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Evaluation of Large Aberrations Using a Lateral-Shear
Interferometer Having Variable Shear

M. P. Rimmer and J. C. Wyant

A variable shear lateral shearing interferometer consisting of two holographically produced crossed diffrac-
tion gratings is used to test nonrotationally symmetric wavefronts having aberrations greater than 100
wavelengths and slope variations of more than 400 wavelengths/diameter. Comparisons are made with re-
sults of Twyman-Green interferometric tests for wavefront aberrations of up to thirty wavelengths. The
results indicate that small wavefront aberrations can be measured as accurately with the lateral-shear in-
terferometer as with the Twyman-Green interferometer and that aberrations that cannot be measured at
all with a Twyman-Green interferometer can be measured to about 1% accuracy or better.

Introduction

In a lateral shear interferometer (LSI), two super-
imposed displaced images of the wavefront under
test are made to interfere with each other, i.e., an LSI
compares a wavefront with a sheared version of itself.
The fringes of a shearing interferogram are the loci of
constant average wavefront slope over the shear dis-
tance. This is different from a wavefront measuring
interferometer, such as a Twyman-Green, in that the
fringes in a Twyman-Green interferogram are the loci
of constant wavefront phase. Thus, shearing inter-
ferograms must be analyzed differently than Twy-
man-Green or LUPI (laser unequal path interferome-
ter) interferograms. Recently a technique was devel-
oped that indicated that it is possible to obtain the
wavefront as accurately from shearing interferograms
as it is from Twyman-Green interferograms.1,2 In
many instances the advantages of an LSI over a
LUPI more than compensate for the additional data
processing required.

One advantage of an LSI over wavefront measuring
interferometers, for example a Twyman-Green, is
that the need for a reference wavefront is eliminated.
Also, certain types of turbulence and vibrations cause
less problems with an LSI than with other types of
interferometers. Often the coherence requirements
for the light source can be greatly reduced by using
an LSI instead of a wavefront measuring interferom-
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eter. Another advantage that was being investigated
during the course of this study was the ability to vary
the effective sensitivity of the interferometer. The
number of fringes in the lateral shear interferogram
can be selected by varying the amount of shear. This
provides the possibility of testing aspheric wave-
fronts without the use of null optics and without re-
quiring data reduction of interferograms having a
very large number of fringes.

The specific tasks involved in this study were as
follows: (1) Design and fabricate a combination
LUPI and LSI. The changeover from standard
LUPI to LSI must require a minimum of adjustment.
(2) Develop the analytic techniques and computer
software necessary to evaluate the LSI interfero-
grams. (3) Test both rotationally symmetric and
nonsymmetric wavefronts using both the LSI and the
LUPI, where feasible. Wavefronts having as much
as 100-waves departure from a spherical wavefront
were to be tested.

The results of this study demonstrate that small
aberrations can be measured to about the same accu-
racy with .a shearing interferometer as with a LUPI,
and large aberrations can be measured better with an
LSI than with a LUPI. The LSI can currently be
used for in-process testing of steep aspherics and for
null tests.

Interferometer Description

A primary requirement in making the LSI-LUPI
interferometer was that the changeover from LUPI
to LSI operation must require a minimum of adjust-
ment. Furthermore, since a lateral shear interfero-
gram gives wavefront slope information only for the
direction of shear,1-3 the LSI must give two shearing
interferograms, where the shears for the two interfer-



1. LSI-LUPI interferometer.

Fig. 2. Diffraction orders produced by two crossed gratings.

ograms are orthogonal. To reduce the effects of vi-
bration and turbulence, the two shearing interfero-
grams should be obtained simultaneously. A further
requirement was the capability of varying the shear
any desired amount from essentially zero shear up to
half of the pupil diameter or more. The LSI de-
scribed below, which uses two crossed holographical-
ly produced diffraction gratings to produce the shear,
satisfies all these requirements.

