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Adaptive Angular Sampling for SPECT Imaging
Nan Li and Ling-Jian Meng

Abstract—This paper presents an analytical approach for
performing adaptive angular sampling in single photon emis-
sion computed tomography (SPECT) imaging. It allows for a
rapid determination of the optimum sampling strategy that
minimizes image variance in regions-of-interest (ROIs). The
proposed method consists of three key components: (a) a set of
close-form equations for evaluating image variance and resolution
attainable with a given sampling strategy, (b) a gradient-based
algorithm for searching through the parameter space to find the
optimum sampling strategy and (c) an efficient computation ap-
proach for speeding up the search process. In this paper, we have
demonstrated the use of the proposed analytical approach with a
single-head SPECT system for finding the optimum distribution
of imaging time across all possible sampling angles. Compared to
the conventional uniform angular sampling approach, adaptive
angular sampling allows the camera to spend larger fractions of
imaging time at angles that are more efficient in acquiring useful
imaging information. This leads to a significantly lowered image
variance. In general, the analytical approach developed in this
study could be used with many nuclear imaging systems (such as
SPECT, PET and X-ray CT) equipped with adaptive hardware.
This strategy could provide an optimized sampling efficiency and
therefore an improved image quality.

Index Terms—Adaptive angular sampling, non-uniform object-
space pixelation (NUOP) approach, single photon emission com-
puted tomography (SPECT).

I. INTRODUCTION

S INGLE photon emission computed tomography (SPECT)
is a commonly used nuclear imagingmodality for small an-

imal studies [1], [2]. One of the recent emphases in SPECT in-
strumentation is to push for higher spatial resolution. Examples
of recent developments include the SemiSPECT reported by
Kastis et al. [4], the SiliSPECT under development by Peterson
et al. [5], the MediSPECT proposed (and evaluated) by Accorsi
et al. [6] and the U-SPECT-III proposed by Beekman et al. [7],
a low-cost ultra-high resolution imager based on the second-
generation image intensifier [8] and the use of a pre-existing
SPECT camera, arranged in an extreme focusing geometry for
ultra-high resolution small animal SPECT imaging applications
[9]. We have recently developed a prototype ultra-high reso-
lution single photon emission microscope (SPEM) system for
mouse brain studies [10], [11]. This system delivers an ultra-
high imaging resolution of around 100 in phantom studies.
It was demonstrated that the current dual-headed SPEM system
is capable of visualizing a very small number of radiolabeled
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cells in mouse brain [12]. Despite these promising results, the
performance of the SPEM system is limited by the common bot-
tleneck for ultra-high resolution SPECT instrumentations—the
limited detection efficiency. Even with the large number of pin-
holes in the entire system, the overall detection efficiency for
the SPEM system is typically or lower. The long imaging
time required for ultra-high resolution studies could preclude
many interesting applications.
This problem could be partially alleviated by using the adap-

tive imaging concept proposed by Barrett et al. [13], Clarkson
et al. [14] and Freed et al. [15]. In an adaptive SPECT system,
the system hardware could vary in real-time to maximize the
efficiency for collecting useful imaging information regarding
a given task, and therefore provide an optimum imaging perfor-
mance. In [12] (Fig. 12), we have proposed the use of a vari-
able aperture system with four sets of apertures that can be in-
terchanged during an imaging study. Therefore, apertures with
larger pinholes can be used for localizing the target-region and
highly focusing ultra-high resolution apertures can then be used
for a closer examination of the target region.
In this paper, we propose an analytical approach for adaptive

angular sampling in SPECT imaging. This approach assigns a
non-uniform distribution of imaging times across all possible
sampling angles, and the actual sampling strategy will be deter-
mined based on the relative importance of each angle for col-
lecting useful imaging information regarding a given imaging
task. With the adaptive angular sampling approach, an imaging
study could start with a uniform time distribution across all pos-
sible angles. During the study, the imaging information being
acquired and the input from the user (e.g., the target-region to
be examined) will be used to determine the optimum time dis-
tribution based on the expected system performance measured
with certain analytical performance indices.
The adaptive angular sampling approach requires an efficient

computation method for searching through the parameter space
to find the optimum time distribution in real time. For this
purpose, we have proposed a search algorithm that utilizes the
gradient function of certain system performance indices, such
as image variance, with respect to imaging times at individual
angles. To allow for a rapid optimization process, we have also
incorporated a non-uniform object-space pixelation (NUOP)
scheme that uses different pixel sizes adaptively according to
the characteristics of the object and the input from the user
[3]. By combining the gradient-based search algorithm and the
NUOP approach, one can refine the angular sampling strategy
adaptively during an imaging study in near real time to achieve
an improved image quality.
Although we have focused on the problem of adaptive

angular sampling in SPECT, the basic approach developed in

0018-9499/$26.00 © 2011 IEEE

•  RotaFng	  single-‐head	  SPECT	  

•  Adapt	  Fme	  t(k) spent	  at	  each	   	   	  	  	  	  	  	  	  
angle	  k∈{1,…,K},	  for	  a	  given	  total	  imaging	  
Fme	  

t (1) 
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•  H 

 

•  For	  angle	  k:	  

is determined by a constant t0, which if too big can lead
to too much increase/decrease such that the CNR actually
decreases with the new time sampling. To garantee that the CNR
always increased with each iteration, whenever the new time
distribution would lead to an decrease in the CNR we would
reject the new t(k)’s and reduce t0. Another consideration is that
a higher t0 speeds up the convergence to the maximum CNR
value, and so when the variance values would start becoming
very close we would increase t0.

