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Objective Comparison of Quantitative Imaging
Modalities Without the Use of a Gold Standard

John W. Hoppin*, Matthew A. Kupinski, George A. Kastis, Eric Clarkson, and Harrison H. Barrett

Abstract—Imaging is often used for the purpose of estimating
the value of some parameter of interest. For example, a cardiolo-
gist may measure the ejection fraction (EF) of the heart in order
to know how much blood is being pumped out of the heart on each
stroke. In clinical practice, however, it is difficult to evaluate an
estimation method because thegold standardis not known, e.g.,
a cardiologist does not know the true EF of a patient. Thus, re-
searchers have often evaluated an estimation method by plotting
its results against the results of another (more accepted) estima-
tion method, which amounts to using one set of estimates as the
pseudogold standard. In this paper, we present a maximum-likeli-
hood approach for evaluating and comparing different estimation
methods without the use of a gold standard with specific emphasis
on the problem of evaluating EF estimation methods. Results of nu-
merous simulation studies will be presented and indicate that the
method can precisely and accurately estimate the parameters of a
regression line without a gold standard, i.e., without the axis.

Index Terms—Cardiac ejection fraction, estimation, modality
comparison, regression analysis.

I. INTRODUCTION

T HERE are many approaches in the literature to assessing
image quality, but there is an emerging consensus in med-

ical imaging that any rigorous approach must specify the infor-
mation desired from the image (the task) and how that infor-
mation will be extracted (the observer). Broadly, tasks may be
divided intoclassificationandestimationand the observer can
be either a human or a computer algorithm [1]–[3].

In medical applications, a classification task is to make a di-
agnosis, perhaps to determine the presence of a tumor or other
lesion. This task is usually performed by a human observer and
task performance can be assessed by psychophysical studies and
receiver operating characteristic (ROC) analysis. Scalar figures
of merit such as a detectability index or area under the ROC
curve can then be used to compare imaging systems.
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Often, however, the task is not directly a diagnosis but rather
an estimation of some quantitative parameter from which a di-
agnosis can later be derived. An example is the estimation of
cardiac parameters such as blood flow, ventricular volume, or
ejection fraction (EF). For such tasks, the observer is usually a
computer algorithm, though often one with human intervention,
for example defining regions of interest [4], [5]. Task perfor-
mance can be expressed in terms of the bias and variance of the
estimate, perhaps combined into a mean-square error as a scalar
figure of merit.

For both classification and estimation tasks, a major difficulty
in objective assessment is lack of a believable standard for the
true state of the patient. In ROC analysis for a tumor-detection
task, we need to know if the tumor is really present and for
estimation of ejection fraction we need to know the actual value
for each patient. In common parlance, we need agold standard,
but it is rare that we have one with real clinical images.

For classification tasks, biopsy and histological analysis are
usually accepted as gold standards, but even when a pathology
report is available, it is subject to error; the biopsy can give in-
formation on false-positive fraction but if a lesion is not detected
on a particular study and, hence, not biopsied, its contribution
to the false-negative fraction will remain unknown [6].

Similarly, for cardiac studies, ventriculography, or ultrasound
might be taken as the gold standard for estimation of EF and
nuclear medicine or dynamic magnetic resonance imaging
might then be compared with the supposed standard [7]. A
very common graphical device is to plot a regression line of
EFs derived from the system under study to ones derived from
the standard and to report the slope, intercept, and correlation
coefficient ( ) for this regression [8]–[12]. Another comparison
approach is the use of a Bland–Altman plot, a measure of
agreement between two different modalities [8], [10]–[13].
Neither of these approaches allows for objective performance
rankings of the imaging systems, a point we expand upon in the
next section. Even a cursory inspection of papers in this genre
reveals major inconsistencies. In reality, no present modality
can lay claim to the status of gold standard for quantitative
cardiac studies. Indeed, if there were such a modality, there
would be little point in trying to develop new modalities for
this task.

