
Ellipsometry

Introduction

Ellipsometry  is  the  measurement  of  the  effect  of  reflection  on  the  state  of  polarization  of  light.   The  result  of  an
ellipsometric measurement can be the complex refractive index of the reflecting material, or if the reflecting material is
a film-covered substrate, the thickness and optical constants of the film can be determined.  Ellipsometry is particularly
attractive  because  it  does  not  perturb  the  sample  being  measured  and  it  is  extremely  sensitive  to  minute  interfacial
effects and can be applied to surface films having a thickness as small as monoatomic to as large as several microns.
Any substrate-film-ambient combination that provides reasonably specular reflection of the incident light beam can be
measured.   Scattering  during  the  reflection  process  causes  partial  depolarization  of  the  incident  beam  and,  conse-
quently, reduced precision and accuracy.

Since ellipsometry essentially measures the state of polarization of reflected or transmitted light it can be thought of as
polarimetry.  The state of polarization is defined by the phase and amplitude relationships between the two component
plane waves into which the electric  field is resolved.   The wave having the electric field in the plane of incidence is
called the p wave, and the wave having the electric field normal to the plane of incidence is called the s wave.  If the p
and s  components  are  in  phase,  or  180  degrees  out  of  phase,  the  resultant  wave  is  plane  polarized.   A  difference  of
phase, other than 180°, corresponds to elliptical polarization.  In general, reflection causes a change in relative phases
of the p and s waves and a change in the ratio of their amplitudes.  The change in phase is characterized by the angle
D,  and the amplitude ratio change is characterized  by Tan[y].   If the amplitudes of the incident and reflected beams
are designated e and r, respectively, and phases of the incident and reflected beams are a and b, respectively
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Ellipsometry is the measurement of y and D.

Measurement Principles

The principle of the measurement of y and D is explained with the help of Figure 1, which is a schematic representa-
tion of an ellipsometer.  The incident monochromatic beam is collimated and transmitted through a linear polarizer and
compensator (retarder).   (In some ellipsometers a  broad spectral  band source is  used and y  and D  are  measured as  a
function  of  wavelength.   In  this  discussion  we  will  consider  only  monochromatic  illumination.)   The  azimuthal
orientations  of  the  polarizer  and  compensator  determine  the  relative  amplitudes  and  phase  difference  between  the  p
and s components of the beam incident upon the substrate.  These orientations are adjusted so the difference in phase
just compensates that which results from reflection off the sample.  The plane polarized beam reflected off the sample
is transmitted by the analyzer to a telescope and detector and the analyzer is oriented to extinguish the reflected beam.
D and y are determined from the orientation of the polarizer and analyzer for extinction.
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Figure 1. Schematic representation of ellipsometer.

In the discussion below it will be assumed that the polarizer, analyzer,  and compensator are ideal.  It is assumed that
the compensator is a wave-plate introducing a retardation of d and no attenuation.  The orientation of the wave-plate is
selected so the slow axis is inclined at 45° to the plane of incidence.  Any angle can be used, but the compensator is
generally used at ± 45°.  Let p be the angle between the polarizer transmission axis and the x-axis which is taken to be
the direction for p polarization as illustrated in Figure 2.
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Figure 2.  Orientation of polarizer, compensator, and analyzer.

The light transmitted through the polarizer can be written in the form of a Jones vector as

In[1]:= lightLinear  Cosp
Sinp;
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A retarder with the fast axis horizontal can be written in terms of a Jones Matrix as

In[2]:= rfah_ :  2 1 0

0  

A rotation matrix can be written as

In[3]:= rot_ :  Cos Sin
Sin Cos

A retarder of retardation d having a fast axis at an angle of q from the horizontal can be written as

In[4]:= rrot_, _ : rot.rfah.rot
Thus, the light transmitted through the wave plate and incident upon the sample can be written as

In[94]:= lightIncident  FullSimplifyrrot, 45 °.lightLinear  MatrixForm;

The p-component (x) can be written as

In[6]:= pComponent  Cosp Cos
2
   Sinp Sin

2
;

and the s-component (y) can be written as

sComponent  Cos
2
 Sinp   Cosp Sin

2
;

ü Phase determination

The tangent of the phase of the p component can be written as

In[8]:= tanpComponent 
Sinp Sin 

2


Cosp Cos 

2


;

The tangent of the phase of the s component can be written as

In[9]:= tansComponent 
Cosp Sin 

2


Cos 

2
 Sinp

;

The goal is to find the tangent of the phase difference between the p and s components.  Remembering that

Simplify Tan  Tan
1  Tan Tan  Tan  

we can write

tanIncident 

FactorTrigExpandFullSimplify

Sinp Sin 

2


Cosp Cos 

2



Cosp Sin 

2


Cos 

2
 Sinp

1 
Sinp Sin 

2


Cosp Cos 

2


Cosp Sin 

2


Cos 

2
 Sinp

  
1

2
Sin Cotp  Tanp

But,

FullSimplifyTrigToExp 1

2
Cotp  Tanp  Cot2 p

Furthermore,

Tan2 p  90 °  Cot2 p
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Therefore,

tanIncident  Sin Tan2 p  90 °;

It is interesting to look at a plot of D as a function of p.  To correct for a discontinuity in the ArcTan function 180
degrees will be added for p¥ 0 to make the function continuous.
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A 180 degree rotation of the polarizer introduces a 360 degree change in the retardation.  If the compensator is a
quarter-wave plate (d=p/2) there is a linear relationship between DIncident, the phase difference between the p and s
components of the light incident upon the sample, and p, the orientation angle of the polarizer.

