
FastSPECT II Image Reconstruction Suite
(version 4.04)

Luca Caucci
caucci@email.arizona.edu

February 5, 2015

Abstract

This document provides brief descriptions of the programs that have been de-
veloped to perform maximum likelihood expectation maximization (MLEM) image
reconstruction for FastSPECT II. Examples are provided as well.

Contents

1 Getting Started 2
1.1 Compiling the Code . 2
1.2 The “###” Filename Format . 2
1.3 The “{...}” Filename Format . 2
1.4 The DICOM Standard . 3
1.5 The “2dlm” Data Format . 3
1.6 The fs2_conf.json Configuration File . 4

2 An Example 5
2.1 Preprocessing the PMT Data . 5
2.2 Performing MLEM Reconstruction . 6
2.3 Removing MLEM Artifacts . 6

3 Description of Reconstruction Codes 7
3.1 The get_data_proj Program . 7
3.2 The mlem Program . 7
3.3 The mlem_move_bed Program . 8
3.4 The trim_FOV Program . 9

1

caucci@email.arizona.edu

1 Getting Started

1.1 Compiling the Code

The programs discussed in this brief manual have been developed and tested on a Linux
machine on which CUDA 6.5 (http://www.nvidia.com/object/cuda_home_new.html)
had previously been installed. Although some parts of the code (such as the function
get_exec_path(...) in fs2_util.cc) are Linux-depended, it is possible to port the
code to other compilers and operating system (such as Visual Studio on MS-Windows
systems).

Under Linux, the programs can be compiled using the make utility and the provided
Makefile. The programs require some libraries to be installed in the system. Such
libraries include dcmtk (for handling DICOM files) and jansson (for reading the JSON
configuration file). If these libraries are not installed in your system, please contact your
system administrator. Some minor adjustments of the Makefile might be required to
successfully compile the code.

The programs must be run on a system with one or more GPU devices installed.
The present GPU implementations do require GPU devices with GPU capability 3.5 or
higher. The programs search the system for GPU devices with the required capability.

1.2 The “###” Filename Format

Some of the programs that have been developed use collections of files whose names are of
the form proj_00.dat, proj_01.dat, . . . , proj_15.dat. To avoid having to list all these
filenames in the command line, the “###” filename format convention has been developed.
Whenever a list of filenames like the one above is required, the user will simply have to
replace the numerical values with a sequence of # characters. The program will replace the
sequence of # characters with the appropriate zero-padded integer number. The number
of # characters will be equal to the number of characters in the zero-padded integer
number. For example, the list of filenames proj_00.dat, proj_01.dat, . . . , proj_15.dat
above can succinctly be denoted as proj_##.dat. Please note that if fewer # characters
than needed are used, the program behavior is undefined. The “###” filename format is
also used to specify the name of the files that store the reconstructed data throughout
the iterations of the reconstruction algorithms.

1.3 The “{...}” Filename Format

For the case of dynamic studies, it is common to have a few data sets (collected at different
times) of the same animal. The filenames of these data sets might include one or more
common parts plus a variable part, which, usually, denotes when the data were taken. To
fit this need, the “{...}” filename format has been developed. In the “{...}” filename
format, a comma-separated list of variable parts is specified between { and }. In some
cases, it is also possible to combine the “###” and the “{...}” formats when specifying
filenames. For example, suppose that LM data have been collected four times every 30
minutes and that the variable parts in the filenames are 30_min, 1_hr, 1_hr_30_min,

2

http://www.nvidia.com/object/cuda_home_new.html

and 2_hr. With the “{...}” and the “###” filename format conventions, all the LM
files will be denoted as, for example, mouse_{30_min,1_hr,1_hr_30_min,2_hr}_##.dat.
In this example, mouse_ and _##.dat are the common parts for the “{...}” filename
format. This example also shows that it is possible to combine the “{...}” filename
format with the “###” filename format. If there is only one possible variable part, the
{ and } characters can be omitted. Please notice that it might be necessary to enclose
the filename in double quotes (i.e., the " character) to prevent the operating system to
interpret the { and } characters.