Also include that if delta(CNR)<0 in succession for 10 times,
stop.

C. USPECT

y(k)
= t

(k) ⇧H(k) ⇧ x (32)
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= t
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t

(k) 2 R, k 2 {1, . . . ,K}
H(k) the matrix formed by the rows k to k +

N

K

of H. We
can then separate the projection data 1 in K components

y(k)
= t

(k)H(k)x (40)

With this decomposition it can be shown [2], using 40 in the
likelihood expression 2, that the FIM is given by

F =

K
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We applied the local shift-invariant approximation to the
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III. SIMULATIONS

To validate our approach we used similar settings to the ones
used in [2], as those has been shown to provide better image
quality using the non-uniform time sampling approach(/as those
have been shown to benefit from the non-uniform sampling
approach). We had a 64⇥64⇥64 image with 0.2mm⇥0.2mm⇥
0.2mm voxels; within this image there was a large sphere
with a uniform low activity, a high activity ellipsoid in the
center, and finally an off-center small sphere with intermediate
activity levels, which constituted the region of interest (ROI)/ the
phantom consisted of a large sphere with a uniform low activity
(background), a high activity ellipsoid in the center (25:1),
and an off-center small sphere with intermediate activity levels
(5:1), which was the region of interest (ROI). We simulated
a single-head single-pinhole SPECT system, which scans the
object along 32 equally-spaced angles between 0

� and 360

�,
and a total imaging time of 64 minutes / for a total of 64
minutes. The collimator was made out of Tungsten and the
pinhole was 0.3mm in diameter, located at a distance of 15mm

from the center of the image. The detector was 64 ⇥ 64 with
0.7mm ⇥ 0.7mm pixels, located at 45mm from the pinhole /
so that we get magnification of the object.

We used a 7-ray tracer [10] (chack Vunckx’s reference),
taking sensitivity and resolution correction into account, to
get the system matrix, which is needed to computed the F(k)

matrices used in the optimization algorithm, and also for the
reconstructions which validated the approach. The operator P
was chosen as a 3-D Gaussian filter with a 0.8mm FWHM.

To obtain the optimum imaging time / t(k)’s, we used the
CNR at the center of the ROI as figure of merit / at the VOI
(center of the ROI). We started from a constant/uniform imaging
time, with the time step t0 = 10; during the optimization, if the
updated CNR decreased its value, t0 ! 0.99t0; when the CNR
values between iterations would not change more than 10

�i,
with i = 5, 6, 7..., then t0 ! 2t0 - purely pragmatic approach,
just to speed up the process and refine the optimization. ; t0

remained constant in the other cases. As the CNR values were ⇠
10

�4, we considered convergence when the absolute difference
between consecutive CNR values was lower than 10

�10.
To validate both the optimization and the approximations

made to achive the CNR value, we also performed actual
reconstructions, with both he uniform (UT) and the optimum
non-uniform time (NUT) sampling. To compute the CNR, the
variance was calculated based on 300 (600?) noise realizations
of the projection data and the CRC based on a reconstruction
with and without an extra impulse on voxel j of 200% of its
value. The number of reconstruction iterations was chosen to
be 500 (800?), as it was seen that the variance value was more
or less stable from that point on.

[1]	  N.	  Li	  and	  L.-‐J.	  Meng,	  IEEE	  Trans.	  Nucl.	  Sci.	  58	  (2011)	  
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rotating cammera). For now we assume that the imaging time is the same for all angles and is incorporated in the system
matrix (in this case it is just a multiplication factor). The log-likelihood function is

L(y|x) := log p(y|x) =
M

X

i=1

(y

i

log y

i

(x)� y

i

(x)� log y

i

!) , (2)

where the second equality is due to the fact that we assume the components of the data vector y to be independent
Poisson variables, as usually done in emission tomography. We can then compute the Fisher information matrix (FIM)
by inserting expression (2) in its definition, and so we have

F
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with F
ij

the components of the FIM and E [·] the expectation operator. From (3), the total matrix can be simply written
as
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is a diagonal matrix with each (i, i) element equal to 1
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, i 2 {1, . . . ,M}.
In MAP reconstruction (ran to convergence), the image estimator x̂ is given by

ˆx
MAP

(y) = argmax

x�0
[L(y|x)� �R(x)] , (5)

where R(x) is a penalty function and � is a regularization parameter. The ML estimator is just a special case of expression
(5), with � = 0. In both cases, the estimator (5) is shift-variant and nonlinear in y, so we cannot define a global impulse
or frequency response, valid for all the image voxels. As such, Fessler et al. [4] defined the local impulse response at voxel
j as
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with ej 2 RN⇥1 the j-th unit vector. In emission tomography this can be further simplified because the expectation value
of a large number of noisy measurements y reconstructed using ML or MAP is well approximated by a reconstruction of
the noiseless projection data y, so