Figure 1 shows a diagram of the LSI-LUPI inter-
ferometer. When the interferometer is being used as
an LSI, an opaque card is placed between the beam
splitter and the reference mirror. The light reflected
off the test mirror back through the diverger is
brought to focus either on or near the two crossed
diffraction gratings, similar to a Ronchi test.4-6 The
requirement for no overlap of the zeroth and first-
diffracted orders is that the grating spatial frequency
is greater than the reciprocal of λ fno, where fno is the
f number of the converging cone of light of wave-
length λ.

Figure 2 shows the diffraction orders produced by
the two crossed diffraction gratings. Each grating
gives four orders, ±1 in the x direction and ±1 in the
y direction, as well as a zero order. Rotating a grat-

ing rotates the orders produced by the grating. If
the two gratings are oriented identically, the corre-
sponding orders produced by the two gratings will
overlap and interfere with one another. If one grat-
ing is rotated with respect to the second grating, the
orders will overlap less, i.e., a lateral shear is pro-
duced between the corresponding orders. A lateral
shear interferogram will exist in the overlap region,
the amount of shear being selected by rotating one
grating relative to the second. The x orders and the
y orders have shear in orthogonal directions.

The crossed diffraction grating used in the inter-
ferometer can be produced holographically by re-
cording the interference of two plane waves, then ro-
tating the recording medium 90o and making a sec-
ond recording. If the recording medium is a photo-
graphic plate such as Agfa l0E56, the plates can be
processed and bleached as described previously7 to
give 10% or more of the incident light in each of the
shearing patterns. The relationship between shear
and angular rotation of the diffraction grating can be
easily calculated. If θ is the grating diffraction angle,
α is the angle one grating is rotated with respect to
the second grating, the percentage shear, i.e., the
ratio of the shear distance to the beam radius is given
by

percentage shear = 4fnotan θ sin (α/2). (1)

For small values of θ and α this equation reduces to
2fno λνα, where ν is the spatial frequency of the grat-
ing lines.

Tilt between the two interfering wavefronts can be
accomplished by either moving the gratings from the
Gaussian focus or by changing the distance between
the two gratings. This can be seen with the help of
Fig. 3. Assume the light is coming to focus at point 0
a distance x1 from the first grating and a distance x2

from the second grating. Let one set of grating lines
make an angle −α/2 with respect to the y axis and
the second set of grating lines an angle +α/2 with re-
spect to the y axis. The first grating diffracts part of
the light so the light appears to be coming from point
A, a vector displacement ∆1 from point 0, while the

Fig. 3. Introduction of tilt between sheared wavefronts.
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Fig. 4. LSI attachment to LUPI.

second grating diffracts some of the light that after
diffraction appears to be coming from point B, a vec-
tor displacement ∆2 from point 0. The two interfer-
ing wavefronts appear to be coming from foci sepa-
rated an amount ∆, which is given by

where L is the grating spacing. It should be noted
that by varying the grating spacing L, the orientation
of the fringes can be selected.

Experimental Setup

Figure 4 shows the grating lateral shear interfer-
ometer used to obtain the results shown in this paper.
A high quality 135-mm, focal-length lens is mounted
on the front of the interferometer to focus a collimat-
ed beam in the vicinity of the 200-line/mm gratings.
The two gratings can be rotated with respect to one
another by moving the small lever shown on the side
of the interferometer. The tilt between the interfer-
ing wavefronts can be varied by adjusting the mi-
crometer shown which varies the spacing between the
gratings.

The LSI attachment was placed in the output
beam of an Itek LUPI as shown in Fig. 5. The flip-
per shown on the LUPI controls an opaque screen
that blocks out the reference beam when the interfer-
ometer is being used as an LSI. To switch from LSI
operation to LUPI operation all that needs to be
done is to move the opaque screen out of the refer-
ence beam. The interference between the reference
beam and the zero order from the grating gives the
LUPI interferogram.

Figure 6 shows a diagram of the setup used to ob-
tain a known aspheric wavefront having as many as
l00-waves departure from the best fitting spherical

wavefront. The actual setup is shown in Fig. 5. The
plane parallel plate is tilted a known amount to select
the amount of wavefront aberration. The system is
ray traced to determine the theoretical amount of
wavefront aberration.

