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|. Basic concepts and notation



Mathematical descriptions of objects and images

e Objects are functions of continuous variables such as position or time:
f(r) or f(r,t), where r = (z, v, 2)

e Square-integrable functions can be regarded as vectors in a Hilbert space
Notation: f(r) = f, vector in space U.

e Hilbert spaces are linear vector spaces in which a scalar product is defined:
Notation: (f1,f2) = f1fs = [qd3r f(r) fa(r)

e Images can be functions of continuous variables ....
... but digital images are discrete sets of numbers:

g={gm,m=1,...M}, M = total number of measurements

e A digital image is a vector in a finite-dimensional Hilbert space V

M
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Deterministic (noise-free) descriptions of imaging systems

e A general imaging system maps object space to image space:

g = Hf , H:U -V

e Many systems of interest are linear:

H{af{ + pfr} = aH{f1} + BH{f>}, a, (3 scalars

e A general linear CD mapping of a 3D function to a discrete M D vector
is defined by

gm = [Hf] , = /Sd?’r hm(r) f(r), (7.225)

where hy,(r) is the point response function (PRF) or sensitivity function.



Discrete representations of objects

Though real objects are functions in an infinite-dimensional Hilbert space,
we often approximate them as finite sums of expansion functions such as

pixels:

N
fa(r) =Y Ondu(r), (7.27)
n=1

where subscript a denote approximate
e The subscript is crucial; we must not confuse f,(r) and f(r).

e The coefficients in the expansion, the set {6,, n = 1,..., N}, can be
regarded as an IN-dimensional vector denoted 0; if the expansion functions
are known, this vector is an equivalent way of specifying the approximate
representation fq(r).



Approximate matrix descriptions of linear imaging systems

Application of an imaging operator 'H to the approximate object gives

N
go = H{fa(r)} = ) OnH{on(r)}. (7.302)
n=1
For a linear CD mapping, the mth component of g, is given by
N
Gam = Z Qn/ dir hm(r) ¢n(r), m=1, ..., M. (7.303)
— S
n=1 f
Define an M X N matrix H with elements H,,,, given by
S
f
so that
g, = HO. (7.305)

Eq. (7.305) is a discrete-to-discrete (DD) model for an imaging system.
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Definition of adjoint (backprojection)

Basic definition (Barrett and Myers, Sec. 1.3.7):
(82, Hi1)y = (Hlg2, f1)y (1.39)

Note that scalar product on the left is in image space, the one on the right
is in object space

It is legal by definition to move an operator to the other side in a scalar
product and replace it by its adjoint.

For a matrix operator:

nm

{HTg}n = % Hyngm or {HT} = [H]},.,,
m=1

For a CD operator,

M
Hig| (1) = > hi() gm
m=1



The imaging equation

We often write real, noisy data as

g ="Hf +n, (15.10)

where H is a linear CD operator n is an M X 1 vector of “measurement
noise” (not necessarily independent of f). A simple mathematical tautology
allows us to write

g="Hft, + Hf — Hf, + n = HO + €, (15.11)

where the overall error € (modeling error plus noise) is given by

e ="Hf—-"Hf, +n, (15.12)

The data vector g is random because:
e the measurement noise is random;
e the object is random;
e both H and H can be random;

e the modeling error depends on the random object and system



Probability law for the data vector

An M-dimensional random vector g is a set of M scalar random variables,

{gm,m =1,..., M}. (Think of measurements from some detector array.)

If each g, can take a continuous range of values, the vector g is described

by a probability density function (PDF) pr(g) = pr({gm}), and the mean
of g is given by

(8) =8={gm} = /_o;dgl /_O:Odgz---/_idgMg pr(g) = /OO d"g g pr(g) .

If each g, can take on only integer values, the vector g is described by a
probability (not PDF) Pr(g) = Pr({gm}), and the mean of g is given by

(g)=8={gm} = Z Z Z g Pr(g).

91=0g>=0 gm=0

(Note that the sum here is over each of the g, not over m.)



Covariance matrix

The covariance matrix is a generalization of the variance to random vectors.

For an MD random vector g, the covariance matrix K is an M X M matrix
with elements given by

Kij = ((9: —39:)(9; —39;)") (8.16)
where the asterisk indicates complex conjugate, allowing for the possibility

that components of g might be complex. It follows from this definition
that K is Hermitian, i.e., K;; = K;Z

In outer-product form,

K=([g-glle—gl').

