FACULTY OF ENGINEERING AND

ARCHITECTURE

# Efficient Optimization Based on Local Shift-Invariance for Adaptive SPECT Systems 

Lara R. V. Pato

Bert Vandeghinste, Stefaan Vandenberghe, Roel Van Holen
MEDISIP, Ghent University - iMinds - IBiTech, Ghent, Belgium

Workshop on Small Animal SPECT
November 2012, Tucson, Arizona

## Overview

- Introduction
- Method
- Image Quality
- Optimization
- Application
- Case 1: Single-Pinhole Rotating SPECT
- Case 2: Multi-Pinhole Stationary SPECT (U-SPECT-II)
- Conclusion


## Adaptive SPECT



## Adaptive Angular Sampling for SPECT Imaging

Nan Li and Ling-Jian Meng



- Rotating single-head SPECT
- Adapt time $t^{(k)}$ spent at each angle $k \in\{1, \ldots, K\}$, for a given total imaging time
[1] N. Li and L.-J. Meng, IEEE Trans. Nucl. Sci. 58 (2011)
[2] B. L. Franc et al., J. Nucl. Med. 49 (2008)


## Adaptive Angular Sampling for SPECT Imaging

Nan Li and Ling-Jian Meng



## Evaluation of Image Quality

- Analytical formulas for FOM at POI, based on Fisher Information Matrix F
- To increase computational efficiency, F can be simplified:
- [1]: Non-Uniform Object-Space Pixelation approach ${ }^{[3]}$
- Our method: Local-shift invariance approximation ${ }^{[4,5]}$


## Optimization

- Fast optimization based on the gradient of the FOM

$$
\operatorname{Grad}_{j}^{(k)}=\frac{\partial(F O M)}{\partial t^{(k)}}
$$

## Application

- Adapt time per angle in single-head single-pinhole rotating SPECT system ${ }^{[1]}$
- Adapt time per bed position in stationary multi-pinhole SPECT system (MILabs U-SPECT-II)
[4] J. Qi and R. M. Leahy, IEEE Trans. Med. Imag. 19 (2000)
[5] K. Vunckx et al., IEEE Trans. Med. Imag. 27 (2008)


## Overview

- Introduction
- Method
- Image Quality
- Optimization
- Application
- Case 1: Single-Pinhole Rotating SPECT
- Case 2: Multi-Pinhole Stationary SPECT (U-SPECT-II)
- Conclusion

1. Fisher Information-based approximation for Post-Filtered MLEM ran to convergence ${ }^{[5,6,7,8]}$, at voxel $j$ :

2. Local Shift-Invariance assumption on $\mathbf{F}^{(k)}[4,5,8]$ :

[4] J. Qi and R. M. Leahy, IEEE Trans. Med. Imag. 19 (2000) [5] K. Vunckx et al., IEEE Trans. Med. Imag. 27 (2008)
[6] J. A. Fessler, IEEE Trans. Image Process. 5 (1996)
[7] J. A. Fessler and W. L. Rogers, IEEE Trans. Image Process. 5 (1996) [8] J. Nuyts et al., Methods 48 (2009)
3. F and G also become block-circulant, with:

$$
\begin{aligned}
& \mathbf{F}=\sum_{k} t^{(k)} \mathbf{F}^{(k)} \quad \mathbf{F} \approx \mathbf{Q}^{T} \operatorname{diag}\left[\lambda_{i}^{F}\right] \mathbf{Q}, \quad \lambda_{i}^{F}=\sum_{k} t^{(k)} \lambda_{i}^{F^{(k)}} \\
& \mathbf{G} \approx \mathbf{Q}^{T} \operatorname{diag}\left[\lambda_{i}^{G}\right] \mathbf{Q}, \quad \lambda_{i}^{G}= \begin{cases}0, & \lambda_{i}^{F}=0 \\
\frac{1}{\lambda_{i}^{F}}, & \lambda_{i}^{F} \neq 0\end{cases}
\end{aligned}
$$

5. In the Optimization we use:

$$
\left.\begin{array}{rl}
C R C_{j} & \approx \mathbf{e}^{j T} \mathbf{P} \mathbf{Q}^{T} \operatorname{diag}\left[\lambda_{i}^{G} \lambda_{i}^{F}\right] \mathbf{Q e}^{j} \\
\operatorname{Var}_{j} & \approx \mathbf{e}^{j T} \mathbf{P} \mathbf{Q}^{T} \operatorname{diag}\left[\lambda_{i}^{G}\right] \mathbf{Q P}^{T} \mathbf{e}^{j}
\end{array}\right\} C N R_{j}=\frac{C R C_{j}}{\sqrt{\operatorname{Var}_{j}}}
$$

Computations reduced to element by element multiplications and FFTs

## Overview

- Introduction
- Method
- Image Quality
- Optimization
- Application
- Case 1: Single-Pinhole Rotating SPECT
- Case 2: Multi-Pinhole Stationary SPECT (U-SPECT-II)
- Conclusion