1.4 The DICOM Standard

The Digital Imaging and Communications in Medicine (DICOM) is a standard for han-
dling, storing, printing, and transmitting information in medical imaging. The current
version of the programs developed for FastSPECT II image reconstruction support
the DICOM standard for the storage of 3D images. The greatest advantage of DICOM
files is that they allow storing a wide range of supplemental information along with the
actual pixel data. In the current version of the FastSPECT II image reconstruction
programs, the voxel size is stored in the DICOM files. DICOM files can easily be loaded
into Amide (http://amide.sourceforge.net/) for visualization. The current version
of the programs also sets the patient’s name to the name of the file (purged of the file
path) plus the date when the file was created. This facilitates handling multiple files that
have been loaded into Amide.

1.5 The “2dlm” Data Format

The “2dlm” data format has been developed to store 2D camera positions of interactions
estimated from PMT data. The file format assumes that FastSPECT II is equipped
with sixteen cameras. A “2dlm” file begins with a header of sixteen 32-bit unsigned
integer numbers `1, . . . , `16. These numbers denote the number of 2D attribute vectors
estimated for each camera. The header is followed by sixteen blocks of 2D (x, y) position
estimates, stored as single-precision little-endian floating-point numbers. The number of
position estimates stored in the nth block (thus corresponding to the nth camera) is `n.
The units of x and y are millimeters. The following few lines of MatLab code will read
a file that follows the “2dlm” data format and will display each camera’s block of 2D
position estimates as a scatter plot.

close all;
clear all;
filename = ’MOBY_proj.2dlm’;
det_min = 0.00;
det_max = 79 * 1.50;
LM_data = cell(16, 1);
fid = fopen(filename, ’r’);
num = fread(fid, 16, ’uint32’);
for camera = 1:16

3

http://amide.sourceforge.net/

LM_data{camera} = fread(fid, [2, num(camera)], ’float’);
end
fclose(fid);
figure(’Position’, [100, 100, 800, 600]);
for camera = 1:16

subplot(4, 4, camera);
x = LM_data{camera}(2, :);
y = LM_data{camera}(1, :);
if num(camera) > 0

plot(x, y, ’.’, ’MarkerSize’, 1);
axis square;

end
xlim([det_min, det_max]);
ylim([det_min, det_max]);
set(gca, ’YDir’, ’reverse’);
title([’Camera ’, num2str(camera)], ’FontWeight’, ’Bold’);

end

1.6 The fs2_conf.json Configuration File

Some important parameters (such as the names of the files containing calibration data
used for the ML search of 2D position of interaction from LM data), are listed in the
configuration file fs2_conf.json. The structure of this file follows the JSON standard.
Information about the JSON standard can be found at http://json.org/.

4

http://json.org/

2 An Example

In this section we will provide an example that shows how the programs we developed can
be used to reconstruct 3D data from raw photomultiplier tube (PMT) outputs acquired
with FastSPECT II [Che06, FWC+04]. Detailed description of the programs is reported
in the next section. The folder example contains PMT data for a bone scan of a simulated
MOBY phantom1 [STF+04]. The user can access these data by changing the current
directory to example:

cd example

2.1 Preprocessing the PMT Data

The first step consists of processing [FHB05, HCK+10, BHM+09] the raw PMT data to
get 2D event position estimates on each camera. This can be accomplished as follows:

../get_data_proj MOBY_PMT_###.dat MOBY_proj.2dlm

This command generates the file MOBY_proj.2dlm which, for each camera, lists 2D event
positions on the camera face. The content of this file can be visualized with the MatLab
script discussed in Section 1.5. The script is also contained in the MATLAB folder. If we
run it on the “2dlm” file MOBY_proj.2dlm, a set of sixteen diagrams will be shown. One
of them has been reported in Figure 1.

0 20 40 60 80 100
0

20

40

60

80

100

x [mm]

y
 [
m

m
]

Camera 1

Figure 1: Plot of 2D event positions for Camera 1

1The MOBY phantom is a 4D mouse whole body phantom and it is distributed with a small licensing
fee. Please refer to http://www.hopkinsradiology.org/DMIP/Research/xcat for more information on
how to obtain the MOBY phantom.

