Estimation in Medical Imaging
without a Gold Standard?

Matthew A. Kupinski, PhD, John W. Hoppin, MS, Eric Clarkson, PhD, Harrison H. Barrett, PhD, George A. Kastis, MS

Rationale and Objectives. In medical imaging, physicians often estimate a parameter of interest (eg, cardiac ejection
fraction) for a patient to assist in establishing a diagnosis. Many different estimation methods may exist, but rarely can
one be considered a gold standard. Therefore, evaluation and comparison of different estimation methods are difficult. The
purpose of this study was to examine a method of evaluating different estimation methods without use of a gold standard.

Materials and Methods. This method is equivalent to fitting regression lines without the x axis. To use this method, mul-
tiple estimates of the clinical parameter of interest for each patient of a given population were needed. The authors as-
sumed the statistical distribution for the true values of the clinical parameter of interest was a member of a given family
of parameterized distributions. Furthermore, they assumed a statistical model relating the clinical parameter to the esti-
mates of its value. Using these assumptions and observed data, they estimated the model parameters and the parameters
characterizing the distribution of the clinical parameter.

Results. The authors applied the method to simulated cardiac gjection fraction data with varying numbers of patients,
numbers of modalities, and levels of noise. They also tested the method on both linear and nonlinear models and charac-
terized the performance of this method compared to that of conventional regression analysis by using x-axis information.
Results indicate that the method follows trends similar to that of conventiona regression analysis as patients and noise
vary, athough conventional regression analysis outperforms the method presented because it uses the gold standard which
the authors assume is unavailable.

Conclusion. The method accurately estimates model parameters. These estimates can be used to rank the systems for a
given estimation task.
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Much of the recent research in medical imaging has dealt of what constitutes a “better” image is required. One

with the development of imaging systems or of image- common approach to the assessment of image quality is
processing techniques to produce “better” images. Thus, visua comparison by human observers. This method,
regardless of the imaging modality involved, a definition however, is both subjective and often irreproducible. A

more scientific and objective approach to assessing image

Acad Radiol 2002; 9:290-297
" From the Department of Radiology (M.A.K., JW.H., E.C., H.H.B.), Pro-

quality is one based on task performance (1). To imple-
ment this approach, three elements much be specified:

gram in Applied Mathematics (J.W.H., E.C., H.H.B.), and Department of (a) the task for which the images are being produced,
Optical Sciences (E.C., H.H.B., G.A.K.), Arizona Health Sciences Center, : :

PO Box 245067, Tucson, AZ 85724-5067. Received August 28, 2001; revi- (b)_the Observe_r WhO-WI”. perform thI.S task, and (C) the
sion requested October 11; revision received October 20; accepted Octo- patient population being imaged. Typical tasks are the

ber 22. Supported by National Institutes of Health grants P41 RR14304, ; i P H

KO1 CA87017-01, and RO1 CA 52643 and National Science Foundation detection OT an abnormallty’ the e.stlrr!atlon of some p_a_
grant 9977116. Address correspondence to M.AK. rameter of interest, or some combination thereof. A given
© AUR, 2002 imaging system may be more suited for certain tasks,

290



Academic Radiology, Vol 9, No 3, March 2002 ESTIMATION IN MEDICAL IMAGING

thereby requiring a clear definition of the task itself to
assess objective image quality. The observer is usually a
human, but it can also be a computer program (or some
combination of the two). The patient population is the
group of subjects to be imaged. For example, if imaging
is being performed to detect liver tumors, then the patient
population consists of those patients who are at risk for
liver cancer.

Conventionally, we employ a gold standard to measure
the performance of an observer by using a particular im-
aging system for detection or estimation. A gold standard
is a method that is presumed to be correct for determining
the presence of an abnormality or the parameter being
estimated. For example, for the detection of breast tumors
on screening mammograms, the gold standard is the ex-
amination of surgically obtained specimens by a patholo-
gist (2). Because of the invasive nature of most gold stan-
dards, the ability to measure task performance without
use of a gold standard is of considerable interest to the
imaging community (3).

In the case of detection tasks, common measurements
of performance are various features of the receiver operat-
ing characteristic (ROC) curve (4). This type of analysis
required a gold standard until Henkelman et a (5) devel-
oped a technique to compute ROC curves for multiple
imaging modalities without use of a gold standard.