E [

ˆx(y)] ⇡ ˆx(y), (7)

and substituting (7) in (6) we get the linearized local impulse response at voxel j. For MAP, this approximation to the
local impulse response takes the form [4]
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where R is the Hessian matrix of the penalty function R(x). If instead of using MAP reconstruction one considers
post-filtered ML (PF-ML), (8) is replaced by [7, 8]

l
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with G the pseudoinverse (due to the fact that in pinhole SPECT the FIM is in general non-invertible) and P the post-
filtering operator (seen as an N ⇥N matrix). The local contrast recovery coefficient (CRC) is defined as the jth element
of the local impulse response
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with T the transpose operator, and this can be used as a measure of resolution [9]. It can also be shown [3] that the
covariance matrix for PF-ML reconstruction [7, 8] ran until convergence can be approximated as
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whose (j, j) element, the variance, provides a measure of the noise in the reconstruction

V ar

j

(

ˆx) := Cov

j

j

(

ˆx) ⇡ ejTPGFGPT ej . (12)

Finally, we can combine these two measures in the contrast-to-noise ratio (CNR)

CNR

j

=

CRC

j

p

V ar

j

, (13)

Mean	  projecFon	  data	  vector	   Fisher	  InformaFon	  Matrix	  

y(k)
= t

(k)H(k)x (40)

With this decomposition it can be shown [2], using 40 in the likelihood expression 2, that the FIM is given by

F =

K

X

k=1

t

(k)F(k)
, F(k)

= H(k)T
diag

 

1

�

H(k)x
�

i

!

H(k) (41)

with

F(k)
= H(k)T

diag

 

1

�

H(k)x
�

i

!

H(k) (42)

We applied the local shift-invariant approximation to the F(k) matrices, F̃. F̃(j), with �

i

=

P

k

t

(k)
�

F

(k)

i

(�F

(k)

i

the
eigenvalues of F̃(k)

(j)).

y(k)
= t

(k)Hx(k) (43)

Hx(k)
= HT(k)x(1)

= H(k)x (44)

x(k)
= T(k)x(1) (45)

H(k)
:= HT(k), x := x(1) (46)

Hx(k) ) H(k)x (47)

T(k) shifts the columns of H such that

CRC

j

⇡ ejTPGFej , V ar

j

⇡ ejTPGFGTPT ej ! CNR

j

=

CRC

j

p

V ar

j

(48)

V ar

j

⇡ ejTPGFGTPT ej (49)

CNR

j

=

CRC

j

p

V ar

j

(50)

F(k) ⇡ circ

n

F(k)ej
o

= QTdiag
h

�

F

(k)

i

i

Q (51)
⇣

F(k)ej
⌘

i

! W

i

·
⇣

F(k)ej
⌘

i

(52)

�

F

(k)

i

! max

⇣

0,<
⇣

�

F

(k)

i

⌘⌘

(53)

�

F

i

=

X

k

t

(k)
�

F

(k)

i

, �

G

i

=

(

0, �

F

i

= 0

1
�

F

i

, �

F

i

6= 0

(54)

�

G

i

=

(

0, �

F

i

= 0

1
�

F

i

, �

F

i

6= 0

(55)

F ⇡ QTdiag
⇥

�

F

i

⇤

Q, �

F

i

=

X

k

t

(k)
�

F

(k)

i

(56)

G ⇡ QTdiag
⇥

�

G

i

⇤

Q, �

G

i

=

(

0, �

F

i

= 0

1
�

F

i

, �

F

i

6= 0

(57)

@V ar

j

@c

(k)
⇡ ejTP

n

GF(k)G� 2GF(k)GFG
o

PT ej (58)

@CRC

j

@c

(k)
⇡ ejTP

n

GF(k) �GF(k)GF
o

ej (59)

@CNR

j

@t

(k)
/ ejTPQT

diag

h

�

F

(k)

i

·
�

�

G

i

�2
i

Qej (60)

y(k)
= t

(k)H(k)x (40)

With this decomposition it can be shown [2], using 40 in the likelihood expression 2, that the FIM is given by

F =

K

X

k=1

t

(k)F(k)
, F(k)

= H(k)T
diag

 

1

�

H(k)x
�

i

!

H(k) (41)

with

F(k)
= H(k)T

diag

 

1

�

H(k)x
�

i

!

