ESTIMATION TASKS

SHORT COURSE ON IMAGE QUALITY MATTHEW A. KUPINSKI

INTRODUCTION

Section 13.3 in B&M

- * Keep in mind the similarities between estimation and classification
- # Image-quality is a statistical concept

WHAT WE WILL COVER

- Bias, variance, MSE, EMSE
- Bayesian estimation
- Maximum-likelihood estimation
- Fisher information
- Linear estimators

BASIC CONCEPT

 $g = \mathcal{H}f + n$

Classification

 $\boldsymbol{g} \to D_i$

Compare to H_i

Stimation

$$\hat{\boldsymbol{ heta}} = \hat{\boldsymbol{ heta}}(\boldsymbol{g})$$

Compare to θ

SOME PDFs

Random quantities $\begin{array}{ll} egin{array}{ll} g = \mathcal{H}f + n \\ \hat{m{ heta}} = \hat{m{ heta}}(g) \end{array}$ $pr(m{ heta})$ $pr(m{ heta})$ $pr(f|m{ heta})$ $pr(g|m{f})$ $pr(g|m{ heta}) = \int dm{f} pr(g|m{f}) pr(f|m{ heta})$ $pr(\hat{m{ heta}}|m{ heta})$

EXAMPLE

Estimate tumor volume $\begin{array}{l} g = \mathcal{H}f + n \\ \hat{\theta} = \hat{\theta}(g) \end{array}$ $pr(\theta)$ Distribution of volumes $pr(f|\theta)$ Object distribution given a volume pr(g|f) Noise $pr(g|\theta) = \int df \, pr(g|f) pr(f|\theta)$ Data distribution given the true value of the parameter $pr(\hat{\theta}|\theta)$ Distribution of estimate given truth

EXAMPLE

Detect a tumor

 $g = \mathcal{H}f + n$ $T(g) = D_i$

 $pr(H_i)$ Probability of truth states

 $pr(f|H_i)$ Object distribution given truth

 $\begin{array}{ll} pr(\boldsymbol{g}|\boldsymbol{f}) & \text{Noise} \\ pr(\boldsymbol{g}|H_i) = \int d\boldsymbol{f} \, pr(\boldsymbol{g}|f) pr(f|H_i) \\ & \text{Data distribution given the truth state} \end{array}$

 $pr(D_i|H_j)$ Sensitivity or specificity

BIAS

* Given a fixed value for the parameter we wish to estimate θ

$$\overline{\hat{\theta}}(\theta) = \left\langle \hat{\theta}(\boldsymbol{g}) \right\rangle_{\boldsymbol{g}|\theta} = \int d\boldsymbol{g} \, pr(\boldsymbol{g}|\theta) \hat{\theta}(\boldsymbol{g}) \qquad (13.274)$$

Compare $\overline{\hat{\theta}}$ and θ

VARIANCE

* Given a fixed value for the parameter we wish to estimate θ

$$\operatorname{Var}(\theta) = \sigma_{\hat{\theta}}^2 = \left\langle |\hat{\theta}(\boldsymbol{g}) - \overline{\hat{\theta}}|^2 \right\rangle_{\boldsymbol{g}|\theta} \qquad (13.279)$$

Would like to have a small variance

MEAN-SQUARE ERROR

* Given a fixed value for the parameter we wish to estimate θ

$$MSE(\theta) = \left\langle |\hat{\theta} - \theta|^2 \right\rangle_{\boldsymbol{g}|\theta} \qquad (13.280)$$

 $MSE(\theta) = b(\theta)^2 + Var(\theta)$

Would like to have a small MSE

<text><list-item><list-item> BAYESIAN ESTIMATION Setermination of θ though minimization of Bayes risk Knowledge of pr(θ) is assumed Cost function must be specified C(θ, θ) Choose θ that minimizes the average cost (C(θ(g), θ))_{g,θ}

MAXIMUM LIKELIHOOD

- * ML estimation does not require us to know or assert $pr(\theta)$
- ML estimation is purely data driven, i.e., focus is on g
- As we will see, ML estimator have many desirable properties

MAXIMUM LIKELIHOOD

$$\hat{\theta}_{ML} = \underset{\theta}{\arg\max} pr(\boldsymbol{g}|\theta) \quad (13.348)$$
$$= \underset{\theta}{\arg\max} \ln \left[pr(\boldsymbol{g}|\theta) \right] \quad (13.349)$$

* Limit of $\hat{\theta}_{MAP}$ when the prior $pr(\theta)$ is sufficiently broad that it can be ignored

FISHER INFORMATION

* The score is given by $s = \frac{\partial}{\partial \theta} \ln [pr(g|\theta)]$ (13.358) $\langle s \rangle_{g|\theta} = 0$ (13.359)

* The Fisher information matrix

$$F(\theta) = \left\langle ss^{\dagger} \right\rangle_{g|\theta}$$
 (13.360)

* The Fisher information matrix measures the curvature of the average log-likelihood

))

CRAMÉR-RAO BOUND

 $\operatorname{Var}\left[\hat{\theta}_{n}\right] \geq \left[\boldsymbol{F}^{-1}\right]_{nn}$ (13.371)

- * Fisher information provides us with a lower bound on all **unbiased** estimators of θ_n
- An unbiased estimator that meets this lower bound is known as an efficient estimator

PROPERTIES OF ML ESTIMATORS

* Invariance $\Theta = \tau(\theta)$ $\hat{\Theta}_{ML} = \tau(\hat{\theta}_{ML})$

* Efficiency If an efficient estimator exists $\hat{\theta}_{ML}$ is it

** Asymptotic properties ML estimators are asymptotically unbiased, efficient, and normal

BAYESIAN AND ML LIMITATIONS

** We need $pr(\boldsymbol{g}|\boldsymbol{\theta})$ $pr(\boldsymbol{\theta})$ or both

** Consider the case of varying backgrounds $pr(\boldsymbol{g}|\boldsymbol{\theta}) = \int d\boldsymbol{f} \, pr(\boldsymbol{g}|\boldsymbol{f}) pr(\boldsymbol{f}|\boldsymbol{\theta})$ ** How can we possibly hope to know this?!