5

http://www.hopkinsradiology.org/DMIP/Research/xcat

2.2 Performing MLEM Reconstruction

The data in MOBY_proj.2dlm can be reconstructed with the mlem program, which is
a GPU implementation of the maximum likelihood expectation maximization (MLEM)
method [SV82, DLR77]. A possible usage is as follows:

../mlem MOBY_proj.2dlm up_4 MOBY_recon_###.dcm 30

In our case, we have used the option up_4 to get a 4× upsampling of the original PSF
and we decided to run 30 iterations of the MLEM algorithm. The reconstructed data
will be saved in DICOM format in the files MOBY_recon_n.dcm, in which n takes values
005, 010, . . . , 030.

2.3 Removing MLEM Artifacts

The MLEM algorithm is notorious for creating artifacts near the edges of the field of
view (FOV) [SMTP87]. For this reason, the command trim_FOV has been developed to
remove such artifacts near the edges of the field of view. An example of usage is shown
below:

../trim_FOV MOBY_recon_030.dcm MOBY_recon_trimmed_030.dcm 0.85 0.85 0.10

The final result—file MOBY_recon_trimmed_030.dcm—can easily be visualized with a
variety of tools. For example, we can use Amide (http://amide.sourceforge.net/) to
obtain a 3D rendering such as the one shown in Figure 2.

Figure 2: Amide 3D rending of a bone scan of a simulated
MOBY phantom (click on the image to play clip)

6

MOBY_mouse.mpeg
Media File (video/mpeg)

http://amide.sourceforge.net/

3 Description of Reconstruction Codes

3.1 The get_data_proj Program

Description

This program performs 2D ML position estimation from PMT outputs of list-mode Fast-
SPECT II data and generates files that contain blocks of 2D position estimates, one block
for each camera.

Usage

./get_data_proj LM_filenames proj_filenames

where:

• LM_filenames
Filenames (in “###” format, and, optionally, “{...}” format) of the list-mode Fast-
SPECT II files.

• proj_filenames
Filenames (in “{...}” format) of the “2dlm” files for the projection list-mode data.

3.2 The mlem Program

Description

This program reconstructs 2D projection data via the MLEM iterative algorithm. The 3D
reconstructed data are written to one or more files.

Usage

./mlem proj_filenames num_FOV_voxels recon_filenames num_iter

where:

• proj_filenames
Filenames (in “{...}” format) of the “2dlm” files storing the projection list-mode
data.

• num_FOV_voxels
Number of voxels for the FOV. This parameter can be “no_up” for no FOV up-
sampling; “up_2” for 2× FOV upsampling; “up_4” for 4× FOV upsampling; “up_8”
for 8× FOV upsampling; or also “AxBxC” (where A, B, and C are integer numbers)
for FOV upsampling to A, B, and C samples along each dimension.

• recon_filenames
Filenames (in “###” format, and, optionally, “{...}” format) of the DICOM files
for the reconstructed data. The data will be saved every five iterations, as well as
at the end of the whole reconstruction process.

7

• num_iter
Number of MLEM iterations to be performed.

3.3 The mlem_move_bed Program

Description

This program reconstructs 2D projection data via the MLEM iterative algorithm. The 3D
reconstructed data are written to a file. It is assumed that two or more bed positions are
used during the scan and the data for these bed positions are provided to the program.
The only bed movement available is moving inside or outside the imaging system (X
axis).

Usage

./mlem_move_bed num_bed_pos delta_pos proj_filenames
num_FOV_voxels recon_filenames num_iter

where:

• num_bed_pos
Number of bed positions (must be at least 2).

• delta_pos
List of comma-separated non-negative integer numbers representing the number of
steps between two consecutive bed positions. Please note that the step size is in
units of the upsampled field of view (for example, if the original PSF was acquired
on a 2-mm grid and the option “up_4” is used, then a unit of bed motion corresponds
to 0.50 mm). Notice that the number of integer numbers in the comma-separated
list has to be one less than the number of bed positions.

• proj_filenames
Filenames (in “{...}” format) of the “2dlm” files storing the projection list-mode
data for each bed position. Notice that the order of the tokens in the “{...}”
format does matter.