For performance measurements involving an estimation
task and a gold standard, we can plot the estimate versus
the gold standard for each patient and then use statistical
techniques (eg, linear regression) to determine the rela-
tionship between them. Estimation methods with small
bias and little noise are preferable.

The purpose of this study was to examine a method of
evaluating different estimation methods without use of a
gold standard. This amounts to performing “regression
without the truth” (ie, the x axis), from which the title of
this technique (RWT) is derived.

MATERIALS AND METHODS

A variety of different parameters are estimated in med-
ical imaging in an attempt to quantify an individual’s
health status. For example, the cardiac gjection fraction
describes the fraction of the blood in the left ventricle
that is pumped out during a given cycle. This parameter,
which is used by physicians as an indicator of a patient’s
susceptibility to heart failure, can be estimated with use
of ultrasound (US), magnetic resonance (MR), or gamma-
ray imaging techniques (6,7). When evaluating a new

method to estimate the cardiac gection fraction, it is
common practice to use a more accepted modality as a
pseudo—gold standard. There is no a priori reason, how-
ever, to believe that any of these techniques provides the
true value of the parameter of interest. Many other quan-
tities that are estimated in medical imaging aso lack a
gold standard; examples include the blood oxygen con-
centration (8) and bone density (9).

In this study, we assumed that a true value exists for
the cardiac gjection fraction in each patient, but that this
value is unknown to us. Let us envision an experiment
estimating a clinically relevant parameter for P patients
using M different modalities. We denote the estimated
parameter for the pth patient and mth modality by 6, and
the true value (ie, the unknown gold standard) for the pth
patient by ©,. We assume that these quantities are related

by
Oom = 8@, + b+ €y (1)

where a,, and by, are the linear model parameters and e,
is the random noise in the measurement. We also assume
for a given modality m that e,y follows a normal distribu-
tion with a mean of zero and a standard deviation of o,

that is, for a given patient p,

M
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where pr({ eymt) denotes pr(epy, €, - - -, €m)- In formulat-
ing Equation (2), we assume that the noise is independent
across modalities and patients (ie, the noise in MR imag-
ing is independent of the noise in ultrasound), and that
the cardiac egjection fraction of one patient does not affect
that of another. Using Equation (1), we arrive at

pr({Opntl{am b o, O)

M 1 1 2
R A L M G

Note that the terms a,, b, and o;, which make up the
linear model describing each modality, depend only on
the modality; they are independent of the patient. Al-
though a linear model is assumed here, the RWT method
is also applicable to nonlinear models (discussed |ater).

291



KUPINSKI ET AL Academic Radiology, Vol 9, No 3, March 2002

In addition, we assume the gold standard for each pa-
tient, @, is the same for each modality. Furthermore, we
assume that a probability distribution exists on ®, pr(0®),
from which the ©, values are drawn as independent sam-
ples. Using a probabilistic view of ® enables us to com-
pute the likelihood, L(-), that we observed our data given
the model parameters. This is accomplished by marginal-
izing over the variable O,

L({am b ol D)

= [ pr{Opmtl{am bm o)

p=1

=11 f Pr({ Ot [{am b o, ©)pr(©)dO, (4)
p=1

where pr({ Opm} [{ @m, b, o}, ®) is given in Equation (3)
and D is the data 6y, for all observed patients and modal-
ities. If we knew the density function pr(®), we would
use it to calculate this likelihood. We do not know this
density function, however. Thus, we represent pr(®) by a
parameterized density function pr (®[F), where the compo-
nents of T are parameters that we can vary. For example,
in the case of a normal distribution, we would vary the
mean and that standard deviation; thus, we have a likeli-
hood that is a function both of the linear model parame-
ters and of the gold-standard density parameters. Our goal
is to use data from P patients for whom the parameter of
interest has been estimated on M > 1 modalities to deter-
mine estimates for g, by, o, and T (denoted by &, by,
om, and T, respectively) by maximizing the expression for
the likelihood of the data. This estimation method is com-
monly referred to as maximum-likelihood (ML) estima-
tion (10). The parameter values determined with ML esti-
mation characterize the relationship between the estimates
and the gold standard of each modality, the noise in these
estimates, and the distribution of the true values for the
patient population. A detailed derivation has been pub-
lished previously (11).