Any random variable covaries with itself. The diagonal elements of the
covariance matrix are the variances of the components:

ij = Var{gj} . (818)
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Characteristic functions

For any random variable or vector, the characteristic function is the expectation
of the appropriate Fourier kernel:

(&) = (e )
If = is scalar and real-valued, then

we) = [ dopria)emie, (C.53)

— OO0

and the PDF and characteristic function form a Fourier transform pair:

pr(a) = [ de w(g) 2. (C.54)

Caution: Do not confuse & with a spatial frequency.

Moments of the random variable  can be derived through differentiation

of ¥(¢):

k
(o) = (~2mi)~* j—fkw(s) (C.55)

£=0

11



Characteristic function of a real random vector

For a real M X 1 random vector g (column vector), the characteristic

function is defined as

¥g(€) = (exp(—2mi€'e)) | (8.26)

where £ is a real 1 x M vector.

For the case of a continuous-valued random vector, 1g(§) can be written

Yg(€) = / dMg pr(g) exp(—2ritlg). (8.27)

This integral is the M D Fourier transform of the PDF, so

prig) = [ @M (&) exp(2rmi'e). (8.28)
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Linear transformations of random vectors

If the random vector g is generated as the output of a linear filter acting
on the random vector f, we can characterize the linear transformation by
an M X N matrix H. Then we can write the M X 1 output vector g in
terms of the IV X 1 input vector f as

g = Hf. (8.40)

From the linearity of the expectation operator, we have immediately for

the mean of g,
g = (g) = (Hf) = H({f) = Hf. (8.49)
The covariance matrix of g is found as

Kg = (AgAg!) = ((Hf - HF)(HE - H)!)

—H <AfAfT> H' = HKH (8.50)

where Af=f—T.
13



Linear transformation of the characteristic function

Transformation of the PDF is tricky, but the characteristic function is easy:

be(€) = <exp(—27ri§tHf)> — <exp [—2m;(Htg)tf}> | (8.42)
where the last step has used the definition of the adjoint, (1.39). Thus
Yg(€) = yr (H'E), (8.43)

so knowledge of ¢y and H immediately gives vg.

The PDF on g can in principle be found by taking an inverse MD Fourier
transform of (8.43). Formally, we can write

pr(g) = [ aMe ug(H'E) expl(2nie's), (8.44)

but in practice the integral might not be easy. The problem is that we are

integrating a function of an ND vector over an MD space.
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Intro to random processes

Simple definition: A random process is a random variable that varies with
space and/or time. More formally, a spatial random process is a function
of two variables, r and (. Depending on the context, f(r,() can refer to:

1. The family of spatial functions, referred to as the ensemble; in this case,
r and ( are variables (e.g., all possible images)

2. A single realization or sample of the spatial functions; in this case, r is
variable and ( is fixed (one particular image)

3. The random variable at a single point; in this case, r is fixed and ( is
variable (value at one point in all possible images)

4. A single number; in this case, r is fixed and ( is fixed (value at one
point in one image)

Notational quirks: Usually drop the ( designator and hope the differences
above will be clear by context
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Averages

Consider a scalar-valued continuous random process. For fixed r, f(r) is
simply a random variable (interpretation 3), and its expectation is defined
just as for any other random variable;

EL()} = (F0)) = Flo) = [

o0

N df(r) f(r)prlf(r)]. (8.71)

Computation of this expectation requires only the univariate PDF pr[f(r)].

N.B. The integral is over f(r), not r; result can still be a function of r.
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Multiple-point expectations

6.@)

df(I‘l)/_OO df (r2) f(r1) f(r2)pr[f(r1), f(r2)].

(8.74)
Here, f(r1) and f(rp) must be regarded as two distinct random variables
and pr[f(r1), f(ro)] is their joint density. Only in very special circumstances

will it be possible to write pr[f(r1), f(r2)] as pr[f(r1)] pr[f(r2)].

