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In this paper, a Fourier-optics approach to scatterplate interferometry is introduced. In particular,
it is used to explain how energy is conserved for both "phase"- and "density"-type scatterplates.

INTRODUCTION

By adding the energy produced in the interferograms and
absorbed by the interferometer itself, it must be possible to
prove energy conservation in any interferometer. This cal-
culation is relatively simple for two port interferometers such
as the Twyman-Green and Mach-Zehnder. If nonabsorbing
beam splitters are used, primary and complementary fringe
patterns are produced such that when a dark fringe appears
in one port a bright fringe appears in the other. The sum of
the energy in the two fringe patterns remains a constant. If
absorbing beam splitters are used such as thin film aluminum,
the two fringe patterns are not necessarily complementary.
However, it can be shown that if the energy absorbed by the
beam splitter is included in the calculation, the total energy
again remains constant. To our knowledge, an analysis
showing the distribution of energy in a scatterplate interfer-
ometer1 2 has not been previously given. The purpose of this
paper is to present a conservation of energy analysis for both
phase and density scatterplate interferometers and in the
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process provide a description of the operation of a scatterplate
interferometer.

QUALITATIVE VIEW OF SCATTERPLATE
INTERFEROMETRY

Figure 1 illustrates the optical schematic of a scatterplate
interferometer testing a concave surface at its nominal radius
of curvature. The important element is the scatterplate itself
which is a weak diffuser that possesses a flip or inversion
symmetry about a unique point. When focused light from the
pinhole passes through the scatterplate, a reference beam
(unscattered or direct beam) and a test beam (scattered beam)
are formed. Since there is a double passage through the
scatterplate, four types of beam amplitudes will combine to
give the interferogram in the image plane: DD (direct-direct),
light unscattered after two passages through the scatterplate;
DS (direct-scattered), light unscattered the first passage and
scattered the second passage; SD (scattered-direct), light
scattered the first passage and unscattered the second passage;
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FIG. 1. Schematic of scatter-
plate interferometer.
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Since the first scatterplate is imaged inverted at the second
plate, a + or - superscript is placed on S to denote this in-
version. For the following analysis, perfect flip symmetry in
the scatterplate will be assumed so that

S+ = S- = S. (2)

The particular form for S depends on whether the scatterplate
is a density or phase type.

Considering only surface height variations, the phase
scatterplate transmission amplitude can be written as

Sp = A exp[ik (n - 1)hJ, (3)

where A is the scatterplate aperture function, n is the emul-
sion index of refraction, and h is the emulsion surface height
variations referenced to a zero mean.

The variations in h are usually small enough to consider
only the first two terms of the exponential expansion

(4)

Use of Eq. (4) simplifies the understanding of the algebra that
follows its substitution into Eq. (1). However, it should be
pointed out that this approximate expression has a modulus
greater than the exact form shown in Eq. (3). The Fourier
transform of Eq. (4) can be written as

FIG. 2. Scatterplate interferogram obtained testing parabolic mirror.

SS (scattered-scattered), light scattered at both passages.

The fringe contours in the presence of test aberrations are
given by the sum of the DS and SD light. The DD light forms
the characteristic hotspot while the SS light reduces the fringe
contrast by adding a constant background intensity. Figure
2 shows a typical scatterplate interferogram obtained by
testing a parabolic mirror. Note the hotspot produced by the
DD light and the background speckle pattern resulting from
the use of coherent laser light. One method of making scat-
terplates is by double exposing a laser speckle pattern on a
photographic plate and rotating the plate 1800 between ex-
posures to obtain the flip symmetry.:3 If the photographic
plate is bleached after normal processing, the light will scatter
off the phase variations in the emulsion. If the plate is not
bleached, the light scatters off silver density variations.

MATHEMATICAL ANALYSIS

A more formal understanding of the scatterplate interfer-
ometer can be obtained by unfolding the schematic of Fig. 1
as shown in Fig. 3. Seen in this form, the scatterplate inter-
ferometer is not unlike a coherent optical processor. As-
suming for simplicity that the scattered light just covers the
test aperture, the usual Fourier techniques will show the in-
tensity in the fringe plane to be given by

If = Ioleikw[S+]**[S-]h12 
= Io1[([eikw]-**S+)S-]'12

(1)

where w is the aberration in the test lens, k = 27r/X, S is the
scatterplate amplitude transmission, [S]- is the Fourier
transform of S, Io is the incident intensity on the first scat-
terplate which will be set equal to 1, and ** denotes a two-
dimensional convolution.

