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Introduction

Section 13.3 in B&M

Keep in mind the similarities between 
estimation and classification

Image-quality is a statistical concept



What we Will Cover

Bias, variance, MSE, EMSE

Bayesian estimation

Maximum-likelihood estimation

Fisher information

Linear estimators

Basic Concept

Classification

Compare to 

Estimation

Compare to 

g = Hf + n

g → Di

Hi

θ

θ̂ = θ̂(g)



Some PDFs

Random quantities

pr(θ)

pr(g|f)

g = Hf + n

pr(f |θ)

pr(g|θ) =

∫
df pr(g|f)pr(f |θ)

pr(θ̂|θ)

θ̂ = θ̂(g)

Example

Estimate tumor volume

pr(θ)

pr(g|f)

pr(f |θ)

pr(g|θ) =

∫
df pr(g|f)pr(f |θ)

pr(θ̂|θ)

Distribution of volumes

Object distribution given a volume

Noise

Data distribution given the true value of 
the parameter

Distribution of estimate given truth

g = Hf + n

θ̂ = θ̂(g)



Example

Detect a tumor

pr(g|f)

Probability of truth states

Object distribution given truth

Noise

Data distribution given the truth state

Sensitivity or specificity

g = Hf + n

T (g) = Di

pr(Hi)

pr(f |Hi)

pr(g|Hi) =

∫
df pr(g|f)pr(f |Hi)

pr(Di|Hj)

Bias

Given a fixed value for the parameter we 
wish to estimate

Compare       and 

θ

θ

θ̂(θ) =
〈

θ̂(g)
〉

g|θ
=

∫

dg pr(g|θ)θ̂(g) (13.274)

θ̂



Bias

b(θ) = θ̂ − θ (13.276)

If                for all     then         is 
unbiased

b(θ) = 0 θ θ̂(g)

Variance

Given a fixed value for the parameter we 
wish to estimate

Would like to have a small variance

θ

Var(θ) = σ
2

θ̂
=

〈

|θ̂(g) − θ̂|2
〉

g|θ
(13.279)



Mean-Square Error

Given a fixed value for the parameter we 
wish to estimate

Would like to have a small MSE

θ

MSE(θ) =
〈

|θ̂ − θ|2
〉

g|θ
(13.280)

MSE(θ) = b(θ)2 + Var(θ)

Ensemble Forms

Ensemble bias

Ensemble variance

Ensemble MSE   (EMSE)

b = 〈b(θ)〉
θ

= θ̂ − θ (13.277)

Var = 〈Var(θ)〉
θ

EMSE =

〈

〈

|θ̂ − θ|2
〉

g|θ

〉

θ

(13.281)

θ̂ =
〈

θ̂(θ)
〉

θ

=

∫

dθpr(θ)

∫

dg pr(g|θ)θ̂(g) (13.277)

θ = 〈θ〉
θ



Bias

Variance

MSE

EMSE

Vector Forms

b(θ) = θ̂ − θ (13.283)

EMSE = tr
[

K
θ̂

]

+ tr
[

b(θ)b(θ)†
]

(13.288)

K θ̂(θ) =

〈

(

θ̂ − θ̂

) (

θ̂ − θ̂

)†
〉

g|θ

(13.285)

MSE(θ) = tr
[

K
θ̂
(θ)

]

+ tr
[

b(θ)b(θ)†
]

(13.287)

Bayesian Estimation

Determination of      though minimization 
of Bayes risk

Knowledge of           is assumed

Cost function must be specified

Choose     that minimizes the average cost 

θ

pr(θ)

C(θ̂,θ)

θ̂
〈

C(θ̂(g),θ)
〉

g,θ



MMSE

Let us choose

Estimator is given by the posterior mean

C(θ̂, θ) = EMSE =

〈

(

θ̂ − θ
)2

〉

g,θ

(13.309)

θ̂MMSE =

∫
dθ θ pr(θ|g) = 〈θ〉

θ|g (13.311b)

=

∫

dθ θ

[

pr(g|θ)pr(θ)

pr(g)

]

(13.312)

MAP Estimation

All wrong answers beyond     are equally 
costly

C(θ̂, θ) = C(θ̂ − θ) = 1 − rect

(

θ̂ − θ

2ε

)

(13.322)

ε



MAP Estimation

θ̂MAP = arg max
θ

pr(g|θ)pr(θ) (13.325)

= arg max
θ

pr(θ|g) (13.327)

= arg max
θ

{ln [pr(g|θ)] + ln [pr(θ)]} (13.328)

MAP estimation is a type of Bayesian 
estimation!

          and            are equivalent under 
certain constraints (eqn. 13.316)

