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Neural Network Machine Learning

• Combination of linear and nonlinear connection of neurons.
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Neural Network Machine Learning

• Supervised learning - back propagation weight training to reduce the cost function 𝐶!

• Weight training update rule

Cost function 𝐶! is a function of 𝑎(#), which is a function of 𝑧(#)⋯
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Numerical Instability in Deep Neural Networks

• Numerical Instability in Backpropagation
• Vanishing & Exploding Gradients

• Deep networks can suffer from extremely small or large gradients, slowing or destabilizing 
training.

• Repeated Multiplications
• Long chains of matrix multiplications accumulate numerical errors, causing instability.

• Some Mitigation Strategies Developed
• Weight initialization (e.g., Xavier, He), normalization layers (e.g., BatchNorm), and 

architectural innovations (e.g., residual connections).

• Difficulty in Finding Global Minima
• High-Dimensional Loss Landscape

• Millions of parameters create a complex error surface with many local minima, saddle 
points, and plateaus.

• Gradient Descent Challenges
• Vanilla gradient descent may converge slowly or get stuck; advanced optimizers (Adam, 

RMSProp) help navigate complex landscapes.

• Practical Observations
• Despite the complexity, suitable hyperparameters and architectures often yield good 

“enough” solutions. Parameter A
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[He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning 
for image recognition. In Proceedings of the IEEE CVPR.]
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State-of-the-art AI today: ChatGPT

• ChatGPT-3 (ChatGPT-4 hardware details are kept secret)
– Number of weight parameters – 175 billion parameters
– Number of layers – 96 layers
– Number of chips used – several thousands of Nvidia V100 GPUs. Assuming each GPU has 640 Tensor 

Cores, the total number of individual processing cores is in the range of 106 cores. 
– Required energy for training – 1287 MWh, equivalent to the energy consumed by 120 American 

households in a year.
– Required energy for a single query – a few mWh per query
– Data center hosting a CHATGPT processor – 691 square feet computing cores + additional 

infrastructure for cooling, networking, aisles for access (several thousands of square feet altogether).

• Another bottleneck of CHATGPT and other AIs
– Excessive consumption of an astronomical amount of training data without a stellar performance. 

[Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. 
(2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.]
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State-of-the-art AI today: Deepseek R1

• Adaptive, Multi-Modal Architecture & Knowledge Distillation
– Dynamically adjusts to data patterns, fusing text, image, and tabular inputs.
– Leverages teacher–student paradigms to deliver efficient, high-performing models.

• Automated, Real-Time Pipeline
– Streamlines data preprocessing, training, and deployment for rapid iteration.
– Optimized for low-latency predictions in both cloud and edge environments.

• Transparent & Extensible Framework
– Built-in Explainable AI (XAI) to illuminate decision-making processes.
– Modular design enables quick experimentation, expansion, and integration.

• Training cost to accomplish a similar performance of ChatGPT-O1 (claim)
– $6M (c.f., estimate of ChatGPT 4 training cost >$100M)
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New Paradigm 1 – Reservoir Computing

• Where the training happens

• Enormous reduction in training, relying on the built-in complexity of the computing reservoir
• Such simple training scheme leads to mathematically provable performance. 

Neural Network: training happens for all weights

Computing reservoir

𝑊!"

𝑊%

𝑊!" 𝑊!"

Reservoir Computing: Training happens only in the readout layer.
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Universality of computing

• Stone-Weierstrasss Theorem
– Continuous functions on a compact set can be uniformly approximated by polynomial (or certain 

algebraic) functions. 

• Fading Memory
– System “forgets” distant past inputs over time (bounded influence of older inputs).
– Ensures stability and a well-defined “state” for approximation.

