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5.1 Introduction 

n  For the last several years there has been much interest 
in electronic or digital techniques for measuring the 
phase distribution across an interference fringe 
pattern. 

n  Principal reasons for this interest  
l  High phase measurement accuracy 
l  Rapid measurement 
l  Fast and convenient way of getting the interference 

fringe data into a computer so the fringe data can be 
properly analyzed. 
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5.2 Zero-Crossing Technique 

•  In the zero-crossing technique a clock starts when 
the reference signal passes through zero, and stops 
when the test signal passes through zero.  

•  The ratio of the time the clock runs to the period of 
the signal gives the phase difference between the 
two signals.  

•  In practice, the sinusoidal signals are greatly 
amplified to yield a square wave to improve the 
zero-crossing detection.  

•  The phase measurement is performed modulo 2π. 
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5.3 Phase Lock Interferometry 
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Phase-Lock Technique 
High frequency dither 

The detected signal can be written as 

Expanding the cosine yields 

This can be written as 

Use low-frequency phase shifter to make φ[x,y] = nπ, then 
Sin[φ[x,y]]=0 and amplitude of signal at fundamental 

dither frequency =0. 

δ t[ ] = aSin ωt[ ]

I x, y, t[ ] = I1 x, y[ ]+ I2 x, y[ ]+ 2 I1 x, y[ ] I2 x, y[ ]Cos φ x, y[ ]+ aSin ωt[ ]!" #$

I x, y, t[ ] = I1 x, y[ ]+ I2 x, y[ ]+ 2 I1 x, y[ ] I2 x, y[ ]

Cos aSin ωt[ ]!" #$Cos φ x, y[ ]!" #$− Sin aSin ωt[ ]!" #$Sin φ x, y[ ]!" #$( )

I x, y, t[ ] = I1 x, y[ ]+ I2 x, y[ ]+

2 I1 x, y[ ] I2 x, y[ ]
Cos φ x, y[ ]!" #$ J0 a[ ]+ 2J2 a[ ]Cos 2ωt[ ]+( )
−Sin φ x, y[ ]!" #$ 2J1 a[ ]Sin ωt[ ]+ 2J3 a[ ]Sin 3ωt[ ]+( )
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5.4 Up-Down Counters 

•  Most phase measurement techniques have the 
disadvantage that they measure the phase modulo 2π.  
 

•  Up-down counters technique does not have this 
disadvantage. 

 
•  Disadvantage that a signal loss at any time during the 

measurement will disrupt the phase measurement.  

•  Technique measures only changes in phase, so if the 
goal is to measure the phase distribution across a 
pupil, the detector must be scanned; a detector array 
cannot be used. 
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Up-Down Counters 
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Basic idea of the use of up-down 
counters for phase measurement  

•  The output of the light detector is connected to the 
up terminal of an up-down counter.  

•  A reference signal having the same frequency as the 
difference between the two interfering light beams 
is connected to the down terminal of the up-down 
counter. Reference signal could be derived for 
example from a stationary detector observing the 
interference.  
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Basic idea of the use of up-down 
counters for phase measurement  

•  When the sinusoidal signal goes positive, the up-
down counter changes by one count. If both the 
reference and test signal see the same frequency, 
the output of the up-down counter will be zero.  

•  If the test signal frequency increases, which would 
result when the test detector scans through fringes, 
the up-down counter will give an output signal equal 
to the number of fringes the test detector scans 
through. 
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Obtaining Sub-Fringe Accuracy 

•  Frequency multipliers are placed before the up-
down counter.  

•  If a frequency multiplication of N is used, then 1/N 
fringe-measurement capability is obtained.  

•  Generally a phase-lock loop with a divide-by-N 
counter in the feedback loop is used as the 
frequency multiplier. 
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Up-Down Counters 
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5.5 Phase-Stepping and Phase-Shifting 
Interferometry 

n  5.5.1 Introduction 
n  5.5.2 Phase Shifters 
n  5.5.3 Algorithms 
n  5.5.4 Phase-Unwrapping 
n  5.5.5 Phase Shifter Calibration 
n  5.5.6 Errors 
n  5.5.7 Solving the Error Due to Vibration 
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5.5.1 Phase-Stepping and Phase-
Shifting Interferometry - Introduction 
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Advantages of Phase-Shifting 
Interferometry 

n  High measurement accuracy (>1/1000 fringe, 
fringe following only 1/10 fringe) 

n  Rapid measurement 
n  Good results with low contrast fringes 
n  Results independent of intensity variations 

across pupil 
n  Phase obtained at fixed grid of points 
n  Easy to use with large solid-state detector 

arrays 



Page 17 

5.5.2 Phase Shifters 

n  5.5.2.1 Moving Mirror 
n  5.5.2.2 Diffraction Grating 
n  5.5.2.3 Bragg Cell 
n  5.5.2.4 Polarization Phase Shifters 