Many other methods are available for estimating these
values, but ML estimation has the advantage of being
relatively easy to implement and of being asymptotically
efficient. An efficient estimator is one that is unbiased (ie,
yielding the correct value on average) and that has mini-
mum variance in the class of all such unbiased estimators
(12). By “asymptotically efficient,” we mean that the ML
estimator tends to an efficient estimator as the patient
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population increases. Note that estimation of the parame-
ters ay, by, oy, and T is guaranteed to be asymptatically
efficient only when the linear model is correct and the
parameterized density is capable of matching the true
density of the gold standard.

Implementation

The likelihood function was implemented and opti-
mized on an 800-MHz Pentium 111 computer (Dell,
Round Rock, Tex) by using Matlab software (Mathworks,
Natick, Mass). We used a quasi-Newton optimization
method in the Matlab software to determine the maximum
of the likelihood. We constrained this optimization to
look for reasonable values of the parameters (ie, positive
dopes and positive variances). We fixed the initial guess
as the midpoint of the search space, which was a point
not equal to the true values of the parameters. Using
these constraints, the results of the optimization were not
sensitive to the initial guess. The optimization task itself
took from a few seconds to a few minutes to run, depend-
ing on the form of the assumed distribution that was used
in the likelihood expression.

We performed numerous simulation studies in which
we sampled cardiac gjection fractions (ie, the gold stan-
dard) for a simulated patient population from a beta dis-
tribution with fixed parameters; that is, pr(®) was beta
distributed. We then adjusted this gold standard by using
linear models with known parameters a,, and b,, and a
known noise level characterized by o, This comprised
the data that were input for the RWT; the gold standard
values were not input for the RWT. In computing the
likelihood function, we not only need the data but must
also assume a functional form for the gold-standard den-
sity. Thus, we assumed a truncated normal distribution
with a varying mean and variance; that is, p(®|f) was a
truncated normal density with ¥ = { wa04}. Note that this
distribution differs from what was actually used to gener-
ate the gold standard. This simulates the real-world situa-
tion in which one would not know exactly how the gold
standard was distributed.

Both the beta and the truncated normal distributions
are bounded between zero and one. This study examined
the performance of RWT only with these bound distribu-
tions. (Difficulties that arise when extending the RWT
method to distributions spanning the entire real line will
be the subject of future work.) Both of the distributions
employed are unimodal (ie, single peaked). One might
expect the distribution of cardiac gection fractions to be
bimodal, with one peak for the patients with heart prob-
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Figure 1. A graphic, two-modality example of the method studied where a shows the results for M = 1 and b shows the results for
M = 2. The dotted lines represent =ad;,. The slope, intercept, and noise terms were estimated by using RWT. Although the x coordinates
are plotted, they were not used in estimating the linear model parameters.

2.5
i P AN .
4 N
’ A
2 - [
1.5}
=
w
C
a
1 L
0.5r
7 Gold-standard Density pr(©)
.’ === Estimated Density pr(©|r)
G - o i i L L N o~
0 0.2 0.4 0.6 0.8 1

Parameter of Interest

Figure 2. A comparison of the true gold-standard density, pr(®),
and the parameterized density, pr(0|f). The shape of the density, as
characterized by 7, was determined with RWT but without previous
information. The gold-standard density shown here is a truncated
normal density, whereas the parameterized density used in the likeli-
hood expression is a beta-density function. In a sense, this illustrates
a beta density imitating a given truncated normal density. Note that
the parameter of interest is limited to a finite domain.

lems and one peak for the patients without heart prob-
lems, but Sharir et al (7) have presented data to support a

unimodal model for the distribution of cardiac ejection
fractions.

lllustrative Example

An illustrative example may help explain the RWT
method further. For the numeric simulations throughout
this study, we generate O, values (ie, the gold standard)
by sampling a known distribution. From this, we can gen-
erate the estimates for each modality (ie, the 6y, values)
by using Equation (1). We use RWT to estimate the lin-
ear model parameters a.,, by, and o, and the parameters
that determine the shape of pr(®) by using only the 6,,
values. This is accomplished by maximizing a likelihood
expression with numeric optimization techniques.