H(k) (42)

We applied the local shift-invariant approximation to the F(k) matrices, F̃. F̃(j), with �

i

=

P

k

t

(k)
�

F

(k)

i

(�F

(k)

i

the
eigenvalues of F̃(k)

(j)).

y(k)
= t

(k)Hx(k) (43)

y = Hx (44)

Hx(k)
= HT(k)x(1)

= H(k)x (45)

x(k)
= T(k)x(1) (46)

H(k)
:= HT(k)

, x := x(1) (47)

Hx(k) ) H(k)x (48)

T(k) shifts the columns of H such that

CRC

j

⇡ ejTPGFej , V ar

j

⇡ ejTPGFGTPT ej ! CNR

j

=

CRC

j

p

V ar

j

(49)

V ar

j

⇡ ejTPGFGTPT ej (50)

CNR

j

=

CRC

j

p

V ar

j

(51)

F(k) ⇡ circ

n

F(k)ej
o

= QTdiag
h

�

F

(k)

i

i

Q (52)
⇣

F(k)ej
⌘

i

! W

i

·
⇣

F(k)ej
⌘

i

(53)

�

F

(k)

i

! max

⇣

0,<
⇣

�

F

(k)

i

⌘⌘

(54)

�

F

i

=

X

k

t

(k)
�

F

(k)

i

, �

G

i

=

(

0, �

F

i

= 0

1
�

F

i

, �

F

i

6= 0

(55)

�

G

i

=

(

0, �

F

i

= 0

1
�

F

i

, �

F

i

6= 0

(56)

F ⇡ QTdiag
⇥

�

F

i

⇤

Q, �

F

i

=

X

k

t

(k)
�

F

(k)

i

(57)

G ⇡ QTdiag
⇥

�

G

i

⇤

Q, �

G

i

=

(

0, �

F

i

= 0

1
�

F

i

, �

F

i

6= 0

(58)

@V ar

j

@c

(k)
⇡ ejTP

n

GF(k)G� 2GF(k)GFG
o

PT ej (59)

@CRC

j

@c

(k)
⇡ ejTP

n

GF(k) �GF(k)GF
o

ej (60)

5	  IntroducFon	  	  	  	  	  	  	  	  	  	  	  	  Method	  	  	  	  	  	  	  	  	  	  	  	  ApplicaFon	  	  	  	  	  	  	  	  	  	  	  	  Conclusion	  

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 5, OCTOBER 2011 2205

Adaptive Angular Sampling for SPECT Imaging
Nan Li and Ling-Jian Meng

Abstract—This paper presents an analytical approach for
performing adaptive angular sampling in single photon emis-
sion computed tomography (SPECT) imaging. It allows for a
rapid determination of the optimum sampling strategy that
minimizes image variance in regions-of-interest (ROIs). The
proposed method consists of three key components: (a) a set of
close-form equations for evaluating image variance and resolution
attainable with a given sampling strategy, (b) a gradient-based
algorithm for searching through the parameter space to find the
optimum sampling strategy and (c) an efficient computation ap-
proach for speeding up the search process. In this paper, we have
demonstrated the use of the proposed analytical approach with a
single-head SPECT system for finding the optimum distribution
of imaging time across all possible sampling angles. Compared to
the conventional uniform angular sampling approach, adaptive
angular sampling allows the camera to spend larger fractions of
imaging time at angles that are more efficient in acquiring useful
imaging information. This leads to a significantly lowered image
variance. In general, the analytical approach developed in this
study could be used with many nuclear imaging systems (such as
SPECT, PET and X-ray CT) equipped with adaptive hardware.
This strategy could provide an optimized sampling efficiency and
therefore an improved image quality.

Index Terms—Adaptive angular sampling, non-uniform object-
space pixelation (NUOP) approach, single photon emission com-
puted tomography (SPECT).

I. INTRODUCTION

S INGLE photon emission computed tomography (SPECT)
is a commonly used nuclear imagingmodality for small an-

imal studies [1], [2]. One of the recent emphases in SPECT in-
strumentation is to push for higher spatial resolution. Examples
of recent developments include the SemiSPECT reported by
Kastis et al. [4], the SiliSPECT under development by Peterson
et al. [5], the MediSPECT proposed (and evaluated) by Accorsi
et al. [6] and the U-SPECT-III proposed by Beekman et al. [7],
a low-cost ultra-high resolution imager based on the second-
generation image intensifier [8] and the use of a pre-existing
SPECT camera, arranged in an extreme focusing geometry for
ultra-high resolution small animal SPECT imaging applications
[9]. We have recently developed a prototype ultra-high reso-
lution single photon emission microscope (SPEM) system for
mouse brain studies [10], [11]. This system delivers an ultra-
high imaging resolution of around 100 in phantom studies.
It was demonstrated that the current dual-headed SPEM system
is capable of visualizing a very small number of radiolabeled
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cells in mouse brain [12]. Despite these promising results, the
performance of the SPEM system is limited by the common bot-
tleneck for ultra-high resolution SPECT instrumentations—the
limited detection efficiency. Even with the large number of pin-
holes in the entire system, the overall detection efficiency for
the SPEM system is typically or lower. The long imaging
time required for ultra-high resolution studies could preclude
many interesting applications.
This problem could be partially alleviated by using the adap-

tive imaging concept proposed by Barrett et al. [13], Clarkson
et al. [14] and Freed et al. [15]. In an adaptive SPECT system,
the system hardware could vary in real-time to maximize the
efficiency for collecting useful imaging information regarding
a given task, and therefore provide an optimum imaging perfor-
mance. In [12] (Fig. 12), we have proposed the use of a vari-
able aperture system with four sets of apertures that can be in-
terchanged during an imaging study. Therefore, apertures with
larger pinholes can be used for localizing the target-region and
highly focusing ultra-high resolution apertures can then be used
for a closer examination of the target region.
In this paper, we propose an analytical approach for adaptive