– 5.5.2.4.1 Rotating Half-Wave Plate 
– 5.5.2.4.2 Rotating Polarizer in Circularly 

Polarized Beam 
n  5.5.2.5 Zeeman Laser 
n  5.5.2.6 Frequency Shifting Source 
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5.5.2.1 Phase-Shifting - Moving Mirror 
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5.5.2.2 Phase Shifting - Diffraction Grating 
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5.5.2.3 Phase Shifting - Bragg Cell 
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5.5.2.4 Polarization Phase Shifters 

§  There are polarization techniques for phase-
shifting that introduce a phase-shift that 
depends little on the wavelength of the light. 
These phase-shifters are often called 
geometric phase shifters.  In these notes we 
will discuss two geometric phase shifters. 

•  Rotating half-wave plate 

•  Rotating polarizer 
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5.5.2.4.1 Phase Shifting - Rotating 
Half-Wave Plate 
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Phase Shifting - Rotating Half-Wave Plate 

As half-wave plate is rotated angle θ the phase difference 
between test and reference beams changes by 4θ. 

input = aeiφ

b

!

"
##

$

%
&&

output = lpp45 ⋅ rrot π
2
, −π
4

#

$%
&

'(
⋅ rrot π,θ[ ] ⋅ rrot π

2
, π
4

#

$%
&

'(
⋅ input

intensity = output( ) Conjugate output[ ]( )

=
1
2
a2 + b2 − 2abCos 4θ −φ[ ]( )
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5.5.2.4.2 Rotating Polarizer in Circularly 
Polarized Beam 

Input: Reference and test 
beams have orthogonal 
linear polarization at 0o 
and 90o. 
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Phase Shifting - Rotating Polarizer 

As polarizer is rotated an angle θ the phase difference 
between the test and reference beams changes by 2θ. 

input = aeiφ

b

!

"
##

$

%
&&

output = rot −θ[ ] ⋅hlp ⋅ rot θ[ ] ⋅ rrot π
2
, π
4

#

$%
&

'(
⋅ input

intensity = output( ) Conjugate output[ ]( )

=
1
2
a2 + b2 + 2abSin 2θ −φ[ ]( )
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5.5.2.5 Zeeman laser 
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5.5.2.6 Frequency Shifting Source 

Phase shift = (2 π/c) (frequency shift) (path difference) 

Phase = (2 π/λ) (path difference)  = (2 π/c) ν (path difference)  

Laser 
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5.5.3 Algorithms 

I1(x,y) = Idc + Iac cos [φ (x,y)]     φ (t) = 0       (0°) 
I2(x,y) = Idc -  Iac sin  [φ (x,y)]           = π/2   (90°) 
I3(x,y) = Idc -  Iac cos [φ (x,y)]           = π      (180°) 

I4(x,y) = Idc + Iac sin  [φ (x,y)]           = 3π/2 (270°) 

I(x,y) = Idc + Iac cos[φ(x,y)+ φ(t)] 

( )[ ] ( ) ( )
( ) ( )yxIyxI

yxIyxIyxTan
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Relationship between Phase and Height 
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Phase-Measurement Algorithms 

Three Measurements 

Four Measurements 

Schwider-Hariharan 
    Five Measurements 

Carré Equation 

φ = ArcTan I3 − I2
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"

#
$

%

&
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Phase-Stepping Phase Measurement 
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Integrated-Bucket Phase Measurement 
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Integrating-Bucket and Phase-Stepping 
Interferometry 

Measured irradiance given by 

Integrating-Bucket  Δ=α 
Phase-Stepping       Δ=0	



I i =	

 1 
Δ	

 I o 1 +	

γ	

o cos φ	

 +	

α	

i ( t ) [	

 ]	