1306 J. Opt. Soc. Am., Vol. 69, No. 9, September 1979

[S,]- = [A]-**-l + ik(n - 1)[h]11, (5)

where 6 is the Dirac delta function centered at the origin. For
a density scatterplate

SD = A[to + t1]

and

[SD] = [A]-**(tob + [t,]-)

(6)

(7)

where to is the average transmission and t, is the variations
in transmission about the mean t 1.

In order to investigate energy conservation in the scatter-
plate interferometer, it would be desirable to obtain a null
fringe across the test aperture. However, the conventional
scatterplate is a common-path interferometer and if a per-
fectly spherical optical surface is tested, there is zero piston
error between the reference and test beams and it is impossible
to obtain a null fringe. Of course, if the direct beam (hotspot)
should happen to focus on a small bump or hole on the mirror
surface, a null fringe would be possible. Since in both the
analysis and experiment we wanted to be able to vary the
relative phase of the SD and DS beams, a modified scatter-
plate interferometer shown in Fig. 4 was constructed. Now
the reference beam is reflected off a remote mirror mounted
on a piezoelectric crystal. By applying a voltage across the
PZT, piston error is introduced just as if this mirror were
placed in one of the beams of a Twyman-Green interferome-
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FIG. 3. Unfolded schematic of a scatterplate interferometer.
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FIG. 4. Schematic of a scatterplate interferometer used in noncommon
path mode.

ter. Since the remote mirror phase shifts only the unscattered
light, the new forms for S' and SD will be

S' = A[eiO+ik(n - 1)h], (8)

SD = A[eibto + til, (9)

where 0 is the phase shift introduced by the remote mirror.
The S and S- terms do not contain the ei term since they
are unaffected by the remote mirror. We do not imply by the
retention of the superscripts that new forms for Sp and SD are
not inversion symmetric. In the following analysis, they are
used to label the first and second passages through the scat-
terplate itself.

Substituting Eq. (4) for S- and Eq. (8) for S+ into Eq.
(1),

If = 1A2 ]ei(0) ik(n - 1)

X (eihw[Ah]-)**[A]- + i[A 2 ] heifk(n-1)

- k 2(n - 1) 2(eikw[Ah]-)**[Ah]-j 2, (10)

where the relation [A]-**[h]- = [Ah]- has been used. It is
assumed for simplicity that W is slowly varying compared to
[A]-, the Airy pattern of the scatterplate aperture. Before
squaring the above expression, it is useful to point out that
terms inside the brackets are the DD, SD, DS, and SS ampli-
tude mentioned earlier. Using the fact that symmetric
functions give real transforms

If = [A]}I[A]- + 2k(n - 1)[Ah]- sin(o - kw)

- 2k 2(n - 1)2Re1eiqB*}

+ 2k 2(n - 1)2[1 + cos(kw - 0)]([Ah ]) 2

+ k 4(n - 1)4 1B1 2 - 2k 3(n - 1)3[Ah]Rejiei0B*

- 2k3 (n - 1)3[Ah-jRejieikwB*j, (11)

where B = (eihw[Ah]-)**[Ah]-, A = A2 for zero or one type
apertures, and Rej I is the real part of

The first three terms are grouped together to form the
hotspot intensity, IDD. They are a combination of not only
the DD amplitude squared but also the SD and SS amplitudes
scattered in the direction of the hotspot. The fourth term
represents the signal term Is which results from the inter-
ference of the SD and DS amplitudes, the test and reference
beams. In the scatterplate fabrication, the accuracy to which
the 180° rotation is achieved has a strong effect on the contrast
of the fringe contours given by Is. Finally the last three terms
are the background intensity, which are the interference terms
between the SS and DS amplitudes.
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Setting W = 0, If reduces to

If = [A]([A]+2k(n - 1)[AhI-sino
- 2[Ah 2]hk 2(n - 1)2 cosO) 1IDD

+ 2k 2(n - 1)2(1 + cos0)([Ah]-) 2 }IS

+ k 4(n - 1)4 ([Ah2]-) 2 +2k 3(n -1)3

X [Ah]'[Ah 2 ]jsin0 JIss. (12)

Integrating If over the image plane gives the power transfer
among the variant terms,

If dAI = As - 2k 2 (n - 1) 2As(h 2 ) cosO 1hotspot

+ 2k 2(n - 1)2AS(h2)(1 + coso) Isignal
+ k4(n - 1) 4As (h 4 ) }background,

(13)

= As + 2k 2(n - 1) 2 AS(h 2 ) + k 4(n -1)4AS(0),

independent of X, (14)

where ( ) average value, dA1 is the area increment in the
imdge plane, dAs is the area increment in the scatterplate
plane, and Rayleigh's theorem4

[A]J[Ah2]-dA, f AAh2dAs = A8 (h2 ). (15)

Since If is a constant with time, Eqs. (13) and (14) differ from
the energy transfer by a constant to, the integration time.
Notice that the hotspot and signal term oscillate 1800 out of
phase with variations in q. Equations (13) and (14) show that
the energy is transferred between the signal and the hotspot,
as a function of X, the background energy being independent
of 1.