angular sampling in SPECT imaging. This approach assigns a
non-uniform distribution of imaging times across all possible
sampling angles, and the actual sampling strategy will be deter-
mined based on the relative importance of each angle for col-
lecting useful imaging information regarding a given imaging
task. With the adaptive angular sampling approach, an imaging
study could start with a uniform time distribution across all pos-
sible angles. During the study, the imaging information being
acquired and the input from the user (e.g., the target-region to
be examined) will be used to determine the optimum time dis-
tribution based on the expected system performance measured
with certain analytical performance indices.
The adaptive angular sampling approach requires an efficient

computation method for searching through the parameter space
to find the optimum time distribution in real time. For this
purpose, we have proposed a search algorithm that utilizes the
gradient function of certain system performance indices, such
as image variance, with respect to imaging times at individual
angles. To allow for a rapid optimization process, we have also
incorporated a non-uniform object-space pixelation (NUOP)
scheme that uses different pixel sizes adaptively according to
the characteristics of the object and the input from the user
[3]. By combining the gradient-based search algorithm and the
NUOP approach, one can refine the angular sampling strategy
adaptively during an imaging study in near real time to achieve
an improved image quality.
Although we have focused on the problem of adaptive

angular sampling in SPECT, the basic approach developed in

0018-9499/$26.00 © 2011 IEEE
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Evalua+on	  of	  Image	  Quality	  
•  AnalyFcal	  formulas	  for	  FOM	  at	  POI,	  based	  on	  Fisher	  InformaFon	  Matrix	  F	  
•  To	  increase	  computaFonal	  efficiency,	  F	  can	  be	  simplified:	  

•  [1]:	  Non-‐Uniform	  Object-‐Space	  PixelaFon	  approach[3]	  
•  Our	  method:	  Local-‐shi]	  invariance	  approximaFon[4,5]	  

Op+miza+on	  
•  Fast	  opFmizaFon	  based	  on	  the	  gradient	  of	  the	  FOM	  

Applica+on	  
•  Adapt	  Fme	  per	  angle	  in	  single-‐head	  single-‐pinhole	  rotaFng	  SPECT	  system[1]	  

•  Adapt	  Fme	  per	  bed	  posiFon	  in	  staFonary	  mulF-‐pinhole	  SPECT	  system	  (MILabs	  	  	  	  	  
U-‐SPECT-‐II)	  

[1]	  N.	  Li	  and	  L.-‐J.	  Meng,	  IEEE	  Trans.	  Nucl.	  Sci.	  58	  (2011)	  
[3]	  L.-‐J.	  Meng	  and	  N.	  Li,	  IEEE	  Trans.	  Nucl.	  Sci.	  56	  (2009)	  

[4]	  J.	  Qi	  and	  R.	  M.	  Leahy,	  IEEE	  Trans.	  Med.	  Imag.	  19	  (2000)	  
[5]	  K.	  Vunckx	  et	  al.,	  IEEE	  Trans.	  Med.	  Imag.	  27	  (2008)	  

Same phantom and 
system and protocol as 
in Li and Meng’s paper	  

In this study we apply 
these to find the 
optimum time spent:/We 
tested our 
approximations for 
image quality and the 
optimization in 2 cases: 
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We extend the 
formalism to the 
case of a 
stationary…, 
more complex 
system and more 
realistic phantom 	  
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To keep the validity of these expressions, we used the LSI approximation only on the F(k) matrices, and then inserted
that in (??) to get F̃. Equations (15) and (16) remain valid for F̃(j), with �

i

=

P

k

t(k)�F

(k)

i

(�F

(k)

i

the eigenvalues of
F̃(k)

(j)).
—–
where �F

i

denotes the ith eigenvalue of ˜F(j), i 2 {1, . . . , N}, and ˜F1 is the first column of ˜F(j). Due to the block-
circulant nature of ˜F(j), ˜F1 is obtained by a 3D circulant shift of Fj such that the value in position j is shifted to position
1. This approximation greatly simplifies the calculation of 10 and 12, since in Fourier space the FIM and its pseudoinverse
are diagonal and their elements can be computed from Fj using 3D discrete fast Fourier transforms [5]. More specifically,
we chose to write the pseudoinverse G̃(j) as
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which can be shown to be the Moore-Penrose pseudoinverse of a (block) circulant matrix. Thus, following from the fact
that QTQ = Id, we can write 10 and 12 as

CRC
j
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⇡ ejTPQT diag
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Qej . (69)

3 Simulations

To validate our approach we used similar settings to the ones used in [2], as those has been shown to provide better
image quality using the non-uniform time sampling approach(/as those have been shown to benefit from the non-uniform
sampling approach). We had a 64 ⇥ 64 ⇥ 64 image with 0.2mm ⇥ 0.2mm ⇥ 0.2mm voxels; within this image there was
a large sphere with a uniform low activity, a high activity ellipsoid in the center, and finally an off-center small sphere
with intermediate activity levels, which constituted the region of interest (ROI)/ the phantom consisted of a large sphere
with a uniform low activity (background), a high activity ellipsoid in the center (25:1), and an off-center small sphere
with intermediate activity levels (5:1), which was the region of interest (ROI). We simulated a single-head single-pinhole
SPECT system, which scans the object along 32 equally-spaced angles between 0

� and 360

�, and a total imaging time of
64 minutes / for a total of 64 minutes. The collimator was made out of Tungsten and the pinhole was 0.3mm in diameter,
located at a distance of 15mm from the center of the image. The detector was 64⇥64 with 0.7mm⇥0.7mm pixels, located
at 45mm from the pinhole / so that we get magnification of the object.