{	

 }	

d α	

( t ) 
α	

i -	

Δ	

/ 2 

α	

i +	

Δ	

/ 2 

∫	



=	

 I o 1 +	

γ	

o sinc Δ	

2 [ ] cos φ	

 +	

α	

i [	

 ]	

{	

 }	
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Another Approach for Calculating 
Phase-Shifting Algorithms 

I = Iavg 1+γCos φ +δ[ ]( )
= Iavg + IavgγCos δ[ ]Cos φ[ ]− IavgγSin δ[ ]Sin φ[ ]

a0 = Iavg,     a1= IavgγCos φ[ ],    a2 = −IavgγSin φ[ ]

Tan φ[ ] = − a2
a1

,            γ = a12 + a22

a0

I = a0+ a1Cos δ[ ]+ a2Sin δ[ ]

If φ is the phase being measured, and δ is the phase shift, 
the irradiance can be written as 

It follows that 

Letting 

Then 
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Least Squares Fitting 

n  The above approach shows measurements for at least 
three phase shifts are required. 

n  If measurements are performed for three phase shifts, it is 
possible to solve for a1 and a2, and the phase, φ, can be 
determined as a function of position across the pupil. 

n  If more than 3 phase shifts are used, a1 and a2 can be 
solved for using a least squares approach.  That is, find 
the square of the difference between the measured 
irradiance and the irradiance predicted using the 
sinusoidal irradiance relationship given above.  This error 
is minimized by differentiating with respect to each of the 
three unknowns and equating these results to zero.  The 
simultaneous solution of these three equations produces 
the least square result. 

n  The least squares fitting approach is extremely powerful. 
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5.5.4 Phase-Unwrapping 

Fringes Phase map 

Typical Fringes For Spherical Surfaces 
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Phase Ambiguities - Before Unwrapping 

2 π Phase Steps 
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Removing Phase Ambiguities 

• Arctan Mod 2π  (Mod 1 wave) 
• Require adjacent pixels less than π  

difference (1/2 wave OPD) 
• Trace path 
• When phase jumps by > π  

Add or subtract N2π  

Adjust so < π  
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Phase Ambiguities – After Unwrapping 

Phase Steps Removed 



Page 42 

Phase Unwrapping Reference 

Two-Dimensional Phase Unwrapping 
Theory, Algorithms, and Software 
Dennis C. Ghiglia and Mark D. Pritt 
Wiley Interscience, 1998 
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5.5.5 Phase Shifter Calibration 
n  Phase shifter calibration is an important part of 

operating a phase-shifting interferometer. 
n  Several calibration techniques are available.  The 

following is a commonly used procedure. 
–  Take 5 frames of irradiance data where the phase shifts are -2α, -α, 

0, α, 2α.  It can be shown that α is given by 

 
 

–  Sign of numerator tells us whether α is too large or too small. 
–  The algorithm has singularities and tilt fringes can be introduced 

into the interferogram and data points for which the numerator or 
denominator are smaller than a threshold are eliminated. 

– Often convenient to look at histogram of phase shifts.  If the 
histogram is wider than expected there must be problems with the 
system such as too much vibration present. 

α = ArcCos 1
2
I5 − I1
I4 − I2

"

#
$

%

&
'
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5.5.6 Errors 

n  5.5.6.1 Error Due to Stray Reflections 
n  5.5.6.2 Quantization Error 
n  5.5.6.3 Detector Nonlinearity 
n  5.5.6.4 Source Instabilities 
n  5.5.6.5 Error Due to Incorrect Phase-Shift 

Between Data Frames 
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Error Sources 

n The two most common sources of error 
are 
–  Incorrect phase-shift between data frames.  The incorrect 

phase-shift is often caused by vibration. 
– Stray reflections 

n Less common errors 
– Quantization error 
– Detector nonlinearity 
– Source instabilities 
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5.5.6.1 Error Due to Stray Reflections 
n  A common problem in interferometers using lasers as a 

light source is extraneous interference fringes due to 
stray reflections.  

n  The easiest way of thinking about the effect of stray 
reflections is that the stray reflection adds to the test 
beam to give a new beam of some amplitude and phase.   

n  The difference between this resulting phase, and the 
phase of the test beam, gives the phase error. 

n  In well designed interferometers the stray light is minimal. 
n  Probably the best way of reducing or eliminating the error 

due to stray light is to use a short coherence length light 
source. 
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5.5.6.2 Quantization Error 
n  Interferograms are analog signals that must be 

digitized to be processed by a computer.  Typically 
8 – 12 bits are used.  If b is the number of bits and 
N is the number of steps in the algorithm, 
quantizing the signal will cause an rms phase error 
that goes as 

 

n  If the fringe modulation does not span the full 
dynamic range of quantization levels the effective 
number of bits is less than the quantization level. 

n  If the noise is greater than one bit, quantization 
error can be reduced by averaging data sets. 