(Fr1)f(ra)) = /

A general two-point moment is defined by

(D [Fr)]?) =
/ o; ) [ o; A (2) [ O™ )] prlf(en), f(2)] . (8.75)

Any moment involving the K points r{,ry,...,rg can be computed if
pr(f(r1), f(r2), ..., f(rg)] is known. If this K-fold joint density is known
for all values of each of the rj, the process is said to be fully characterized
to order K.
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Correlation analysis

The autocorrelation function R(r1,ry) of a spatial random process f(r) is
defined by

R(ry,r2) = (f(r1) f*(r2)) . (8.97)

The autocovariance function K(ri,rs) is the continuous analog of the

covariance matrix:

K(r1,r2) = ([f(r1) — (f(r1))] [ (r2) — (f*(r2))])

= R(ry,r2) — f(r1) f(r2). (8.98)
The autocovariance function reduces to the variance when ro = r;{ = r,

I.e.,

K(r,r) = R(r,r) — |]‘T(r)|2 = Var{f(r)}. (8.99)
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Temporal stationarity

Stationarity in the strict sense requires that all K-point PDFs be independent
of the time origin.

Stationarity in the wide (or loose) sense requires only that the mean and
autocorrelation have no preferred origin. For a temporal random process

f(t), this means:
(f(t)) = constant;

R(t1,t2) = R(t1 —t2).

Electrical noise and random optical fields are temporally stationary if the
parameters describing the noise don’t change in time. For example, electrical
noise from a resistor is temporally stationary if temperature = const.

A stationary random process is said to be ergodic in the mean if a time
average gives the (constant) ensemble average. Stationary Gaussian random
processes are ergodic.
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Spatial stationarity?

Strict-sense and wide-sense stationarity can be defined for spatial random
processes just as for temporal ones, but the conditions are much harder to

satisfy.

e Snow on a TV screen is stationary if you ignore the raster

e Poisson noise in an image is stationary for a uniform grey scene
My advice: Never assume spatial stationarity in imaging problems

Possible exception: Well, you might get away with assuming that atmospheric
turbulence is stationary.
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Spectral analysis

For a stationary temporal random process, we can follow Khinchin and
define the power spectrum or power spectral density as
@)
S(v) = F{R(At)} = / dAt {(f(t + At) f*(t)) exp(—2mivAt).
— O
(8.133)
This equation is often called the Wiener-Khinchin theorem, but | like to
think of it as a definition. (Besides, Wiener didn't consider ensemble

averages at all.)

What to do if the process is not stationary? Use the same equation anyway!
(You just can’t assume that the lefthand side is a function only of v.)

And if you do that, you can use spatial as well as temporal random

processes.

21



Stochastic Wigner distribution function

Rewrite the spatial autocorrelation function in symmetrized form:
R(rq,r3) — R(rg, Ar)
where
rg = %(rl +r5), Ar=r1 —1y. (8.120)

There is no loss of generality if we don’t assume the function factors;
R(rg, Ar) is still a general function of four variables if r is 2D.

Now take a FT with respect to Ar only, and define the stochastic Wigner
distribution function as

Wiro.p) = [ diar (f(ro+3Ar) f*(ro — $Am)) exp(~2rip- Ar).
(8.140)

If (somehow), f(r) really was stationary, W;(rq, p) would be independent
of rg and equal to the spatial power spectrum.
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PDFs and characteristic functionals

A spatial random process f(r) is an infinite-dimensional vector in a Hilbert

space — if every sample function is square-integrable.

Thus, at best, an infinite-dimensional PDF would be needed for a complete

characterization: very tricky mathematically.

BUT, an infinite-dimensional characteristic functional can always be defined

— and often calculated explicitly!

ALL statistical properties of a random process are contained in its characteristic

functional.
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Characteristic functionals — definition

Recall the definition of the characteristic function for a MD real random

vector:
Yg(€) = (exp(—2mit's) ) | (8.26)

Here, £ is a real M x 1 vector, and &g denotes a scalar product.

In the case of a random process f(r), each sample function corresponds to
a vector f in an infinite-dimensional Hilbert space, so the frequency vector
& in (8.26) must be replaced by an infinite-dimensional vector s in the
same Hilbert space as f. That means that s describes a function s(r), so

the characteristic function becomes a characteristic functional W¢{s(r)} or
W (s) for short. It is defined by

Wi (s) = (expl—2mi(s, E)]) (8.94)
where (s, f) is the usual Ly scalar product.
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Linear transformations of random processes

Consider the familiar form of a general linear mapping, g = Hf. If H is a

CD mapping, then

g = / A% hun(r) (r) .