We used a 7-ray tracer [10] (chack Vunckx’s reference), taking sensitivity and resolution correction into account, to get
the system matrix, which is needed to computed the F(k) matrices used in the optimization algorithm, and also for the
reconstructions which validated the approach. The operator P was chosen as a 3-D Gaussian filter with a 0.8mm FWHM.

To obtain the optimum imaging time / t(k)’s, we used the CNR at the center of the ROI as figure of merit / at
the VOI (center of the ROI). We started from a constant/uniform imaging time, with the time step t0 = 10; during
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1.  Fisher	  InformaFon-‐based	  approximaFon	  for	  Post-‐Filtered	  MLEM	  ran	  to	  
convergence[5,6,7,8],	  at	  voxel	  j:	  
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Pseudoinverse	  of	  F computaFonal	  challenge	  
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3D	  DFT	  
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2.  Local	  Shi]-‐Invariance	  assumpFon	  on	  F(k) [4,5,8]:	  
	  

Eigenvalues	  –	  obtained	  using	  Q Block-‐Circulant	  Matrix	  

Post-‐Filter	  
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4.  	  F	  and	  G	  also	  become	  block-‐circulant,	  with:	  

5.  In	  the	  OpFmizaFon	  we	  use:	  
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1. This approximation greatly simplifies the calculation of 10 and 12, since in Fourier space the FIM and its pseudoinverse
are diagonal and their elements can be computed from Fj using 3D discrete fast Fourier transforms [5]. More specifically,
we chose to write the pseudoinverse G̃(j) as
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which can be shown to be the Moore-Penrose pseudoinverse of a (block) circulant matrix. Thus, following from the fact
that QTQ = Id, we can write 10 and 12 as
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3 Simulations

To validate our approach we used similar settings to the ones used in [2], as those has been shown to provide better
image quality using the non-uniform time sampling approach(/as those have been shown to benefit from the non-uniform
sampling approach). We had a 64 ⇥ 64 ⇥ 64 image with 0.2mm ⇥ 0.2mm ⇥ 0.2mm voxels; within this image there was
a large sphere with a uniform low activity, a high activity ellipsoid in the center, and finally an off-center small sphere
with intermediate activity levels, which constituted the region of interest (ROI)/ the phantom consisted of a large sphere
with a uniform low activity (background), a high activity ellipsoid in the center (25:1), and an off-center small sphere
with intermediate activity levels (5:1), which was the region of interest (ROI). We simulated a single-head single-pinhole
SPECT system, which scans the object along 32 equally-spaced angles between 0

� and 360

�, and a total imaging time of
64 minutes / for a total of 64 minutes. The collimator was made out of Tungsten and the pinhole was 0.3mm in diameter,
located at a distance of 15mm from the center of the image. The detector was 64⇥64 with 0.7mm⇥0.7mm pixels, located
at 45mm from the pinhole / so that we get magnification of the object.

We used a 7-ray tracer [10] (chack Vunckx’s reference), taking sensitivity and resolution correction into account, to get
the system matrix, which is needed to computed the F(k) matrices used in the optimization algorithm, and also for the
reconstructions which validated the approach. The operator P was chosen as a 3-D Gaussian filter with a 0.8mm FWHM.

To obtain the optimum imaging time / t(k)’s, we used the CNR at the center of the ROI as figure of merit / at
the VOI (center of the ROI). We started from a constant/uniform imaging time, with the time step t0 = 10; during
the optimization, if the updated CNR decreased its value, t0 ! 0.99t0; when the CNR values between iterations would
not change more than 10

�i, with i = 5, 6, 7..., then t0 ! 2t0 - purely pragmatic approach, just to speed up the process
and refine the optimization. ; t0 remained constant in the other cases. As the CNR values were ⇠ 10

�4, we considered
convergence when the absolute difference between consecutive CNR values was lower than 10

�10.
To validate both the optimization and the approximations made to achive the CNR value, we also performed actual

reconstructions, with both he uniform (UT) and the optimum non-uniform time (NUT) sampling. To compute the CNR,
the variance was calculated based on 300 (600?) noise realizations of the projection data and the CRC based on a
reconstruction with and without an extra impulse on voxel j of 200% of its value. The number of reconstruction iterations
was chosen to be 500 (800?), as it was seen that the variance value was more or less stable from that point on.