Interferograms

Using the setup shown in Fig. 6, interferograms
were taken for tilts of the plane parallel plate up to
30o in steps of 5o. In addition, interferograms were
taken with the plate removed in order to calibrate the
sphere. These measurements were subsequently
subtracted from the results obtained with the plate
in place. The nature of the aberration introduced by
the tilted plate is mostly astigmatism with some
coma and spherical aberration. Figure 7 shows the
relationship between peak-to-peak aberration and
plate tilt. About 120 wavelengths of aberration were
obtained for a 30o tilt of the plate. No usable LUPI
interferograms were obtained for tilts greater than
15o because the fringe density became too high.

Figures 8 and 9 show the LUPI and LSI interfero-
grams for plate tilts of 0o and 15o. The image of a
square grid which was placed on the spherical mirror
was used for reference purposes. Four intersection
points were used for scaling the digitized interfero-

Fig. 5. LUPI and LSI.

Fig. 6. Experimental setup used to obtain nonsymmetric aspheric
wavefront.
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(a) (b)

Fig. 8. LUPI interferograms: (a) plate tilt = 0o; (b) plate tilt =
15o.

Plate Tilt, degrees

Fig. 7. Aberration vs plate tilt.

(a)

(b)

Fig. 9. LSI interferograms: (a) plate tilt = 0o, shear = 0.36; (b) plate tilt = 15o, shear = 0.63.
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(a)

(b)

Fig. 10. LSI interferograms for plate tilt of 20o: (a) shear = 0.09; (b) shear = 0.30.

grams to a common coordinate system. In the LSI
interferograms two images of the grid appear. Cor-
responding intersection points were used to calculate
the shear. For the 0o tilt the shear is 0.36, given as a
fraction of the aperture radius, and for the 15o tilt it
is 0.63. The fringe density increases as the aberra-
tion increases and as the shear increases. Figures 10
and 11 show some of the other pairs of LSI interfero-
grams obtained. The interferograms for a 20o tilt
are shown for two different shear values.

Analysis
The interferograms were digitized with a two-coor-

dinate precision measuring engine (David W. Mann
Co., Hand Comparator, model 829C) having a digital
output with a least count of 1 µm. This was attached
to an IBM 026 keypunch to give digital data in a form
suitable for the computer. These data consist of the
coordinates of the centers of the fringes, along with
the corresponding order of the fringe, at about 200
points approximately uniformly distributed over the

interferogram. In addition, the coordinates of the
intersections of selected grid lines were digitized.
These were used to align and scale the data from
each interferogram to a common coordinate system
and to calculate the values of the shear.

The fringe data were fit to Zernike polynomials.8
The order to which the data must be fit depends on
the nature of the data. The goal is to get a good rep-
resentation of the data without fitting noise as well.
This can usually be done by fitting to successively
higher orders and stopping when there is no further
significant reduction in the rms residual error.9 The
LUPI interferograms were fit to order 6. No further
analysis was required to obtain the wavefront except
to remove the tilt and focus introduced by the inter-
ferometer. The LSI interferograms were fit to order
5. In general, if the LSI interferograms are fit to
order k - 1, there will be M = k (k + 1)/2 coeffi-
cients for each. The resulting wavefront will be of
order k and will be represented by N = (k + 1) (k +
2)/2 terms.
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Fig. 11. LSI interferograms: plate tilt = 30o, shear = 0.09.

If the wavefront to be found is W(x,y), it is as-
sumed that the two shearing interferograms repre-
s e n t  W ( x  + S , y )  - W ( x , y )  a n d  W(x,y  +  T)  -
W(x,y), where S and T are the shear values in x and
y, respectively. Since the two shearing wavefronts
will not be entirely consistent because of noise, the
criterion used for averaging out the effects of this
noise is that the reconstructed shearing data from the
final wavefront match the measured shearing wave-
fronts as well as possible in the least-squares sense.
The mathematical procedure is summarized as fol-
lows.