• Polynomial Algebra
– Readout or output functions that can approximate polynomials (or continuous functions) on the system’s 

state space.
– Connects directly to the Stone–Weierstrass framework: if you can implement polynomials, you can 

approximate a broad class of continuous functions.
• Separability (Topological Constraint)
– Two different inputs lead to different outputs, allowing for dense approximations.
– Ensures the space can be “finely approximated” by countable sets of polynomial expansions.

[Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to 
recurrent neural network training. Computer Science Review, 3(3), 127–149.]
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Types of Reservoir Computers that has 
Mathematically Proven Universality

• Echo State Network
– Discrete-time recurrent neural network
– Echo state property – the internal state asymptotically depend only on inputs, rather than initial 

conditions.

• Liquid State Machines
– Continuous-time, spiking-neuron counterpart to ESNs. Instead of discrete-time updates, it uses biological 

or biologically inspired spiking dynamics in the “liquid” (the reservoir)Ensures stability and a well-defined 
“state” for approximation.

• Nonlinear Delay-based Reservoir Computing
– A single physical or simulated nonlinear node whose output is time-multiplexed to create a high-

dimensional “virtual” state. Examples include optical or electronic systems with a time-delay feedback 
loop. 

• Stochastic Reservoir Computing (my group’s recent contribution)
– Uses probabilities as node states, providing massive exponential scalability

[Grigoryeva, L., & Ortega, J.-P. (2018). Echo state networks are universal. Neural Networks, 108, 495–508.]

[Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new 
framework for neural computation based on perturbations. Neural Computation, 14(11), 2531–2560.]

[Grigoryeva, L., & Ortega, J.-P. (2019). Differentiable reservoir computing. Journal of Machine Learning Research, 19, 1–43]

[Ehlers, P. J., Nurdin, H. I., & Soh, D. (2024). Stochastic Reservoir Computers. arXiv preprint arXiv:2405.12382.]
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New Paradigm 2 – Hardware Machine Learning

Hardware Machine Learning

Software Machine Learning
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Hardware ML vs. Software ML
Aspect Hardware ML Software ML

Speed & 
Throughput

- Specialized acceleration offers high 
parallelism and fast computations.
- Can handle massive workloads efficiently.

- Dependent on general-purpose CPUs or cloud-
managed instances.
- May experience performance bottlenecks for 
very large models.

Energy Efficiency

- Custom hardware can achieve high 
performance per watt, reducing operational 
costsover time.
- Lower power usage at scale.

- Less power-efficient due to overhead on general-
purpose hardware.
- Potentially higher energy costs for large-scale 
deployments.

Latency

- Low-latency inference possible with direct 
hardware implementation.
- Beneficial for real-time systems (e.g., 
autonomous vehicles).

- Network overhead or shared resources in cloud 
environments may cause variable response times.
- Less predictable real-time performance.

Flexibility & 
Upgradability

- Less adaptable to evolving ML algorithms.
- Upgrading means new chip design or FPGA 
reconfiguration, which can be slow or costly.

- Highly flexible: can quickly update frameworks, 
retrain, or switch models.
- Rapid prototyping and easier iteration.

Use Case Suitability
- Ideal for large-scale or low-latency ML 
inference (e.g., data centers, edge devices 
needing real-time response).

- Best for fast development, frequent updates, 
research, or moderate workloads (especially in the 
cloud).
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All Optical Echo State Network Reservoir Computing

• Echo state network (a type of reservoir computing)
– Stimulated Brillouin Optical Amplifier activation function

[Ishwar Kaushik, Peter Ehlers, and Daniel Soh, “All Optical Echo State Network 
Reservoir Computing,” manuscript in preparation]

Input 𝑢&

State 𝑥&

Linear mixing
Function 𝑓

𝑥&'( = 𝑓 𝐴𝑥& +𝐵𝑢&

𝑦& =𝑊)𝑥& +𝐶

State at t=k+1
Nonlinear activation

Linear mixing Input coupling at t=k

Output at t=k Weight to be trained

Echo state network evolution

𝑑𝑃*
𝑑𝑡 = −𝑔+𝑃,𝑃*,

−
𝑑𝑃,
𝑑𝑡 = +𝑔+𝑃*𝑃,.