σ =
2

2b 3N

Ref: Brophy, JOSA A, 7, 537 (1990) 
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5.5.6.3 Detector Nonlinearity 

n  Nonlinearity in a detector can cause phase 
errors in a measurement and care should be 
taken to adjust exposure so as not to operate 
near saturation or at extremely low signal 
levels.   

n  Most detectors are extremely linear over most 
of their dynamic range, so this is not usually a 
large source of error in PSI. 
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5.5.6.4 Source Instabilities 

n  If the source frequency changes and the paths are not 
matched, a phase shift will be introduced between the two 
interfering beams.  If d is the path difference, c is the 
velocity of light, the phase difference introduced by a 
frequency change of Δν is given by 

n  If N is the number of steps in the algorithm, irradiance 
fluctuations introduce a standard deviation in the 
measured phase of 

 
n  In the ideal situation the noise limitation is set by photon 

shot noise.  If p is the number of detected photons, the 
standard deviation of the measured phase goes as 

Δφ = 2π d
c
Δν

σ =
1

SNR n

σ =
1
p
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5.5.6.5 Error Due to Incorrect Phase-
Shift Between Data Frames 

n  The resulting error is a ripple in the measured 
phase that is twice the frequency of the 
original interference fringes. 

n  The magnitude of the ripple depends on the 
amount of error in the phase-shift and the 
algorithm used to calculate the phase.  

Results for Schwider- 
Hariharan 5-step 
algorithm 
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Reducing Double Frequency Error 
n  Since errors occur at twice the frequency of the 

interference fringes, it should be possible to 
perform the measurement twice with a 90o offset in 
the phase shift and then average the two results 
having errors 180o out of phase to nearly cancel 
the double frequency error.   

n  Do not have to actually perform the measurement 
twice, but as long as the phase step is 90o all we 
had to do is to add one more frame of data and 
use frames 1 thru N-1 for the first calculation and 
frames 2 thru N for the second calculation and 
average the two results.  The result gives greatly 
reduced error due to phase shifter calibration. 
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Better Approach for Reducing Double 
Frequency Error 

A better approach is to average the numerators 
and denominators of the arctangent function. That 
is, if two data sets are taken with a 90o phase step 
between the two data sets the phase calculation 
can be of the form 

where ni and di are the numerator and denominator 
for phase calculation algorithm for each data set.  
If the phase step is π/2, only one additional data 
frame is required.  n1 and d1 are calculated from 
frames 1 thru N-1 and n2 and d2 are calculated from 
frames 2 thru N. 

Tan φ[ ] = n1 + n2
d1 + d2

Ref: Schwider et al, Digital Wavefront Measuring 
Interferometry: Some Systematic Error Sources," Appl. 
Opt., 22, 3421 (1983). 
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Derivation of Schwider-Hariharan Algorithm 
4-step algorithm Tan φ[ ] = I4 − I2

I1 − I3

   or   Tan φ[ ] = I4 − I2

I5 − I3

Tan φ[ ] =
2 I4 − I2( )
I1 − 2I3 + I5

Thus 

n  Note that for 90-degree steps I1 and I5 are nominally 
identical and differ only because of the 
measurement errors. 

n  We could now add another data frame and repeat 
the procedure to obtain an even better 6-frame 
algorithm.  Then of course we could add yet another 
frame and get an even better 7-frame algorithm.  

n  Going from 4 to 5 steps can reduce error by an 
order of magnitude, and by going from 4 to 7 steps 
can reduce the error by 4 orders of magnitude 
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5.5.7 Solving the Vibration Problem 

n  5.5.7.1 2+1 Algorithm 
n  5.5.7.2 Measure vibration and introduce vibration 

180 degrees out of phase to cancel vibration 
n  5.5.7.3 Spatial Synchronous and Fourier Methods 
n  5.5.7.4 Spatial Carrier Technique 
n  5.5.7.5 Simultaneous Phase-Measurement 