If £ denotes a random process, this mapping defines a random vector.
Specifically, if one sample function of f(r) is denoted f(r, (), then g = Hf
Is to be interpreted as

gm(C) = / A% hn(r) £(r,C).

A similar interpretation applies to integral transforms. For example, the
Fourier transform of a random process is a new random process obtained

by taking the Fourier transform of each sample function.
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Linear transformation of the characteristic functional

Back to the definition, with a different notation for the scalar product:
We(s) = <exp[—2m sTf]> | (8.94)

For now, assume s and f are real.

Consider the general linear mapping g = Hf. The characteristic function

of the random vector g is given by

vg(€) = (expl-2migl g]) = (exp[—2mi €1 (HF)]) = (exp[—2rmi (11)I1]) |

where the last step follows from the definition of the adjoint. Thus

Pg(€) = Ve(HTE) . (8.96)

Very powerful result: If we know the characteristic functional for f, we
immediately have the characteristic function for H{, and therefore we know

all statistical properties of the random vector (e.g., image) g.
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Il. Some important probability laws
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Poisson and Gaussian statistics

® T he Poisson law

— Applies to integer-valued discrete random variables

— Often arises from independence assumptions

e [ he normal or Gaussian law

— Applies to continuous random variables

— Often arises as result of central-limit theorem

Both are crucial in imaging

Both are readily generalized to random vectors or random processes.

28



The univariate Poisson law

If one counts identical, indistinguishable events (e.g. photons, it is found

that the probability of observing n events is given by

e~ A\
nl

Pr(n) = n=20,1,2,.... (C.165)

Note that this probability law is specified entirely by the single number A,

often called the parameter of the Poisson distribution.

The parameter A is also the mean value of n:

(n) =Y nPr(n)=X. (C.167)
n=0

Moreover, A is also the variance.

29



The multivariate Poisson law

Ref.: B&M Chap. 11

If an array of J detectors counts independent photons, the multivariate
probability law of the outputs must have the form,
(g,)%

J
Pr({g;}) = ][ exp(=7;) —2 (11.40)
j=1 gj:

Because of this product form, counts in different elements are statistically

independent and hence uncorrelated.

Also, the variance of the counts in one element is equal to its mean, so we

can write the covariance matrix elements as

K, =(l9; —9llor — 9x]) =95 6k - (11.41)
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Poisson random processes

Temporal and spatial Poisson random processes are defined by

N
2(t) =) 6(t—tn), (0<t<T) (11.64)
n=1
N
g(r) = > 8(r —rn), (r € A) (11.72)
n=1

Conditions for these sums to be Poisson random processes are discussed in
Sec. 11.3. Roughly, they require that the events just be independent. In
that case the number of events NV in time interval 1" or area A is a Poisson

random variable.
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Properties of spatial Poisson random processes

Pr(1 event in AA) =b(r) AA. (11.73)
N
or({rn}| V) = T pr(en): (11.75)
n=1
b(ry,
pr(rn) = I d(2r z(r) ; (11.76)
NN
Pr(N) = %exp(—ﬁ); (11.77)
N = 2r b(r) . :
N_Ad b(r) (11.78)

E{g(r)} = Npr(r) = b(r). (11.84)
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Properties of spatial Poisson random processes — cont.

All statistical properties of g(r) are determined by the photon fluence b(r),
provided that fluence is not random.

In particular, the characteristic functional is given by

We(s) = exp {—N + / d°rp b(rn) e—%is(rn)} , (11.150)
A

For a stationary Poisson random process where b(r) is constant over an
area A, the fluence is N/A, and we have

Ve (s) = exp {—N [1 + i‘/ dry, e %™ S(rn)] } : (11.151)
AJA
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Univariate and multivariate Gaussian PDFs

The standard form of the Gaussian PDF for a scalar random variable is

pr(z) = (2 - )%exp [—(m — :13)2] . (C.108)

o2 202

This is a two-parameter PDF, with Z being the mean and o2 being the
variance, as the notation implies.

The corresponding multivariate form for an M X 1 random vector is

or(g) = [(2m)M det(k)] " exp [~1(e —8)' K Wg—)| . (8.185)

where g is the mean vector and K is the covariance matrix of g.

The multivariate characteristic function is the M D Fourier transform of

this PDF:
¥a(€) = exp(—2mi€'g) exp (—2n2¢'Ke) . (8.196)

N. B.: No inverse or determinant required!

34



Central limit theorem

Univariate form:

The PDF of a sum of N independent scalar random variables of (almost)
arbitrary PDF tends to a univariate normal as N — oco. (In practice N ~ 5

is often “good enough”.)