## Optimization (maximize $C N R_{j}$ ) <br> $\operatorname{Grad}_{j}^{(k)}=\frac{\partial C N R_{j}}{\partial t^{(k)}}$


[1] N. Li and L.-J. Meng, IEEE Trans. Nucl. Sci. 58 (2011)

## Overview

- Introduction
- Method
- Image Quality
- Optimization
- Application
- Case 1: Single-Pinhole Rotating SPECT
- Case 2: Multi-Pinhole Stationary SPECT (U-SPECT-II)
- Conclusion


## Case 1) Single-pinhole rotating SPECT system

- Single-head single-pinhole SPECT
- Rotation: 32 Angles
- Image Size: $12.8 \mathrm{mmx12.8mmx12.8mm}$
- Total Activity $=18.5 \mathrm{MBq} * 64$ minutes
- System Matrix modeled by ray-tracing (7-ray pinhole aperture subsampling ${ }^{[9]}$ )
- Reconstruction algorithm: PF-MLEM, Gaussian filter


Original phantom ${ }^{[1]}$ (transversal)

## Optimization Results



- 32 Angles
- Relative increase in $C N R_{j}: 34 \% \rightarrow$ Optimization works and agrees with expectations
- Very fast: $\sim 1-2$ minutes


## Validation of Image Quality calculation



- $\mathrm{CNR}_{\text {AN }}$ increase $=34 \%$
- $\mathrm{CNR}_{\text {REC }}$ increase=38\%
- Relative difference between CNR $_{\text {AN }}$ and CNR $_{\text {REC }}$ is $\sim 30 \%$
- $\mathrm{CNR}_{\text {AN }}$ : Analytical calculation
- $\mathrm{CNR}_{\text {REC }}$ : Computed from reconstructions:
- 800 MLEM steps, Gaussian Post-Filtering
- 600 noise realizations


Reconstruction realization from Uniform Time Distribution

## Overview

- Introduction
- Method
- Image Quality
- Optimization
- Application
- Case 1: Single-Pinhole Rotating SPECT
- Case 2: Multi-Pinhole Stationary SPECT (U-SPECT-II)
- Conclusion


## Case 2) U-SPECT-II system

- MILabs U-SPECT-II:
- Cylindrical collimator, 75 pinh.
- Shielding cylinder
- 3 stationary detectors

- MOBY Phantom ${ }^{[10]}$ scaled to $89 \%$, ${ }^{99 m}$ Tc-tetrofosmin
- Total Activity=75 MBq * 45 minutes
- System Matrix modeled by ray-tracing ${ }^{[9]}$
- Reconstruction algorithm: PF-MLEM, Gaussian filter

9] C. Vanhove et al., Eur. J. Nuc. Med. Mol. Imaging 34 (2007) [10] W. Branderhorst et al., Phys. Med. Biol. 57 (2012)
[11] W. P. Segars et al., Mol. Imaging Biol. 6 (2004)
[12] B. Vastenhouw and F. Beekman, J. Nucl. Med. 48 (2007)

## Optimization Results

9 Bed Positions



Transversal

## Validation of Image Quality calculation

- Same total time (45min)
- Uniform time per bed position
- Transversal bed shifts

$C N R_{j}$ values (analytical)

| Bed <br> Positions |  |  |
| :---: | :---: | :---: |
| Phantom | $3.4 \times 10^{-3}$ | $5.1 \times 10^{-3}$ |
| MOBY Phantom <br> Without extra- <br> cardiac activity | $5.5 \times 10^{-3}$ | $7.7 \times 10^{-3}$ |

UIITM. CLR
FACULTY OF ENGINEERING AND

## Overview

- Introduction
- Method
- Image Quality
- Optimization
- Application
- Case 1: Single-Pinhole Rotating SPECT
- Case 2: Multi-Pinhole Stationary SPECT (U-SPECT-II)
- Conclusion


## Conclusion

- We presented an efficient method to:

1. Evaluate Image Quality at a POI
2. Optimize time per angle (Case 1)/bed position (Case 2)

- Optimization works in both cases studied, more impact in Case 1
- Case 1: analytical CNR values consistent with reconstructions
- Case 2: analytical CNR values for the full MOBY phantom seem to agree with literature ${ }^{[10]}$, but further investigation is needed


## Special Thanks To:

- Jinyi Qi
- Johan Nuyts
- Kathleen Vunckx
- Nan Li
- Ling-Jian Meng
- Woutjan Branderhorst

Fonds Wetenschappelijk Onderzoek
Research Foundation - Flanders

## Contact:

> Lara Pato ( Lara.Pato@UGent.be )
> Medical Imaging and Signal Processing Group (MEDISIP)
> Ghent University, Belgium

http://medisip.elis.ugent.be/