DENSITY SCATTERPLATE

Substituting the expressions (6) and (9) for SD into (1)
setting W = 0 gives

If = [A]-(t4[A]' + 2to3[At1 ]'(l + cos¢p)

+ 2t2[At1] COSO) 1IDD

+ 2t2([At1 ]')
2

(l + cosq5) HIs

+ ([At2J) 2 + 2to[At,]'[At2]J(1 + cosO) }Iss. (16)

Again integrating If over AI gives the power transfer among
the hotspot, signal, and background terms as a function of

0,

S If dA1 = toAs + 2toAs (t 2) cosq Ihotspot

+ 2t2 As (t 2) (1 + cos0p) }signal

+ (0t) }background. (17)

There still is no net energy transfer to the background, but
now the hotspot and signal terms are oscillating in phase with
1k rather than 1800 out of phase as before. Physically, the
hotspot intensity is a combination of the DD amplitude (which
is phase shifted 1 by the PZT mirror) and the SS amplitude
scattered in the direction of the hotspot. The difference be-
tween the phase and density scatterplates is that the SS
component of the hotspot term receives a 180° phase shift
when a phase scatterplate is used. This is because cosinu-
soidal phase gratings shift the ±1 diffracted orders by 900 with
respect to the undiffracted light and the SS beam (twice
scattered) receives a 1800 total phase shift. As 0 varies, the
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so that the energy being absorbed by the scatterplate in both
passages is

Es = (1 - I.+T2 ) dA = As - (Asto + (tb) + 2t2(et)

+ 4t2(t2) cosO) (20)

and the sum of Es and the energy in the image plane

ES+ +L IfdA =As (21)

dc

(b) (dc component of S phase shifted 180°)

- - -- Is.

- I - II2

(C) I

FIG. 5. Simplified view of how the density scatterplate absorbs light.

signal and hotspot intensities will oscillate 1800 out of phase.
The density scatterplate does not impart these phase shifts
to the diffracted light so both the signal and hotspot intensi-
ties will be in phase as 0 is varied. The additional energy must
be absorbed by the scatterplate.

Figure 5 shows qualitatively how this occurs. For simplicity
the scatterplate amplitude transmission shown in A has a bar
target profile so the amplitude and intensity will have the
same form. B shows the amplitude just before the second
scatterplate passage when 0 = 7r. The dc component has been
shifted 180° by the PZT mirror and the squared modulus (Is+)
will be contrast reversed as shown in C (the dotted line).
When 0 = 7r additional energy is being absorbed in the second
passage sine "light" areas of Is+ are falling on "dark" areas
of IS-12 . Mathematically, the analysis goes as the fol-
lowing:

The intensity just before the second plate is

I = IA(eito + tl)12 = A2 (t2 + 2tltocos5 + t2). (18)

The intensity transmission of the second scatterplate

T2 = A 2 (t 2 + 2tlt 0 + t2), (19)

is constant with respect to 0.

CONCLUSIONS

In review, the trade off in energy as a null fringe appears
across the test lens (signal term equals zero) occurs between
the hotspot and the signal in a phase scatterplate. For the
density scatterplate, the trade off is between the plate ab-
sorption and signal.

The experiment depicted in Fig. 4 was set up and the results
stated were found to be correct. One difficulty encountered,
however, was intensity modulations caused by light being fed
back into the unpolarized laser. False detector signals were
recorded at first because this modulation was dependent on
piston error. This problem was alleviated by polarizing the
laser light from the pinhole and placing a (1/4)X plate just
after the scatterplate to rotate by 900 the plane of polarization
of the light being fed back into the laser.

The Fourier optics approach to scatterplate interferometry
has enabled us to answer questions concerning energy transfer
with piston error. As alluded to earlier however, its use has
a wider range of application. Questions on how fringe con-
trast is affected by pinhole size, reference beam focus, and
quality of scatterplate flip symmetry will be discussed in a
future paper.
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