//
To validate our approach, we performed actual reconstructions, with both the uniform time (UT) and optimum

non-uniform time (NUT) distributions. To compute the CNR, the CRC was calculated based on a reconstruction with
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To keep the validity of these expressions, we used the LSI approximation only on the F(k) matrices, and then inserted
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circulant nature of ˜F(j), ˜F1 is obtained by a 3D circulant shift of Fj such that the value in position j is shifted to position
1. This approximation greatly simplifies the calculation of 10 and 12, since in Fourier space the FIM and its pseudoinverse
are diagonal and their elements can be computed from Fj using 3D discrete fast Fourier transforms [5]. More specifically,
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which can be shown to be the Moore-Penrose pseudoinverse of a (block) circulant matrix. Thus, following from the fact
that QTQ = Id, we can write 10 and 12 as
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3 Simulations

To validate our approach we used similar settings to the ones used in [2], as those has been shown to provide better
image quality using the non-uniform time sampling approach(/as those have been shown to benefit from the non-uniform
sampling approach). We had a 64 ⇥ 64 ⇥ 64 image with 0.2mm ⇥ 0.2mm ⇥ 0.2mm voxels; within this image there was
a large sphere with a uniform low activity, a high activity ellipsoid in the center, and finally an off-center small sphere
with intermediate activity levels, which constituted the region of interest (ROI)/ the phantom consisted of a large sphere
with a uniform low activity (background), a high activity ellipsoid in the center (25:1), and an off-center small sphere
with intermediate activity levels (5:1), which was the region of interest (ROI). We simulated a single-head single-pinhole
SPECT system, which scans the object along 32 equally-spaced angles between 0

� and 360

�, and a total imaging time of
64 minutes / for a total of 64 minutes. The collimator was made out of Tungsten and the pinhole was 0.3mm in diameter,
located at a distance of 15mm from the center of the image. The detector was 64⇥64 with 0.7mm⇥0.7mm pixels, located
at 45mm from the pinhole / so that we get magnification of the object.

We used a 7-ray tracer [10] (chack Vunckx’s reference), taking sensitivity and resolution correction into account, to get
the system matrix, which is needed to computed the F(k) matrices used in the optimization algorithm, and also for the
reconstructions which validated the approach. The operator P was chosen as a 3-D Gaussian filter with a 0.8mm FWHM.

To obtain the optimum imaging time / t(k)’s, we used the CNR at the center of the ROI as figure of merit / at
the VOI (center of the ROI). We started from a constant/uniform imaging time, with the time step t0 = 10; during
the optimization, if the updated CNR decreased its value, t0 ! 0.99t0; when the CNR values between iterations would
not change more than 10

�i, with i = 5, 6, 7..., then t0 ! 2t0 - purely pragmatic approach, just to speed up the process
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To keep the validity of these expressions, we used the LSI approximation only on the F(k) matrices, and then inserted
that in (??) to get F̃. Equations (15) and (16) remain valid for F̃(j), with �

i

=

P

k

t

(k)
�

F

(k)

i

(�F

(k)

i

the eigenvalues of
F̃(k)

(j)).
—–
where �

F

i

denotes the ith eigenvalue of ˜F(j), i 2 {1, . . . , N}, and ˜F1 is the first column of ˜F(j). Due to the block-
circulant nature of ˜F(j), ˜F1 is obtained by a 3D circulant shift of Fj such that the value in position j is shifted to position
1. This approximation greatly simplifies the calculation of 10 and 12, since in Fourier space the FIM and its pseudoinverse
are diagonal and their elements can be computed from Fj using 3D discrete fast Fourier transforms [5]. More specifically,
we chose to write the pseudoinverse G̃(j) as

˜G(j) =

˜F(j)+ = QTdiag
⇥

�

G

i

⇤

Q, �

G

i

=

(

0, �

F

i

= 0

1
�

F

i

, �

F

i

6= 0

, (65)

which can be shown to be the Moore-Penrose pseudoinverse of a (block) circulant matrix. Thus, following from the fact
that QTQ = Id, we can write 10 and 12 as

CRC

j

(

ˆx) ⇡ ejTPQTQG̃(j)QTQF̃(j)QTQej , (66)
⇡ ejTPQT

diag

⇥

�

G

i

�

F

i

⇤

Qej , (67)

V ar

j

(

ˆx) ⇡ ejTPQTQG̃(j)QTQF̃(j)QTQG̃(j)QTQej ,

⇡ ejTPQT

diag

⇥

�

G

i

⇤

Qej . (68)

3 Simulations

To validate our approach we used similar settings to the ones used in [2], as those has been shown to provide better
image quality using the non-uniform time sampling approach(/as those have been shown to benefit from the non-uniform
sampling approach). We had a 64 ⇥ 64 ⇥ 64 image with 0.2mm ⇥ 0.2mm ⇥ 0.2mm voxels; within this image there was
a large sphere with a uniform low activity, a high activity ellipsoid in the center, and finally an off-center small sphere
with intermediate activity levels, which constituted the region of interest (ROI)/ the phantom consisted of a large sphere
with a uniform low activity (background), a high activity ellipsoid in the center (25:1), and an off-center small sphere
with intermediate activity levels (5:1), which was the region of interest (ROI). We simulated a single-head single-pinhole
SPECT system, which scans the object along 32 equally-spaced angles between 0

� and 360

�, and a total imaging time of
64 minutes / for a total of 64 minutes. The collimator was made out of Tungsten and the pinhole was 0.3mm in diameter,
located at a distance of 15mm from the center of the image. The detector was 64⇥64 with 0.7mm⇥0.7mm pixels, located
at 45mm from the pinhole / so that we get magnification of the object.