Interferometer 
n  5.5.7.6 Single-Shot Holographic Polarization 

Dynamic Interferometer 
n  5.5.7.7 Pixelated Polarizer Array Dynamic 

Interferometer 
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The Vibration Problem 

n  Probably the most serious impediment to wider use 
of PSI is its sensitivity to external vibrations. 

n  Vibrations cause incorrect phase shifts between 
data frames. 

n  Error depends upon frequency of vibration present 
as well as phase of vibration relative to the phase 
shifting. 
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Best Way to Fix Vibration Problem 

n  Control environment 
n  Common-path interferometers 
n  Retrieve frames faster 
n  Measure vibration and introduce vibration 180 

degrees out of phase to cancel vibration 
n  Single-Shot Direct Phase Measurement 

–  Spatial Synchronous and Fourier Methods 
–  Spatial Carrier 
–  Single-Shot Holographic Polarization Dynamic 

Interferometer 
–  Pixelated Polarizer Array Phase Sensor Dynamic 

Interferometer 
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5.5.7.1   2 + 1 Algorithm 
n  The 2 + 1 algorithm can be used to attack the problem of 

measurement errors introduced by vibration.  Two 
interferograms having a 90 degree phase shift are rapidly 
collected and later a third interferogram is collected that is 
the average of two interferograms with a 180 degree phase 
shift.   

n  An interline transfer CCD can be used for rapidly obtaining 
the two interferograms having the 90o phase shift.  In an 
interline transfer CCD each photosite is accompanied by an 
adjacent storage pixel.  The storage pixels are read out to 
produce the video signal while the active photosites are 
integrating the light for the next video field.  After exposure, 
the charge collected in the active pixels is transferred in a 
microsecond to the now empty storage sites, and the next 
video field is collected.   

Ref: Wizinowich, P. L., "Phase-Shifting Interferometry 
in the Presence of Vibration: A New Algorithm and 
System," Appl. Opt., 29, 3271 (1990). 
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Implementation of 2 + 1 Algorithm 

•  Two orthogonally polarized light beams are produced 
having two sets of interference fringes 90o  out of phase.  A 
Pockel cell is used to select which set of fringes is present 
on the detector. The third exposure is made with two sets of 
fringes 180 degrees out of step present. 

  

•  The 2 + 1 algorithm has found limited use because the small 
number of data frames makes it susceptible to errors 
resulting from phase-shifter nonlinearity and calibration. 
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5.5.7.2 Measure vibration and introduce vibration 
180 degrees out of phase to cancel vibration 

n  Use polarization Twyman-Green configuration 
n  EOM changes relative phase between ‘S’ & ‘P’ components 

– Can be very fast:  200 kHz - 1 GHz response 
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Diverger 
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& Driver 

Pupil Image Plane 

Reference 
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Results 
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Conclusions - Active Vibration 
Cancellation Interferometer 

System works amazingly well, but it is 
rather complicated and expensive. 
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5.5.7.3 Spatial Synchronous and 
Fourier Methods 

Both techniques use a single interferogram 
having a large amount of tilt 

 
Can write the interference signal as 

irradiance x, y[ ] = iavg 1+γCos φ x, y[ ]+ 2π fx!" #$( )
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Spatial Synchronous 
The interference signal is compared to reference 

sinusoidal and cosinusoidal signals 

Multiplying the reference signal times the irradiance 
signal gives sum and difference signals 

rcos x, y[ ] =Cos 2π fx[ ]

rsin x, y[ ] = Sin 2π fx[ ]

irradiance x, y[ ]rcos x, y[ ] =
1
2
2iavgCos 2π fx[ ]+ iavgγCos φ x, y[ ]!" #$+ iavgγCos φ x, y[ ]+ 4π fx!" #$( )

irradiance x, y[ ]rsin x, y[ ] =
1
2
2iavgSin 2π fx[ ]− iavgγSin φ x, y[ ]"# $%+ iavgγSin φ x, y[ ]+ 4π fx"# $%( )
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Spatial Synchronous – Calculating the 
Phase 
The low frequency second term in the two signals can be 

written as 

The only effect of having the frequency of the reference 
signals slightly different from the average frequency of 

the interference signal is to introduce tilt into the 
calculated phase distribution. 

s1=
iavg
2
γCos φ x, y[ ]!" #$

s2 = −
iavg
2
γSin φ x, y[ ]"# $%

Tan φ x, y[ ]!" #$= −
s2
s1
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Fourier Method 
n  The interference signal is Fourier transformed, 

spatially filtered, and the inverse Fourier transform of 
the filtered signal is performed to yield the wavefront. 

n  The Fourier analysis method is essentially identical to 
the spatial synchronous method. 