Because of the lack of a convincing gold standard for either
classification or estimation tasks, simulation studies are often
substituted for clinical studies, but there is always a concern
with how realistic the simulations are. Researchers who seek
to improve the performance of medical imaging systems must
ultimately demonstrate success on real patients.
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A breakthrough on the gold-standard problem was the 1990
paper by Henkelmanet al. on ROC analysis without knowing
the true diagnosis [14]. They showed, quite surprisingly, that
ROC parameters could be estimated by using two or more diag-
nostic tests, neither of which was accepted as the gold standard,
on the same patients. Recent work by Beidenet al.has clarified
the statistical basis for this approach and studied its errors as a
function of number of patients and modalities as well as the true
ROC parameters [15].

The goal of this paper is to examine the corresponding
problem for estimation tasks. For definiteness, we cast the
problem in terms of estimation of cardiac ejection fraction
and we pose the following question: If a group of patients of
unknown state of cardiac health is imaged by two or more
modalities and an estimate of EF is extracted for each patient
for each modality, can we estimate the bias and variance of the
estimates from each modality without regarding any modality
as intrinsically better than any other? Stated differently, can we
plot a regression line of estimated EF versus true EF without
knowing the truth?

II. CURRENT METHODS OFCOMPARISON

As stated above, the two most common methods of com-
parison used currently in the literature consist of plotting re-
gression lines of EFs to calculate slope, intercept, andand
Bland–Altman analysis. Calculating the correlation coefficient

for the regression plot is not particularly informative when
comparing two estimation tasks [16]–[18]. A nonzero value of

implies correlation which is of very little help considering
the two estimators are attempting to measure the same quan-
tity. Rather, researchers would like to state that a largevalue
implies strong agreement. This is not necessarily true. The value
of depends on the magnitude of the spread of the data points
around the regression lineand the variance of the true param-
eter across the subjects. As a result, the interpretation ofcan be
very misleading. For example, if for a given comparitive study
we were to measure the EFs for 100 patients with true EFs be-
tween 0.6 and 0.7 using two different modalities we would very
likely have a lower value than if we were to run the same study,
using the same modalities to measure the EFs for 100 patients
with EFs between 0.4 and 0.9.

The slope and intercept of the regression line between two
modalities may also be misleading. If one of the methods was an
actual gold standard, then the slope and intercept could be used
to calibrate the “new” system. This is rarely the case, however,
leaving us wondering why we calculated the slope and intercept
in the first place.

Bland and Altman presented a simple approach to this
problem in 1983 which attempts to quantify the level of agree-
ment between two methods for calculating the same quantity
[16]. Given two sets of estimates for the same paramater the
Bland–Altman plot depicts the difference between the estimates
versus the mean of the estimates. If 95% of the estimates fall
within two standard deviations of the mean of the differences,
then the two methods of estimation are said to “agree” and,
thus, one method could, in theory, replace another.

A shortcoming of this approach lies in the definition of agree-
ment which appears to be rather arbitrary. Their definition im-
plies that if the differences of the estimates follow a Gaussian
distribution then “agreement” is achieved independent of how
big or small those differences are. Furthermore, whether or not
Bland–Altman plots are useful when determining agreement,
they do not tell us which method is performing better. In this
paper, we describe a method which allows us to determine just
that: Which method is better? Our method estimates the relative
accuracy and consistency of the methods used without assuming
a priori that one method is the gold standard.

III. A PPROACH

We begin with the assumption that there exists a linear rela-
tionship between the true EF and its estimated value. We will
describe this relationship for a given modalityand a patient
using a regression line with a slope , intercept , and noise
term . We represent the true EF for a given patient with
and an estimate of the EF made using modalitywith . The
linear model is, thus, represented by

(1)

We make the following assumptions.

1) does not vary for a given patient across modalities and
is statistically independent from patient to patient.

2) The parameters and are characteristic of the
modality and independent of the patient.

3) The error terms, , are statistically independent and
normally distributed with zero mean and variance.