θ̂MAP θ̂MMSE

MAP Estimation

pr(g|θ)
pr(θ)

pr(θ|g)
θ



Maximum Likelihood

ML estimation does not require us to know 
or assert 

ML estimation is purely data driven, i.e., 
focus is on 

As we will see, ML estimator have many 
desirable properties

pr(θ)

g

Maximum Likelihood

Limit of           when the prior          is 
sufficiently broad that it can be ignored

θ̂ML = arg max
θ

pr(g|θ) (13.348)

= arg max
θ

ln [pr(g|θ)] (13.349)

θ̂MAP pr(θ)



Fisher Information

The score is given by

The Fisher information matrix

The Fisher information matrix measures 
the curvature of the average log-likelihood

s =
∂

∂θ
ln [pr(g|θ)] (13.358)

〈s〉g|θ = 0 (13.359)

F (θ) =
〈

ss
†
〉

g|θ
(13.360)

Fisher information provides us with a 
lower bound on all unbiased estimators of
 

An unbiased estimator that meets this 
lower bound is known as an efficient
estimator

Cramér-Rao Bound

θn

Var
[

θ̂n

]

≥
[

F
−1

]

nn
(13.371)



Properties of ML 
Estimators

Invariance

Efficiency
If an efficient estimator exists          is it

Asymptotic properties
ML estimators are asymptotically 
unbiased, efficient, and normal

Θ = τ(θ)
Θ̂ML = τ(θ̂ML)

θ̂ML

Bayesian and ML 
Limitations

We need 

  or both

Consider the case of varying backgrounds

How can we possibly hope to know this?!

pr(g|θ)

pr(θ)

pr(g|θ) =

∫
df pr(g|f)pr(f |θ)



Before we 
Continue...

Random variable

Random vector

Two random vectors

x

σ
2

x
=

〈

(x − x)2
〉

x

[Kx]i,j = 〈(xi − xi)(xj − xj)〉xi,xj
Kx =

〈

(x − x)(x − x)†
〉

x

x

x y

Kx,y =
〈

(x − x)(y − y)†
〉

x,y

[Kx,y]i,j =
〈

(xi − xi)(yj − yj)
〉

xi,yj

Linear Estimators

Consider a linear estimator of the form

What is the matrix      that minimizes the 
EMSE?

The Wiener estimator is given by

W

EMSE =

〈

(

θ̂ − θ
)† (

θ̂ − θ
)

〉

g,θ

=

〈

(

W †g − θ
)† (

W †g − θ
)

〉

g,θ

(13.385)

θ̂WE = θ + W †
[

g − g
]

W
† = Kθ,gK

−1

g (13.391)

θ̂ = W †g + c



Wiener Estimator

       is the covariance of the data averaged 
over all sources of randomness  

         is the cross-covariance of     and Kg,θ θ

g = 〈g〉g|θ

W
† = Kθ,gK

−1

g (13.391)

Kg

Wiener Estimator

The WE is the linear observer that 
minimizes the EMSE

In the case of jointly Gaussian data, the 
WE minimizes the EMSE of all estimators



Bayesian estimation

Minimize Bayes risk

Requires complete knowledge of risks, 
priors, and data densities

Similarities with 
Detection

Similarities with 
Detection

θ̂MMSE =

∫

dθ θ

[

pr(g|θ)pr(θ)

pr(g)

]

(13.312)

Λ(g)

D2

>

<

D1

(C12 − C22)Pr(H2)

(C21 − C11)Pr(H1)
(13.58)



MAP Estimation

Applies equal cost to all wrong decisions 
and 0 cost to correct decisions

Requires complete knowledge of prior 
and data densities

Similarities with 
Detection

Similarities with 
Detection

θ̂MAP = arg max
θ

pr(g|θ)pr(θ) (13.325)

Λ(g)

D2

>

<

D1

Pr(H2)

Pr(H1)
(13.61)



ML Estimation

Assumes a flat (or wide) prior 
distribution

Requires complete knowledge data 
densities

Similarities with 
Detection

Similarities with 
Detection

θ̂ML = arg max
θ

pr(g|θ) (13.348)

Λ(g)

D2

>

<

D1

1 (13.71)



Ideal linear observers

Limited to linear manipulations of the 
data

Requires only first- and second-order 
statistics

Similarities with 
Detection

Similarities with 
Detection

∆g†K−1g

D2

>

<

D1

tc

θ̂WE = θ + W †
[

g − g
]

W
† = Kθ,gK

−1

g (13.391)



To Reiterate

Estimation and classification are very 
similar

Estimation is a statistical concept and one 
should consider all sources of variation 
when dealing with estimation tasks

Final Thoughts

Possible estimation task figures of merit

EMSE

Bayes risk

Fisher information matrix

Computational methods will be discussed 
in a later talk