ü Amplitude determination

Next we will look at the ratio of the amplitudes of the s and p components of the electric field incident upon the
sample.  Let

tanL 
ep

es

Then

tanLSquared 
ComplexExpandpComponent ConjugatepComponent
ComplexExpandsComponent ConjugatesComponent ;

Remembering that

Simplify1  Tan2

1  Tan2
  Cos2 

cos2L  Simplify1  tanLSquared

1  tanLSquared
  Cos2 p Cos;

Similar relationships are obtained with appropriate changes in sign if the slow axis is oriented at -45° to the plane of
incidence.
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It  is  interesting  to  note  that  if  the  compensator  is  a  quarter-wave  plate  the  orientation  of  the  polarizer  has  no  effect
upon the ratio of the amplitudes of the s and p components of the electric field incident upon the sample.

ü Measurement  procedure

The measuring procedure consists of adjusting the polarizer and analyzer so the detected beam is extinguished.  There
are two orientations of the polarizer which lead to plane polarized light.  The two conditions are

Incident  Sample

and

Incident  Sample  180 °

It follows from the equation for TanDIncident that the two conditions for plane polarized light being reflected off the
sample are

tanSample  Sin Tan90 °  2 p1
and

tanSample  Sin Tan270 °  2 p2
At  extinction,  the  analyzer  transmission  axis  orientation  angle,  a,  is  equal  to  r  ±  90°,  where  r  is  the  angle  of  the
reflected linear polarization relative to the plane of incidence. 

Tanr 
rs

rp

Tan 
rp

rs

es

ep

Tan 
Tana1
TanL1

and for the second set of angles

Tan 
Tana2
TanL2

Since CotL1  TanL2
Tan2  Tana1 Tana2
If the compensator is a quarter-wave plate, d = 90°, the relationships between D and y and the extinction settings are
especially simple.

  90 °  2 p1  270 °  2 p2

  a1  a2.

ü Interpretation  of data

Using the  measured values  of  D  and y  it  is  possible  to  determine the  complex refractive  index of  substrates  and  the
thickness and refractive index of  thin films, however  the equations  are extremely complicated and their  solution and
use  for  interpretating  ellipsometric  data  requires  electronic  computation.   Details  on  the  specific  computations  are
beyond the scope of these notes and they can be found in reference 1.  
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Fresnel Equations

Bare substrates

Fresnel first  derived equations for  the reflection coefficients  of  bare surfaces in  terms of  the angle of  incidence,

angle  of  refraction,  and  the  complex  refractive  index.   The  results  for  the  amplitude  reflection  coefficient  and

amplitude  transmission  coefficient  are  given  below.   The  sign  convention  used  is  not  standarized.   For  our

equations the sign convention used in reference 4 (Hecht) is followed.

rs 
ni Cosi  nt Cost
ni Cosi  nt Cost

ts 
2 ni Cosi

ni Cosi  nt Cost

rp 
nt Cosi  ni Cost
ni Cost  nt Cosi

tp 
2 ni Cosi

ni Cost  nt Cosi

For an optically absorbing medium the complex index of refraction of the substrate is given by

nt  n   k;

From the definitions given above it follows that

rp

rs

 Tan  

The algebra for solving for n and k from y and D is extremely messy and will not be given here.  The details can

be found in references 1 and 2.



Phase change at normal incidence

r 
1  nt

1  nt

1   k  n

1   k  n

rBottom  SimplifyDenominatorr ConjugateDenominatorr, k  0, n  0

k2  1  n2

rTop  SimplifyNumeratorr ConjugateDenominatorr, k  0, n  0

1  2  k  k2  n2

phasen_, k_ : ArcTan 2 k

1  n2  k2


Thin films

The  reflectance  of  substrates  having  a  coating  of  thin  films  can  be  calculated  using  the  characteristic  matrix

approach  as described  in  references  4  and 5.   D  and  y  can  be calculated in  terms of  the angle  of  incidence,  the

wavelength,  the  optical  constants  of  the  film  and  substrate  and  the  thickness  of  the  film.   The  equations  are

extremely  complicated  and  their  solution  and  use  for  interpretating  ellipsometric  data  requires  electronic

computation.  References 1 and 2 give additional information.
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Measuring Birefringence
Illuminate sample with circularly polarized light.  Put rotating analyzer between sample and detector and measure light
transmitted thru sample and analyzer.