Stimulated Brillouin Scattering evolution
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Training and testing the reservoir computer

• Tasks and testing properties
– Sine-Square Input Classification: degree of nonlinearity in the reservoir (c.f. Polynomial algebra)

– Mackey-Glass Chaotic System Behavior Prediction: dynamic memory, nonlinearity, and separability

• Training and testing sessions
– The first part is used to perform supervised training on the machine. 
– The second part is used to measure the performance from the error. 

[Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control 
systems. Science, 197(4300), 287-289.]
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All Optical Echo State Network Reservoir Computing

[Ishwar Kaushik, Peter Ehlers, and Daniel Soh, “All Optical Echo State Network 
Reservoir Computing,” manuscript in preparation]

• Training tests
– Sine-Square classification test: 

testing nonlinearity capability of the 
reservoir

– Mackey Glass Chaotic Dynamics 
simulation test: testing the 
capability to track highly chaotic 
time-series behavior
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All Optical Echo State Network Reservoir Computing

[Ishwar Kaushik, Peter Ehlers, and Daniel Soh, “All Optical Echo State Network 
Reservoir Computing,” manuscript in preparation]

• Reservoir hardware properties affect the performance greatly.
– Brillouin nonlinear gain parameter (gL value)
– Input power level to the Brillouin amplifier

(NMSE: Normalized Mean Square Error)
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New Paradigm 3 – Quantum Reservoir Computing

• Minimalistic Hardware for Energy Efficiency
– Reduced system size lowers the energy cost in both training and operation.

– Suitable for distributed edge-computing with drastically reduced network 
communication

• Exponential Hilbert Space = Large Reservoir
–A small quantum system harnesses an exponentially growing state space.
– Enormous effective capacity enables powerful computation with fewer physical layers.

• Decoherence Enables Fading Memory
– Conventional quantum computing views decoherence as detrimental.

– In reservoir computing, partial decoherence is essential, providing the “forgetting” or 
fading memory necessary for processing temporal data.
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Queries and gate operations in QC are hard

Conversion of classical input to qubits: 
quantum state preparation

• Gate operations need to prevent decoherence as 
much as possible.

• Error correction overhead is ENORMOUS: typical 
ratio of physical vs. logical qubits ~ 1000:1

• Readout is difficult.

Q: is it fair to count queries and gate 
operations, and then compare with 
classical computers on an equal footing?
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Reservoir Computing using Noisy 
Intermediate-scale Quantum (NISQ)

• Harnessing “Useful” Noise
– Partial Decoherence is Beneficial: In quantum reservoir computing, slight decoherence is essential 

for the fading memory effect.
– No Need for Full Error Correction: The high overhead of fault-tolerant quantum computing can be 

avoided; noise helps rather than hinders.

• Intermediate Scale = Sufficiently Large Hilbert Space
– Exponential Scaling: Even a modest number of qubits provides a vast state space.
– Practical Complexity: NISQ devices strike a balance between being large enough to exhibit rich 

dynamics yet still within current technological reach.

• Accessible, Near-Term Quantum Technology
– Immediate Experimental Realization: Existing NISQ setups (e.g., superconducting qubits, trapped 

ions) can serve as quantum reservoirs.
– Pathway to Scalable Approaches: Insights gained from NISQ platforms inform next-generation 

hardware without waiting for fully fault-tolerant machines.
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Few-atom Reservoir Computing

[Zhu, C., Ehlers, P. J., Nurdin, H. I., & Soh, D. (2024). Practical and Scalable 
Quantum Reservoir Computing. arXiv preprint arXiv:2405.04799]

(Continuous measurement with measurement back-action)

Hamiltonian:

Field Atoms Coupling

Input field coupling

Quantum evolution: Collapse operators (quantum back action)

Measurement (observables):
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Few-atom Reservoir Computing