Figure 1 displays a plot of 6, versus ®, for M = 2
modalities and P = 100 patients. Also plotted are the
regression lines derived using the estimated linear model
parameters. We stress that the gold standard was not used
in the estimation of these linear model parameters. Thus,
one could think of this figure as being a linear-regression
analysis that was performed without knowledge of the
x-coordinates.

Figure 2 displays a plot of the density associated with
the gold standard, pr(®), along with the density pr (®|?)
by using T as determined with RWT. In this example, the
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Figure 3. (a) The RMSE for three different modalities versus the number of patients. As the number of patients increases, RMSE,, con-
verges to op/a, by Equations (1) and (5). (b) A comparison between RWT and linear-regression analysis with a gold standard. Note that
the RMSE is also averaged over the three modalities. As expected, conventional regression analysis has lower RMSE, but the perfor-
mances of the two methods converge as the number of patients increases. For these experiments, & = [0.6,0.7,0.8], b =[-0.1,0.0,0.1],
o = [0.05,0.03,0.08], and the error bars represent the standard error calculated over 50 independent experiments.

gold standard was sampled from a truncated normal dis-
tribution. A beta distribution with two varying parameters,
¥, was used as the assumed distribution. This is the oppo-
site of what was done in the later simulation studies, in
which the gold standard was a beta distribution and the
model employed was a truncated normal distribution.
With certain choices regarding the parameters, the beta
distribution can look very different from a normal distri-
bution. However, the distribution parameters fit by RWT,
f, are such that the beta distribution looks similar to that
of the truncated normal distribution that was used to gen-
erate the gold standard.

Figure of Merit

The figure of merit in linear-regression analysis is the
root-mean-squared error (RMSE), hence the expression
least-squares fitting. We use a similar figure of merit to
characterize the performance of a single application of
RWT. The RMSE for a given modality mis

1 F’( (9m—bm)2
RMSE, = 4= > [0, - ] . 5
sz b A (5)

This figure of merit was chosen because it measures the dif-
ference between the gold standard, ®,, and the values found
through adjusting the data, 6y, by the estimated linear
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Figure 4. The RMSE (averaged across simulations and modali-
ties) versus the number of modalities used in a RWT experiment.
A sharp decline in RMSE is seen from one to two modalities, fol-
lowed by a slow decline. One might expect this, especially be-
cause RWT cannot work properly with only one modality. The
performance of conventional regression analysis is independent of
the number of modalities. The same model parameters were used
for all modalities in all experiments (@, = 1, b, = 0.1, o, = 0.05,
P = 100).

model parameters, &, and by, Note that this figure of merit
cannot be used in practice, however, because of the lack of a
gold standard, but it provides an excellent technique to eval-
uate the method in a simulation. In this study, we performed
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Figure 5. (a) The RMSE for three different modalities versus variance of the noise o,,. The RMSE increases in accordance with 1/a,, by
Equations (1) and (5). (b) A comparison between RWT and linear-regression analysis with a gold standard. Note that the RMSE is also
averaged over the three modalities. The RMSE does not converge to zero for RWT as o, tends to zero. The parallel nature of the two

graphs indicates that the comparative performance of RWT is independent of o,,,. For these experiments, & = [0.6,0.7,0.8], b =
[-0.1,0.0,0.1], P = 100, and the error bars represent the standard error calculated over 50 independent experiments.

50 smulations and average RM SE;,, determinations (denoted
by RMSE,) and also computed the standard error.

RESULTS

Analysis of RWT

As stated, ML estimation is asymptotically efficient.
Figure 3a shows that the RMSE, as given in Equation (5),
decreases as the patient number increases. The variance
of the noise o, was fixed for each modality in this exper-
iment. In the limit of large patient numbers, the three dif-
ferent curves (each representing a different modality) tend
to a minimum value o/a, (see Eqq [1] and [5]) in accor-
dance with ML theory.

Figure 3b compares the performance of conventional re-
gression analysis with that of RWT. As expected, conven-
tional regression analysis using the gold standard outper-
forms RWT. The difference between the two, however, de-
creases as a function of the size of the patient population.