Using assumption 3) we write the probability density function
(pdf) for the noise for a given patient and modalities
as

(2)

where the term signifies the set of noise terms. In other
words, we assume a multivariate noise model with a diagonal
covariance matrix. We could relax this assumption by adding
nonzero terms in the off-diagonal components of the covariance
matrix. One could also assume a different noise model, even one
that is signal dependent. Solving for in (1), we rewrite (2)
as the probability of the estimated EFs for multiple modalities
and a specific patient given the linear model parameters (s,

s, and s) and the true EF as

(3)

The notation represents the estimated EFs for a given
patient over modalities. Using the following property of
conditional probability:

(4)



HOPPINet al.: OBJECTIVE COMPARISON OF QUANTITATIVE IMAGING MODALITIES WITHOUT THE USE OF A GOLD STANDARD 443

as well as the marginal probability law

(5)

we write the probability of the estimated EF for a specific patient
across all modalities given the linear model parameters as

(6)

where

(7)

From assumption 1) above, the likelihood of the linear model
parameters can be expressed as

(8)

where is the total number of patients. Upon taking the log and
rewriting products as sums we obtain

(9)

It is this scalar , the log-likelihood, that we seek to maximize to
obtain our estimates of , , and . These estimates will be
maximum-likelihood (ML) estimates for our parameters when
the data matches the model. Although may appear to be
a prior term, we arenotusing a maximuma posterioriapproach;
we are simply marginalizing over the unknown parameter
which we are treating as a nuisance parameter. We arenot esti-
mating , rather we are estimating the linear model parameters
in an attempt to compare the different modalities. Thus, we have
derived an expression for the log-likelihood of the model param-
eters which does not require knowledge of the true EF, i.e.,
without the use of a gold standard. This is analogous to fitting
lines without the use of the axis.

A. True ( ) Versus Assumed ( ) Distributions

Although the expression for the log-likelihood in (9) does
not require the true EF , it does require some knowledge of
their distribution . We will refer to this distribution, as it
appears in (9), as the assumed distribution ( ) of the EFs.
In this paper, we will investigate the effect different choices of
the assumed distributions have on estimating the linear model
parameters. We first sample parameters from a true distribution
( ) and generate different estimated EFs for the different

modalities by linearly mapping these values using knowns
and s, then add normal noise to these values with knowns.
These EF estimates form the values , which will be used
in the process of determining the estimates of the linear model
parameters by optimizing (9). We will look at cases in which the
assumed and true distributions match (data matches model), as
well as cases in which they do not match (data does not match
model).

For our experiments, we will investigate beta distributions
and truncated normal distributions as our choices for both the
assumed and true distributions. These distributions have been
chosen because EF is bounded between zero and one and has
been shown to follow a unimodal distribution [19]. The beta
distribution has pdf given by

(10)

where and the beta function is a normalizing
constant. The truncated normal distribution is given by

(11)

where is a normalizing constant involving error func-
tions and is a rect function which truncates the normal
from zero to one. It should be noted thatand are the mean
and standard deviation for the normal distribution, not neces-
sarily the mean and standard deviation of the truncated normal.
While , , , and appear to be hyperparameters they are not;
they are simply parameters characterizing the density, ,
which we used to marginalize in (3).

Using a truncated normal for the assumed distribution in (9),
we find the following closed-form solution for the log-likeli-
hood:

erf erf (12)

where

The expression for the log-likelihood with a beta assumed dis-
tribution does not easily simplify to a closed-form solution and,
thus, we used numerical integration techniques to evaluate the
one-dimensional integral in (9).

We used a quasi-Newton optimization method in Matlab
on a Dell Precision 620 running Linux to maximize the
log-likelihood as a function of our parameters [20]. For each
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TABLE I
VALUES OF THEESTIMATED LINEAR MODEL PARAMETERS USING MATCHING ASSUMED AND TRUE DISTRIBUTIONS

(a) (b)

(c)

Fig. 1. The results of an experiment using 100 patients, three modalities and the same true parameters as shown in Table I. In each graph, we have plottedthe true
ejection fraction against the estimates of the EF for three different modalities [(a)–(c)]. The solid line was generated using the estimated linear model parameters
for each modality. the dashed lines denote the estimated standard deviations for each modality. The estimateda , b , and� for each graph are (a) 0.59,�0.07,
and 0.06; (b) 0.69, 0.03, and 0.025; and (c) 0.83, 0.12, and 0.082. Note that although we have plotted the true EF on thex axis of each graph, this information was
not used in computing the linear model parameters.