This can written as 

irradiance x, y[ ] = iavg 1+γCos φ x, y[ ]+ 2π fx!" #$( )

irradiance x, y[ ] = iavg 1+
1
2
γ ei φ x,y[ ]+2π fx( ) + e−i φ x,y[ ]+2π fx( )( )"

#
$

%

&
'
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Fourier Transform and Spatially Filtered 

Since a spatially limited system is not band limited, the orders 
are never completely separated and the resulting wavefront will 

always have some ringing at the edges.  The requirement for 
large tilt always limits the accuracy of the measurement.   

Fringes Phase Map 

FFT FFT-1 

fx 
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Phase shifting algorithms applied to consecutive pixels 
thus requires calibrated tilt 

  

5.5.7.4 Spatial Carrier Technique 

4 pixels per fringe for 90 degree phase shift 
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Creating the Carrier Frequency 

n  Introduce tilt in reference beam 
– Aberrations introduced due to beam transmitting 

through interferometer off-axis 
n  Wollaston prism in output beam 

– Requires reference and test beams having 
orthogonal polarization 

n  Pixelated array in front of detector 
– Special array must be fabricated 
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Use of Wollaston Prism to Produce 
Carrier Fringes 

Polarization 
Interferometer 

Reference and 
test beams have 
orthogonal 
polarization 

Wollaston 
Prism 

Polarizer 

Detector 
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Two Examples of Spatial Carrier 
Interferometers 

n  193 nm wavelength interferometer for testing 
DUV Lithographic Optics 

n  High Speed, 525 to 1400 frames per second 
interferometer 
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Testing DUV Lithographic Optics 

193 nm wavelength, 50mm Diameter Fizeau Interferometer 
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Single Frame Dynamic Mode 

Reference 
Surface 

Test  
Surface 

Beam 
Splitter 

Laser 

Camera 

Parsing of 
Phase-Shifted 

Pixels 
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Calculation of phase using 3 x 3 
element array 

2 8 4 6
5

1 3 5 7 9

2( )[ ]
4

I I I ITan
I I I I I

θ
+ − −

=
− − + − −
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Measured Performance 

n  Uncalibrated accuracy = 1.8nm rms 
n  RMS repeatability = 0.07nm 
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High Speed Interferometer 

n  Twyman Green Spatial Carrier 
n  CMOS Camera 
n  880 x 880, 525 frames/second 
n  720 x 720, 1000 frames/second 
n  550 x 550, 1400 frames/second 
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Air Stream – 525 Frames/Second  
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Water Surface Fringes, 525 Frames/Second 
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Water Surface, 525 Frames/Second 
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5.5.7.5 Simultaneous Phase-Measurement 
Interferometer 

Laser 

Two fringe patterns 
90o out of phase  

0o 

90o 

180o 

270o 

Laser 
Linearly Polarized 

@ 0o 

Dielectric 
B.S. 

Test 
Beam 

Reference 
Beam 

λ/2 Plate 

λ/8 
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Dielectric beamsplitter and phase shift upon 
reflection for test and reference beams 

Low - High 

Low – High 
& 

High - Low 
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•  Twyman-Green 
–  Two beams have 

orthogonal 
polarization 

•  4 Images formed 
–  Holographic 

element 
•  Single Camera 

–  1024 x 1024 
–  2048 x 2048 

•  Polarization used to 
produce 90-deg 
phase shifts 

Four Phase Shifted 
Interferograms on Detector 

Phase Mask, 
Polarizer & 

Sensor Array 

Holographic 
Element 

Test 
Mirror 

Optical Transfer 
& HOE 

PBS Laser 
Diverger 

QWP CCD 

5.5.7.6 Single-Shot Holographic 
Polarization Dynamic Interferometer 
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Phase relationship is fixed 

Dynamic Interferometry 

Dynamic interferometry enables 
measurements in the presence of 

vibration 
Fringes Vibrating 
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Testing of Large Optics 

Testing in Environmental Chamber 
(Courtesy Ball Aerospace) 

Testing on Polishing Machine 
(Courtesy OpTIC Technium) 
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Mirror and interferometer on separate tables! 