That an increase in data yields more accurate results is
not surprising. An increase in the number of modalities,
however, is a somewhat less intuitive notion given the
complexity of our ML estimator. Figure 4 displays a plot
of RMSE versus number of modalities. After a few mo-
dalities, the gain in accuracy is not substantial. Note that
the performance of conventional linear-regression analysis
is independent of the number of modalities. The perfor-

mance of RWT with one modality is very poor, but the
performance with two or more modalities is relatively
constant.

Finally, we looked at the impact on RMSE of varying
the parameter o;,, to understand what occurs regarding
accuracy as the noise in the data increases. The curves in
Figure 5a show that RMSE increases linearly with in-
creases in oy, The slopes of these lines are given by 1/a,
as predicted from Equations (1) and (5).

Figure 5b compares the performance of conventional
regression analysis with that of RWT. Wheresas the
RMSE limits to zero as a;,, — 0 for conventional regres-
sion analysis, RWT limits to a positive constant. The con-
stant difference between the two plots in Figure 5b indi-
cates the independent relationship between the variance of
the noise and the comparative performance of RWT and
conventional regression analysis.

Nonlinear Models

A clear limitation of the results presented thus far is
the strict assumption of a linear model governing the rela-
tionship between the gold standard and the individual mo-
dalities. To ease this assumption, one can rewrite Equa-
tion (1) as

Oom = N(Op, V) + €pms (6)
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Figure 6. An application of RWT with a quadratic model. (a) For
modality 1, a strong, nonlinear relationship with the gold standard
and a relatively large variance were discovered qualitatively.

(b) Modality 2 was slightly nonlinear with a small variance,
whereas (c) modality 3 was linear with a large variance. Both
were fit well by the quadratic RWT.

where N(-) is some nonlinear function of the gold stan-
dard with the model parameters v,

Figure 6 shows the results of a single experiment using
a quadratic model for each of three modalities. With mo-
dality 1 (Fig 6a), a nonlinear relationship is seen between
the gold standard and the estimate. With modality 2 (Fig
6h), a weak, nonlinear relationship is seen. Findly, the
relationship in modality 3 (Fig 6¢) is linear. The RWT
accurately fits all three modalities. The time required for
the optimization procedure to converge, however, is in-
creased by the added parameters to be estimated. Also,
with too many parameters, regression analysis will even-
tually fit the noise in the data. We have shown that the
method can be extended to nonlinear models, but exten-
sive work remains to be completed with the linear models
before the performance of this technique using nonlinear
models can be fully characterized.

Arriving at a gold standard for a given estimation
task is often difficult. Frequently, researchersin a
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given field do not agree on a gold standard, and even
when such agreement occurs, the information can be
difficult to obtain (eg, by means of postmortem exami-
nation). Indeed, if an accepted gold standard was easy
to obtain, no other methods to ascertain the relevant
information would be needed. Thus, a gold standard
typically is not available.
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In the absence of a gold standard, an aternate ap-
proach to comparing estimation tasks in medical imaging
involves plotting the results obtained with a new modality
versus those obtained with a more established modality.
These results give us a pseudo—gold standard for a com-
mon patient population (13). Such comparisons are not
necessarily meaningful, however, given the inaccuracy of
the pseudo—gold standard. We have presented a method
to compare and to evaluate different estimation techniques
without use of a gold standard.

An estimator of a medically relevant parameter should be
both accurate and precise. For the linear models discussed in
this study, accuracy can be approximately achieved by ad-
justing the measurements using the estimated model parame-
ters &, and by, After this correction has been made, the vari-
ance in the adjusted measurements (ie, the precision) is o4,
/az. An estimate of this quantity ¢-3/a3 can be used as a
figure of merit for crossmodality comparisons.

The key advantage of RWT over conventional regres-
sion analysis is that RWT does not require use of a gold
standard. The performance of RWT is, however, hindered
by this lack of information. Furthermore, like conventional
regression anadysis, RWT involves the assumption of a
known functional form for the relationship between the gold
standard and the data, but unlike the case with conventional
regression anaysis, this relationship cannot be visudly as-
sessed without the gold standard. We must also assume a
functiona form of the gold standard density, pr(®), but
some or all parameters characterizing the shape of this den-
sity are free to vary in RWT. In this study, we have as-
sumed a Gaussian noise model, which is aso implicit in
conventional regression analysis, but other noise models are
easy to implement in the likelihood expression.