Define the following matrices, where the size of the
matrix is given in parentheses. Details of the matri-
ces are given in the Appendix.

a Coefficients of the x-shear data (M X 1).
b Coefficients of the y- shear data (M X 1).
c Coefficients of the unknown wavefront which

are to be found (N X 1).
α Matrix relating the coefficients of a wavefront

to the coefficients of the corresponding x shear
(M X N). For example, if u and v are coeffi-
cients of a wavefront and its corresponding
shearing data, v = α u.

β Matrix similar to (α for the y shear (M X N).
G Diagonal matrix used to calculate the variance

of a wavefront (M X M). For example, if u is
the coefficients of a wavefront, the variance is
uTGu (T = transpose).

The differences between the measured shearing in-
terferograms and those obtained from the unknown
wavefront are a - α c and b - β c for the two shears,
respectively. The variance of this difference is

By equating the derivative of V with respect to c to
zero, a least-squares solution for c may be found.
This is

where
(4)

(5)

(6)

In the shearing interferometer used for this study,
the two gratings used to produce the shear were
slightly separated. This produced a tilt in each
shearing interferogram that was in a direction ortho-
gonal to the shear. Thus, the x and y shearing inter-
ferograms had the terms Py and -Px, respectively,
added to them. Since these terms cannot result from
any contribution from wavefront, their effect can be
added to Eq. (3) and the coefficient P solved for
(note that if the signs were the same, extraneous
astigmatism would be introduced into the solution
for the wavefront).

Results

Wavefront values were obtained from the LUPI in-
terferograms, the LSI interferograms, and a ray trace
evaluation of the test setup. The LUPI results for
the test with no plate were taken to represent the er-
rors of the spherical mirror, and these were subtract-
ed from all interferometric valuations where the plate
was present. A summary of results is given in Table
I. In taking differences between the interferometric
measurements and the ray trace evaluation, differen-
tial adjustments in position, orientation, and scale of
one wavefront with respect to the other were intro-
duced to match them as closely as possible. This was
to account for slight differences in the coordinate
systems of the two wavefronts. A differential adjust-

Table I. RMS and Peak-to-Peak Values

Difference between measured

Shear Comparison of rms and peak-to-peak values and ray-traced wavefronts

Plate (fraction of Ray trace LUPI LSI LUPI LSI
tilt aperture

(degrees) radius) rms P-P rms P-P rms P-P rms P-P rms P-P

0 0.36 0.157 0.74 0.163 0.80 0.170 0.85 0.027 0 . 1 5  0 . 0 4 2 0.31
5 0.30 0.961 5.43 0.958 5.33 1.063 5.88 0.024 0 . 1 6  0 . 0 4 0 0.30

10 0.30 2.898 16.01 2.847 15.69 3.129 17.48 0.034 0.33 0.048 0.36
15 0.63 6.067 32.38 3.913 30.14 6.002 31.55 0.159 1 . 9 0  0 . 0 6 9 0.74
20 0.09 10.534 54.82 10.228 53.57 0.060 0.48
20 0.17 10.534 54.82 10.234 52.31 0.122 0.71
20 0.30 10.534 54.82 10.139 32.94 0.107 0.51
25 0.09 16.364 83.59 16.103 82.60 0.082 0.63
30 0.09 23.749 119.60 23.127 118.50 0.246 2.02

Note: All rms and P-P values are in wavelengths of 0.6328 µ.
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(c)

ment in the tilt of the plate was also introduced to ac-
count for errors in the measurement of this parame-
ter.

Figures 12 and 13 show contour maps for the pre-
dicted and measured wavefronts for plate tilts of 0o

and 5o. Contour maps for the larger tilts would not
show significant differences since the aberrations are
too large.

It can be seen from the results at 0o orientation of
the plate that there is some asymmetry in the wave-
front that nominally should not be there. This is
due to a tilt of the plate of 0.6o. Experimentally, the
initial configuration of the plate was not known accu-
rately. However, changes from this initial position
were known to within 2 min of arc. The initial posi-
tion of 0.6o was determined from the amount of coma
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Fig. 12. Contour plots for plate
tilt of 0o (contour intervals =
0.l λ): (a) raytrace; (b) LUPI; (c)

LSI.

in the LUPI test. Thus, the ray trace results are at
values of 0.6o, 5.6o, 10.6o, etc., instead of 0, 5, 10, etc.

