferometry techniques work well.
10.6 Micron Source Interferometer

- Carbon Dioxide Laser
 Excellent coherence properties
- Zinc Selenide or Germanium Optics
- Bolometer

Conventional interferometry techniques work well.
Reduced Sensitivity Testing

0.633 microns wavelength

10.6 microns wavelength
Assume surface height distribution is Gaussian with standard deviation σ.

The normal probability distribution for the height, h, is

$$p(h) = \frac{1}{(2\pi)^{1/2} \sigma} \exp\left(-\frac{h^2}{2\sigma^2}\right)$$
The fringe contrast reduction due to surface roughness is

\[C = \exp\left(-\frac{8\pi^2 \sigma^2}{\lambda^2}\right) \]

Fringe Contrast versus Surface Roughness - Theory

Surface Roughness (σ/λ)
Interferograms Obtained for Different Roughness Surfaces

\[\sigma = 0 \ \mu m, \ C = 1.0 \]
\[\sigma = 0.32 \ \mu m, \ C = 0.93 \]
\[\sigma = 0.44 \ \mu m, \ C = 0.87 \]
\[\sigma = 0.93 \ \mu m, \ C = 0.54 \]
\[\sigma = 1.44 \ \mu m, \ C = 0.23 \]
\[\sigma = 1.85 \ \mu m, \ C = 0.07 \]
Fringe Contrast versus Surface Roughness - Theory and Experiment

![Graph showing the relationship between fringe contrast and surface roughness.](image)
Infrared Interferograms of Off-Axis Parabolic Mirror in Chronological Order
10.6 Micron Wavelength Interferometer