experiment, we generated EF data for 100 patients using one
of the aforementioned distributions. We then ran the opti-
mization routine to estimate the parameters and repeated this
entire process 100 times in order to compute sample means

and variances for the parameter estimates. The tables below
consist of the true parameters used to create the patient data
as well as the sample means and standard deviations attained
through the simulations.
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TABLE II
VALUES OF ESTIMATED LINEAR MODEL PARAMETERS USING A FLAT ASSUMEDDISTRIBUTION (pr (�) = 1)

TABLE III
VALUES OF ESTIMATED LINEAR MODEL AND DISTRIBUTION PARAMETERS WITH THE ASSUMED

DISTRIBUTION AND THE FIXED TRUE DISTRIBUTION HAVING THE SAME FORM

IV. RESULTS

A. Estimating the Linear Model Parameters for a Given
Assumed Distribution

We first investigated the results of choosing the assumed dis-
tribution to be the same as the true distribution. The asymptotic
properties of ML estimates would predict that in the limit of
large patient populations the estimated linear model parameters
would converge to the true values [21]. The results, shown in
Table I, are consistent with this prediction. For the experiment
below, we have chosen 1.5 and 2 for the beta distri-
bution and 0.5 and 0.2 for the truncated normal distri-

bution. Fig. 1 illustrates the results of an individual experiment
using the truncated normal distribution.

In an attempt to understand the impact of the assumed distri-
bution on the method, we next used a flat assumed distribution,
which is in fact a special case of the beta distribution ( 1,

1). We used the same beta and truncated normal distri-
butions for the true distribution as was chosen in the previous
experiment, namely 1.5, 2, 0.5, and 0.2.
As shown in Table II, the parameters estimated using a flat as-
sumed distribution are not as accurate as those in the experi-
ment with matching assumed and true distributions. However,
the systematic underestimation on thes and the systematic
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(a) (b)

(c)

Fig. 2. The results of an experiment using 100 patients, three modalities and the same true parameters as shown in Table III. In each graph, we have plotted
the true ejection fraction against the estimates of the EF for three different modalities [(a)–(c)]. The solid line was generated using the estimatedlinear model
parameters for each modality. The dashed lines denote the estimated standard deviations for each modality. The estimateda , b , and� for each graph are:
(a) 0.66,�0.11, and 0.050; (b) 0.75, 0.01, and 0.035; and (c) 0.86, 0.07, and 0.073. Note in this study the parameters of the beta distribution were estimated along
with the linear model parameters.

overestimation on the s has not affected the ordering of these
parameters. In fact, the estimated parameters have been shifted
roughly the same amount. It should also be noted that the esti-
mates of the s are still accurate. We will return to this point
later in the paper.

B. Estimating the Linear Model Parameters and the
Parameters of the Assumed Distribution

After noting the impact of the choice of the assumed distribu-
tion on the estimated parameters it occurred to us to investigate
the effect of varying this distribution. In the case of the beta dis-
tribution, this was simply a case of addingand to the list
of parameters over which we were attempting to maximize the
likelihood. In similar fashion, we added and to the list of
parameters for the truncated normal distribution. In the case of
the beta distributions, we limited the search in the region ,

5, since values of and between zero and one create
singularites at the boundaries, an impossibility considering the
nature of EF. In the case of the truncated normal distributions,

we limited the search in the region 1 and 0.1
10. We began by choosing the form of the assumed distribution
and the true distribution to be the same, i.e., we estimated the
parameters of the beta distribution while using beta distributed
data. We found that the method successfully approximated the
values of all parameters, including those on the assumed dis-
tribution, as displayed in Table III. The results of an individual
experiment is displayed graphically in Fig. 2.