Since the variables are independent, the mean of the sum is the sum of
the means, and the variance of the sum is the sum of the variances, so the
PDF on the sum is fully determined in the limit.

Multivariate form:

The PDF of a sum of N independent M X 1 random vectors of (almost)

arbitrary PDF tends to a multivariate normal as N — oo.
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Gaussian random processes

A spatial random process f(r) is said to be Gaussian if all multipoint

densities and linear transformations of it are Gaussian.

An unconventional but useful definition is that f(r) is Gaussian if its

characteristic functional has the form:
Ve(s) = exp(—27r7jsTf) exp(—27r2sTKZfs) : (8.216)

where IC¢ is the autocovariance operator, i.e., the integral operator with
kernel K¢(r, ).

All statistical properties of f(r) are determined by its mean and autocovariance

function. Again, no inverse or determinant is required.
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I1l. Random images
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Likelihoods: conditional image statistics

e Descriptive likelihoods

pr(glf),  pr(f[f),

(f = reconstructed image)

e Likelihoods for classification problems

pr(g|H; ), pr(f|H; ),

(Hj — hypothesis that object is in class Cj)

e Likelihoods for estimation problems

pr(gl0),  pr(f]6)
(60 = parameter to be estimated)

e Likelihoods for joint detection and estimation

pl’(g|Hj,9), pr(,ﬂHjae)
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Descriptive likelihoods

e Goal: Specify the conditional image statistics for a specific object and a

specific imaging system

e Only remaining randomness is measurement noise, possibly propagated

through a processing or reconstruction algorithm

e Measurement noise on output of integrating detectors is usually Gaussian

e Measurement noise on output of photon-counting detectors is Poisson

for a specified object and system

e Noise in a processed image is more complicated
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Conditional probability law for raw data in SPECT

Let M X 1 vector g describe the raw projection data in SPECT
(M = # projection angles X # of detector elements per projection)

G = 8], = [ (o) £0)
Rigorously,

)gm

Pr(g|t) = H Enl”

This Poisson law Is exact even When we consider:

exp(—gm)

e Detector quantum efficiency

e Scatter in object or detector

e Background radiation

e Position-estimation algorithm, energy window

(Follows from binomial selection theorem if each event is assigned to at
most one bin in the data set.)
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Conditional probability law for raw data in PET

Multivariate Poisson still works for events assigned to lines of response by

any algorithm, but ....

. correction for accidental coincidences can cause non-Poisson behavior

41



Gaussian approximation to the Poisson

If the noise is Poisson but gy, >> 1 for all m, a useful approximation is

(gm — gm)2]

20m,

Mo
pr(g|f) = ——exp | —
ngl V2T Gm [

Note that the measurements are independent but not identically distributed.
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Effect of linear image reconstruction

Consider a linear reconstruction algorithm described by

f’:(’)g

Transformed mean and covariance are:

<%> —OHf, K,
g|f

_ T
f|if — OKg s O

If pr(g|f) is Gaussian, then f is also Gaussian (any linear transformation
of a Gaussian is a Gaussian), and the PDF pr(g|f) is fully determined by

this mean and covariance.
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Effect of linear image reconstruction — cont.

From last slide:

— l
g = OO

<%>g|f =OHf, K

If the data are Poisson, then as we saw earlier,

{Kg|f} = Im Oy = [Hf]m 0!

mm
Thus, for a discrete reconstruction,

M
{Kﬂ f} = Zl Onm O, [HE],
"

Easy to compute, linear transformation of the object.

Since many independent data values contribute to each voxel, it is often
an excellent approximation to assume that the linear reconstruction is

Gaussian with this covariance matrix.
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Effect of nonlinear image reconstruction

For nonlinear reconstruction algorithms, it is harder to to compute the

descriptive likelihoods, but algorithms exist for:

e Computing pr <f(k)|f> at each iteration k, of iterative algorithms such
as MLEM and OSEM (Barrett, Wilson and Tsui, 1994)

e Computing pr <f(oo)|f> for MAP-like algorithms run to convergence
(Fessler, 1996)

Often a good approximation to pr(f|f) for nonlinear algorithms with positivity
Is a multivariate log-normal.