[Zhu, C., Ehlers, P. J., Nurdin, H. I., & Soh, D. (2024). Practical and Scalable 
Quantum Reservoir Computing. arXiv preprint arXiv:2405.04799]

(Continuous measurement with measurement back-action)

Mackey-Glass test
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Few-atom Reservoir Computing

[Zhu, C., Ehlers, P. J., Nurdin, H. I., & Soh, D. (2024). Practical and Scalable 
Quantum Reservoir Computing. arXiv preprint arXiv:2405.04799]

• Mackey-Glass test – testing capability for 
predicting chaotic dynamic behavior

• Sine-Square classification test – testing 
nonlinear mapping capability



Can we do better with minimalistic quantum 
hardware?

• Making minimalistic quantum hardware 
much more complex by feedback

• We rigorously mathematically proved that 
feedback “always” improves the 
performance.

[Ehlers, P. J., Nurdin, H. I., & Soh, D. (2025). Improving the performance of echo 
state networks through state feedback. Neural Networks, 184, 107101.]

ESN without feedback:

ESN with feedback:



Quantum Reservoir Computing with Feedback

• Mackey Glass test – testing the predicting capability for a chaotic dynamical behavior

[Zhu, C., Ehlers, P. J., Nurdin, H. I., & Soh, D. (2024). Minimalistic and Scalable Quantum 
Reservoir Computing Enhanced with Feedback. arXiv preprint arXiv:2412.17817..]

24# atoms (# neurons)



Quantum Reservoir Computing with Feedback

• Sine-Square classification test – testing nonlinear mapping capability

[Zhu, C., Ehlers, P. J., Nurdin, H. I., & Soh, D. (2024). Minimalistic and Scalable Quantum 
Reservoir Computing Enhanced with Feedback. arXiv preprint arXiv:2412.17817..]25



Forward looking – Stochastic Reservoir 
Computing: More Power Less Hardware

• Key Idea: Uses stochastic dynamical systems, leveraging 
probability distributions instead of fixed states.

• Exponential Computational Scaling
• 𝑀 stochastic nodes → 2! computational states (exponential boost)
• More computation with smaller hardware footprint

• Compact Yet Powerful
• Qubit Reservoir Network: Uses quantum-inspired stochasticity for high 

efficiency
• Stochastic Optical Network: Leverages photon detection for nonlinear 

transformations
• We proved universality through rigorous mathematics. 

• Performance vs. Hardware Size
• Outperforms deterministic reservoirs when noise is low
• Requires fewer physical nodes to achieve the same computation

• Trade-offs
• Needs multiple runs to estimate probabilities
• Shot noise can impact precision, but mitigable with more samples

[Ehlers, P. J., Nurdin, H. I., & Soh, D. (2024). Stochastic Reservoir Computers. arXiv preprint arXiv:2405.12382.]
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Summary

• New Paradigm 1 – Reservoir Computing
• New Paradigm 2 – Hardware Learning Machine
• New Paradigm 3 – Quantum Hardware Reservoir Computing

• Huge room for improvement via these new paradigm-shifting concepts

• The new paradigms apply broadly to 
– Both supervised/unsupervised learning
– Knowledge distillation
– Reinforcement learning
– Chain of Thoughts
– Distributed edge computing network

27
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Theory and Experiment of Scalable 
Quantum Systems Lab

Daniel Soh (PI) Peter Ehlers 
(postdoc)

Chuanzhou Zhu
(postdoc)

Andrew Pizzimenti
(PhD student) Charlotte Zehnder

(PhD student)

Carter Gillenwater
(PhD student)

Siddharth Vats
(PhD student)

Ishwar Kaushik
(MS student)

Phi Nguyen
(PhD student) Aamir Quraishy

(PhD student)

Close collaborator – Dr. Hendra Nurdin, University of New South Wales, Australia

We welcome any form of collaborations with anyone!