A major source of error in these results is in the
measurement of the shear value. The percentage
error in the shear measurement results in approxi-
mately the same percentage error in the wavefront.
This error predominates for large aberrations. An-
other source of error is in the representation of the
data by polynomials. This error becomes larger as
the shear is reduced. An estimate of the error in the
wavefront measurement from these two sources is
shown in Fig. 14 for wavefronts of the type measured.
Additional sources of error include registration of the
two interferograms, aberration due to the grating,
distortion of the fringe pattern due to the first order
angle from the grating and the effect of the focusing
lens.



(c)

Conclusions

The combination LSI-LUPI interferometer de-
signed and fabricated for this study fulfilled all the
requirements and is exceedingly easy to operate.
The changeover from LUPI operation to LSI opera-
tion only requires moving an opaque screen to block
out the reference beam. The crossed diffraction
gratings give two interferograms having orthogonal
shear, simultaneously. The amount of shear can be
easily adjusted to any desired amount by rotating one
grating with respect to the second grating.

The analytic techniques for determining wavefront
shape from digitized shearing interferograms have
been demonstrated on wavefronts with more than
100 waves of aberration. It has been shown that the

(b)

Fig. 13. Contour plots for plate
tilt of 5o (contour intervals =
5λ): (a) raytrace; (b) LUPI; (c)

LSI.

1 10 100 1,000

Aberration, waves

Fig. 14. Estimated error vs aberration.
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LSI is more accurate than the LUPI for large wave-
front aberrations and can measure wavefronts that
cannot be measured at all with a LUPI. For small
wavefront aberrations, the LSI can be as accurate as
the LUPI. Shearing interferometry should prove
very useful for
and null testing.

in-process testing of steep aspherics

Appendix

An expansion of a wavefront W in Zernike polyno-
mials to order k has the general form

(7)

where the sin function is used for n - 2m > 0 and
the cos function for n - 2m ≤ 0. (r, θ) are polar
coordinates in the unit circle, and R n

n-2m are the
radial polynomials defined by

Anm are the coefficients of the Zernike polynomials.
The variance of the wavefront is given by

(9)

where ε nm = 2 for 2m = n, and ε nm = 1 for 2m ≠ n.
An alternate representation of a wavefront is in

terms of monomials, i.e., powers of x and y, where x
= r cos θ and y = r sin θ. This representation is

(10)

The relationship between the Zernike polynomials and
the monomials is

where p = 1 for the sin terms, and p = 0 for the cos
terms, and

The quantity   is the binomial factor defined by

(12)

Using these relationships, a matrix H can be de-
fined that relates the coefficients of the Zernike poly-
nomials to the coefficients of the monomials,10
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(13)

where B and A are the column vectors containing the
coefficients of the monomials and Zernike polynomi-
als, respectively. This approach is taken to simplify
the procedure for obtaining the matrix relating the
wavefront to the shearing data, since it is easier to
obtain this matrix in terms of the monomials and
then convert to Zernike polynomials using Eq. (13).
Note that H is a square matrix of size N x N, where
N = (k + 1) (k + 2)/2 for order k.

The relationship between the monomial coeffi-
cients of a wavefront Bnm, and the monomial coeffi-
cients of the corresponding x shear and y shear, Cnm

and Dnm, is

(14)

where S and T are the shear values in the x and y di-
rections, respectively. Note that if the wavefront is
defined to order k, the shearing data are defined to
order k - 1. Equation (14) defines two matrices, γ
and δ, having dimensions M x N, where M = k (k +
1)/2.

The previously defined matrices, α and β, which
relate the wavefront coefficients to the shearing coef-
ficients for Zernike polynomials, may now be calcu-
lated in terms of γ, δ, and H. These are

(15)

where the subscript on H indicates the order.

Explicit expressions for the elements of the matri-
ces H, γ, and δ have not been written because it is
more convenient, in writing a computer program, to
work directly from Eqs. (11) and (14).
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