For more discussion and references, see Chap. 15.
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Likelihoods for classification problems

To perform a classification based on raw data g, we need pr(g|H; ), where

H; = hypothesis that object is in class C;
To perform a classification based on a reconstruction, we need pr(f|Hj ).

Formally we can write

or(gl H ) = / af pr(glf ) pr(f|H; ),

where pr(g|f ) is the descriptive likelihood and pr(f|H ) is a huge-dimensional
PDF for objects in class C; (e.g., for a set of parameters that describe the
objects).
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Likelihoods for classification problems — cont.

From last slide,

pr(g|H; ) = [ dt pr(glf) pr(t|H; )

An equivalent notation is

pr(slH;) = (pr(slf ) )¢, -

If we have real or simulated sample objects from class C';, we can approximate

this density by a sample average. (This point to be discussed further by
Matt Kupinski.)
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Doubly stochastic averaging for classification problems

Often we can perform averages with respect to pr(g|H; ) without knowing

explicit functional forms.

Let T(g) be some arbitrary function of the raw data. Its average is

<T(g) >g|Hj — << T(g) >g|f >f|Hj = TJ
Double overbar denotes average with respect to both measurement noise

and object randomness

Can also define single-bar average over just measurement noise:

T(f) = (T(g) )y ¢
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Doubly stochastic covariance matrix

Covariance matrix on g with both measurement noise and object variability:

Ke=(([g—8) [s 8 Jge)s- (8.344)

Adding and subtracting g(f) in each factor gives

Kg = (([g—&(f) + &(f) — 8] [g — &(f) + B(F) — &) )g)r- (8-345)

Since ([g — g(f)]>g|f = 0, we see that

Kg = (([g — &(F)llg — 8(F)]") gpe)s + ( [B(F) — &) [B(f) — 8] )¢ - (8-346)
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Doubly stochastic covariance matrix — cont.

From last slide:

Kg = (([g — &(F)]ls — 8())])gp)¢ + ( [B(F) — 8] [&(F) —&]" )¢ . (8.346)

e First term in this expression is just the noise covariance matrix Ky
averaged over f.

e Second term represents object variability as seen in the mean image.
Thus we define

This division of the overall covariance does not require any assumptions
about the form of either pr(g|f) or pr(f).

In particular, it does not require that the noise be object-independent, and
it does not require that either the noise or the object be Gaussian.
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Doubly stochastic characteristic functions

Suppose the characteristic functional of the random object is known:

Ve(s) = (exp[—2mi(s, f)]), (8.94)

For signal-independent noise, the corresponding characteristic function for
the data is

Ug(€) = vn(€)Vs (H'e) .

For Poisson noise:

be(€) = Ve [HTT(€)]. (8.339)

where I' is an operator defined by

—1 4 exp(—27i &m)

— 271

[L(&)],, = (8.338)

Ref.: Clarkson et al. (2002)
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IV. Random objects
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Objects in PET and SPECT are random because:
e Organs have random shapes
e Tracer uptake varies randomly from organ to organ
e The fine structure (texture) of uptake within an organ is random

Scatter and attenuation are also random, but we will consider those effects

as part of the imaging system.
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Some specific object models

e Parametric shape models

e Normal and log-normal texture models

e Stationary and quasistationary models

e Channel and filter-bank models

e Cuspy, kurtotic models

e Lumpy and clustered lumpy models
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Random shapes

MOBY mouse phantom developed by Paul Segars

Random shapes are defined by a set of parameters;
PDF on the object = PDF on the shape parameters

Phantom simulation program is way of drawing samples from this PDF
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Cuspy, kurtotic densities

High-Pass Filtered Image

Histogram of Filtered Image Histogram of Filtered Image
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Fig. 8.7 Top: A typical image before and after high-pass filtering.
Bottom: Gray-level histogram of the high-pass filtered image (note

that the right plot is vs. log frequency of occurrence).
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Wavelet analysis

Wavelet components of an image may be:

e Approximately uncorrelated

e Approximately independent

e Cuspy and kurtotic
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Filter-bank models for image texture

e Filter-bank methods describe multivariate image statistics in terms of

univariate PDFs on the outputs of multiple filters (Mumford et al.)
e Most commonly, the filters are wavelet channels or other bandpass filters

e Premise: Images that have similar histograms on the filter outputs have
similar textures (Bergen and Adelson, 1991; Chubb and Landy, 1991)

