2006 IEEE Medical Imaging Conference

Short Course on Image Quality

M.A. Kupinski and K.J. Myers, Co-organizers

Schedule

- Intro KJ Myers
- Stochastic Models of Objects and Images HH Barrett
- Classification Tasks KJ Myers
- Estimation Tasks MA Kupinski
- Psychophysics: Experimental Methods and Data Analysis - BD Gallas
- Computational Methods MA Kupinski
- Applications in Nuclear Medicine EC Frey

Objective Assessment of Image Quality

- What information is desired from the image?
- What objects will be imaged?
- How will the information be extracted?
- What measure of performance will be used?

What information is desired from the image?

We call this the <u>TASK</u>

TASK: Given an image, make an inference about the patient

Two types of inferences

Classification = labeling

- -Tumor detection (present vs. absent)
- -Malignant vs. benign lesion
- -Is object from H_1 or H_2 ?
- Parameter estimation = quantitation
 - -Tumor size, tumor localization
 - -Tracer uptake
 - -Degree of stenosis

What measure of performance will be used?

- Figure of merit
- Desirable properties:
 - Quantitative
 - Objective
 - Scalar
 - Calculable

Figures of Merit for Classification

- Receiver Operating Characteristic curve
- Average error rate
- Average cost of decisions made
 Bayes' risk
- Error bounds

Figures of Merit for Estimation

- Bias, variance
- Mean-square error (MSE)
- Ensemble MSE
- Error bounds

How will the information be extracted?

Observer = decision-making strategy

Options

- -Human
- -Anthropomorphic model
- -Computer-aided diagnosis (CAD)
- -Best linear detector/estimator
- -Ideal detector/estimator

Ideal Classifier

- Captures all information in the data
- Adds no noise or additional uncertainty
- Test statistic is the likelihood ratio:

 $\Lambda(\mathbf{g}) = \frac{\operatorname{pr}(\mathbf{g} \mid H_2)}{\operatorname{pr}(\mathbf{g} \mid H_1)}$

Test statistic can be a nonlinear function of the data

$$\hat{\mathbf{e}}_{ML} = \frac{\arg \max}{\mathbf{e}} \operatorname{pr}(\mathbf{g} | \mathbf{\dot{e}})$$

Classification

$$\Lambda(\mathbf{g}) = \frac{\operatorname{pr}(\mathbf{g} \mid H_2)}{\operatorname{pr}(\mathbf{g} \mid H_1)}$$

Both require knowledge of pdf for data conditioned on the object class!

Optimal linear estimator

- Generalized Wiener estimator
- Computes linear estimate $\hat{\theta}$

$$\hat{oldsymbol{ heta}} = \overline{oldsymbol{ heta}} + \mathbf{W}^t \left[\mathbf{g} - \overline{\overline{\mathbf{g}}}
ight]$$

where

$$\mathbf{W}^t = \mathbf{K}_{oldsymbol{ heta},\overline{\mathbf{g}}} \mathbf{K}_{\mathbf{g}}^{-1}$$

(13.391)

What objects will be imaged?

- What is at the input to the system?
 - What set(s) of patients?
 - Biology, chemistry, physics...

Digital images are discrete data sets

We write the data as a vector g

• Elements of \mathbf{g} are written \mathbf{g}_{ij} or \mathbf{g}_m

 Index contains voxel label, including detector location, projection angle, time, etc.

Imaging is a process that maps the object to the data

• We write this as: $\mathbf{g} = \mathcal{H} \mathbf{f} + \mathbf{n}$

H is the mapping (system operator)
 May be nonlinear

n is the measurement noise (a vector)
 – Not necessarily additive

Which \mathcal{H} is best?

• Need models/measures of \mathcal{H} to characterize the data

Definitions of probability

- Frequentists
 - Relative frequency of occurrence
 - Games of chance
 No need to verify (e.g., roll of a die)
 - Multiple experimental trials

- Bayesians
 - Not simply a frequency
 - with multiple trials
 - Degree of belief

Conditional probability of the image data

- pr(g|f) : essential for optimal
 inference
- Describes randomness in data g for fixed object f
- In principle, could repeat observations of same object to determine pr(g|f)

Role of Prior Information

- Prior: $pr(\mathbf{f} \mid H_i)$ or $pr(\mathbf{\theta})$
- State of knowledge before imaging
- Data are noisy; often have better inference by enforcing what we know about the object in advance

How to determine prior?

- Difficulty is dimensionality: How to determine pr(f) by frequentist means?
 - May make headway on lower-dimensional problem, e.g., rate parameter

Bayesian answer:

- Prior isn't a relative frequency
- It captures a belief (e.g., smoothness)