• num_FOV_voxels
Number of voxels for the FOV. This parameter can be “no_up” for no FOV up-
sampling; “up_2” for 2× FOV upsampling; “up_4” for 4× FOV upsampling; “up_8”
for 8× FOV upsampling; or also “AxBxC” (where A, B, and C are integer numbers)
for FOV upsampling to A, B, and C samples along each dimension.

• recon_filenames
Filenames (in “###” format) of the DICOM files for the reconstructed data. The
data will be saved every five iterations, as well as at the end of the whole recon-
struction process.

8

• num_iter
Number of MLEM iterations to be performed.

3.4 The trim_FOV Program

Description

This program trims the edges of the FOV of reconstructed data, so that MLEM artifacts
near the edges of the FOV are eliminated. The tapering function has the following form:

f(r,R0,W) =


1 if r < R0 −W/2,
1
2

{
sin
[
π
(
1 + r−R0

W

)]
+ 1
}

if R0 −W/2 ≤ r ≤ R0 +W/2,
0 if r > R0 +W/2.

Usage

./trim_FOV inputs outputs ell radius width

where:

• inputs
Filenames (in “{...}” format) of the DICOM input files.

• outputs
Filenames (in “{...}” format) of the DICOM output files.

• ell
Fraction (relative to X the center of the field of view at which the voxel intensities
are set to zero. As this parameter is lowered (from its maximum value of 1.00
towards 0.00) more and more slices are set to zero. A good value is 0.85.

• radius
Relative radius at which the middle part of the tapering filter is applied. A good
value is 0.85.

• width
Relative width of the tapering filter. By setting this parameter to a small value, a
step-function-like tapering filter can be obtained. A good value is 0.10.

9

References

[BHM+09] Harrison H. Barrett, William C. J. Hunter, Brian William Miller, Stephen K.
Moore, Yichun Chen, and Lars R. Furenlid. Maximum-likelihood methods for
processing signals from gamma-ray detectors. IEEE Transactions on Nuclear
Science, 56(3):725–735, June 2009.

[Che06] Yi-Chun Chen. System Calibration and Image Reconstruction for a new
Small-Animal SPECT System. PhD thesis, University of Arizona, Tucson,
AZ, 2006.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[FHB05] Lars R. Furenlid, Jacob Y. Hesterman, and Harrison H. Barrett. Real-time
data acquisition and maximum-likelihood estimation for gamma cameras. In
14th IEEE-NPSS Real Time Conference, pages 498–501, Stockholm, Sweden,
June 2005.

[FWC+04] Lars R. Furenlid, Donald W. Wilson, Yi-Chun Chen, Hyunki Kim, Philip J.
Pietraski, Michael J. Crawford, and Harrison H. Barrett. FastSPECT II: A
second-generation high-resolution dynamic SPECT imager. IEEE Transac-
tions on Nuclear Science, 51(3):631–635, June 2004.

[HCK+10] Jacob Y. Hesterman, Luca Caucci, Matthew A. Kupinski, Harrison H.
Barrett, and Lars R. Furenlid. Maximum-likelihood estimation with a
contracting-grid search algorithm. IEEE Transactions on Nuclear Science,
57(3):1077–1084, June 2010.

[SMTP87] Donald L. Snyder, Michael I. Miller, Lewis J. Thomas, and David G. Politte.
Noise and edge artifacts in maximum-likelihood reconstructions for emission
tomography. IEEE Transactions on Medical Imaging, 6(3):228–238, October
1987.

[STF+04] W. Paul Segars, Benjamin M. W. Tsui, Eric C. Frey, G. Allan Johnson, and
Stuart S. Berr. Development of a 4D digital mouse phantom for molecular
imaging research. Molecular Imaging and Biology, 6(3):149–159, 2004.

[SV82] L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission
tomography. IEEE Transactions on Medical Imaging, 1(2):113–122, October
1982.

10

	Getting Started
	Compiling the Code
	paper-1.cpt
	paper-2.cpt
	The DICOM Standard
	paper-3.cpt
	paper-4.cpt

	An Example
	Preprocessing the PMT Data
	Performing MLEM Reconstruction
	Removing MLEM Artifacts

	Description of Reconstruction Codes
	paper-5.cpt
	paper-6.cpt
	paper-7.cpt
	paper-8.cpt