Methods:

e Heeger and Bergen (1995), Rolland et al. (1998, 2000): Synthesize

sample textures from one or more training images

o Zhu et al. (1998): Use maximum entropy to find multivariate PDF
consistent with observed univariate PDFs (details in Sec. 8.4.4)
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Lumpy backgrounds

Sample lumpy backgrounds

N

fx)y=>) i(r—ra). (8.303)

n=1

A common choice for [(r) is a Gaussian spatial distribution

Ref.: Rolland and Barrett, 1992

59



Clustered lumpy backgrounds

Sample clustered lumpy backgrounds

A cluster of identical blobs forms a superblob, and the final model is a

superposition of superblobs:

Ny DNy

)= > Ip(r —ry — Ry), (8.305)

k=1n=1

Ref.: Bochud et al., 1999
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Statistics of lumpy and clustered lumpy backgrounds

e Models are parametric
e Realistic patterns can be generated by proper choice of parameters

e Analytic expressions for characteristic functionals are known

For lumpy background:

We(s) = exp {—N + /A d?rp, b(ry) exp [—2777; /A d’r s(r) I(r — rn)] } .
(11.152)

where b(ry) is spatial distribution of lump centers.

All statistical properties of the lumpy background are contained in this

characteristic functional.
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Estimating parameters in object models

Suppose the object characteristic functional, denoted W¢(s|a) is known

except for some parameter set a (e.g., lump density and size)
Recall that the characteristic function of g is given by:

Pg(€) = Ve [HTT(€)|a]. (8.339)

Can estimate ¢ by least-squares fitting of empirical characteristic function
(derived from sample images) to ¥g(&).

Then generate new images consistent with these statistics.

Ref.: Kupinski et al., 2003c
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Estimating parameters in object models — Results

Sample image Synthesized images

*

g

‘

Ref.: Kupinski et al., 2003c

63



IV. Random systems
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PET and SPECT imaging systems are random because:

e System matrix H may be measured

e Analytic matrix may be based on measured attenuation map

e Scatter may be ignored or only approximately modeled

e Patient may move

e Mechanics of system may not be perfect

e They may adapt to random objects
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Triply stochastic dynamic images

Generalize previous doubly stochastic results in two ways:

e Consider dynamic sequence of images

e Allow imaging system to be third source of randomness
Notation:

G = {g(j),j =1,...,J} = sequence of J images
F = {f(j),j =1,...,J} = sequence of object distributions
P = {p(j),j =1,...,J} = sequence of system states (PSFs)

Reference:

H. H. Barrett et al.,

Objective Assessment of Image Quality IV (OAIQ V)
J. Opt. Soc. Am. A. 2006, to be published
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Triply stochastic averaging

Consider arbitrary function of the data, T(G)

T(G) = ((T(G))gpF)PF)F
_ /dF /dP/dG T(G) pr(G|P,F) pr(P|F) pr(F) .
pr(G|P,F ) = PDF of measurement noise for given system and object

pr(P|F ) = PDF of system PSF for given object sequence

pr(F' ) = PDF of sequence of random objects
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Covariance decomposition

—noise _——PSFE ;
Ke =Kg +Kg +K%b7,

where

&= (G- GG-Gl')g

Thus the overall covariance matrix for a triply stochastic image sequence
can be rigorously decomposed into three terms representing, respectively,
the contributions from measurement noise, from the random PSF and from

randomness in the object being imaged.

For many more details, see OAIQ IV
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VI. Challenges, unsolved problems,
areas for future research
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Image statistics

e Statistics of nonlinear reconstructions with random objects

e More analysis of likelihood for estimation problems

e Spatiotemporal statistics for dynamic studies

e Statistics of adaptive image sequences

e More analysis of mixed Poisson and Gaussian noise

70



Object statistics

e Characteristic functionals for random shapes

e Empirical validation of analytic models

e [exture databases

e Empirical organ-uptake statistics

e Fast simulation methods for sample covariance matrices
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Random systems

e Characteristic functionals for general random systems

(Already done for atmospheric turbulence!)
e Analysis of effect of noisy, measured H.
e Analysis of effect of measured attenuation
e Statistics of patient motion
e Empirical statistics for scatter
e More analysis of adaptive, time-varying systems

e Sample and simulation methods for finding the system covariance
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