Detector

Source
Sample

Circular 
Polarizer

Rotating 
Analyzer

Detector

Source
Sample

Circular 
Polarizer

Rotating 
Analyzer

Basic Definitions

ü Circular polarization

stokes 

1
0
0
1

;

ü Horizontal linear polarizer

hlpMueller 
1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

;

ü Linear retarder of retardation d with fast axis horizontal

retarderHorizontal_ :

1 0 0 0
0 1 0 0
0 0 Cos Sin
0 0 Sin Cos

ü Rotation Matrix

rotMueller_ :

1 0 0 0
0 Cos2  Sin2  0
0 Sin2  Cos2  0
0 0 0 1

ü Calculation of matrix of a retarder of retardation d having a fast axis at an angle q from the 
horizontal

rrot_, _ : rotMueller.retarderHorizontal.rotMueller



Measuring the birefringence

Rotate polarizer in front of detector and determine the birefringence d and the angle of the birefringence, q.  w t is the
angle of the polarizer.

ü Measure phase and amplitude of signal as polarizer rotates

polarimeter  rotMueller t. hlpMueller.rotMueller t.rrot, . stokes;

polarimeter11  Simplify

1

4
2  Cos  2   2 t   Cos  2   2 t 

signal 
1

4
2  SimplifyCos  2   2 t   Cos  2   2 t   Simplify

1

2
1  Sin Sin2   t 

The amplitude of the Sin[2wt] signal is given by the Sin[birefringence] and the phase of the signal is given by 2 times
the angle of the birefringence, q.

ü Measure signal for discrete positions of polarizer

signal1  signal . t   0

1

2
1  Sin Sin2 

signal2  signal . t     4  FullSimplify

1

2
1  Cos2  Sin

signal3  signal . t     2

1

2
1  Sin Sin2 



2
  

signal3  signal3 . Sin2 


2
    TrigReduceSin2 



2
  

1

2
1  Sin Sin2 

signal4  signal . t   3   4  Simplify

1

2
1  Cos2  Sin

signal3  signal1

signal2  signal4
 Simplify

Tan2 
If we take an ArcTan we obtain the orientation of the birefringence.

signal3  signal1  Simplify

Sin Sin2 
signal2  signal4  Simplify

Cos2  Sin
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signal3  signal12  signal2  signal42  Simplify

Sin2

If we take the ArcSin of the square root we get the magnitude of birefringence.  Since we know 2q, the sign of (signal3-
signal1) gives us the sign of the birefringence.
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Measuring the Stokes Parameters
One method for measuring the Stokes parameters is to measure the intensity of the light after it passes through a

rotating quarter-wave plate followed by a horizontal linear polarizer.  The following four intensity measurements

are required:

Fast-axis of the quarter-wave plate at 

a)  0°, 

b)  30°, 

c)  60°, and 

d)  135°.

Basic Definitions

Stokes Vector

stokes 

s0
s1
s2
s3

;

Horizontal linear polarizer

hlpMueller 
1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

;

Linear retarder of retardation d with fast axis horizontal

retarderHorizontal_ :

1 0 0 0
0 1 0 0
0 0 Cos Sin
0 0 Sin Cos

Rotation Matrix

rotMueller_ :

1 0 0 0
0 Cos2  Sin2  0
0 Sin2  Cos2  0
0 0 0 1



Quarter-wave plate at angle q

qwp_ : rotMueller.retarderHorizontal 
2
.rotMueller

Polarimeter Output

Rotating quarter-wave plate and horizontal linear polarizer

Fast axis of quarter-wave plate at 0°.

output1  hlpMueller.qwp0.stokes; MatrixFormoutput1
s0

2


s1

2
s0

2


s1

2

0
0

Fast axis of quarter-wave plate at 30°.

output2  hlpMueller.qwp 
6
.stokes; MatrixFormoutput2

s0

2


s1

8


3 s2

8


3 s3

4

s0

2


s1

8


3 s2

8


3 s3

4

0
0

Fast axis of quarter-wave plate at 60°.

output3  hlpMueller.qwp 
3
.stokes; MatrixFormoutput3

s0

2


s1

8


3 s2

8


3 s3

4

s0

2


s1

8


3 s2

8


3 s3

4

0
0

Fast axis of quarter-wave plate at 135°.

output4  hlpMueller.qwp 3

4
.stokes; MatrixFormoutput4

s0

2


s3

2
s0

2


s3

2

0
0

The four Stokes parameters are calculated as follows:
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ans  Solveoutput11, 1  reading1, output21, 1  reading2,

output31, 1  reading3, output41, 1  reading4, s0, s1, s2, s3;

s0 . ans, s1 . ans, s2 . ans, s3 . ans  MatrixForm
2  3 reading12 3 reading22 3 reading36 reading4

3 2 3 
4 3 reading12 3 reading1 3 reading2 3 reading33 reading4

3 2 3 
4

3
 3 reading2  3 reading3

2  3 reading12 3 reading22 3 reading33 3 reading4
3 2 3 
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