Measurement of 300 mm 
Diameter, 2 Meter ROC Mirror 
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Conclusions –Single-Shot Holographic 
Polarization Dynamic Interferometer 

n  Vibration insensitive, quantitative interferometer 
n  Surface figure measurement (nm resolution) 
n  Snap shot of surface height 
n  Acquisition of “phase movies” 

Still not perfect 

Not easy to use multiple wavelength or white 
light interferometry 
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5.5.7.7 Pixelated Polarizer Array 
Dynamic Interferometer 

n  Compacted pixelated array placed 
in front of detector 

n  Single frame acquisition 
– High speed and high throughput 

n  Achromatic 
– Works from blue to NIR 

n   True Common Path  
– Can be used with white light 
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test ref 

RHC LHC 

Circ. Pol. Beams (Δφ)   +  linear polarizer cos (Δφ + 2α)  

Phase-shift depends on polarizer angle 

Use polarizer as phase shifter 

Reference:  S. Suja Helen, M.P. Kothiyal, and R.S. 
Sirohi, "Achromatic phase-shifting by a rotating 
polarizer", Opt. Comm. 154, 249 (1998). 
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Polarizer array 
Matched to 

detector array 
pixels 

α=45, φ=90 

α=0, φ=0 
 

α=135, φ=270 
 α=90, φ=180 

Unit Cell 

Array of Oriented Micropolarizers 
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SEM of Patterned Polarizers 

Photolithography used to pattern polarizers 
•   Ultra-thin (0.1 - 0.2 microns) 
•   Wide acceptance angle (0 to 50 degrees) 
•   Wide chromatic range (UV to IR) 

Array bonded directly to CCD 

10 micron elements 
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Electron micrograph of wire grid polarizers 

20 um 
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Array of phase-shift elements unique 
to each pixel 

T 

R 

Mask 

Polarization  
Interferometer 

Sensor 

A    B 
C    D 

 0 

- π/2 
 

  π 

π/2 

A   B 
C   D 
A   B 
C   D 

A   B 
C   D 

A   B 
C   D 

0 

π 

π/2 
 

- π/2 
 

or 

Stacked        Circular 
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Pixelated Polarizer Array Phase Sensor 
Dynamic Interferometer Configuration 

Test Mirror 

QWP 

PBS 

Camera 

Source 

Pixelated Mask Sensor 
Array 

Parsing 

A 
D 
C 

B 

A 
D 
C 

B 
A 

D 
C 

B 
A 

D 
C 

B 

A 
D 
C 

B 
A 

D 
C 

B 
A 

D 
C 

B 

A 
D 
C 

B 
A 

D 
C 

B 

    

    
Phase-Shifted 
Interferograms 

Reference  
Mirror 

QWP 
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Test articles: aluminum flat (0.7mm thick) 
 Si wafer (0.2mm thick) 

PhaseCam 

Collimation lens 

Expansion 
 lens 

Test mirror 

Piezo 
 transducer 

Turning 
mirror 

Tip/tilt mount 

Measuring Vibration 
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94 

Interferogram Surface profile 

12.4 micron P-V 

Static Shape of Al Mirror 
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55Hz 407Hz 471Hz 

610 Hz 2361Hz 3069Hz 

Several Resonant Modes 
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0 deg                              44 deg                             88 deg 

122 deg                            168 deg                           212 deg 

266 deg                             310 deg                           360 deg 

Phase Sweep at 408 Hz 
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Al Mirror, 55 Hz, First Order Mode 
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Al Mirror, 408 Hz 
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Al Mirror, 3069 Hz, Higher Order Mode 
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Synchronous measurement with square-wave 

Collaboration with Phil Laird, Liquid 
Optics Group, Laval University 

Magnetically Deformable Mirror 
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32 Element Deformable Mirror 
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32 x 32 Element Deformable Mirror 
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Heat Waves from Hot Coffee 

OPD Slope 
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Conclusions - Single Shot Interferometer 

n  A dynamic single shot interferometer can greatly 
reduce the effect of vibration and averaging 
reduces the effect of air turbulence. 

n  Movies can be made showing how surfaces are 
vibrating. 

n  Once a person uses a dynamic phase-shifting 
interferometer it is hard to go back working with 
a temporal phase-shifting interferometer. 