In the previous experiment, the estimated parameters associ-
ated with both the beta and truncated normal distributions were
very close to their true values. We now show the results when
the assumed distribution differs from the true distribution in
Table IV. We know from our previous experiment that when the
form of the assumed and true distributions match, the correct
distribution parameters are estimated (on average). However,
it remains to be seen what distribution parameters will be es-
timated when the forms of the two distributions differ. Thus, in
Fig. 3 we display the true distribution as well as the assumed dis-
tribution with the mean estimates of the distribution parameters.
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TABLE IV
VALUES OF ESTIMATED LINEAR MODEL PARAMETERS USING DIFFERENTFORMS OF THEVARYING

ASSUMEDDISTRIBUTION AND THE FIXED TRUE DISTRIBUTION

(a) (b)

Fig. 3. When the form of the assumed distribution does not match that of the true distribution, we see that the optimal distribution parameters are suchthat the
form of the assumed distribution approximates the true distribution. In (a), the true distribution is a truncated normal which is approximated automatically by the
method using a beta distribution (� = 3.93,! = 3.47). In (b), the role are reversed, as a truncated normal automatically approximates a beta distribution (� =

0.33,� = 0.42).

Note that the assumed distribution cannot equal the true distri-
bution because they are from two different distribution families,
i.e., beta and truncated normal. The assumed distribution does,
however, take on a form which approximates the true distribu-
tion in an attempt to maximize the likelihood.

V. DISCUSSION ANDCONCLUSION

We have developed a method for characterizing an observer’s
performance in estimation tasks without the use of a gold stan-
dard. Although a gold standard is not required for this method,
it is necessary to make some assumptions on the distribution of
the parameter of interest (i.e., EF). We have found that when

the assumed distribution matches the true distribution, the esti-
mates of the linear model parameters are both accurate and pre-
cise. Conversely, when the assumed and true distributions do not
match, we find that our linear model parameters are no longer
as accurate. This led us to investigate the role of the assumed
distribution in the accuracy of the linear model parameters. By
optimizing both the distribution parameters and the model pa-
rameters, we found that one can effectively find both the model
parameters and the form of the assumed distribution.

When comparing different imaging modalities one would
typically prefer the modality with the smallest error, i.e., the
smallest . Estimating facilitates modality com-
parisons without knowledge of a gold standard. As discussed
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earlier, the estimates of the slopes s retained the proper
ordering amongst modalities even when a bias is introduced by
mismatching true and assumed distributions. The estimates of

, meanwhile, were very accurate regardless of the choise of
the assumed and true distributions. Combining these observa-
tions we feel confident that will serve as a good figure
of merit to compare imaging systems even when the data does
not match the model.

The estimates of the slope and intercept values describe the
systematic error (or bias) of the modality. If one is confident in
these estimates they could be employed to adjust and correct
systematic error for each modality. Another interesting result of
the experiments is the successful estimation of the distribution
parameters to fit the form of the true distribution. This could
serve as an insight into the distribution of the true parameter for
the population studied, i.e., the patient distribution of EFs.

A major underlying assumption of the method proposed in
this paper is that the true parameter of interest does not vary ac-
cording to modality. This assumption may not be accurate in the
context of estimating EF, which may vary moment to moment
with a patient’s mood and/or breathing pattern. This assumption
may be valid, however, for other estimation tasks. Another as-
sumption we have made is the linear relationship between the
true and estimated parameters of interest. This was chosen in
large part due to mathematical simplicity, but is, nonetheless, a
good first step. More complicated, nonlinear models can easily
be accommodated by this method and are discussed briefly in
another work [22]. Ideally, we would like to choose a model
based on some sort of physical knowledge.

The major components of this work were originally presented
at the 2001 conference on Information Processing in Medical
Imaging (IPMI) and published in the conference proceedings
[23]. Since then we have studied the effect of varying the true pa-
rameters, the number of patients and the noise and compared the
performance of our method to standard linear regression with a
gold standard in simulation [22]. Our method performed very
well.

Those familiar with latent variable models might prefer to
think of the EF as a latent variable and to perform latent
class anaylsis [24], [25]. We are not performing conventional la-
tent class anaylsis because we do not assume the data to follow
a Gaussian distribution and we do not compare covariance ma-
trices. Rather, we work with the data directly and perform ML
estimation of the linear model parameters.

In order to quantify the performance of our method, we are
in the process of evaluating the Fisher information matrix for
the estimates of the linear model parameters and the parameters
characterizing the shape of the assumed distribution. This will
allow us to determine a theoretical minimum variance for these
estimated parameters. In the future, we would like to relax the
independence assumption of the noise, i.e., assume a correlated
Gaussian as our noise model.
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