BEFORE WE CONTINUE...

Random variable x

$$\sigma_x^2 = \left\langle (x - \overline{x})^2 \right\rangle_x$$

Random vector x

LINEAR ESTIMATORS

Consider a linear estimator of the form

$$\hat{oldsymbol{ heta}} = oldsymbol{W}^\dagger oldsymbol{g} + oldsymbol{c}$$

* What is the matrix W that minimizes the EMSE?

$$\text{EMSE} = \left\langle \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right)^{\dagger} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right) \right\rangle_{\boldsymbol{g}, \boldsymbol{\theta}} = \left\langle \left(\boldsymbol{W}^{\dagger} \boldsymbol{g} - \boldsymbol{\theta} \right)^{\dagger} \left(\boldsymbol{W}^{\dagger} \boldsymbol{g} - \boldsymbol{\theta} \right) \right\rangle_{\boldsymbol{g}, \boldsymbol{\theta}}$$
(13.385)

* The Wiener estimator is given by $\hat{\theta}_{WE} = \overline{\theta} + W^{\dagger} [a - \overline{a}]$

$$\mathbf{W}_{\mathrm{E}} = \mathbf{U} + \mathbf{W} \begin{bmatrix} \mathbf{g} & \mathbf{g} \end{bmatrix}$$

$$V^{\dagger} = K_{\theta, \overline{g}} K_{g}^{-1}$$
 (13.391)

WIENER ESTIMATOR

$$\boldsymbol{W}^{\dagger} = \boldsymbol{K}_{\boldsymbol{\theta}, \overline{\boldsymbol{g}}} \boldsymbol{K}_{\boldsymbol{g}}^{-1} \qquad (13.391)$$

- * K_g is the covariance of the data averaged over all sources of randomness
- * $K_{\overline{g},\theta}$ is the cross-covariance of θ and $\overline{g} = \langle g \rangle_{g|\theta}$

WIENER ESTIMATOR

- The WE is the linear observer that minimizes the EMSE
- In the case of jointly Gaussian data, the WE minimizes the EMSE of all estimators

Bayesian estimation

- Minimize Bayes risk
- Requires complete knowledge of risks, priors, and data densities

$$\hat{\theta}_{\text{MMSE}} = \int d\boldsymbol{\theta} \, \boldsymbol{\theta} \left[\frac{pr(\boldsymbol{g}|\boldsymbol{\theta})pr(\boldsymbol{\theta})}{pr(\boldsymbol{g})} \right] \qquad (13.312)$$

$$\Lambda(\boldsymbol{g}) \stackrel{D_2}{<} \frac{(C_{12} - C_{22})Pr(H_2)}{(C_{21} - C_{11})Pr(H_1)} \qquad (13.58)$$
$$D_1$$

MAP Estimation

- * Applies equal cost to all wrong decisions and 0 cost to correct decisions
- Requires complete knowledge of prior and data densities

$$\hat{\theta}_{MAP} = \operatorname*{arg\,max}_{\boldsymbol{\theta}} pr(\boldsymbol{g}|\boldsymbol{\theta}) pr(\boldsymbol{\theta})$$
 (13.325)

$$\Lambda(\boldsymbol{g}) \stackrel{D_2}{\underset{<}{>}} \frac{Pr(H_2)}{Pr(H_1)} \qquad (13.61)$$
$$D_1$$

ML Estimation

- Assumes a flat (or wide) prior distribution
- Requires complete knowledge data densities

$$\hat{\boldsymbol{\theta}}_{ML} = \operatorname*{arg\,max}_{\boldsymbol{\theta}} pr(\boldsymbol{g}|\boldsymbol{\theta}) \qquad (13.348)$$

$$\Lambda(\boldsymbol{g}) \begin{array}{c} D_2 \\ > \\ < 1 \\ D_1 \end{array}$$
(13.71)

Ideal linear observers

- Limited to linear manipulations of the data
- Requires only first- and second-order statistics

$$\hat{\boldsymbol{\theta}}_{WE} = \overline{\boldsymbol{\theta}} + \boldsymbol{W}^{\dagger} \left[\boldsymbol{g} - \overline{\overline{\boldsymbol{g}}} \right]$$
$$\boldsymbol{W}^{\dagger} = \boldsymbol{K}_{\boldsymbol{\theta}, \overline{\boldsymbol{g}}} \boldsymbol{K}_{\boldsymbol{g}}^{-1} \qquad (13.391)$$

TO REITERATE

- Similar
 * Estimation and classification are very similar
- Stimation is a statistical concept and one should consider all sources of variation when dealing with estimation tasks

FINAL THOUGHTS

Possible estimation task figures of merit

- # EMSE
- Bayes risk
- Fisher information matrix
- Computational methods will be discussed in a later talk