A principal weakness of RWT is the assumption that
the gold standard for a particular patient ®, does not vary
across modalities. For example, a patient’s heart rate and,
hence, gection fraction might vary if measured with MR
imaging because of the enclosed nature of many MR im-
aging machines. Variations in the gold standard can be
accounted for, to first order, by the modality noise term
€pm if the variations in the gold standard are assumed to
have a mean of zero and constant variance.

We have previously studied the bias and variance of
estimated parameters in this technique when the true and
assumed distributions differed (11). Reference 11 used
only beta and truncated normal distributions, and we
found that parameters were accurately estimated even
when the distributions did not match. We are performing
ongoing studies in which the shapes of the assumed and

true distributions differ greatly. For example, with dis-
eased and nondiseased patient populations, one might ex-
pect to see a bimodal distribution for the gold standard.
We are currently using a parameterized, bimodal distribu-
tion in the likelihood expression. Furthermore, we are
examining goodness-of-fit measures to determine how
well the parameters characterizing the shape of the gold-
standard density are estimated. Finally, we are studying
the theoretic performance limit of RWT; that is, we have
calculated the Fisher information matrix for this problem
and used it to determine the minimum possible variances
that an unbiased estimator can have for this problem. This
type of analysis allows us to study and to quantify the
limitations of the RWT technique.

Conventional regression analysis uses more informa-
tion than RWT (ie, the x axis). A noteworthy aspect of
RWT, however, is the exploitation of previously unused
information. We have shown that we can successfully
estimate model parameters without the x axis if we have
measurements obtained from multiple modalities for a
common group of patients.

1. Barrett HH. Objective assessment of image quality: effects of quantum
noise and object variability. J Opt Soc Am A 1990; 7:1266-1278.

2. Feig SA. Estimation of currently attainable benefit from mammographic
screening in women aged 40-49. Cancer 1995; 75:2412-2419.

3. Walter SD, Irwig LM. Estimation of test error rates, disease preva-
lence, and relative risk from misclassified data: a review. J Clin Epide-
miol 1988; 41:923-937.

4. Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986;
21:720-733.

5. Henkelman RM, Kay I, Bronskill MJ. Receiver operator characteristic
(ROC) analysis without truth. Med Decis Making 1990; 10:24-29.

6. Rumbereger JA, Behrenbeck T, Bell MR, et al. Determination of ven-
tricular ejection fraction: a comparison of available imaging methods.
Mayo Clin Proc 1997; 72:860-870.

7. Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction
versus cardiac death by gated myocardial perfusion SPECT: risk strat-
ification by the amount of stress-induced ischemia and the poststress
ejection fraction. J Nucl Med 2001; 42:831-837.

8. Al-Hallag H, River JN, Zamora M, et al. Correlation of magnetic resonance
and oxygen microelectrode measurements of carbogen-induced changes in
tumor oxygenation. Int J Radiat Oncol Biol Phys 1998; 41:151-159.

9. Sturtridge W, Lentle B, Hanley DA. Prevention and management of
osteoporosis: consensus statements from the scientific advisory board of the
Osteoporosis Society of Canada. Can Med Assoc J 1996; 155:924-929.

10. Van Trees HL. Detection, estimation, and modulation theory: part I.
New York, NY: Wiley, 1968.

11. Hoppin J, Kupinski M, Kastis G, Clarkson E, Barrett HH. Objective
comparison of quantitative imaging modalities without the use of a
gold standard. In: Insana M, Leahy R, eds. Lecture notes in computer
science: information processing in medical imaging. New York, NY:
Springer, 2001; 12-23.

12. Papoulis A. Probability, random variables, and stochastic processes.
New York, NY: McGraw-Hill, 1991.

13. Cwajg E, Cwajg J, He ZX, et al. Gated myocardial perfusion tomogra-
phy for the assessment of left ventricular function and volumes: com-
parison with echocardiography. J Nucl Med 1999; 40:1857-1865.

297