We used a 7-ray tracer [10] (chack Vunckx’s reference), taking sensitivity and resolution correction into account, to get
the system matrix, which is needed to computed the F(k) matrices used in the optimization algorithm, and also for the
reconstructions which validated the approach. The operator P was chosen as a 3-D Gaussian filter with a 0.8mm FWHM.

To obtain the optimum imaging time / t(k)’s, we used the CNR at the center of the ROI as figure of merit / at
the VOI (center of the ROI). We started from a constant/uniform imaging time, with the time step t0 = 10; during
the optimization, if the updated CNR decreased its value, t0 ! 0.99t0; when the CNR values between iterations would
not change more than 10

�i, with i = 5, 6, 7..., then t0 ! 2t0 - purely pragmatic approach, just to speed up the process
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Case	  1)	  	  	  Single-‐pinhole	  rota+ng	  SPECT	  system	  

Original	  phantom[1]	  

(transversal)	  

3	  *	  Act(POI)	  

POI	  

0.2	  *	  Act(POI)	  

[1]	  N.	  Li	  and	  L.-‐J.	  Meng,	  IEEE	  Trans.	  Nucl.	  Sci.	  58	  (2011)	  
[9]	  C.	  Vanhove	  et	  al.,	  Eur.	  J.	  Nuc.	  Med.	  Mol.	  Imaging	  34	  (2007)	  	  

•  Single-‐head	  single-‐pinhole	  SPECT	  

•  RotaFon:	  32	  Angles	  

•  Image	  Size:	  12.8mmx12.8mmx12.8mm	  

•  Total	  AcFvity=18.5MBq	  *	  64	  minutes	  

•  System	  Matrix	  modeled	  by	  ray-‐tracing	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
(7-‐ray	  pinhole	  aperture	  subsampling[9])	  

•  ReconstrucFon	  algorithm:	  	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  
PF-‐MLEM,	  Gaussian	  filter	  
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Op+miza+on	  Results	  

	  

•  32	  Angles	  

•  RelaFve	  increase	  in	  CNRj:	  34%	  è	  Op+miza+on	  works	  and	  agrees	  with	  
expecta+ons	  

•  Very	  fast:	  ~1-‐2	  minutes	  
	  

8%	  total	  
Fme	  
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Figure 2: Plot of the CNR versus iteration during the optimization. / Plot of the analytical CNR versus iteration during
the optimization. / Plot of the CNR versus iteration, using the optimization algorithm with changing time step.

Final Time Distribution 
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Figure 2: Plot of the CNR versus iteration during the optimization. / Plot of the analytical CNR versus iteration during
the optimization. / Plot of the CNR versus iteration, using the optimization algorithm with changing time step.

Valida+on	  of	  Image	  Quality	  calcula+on	  

•  CNRAN:	  AnalyFcal	  calculaFon	  
•  CNRREC:	  Computed	  from	  

reconstrucFons:	  
-  800	  MLEM	  steps,	  	   	  	  	  	  	  	  	  	  	  

Gaussian	  Post-‐Filtering	  
-  600	  noise	  realizaFons	  

•  CNRAN	  increase=34%	  
•  CNRREC	  increase=38%	  
•  Rela+ve	  difference	  between	  CNRAN	  and 	  	   	   	   	   	   	  	  	  	  	  	  	  

CNRREC	  is	  ~	  30%	  

CNRAN	  

CNRREC	  

ReconstrucFon	  realizaFon	  from	  
Uniform	  Time	  DistribuFon	  
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Case	  2)	  	  	  U-‐SPECT-‐II	  system	  

•  MILabs	  U-‐SPECT-‐II:	  
•  Cylindrical	  collimator,	  75	  pinh.	  
•  Shielding	  cylinder	  
•  3	  staFonary	  detectors	  

	  

	  

•  MOBY	  Phantom[10]	  scaled	  to	  89%,	  99mTc-‐tetrofosmin	  

•  Total	  AcFvity=75	  MBq	  *	  45	  minutes	  

•  System	  Matrix	  modeled	  by	  ray-‐tracing[9]	  

•  ReconstrucFon	  algorithm:	  PF-‐MLEM,	  Gaussian	  filter	  

[9]	  C.	  Vanhove	  et	  al.,	  Eur.	  J.	  Nuc.	  Med.	  Mol.	  Imaging	  34	  (2007)	  
[10]	  W.	  Branderhorst	  et	  al.,	  Phys.	  Med.	  Biol.	  57	  (2012)	  
	  

[11]	  W.	  P.	  Segars	  et	  al.,	  Mol.	  Imaging	  Biol.	  6	  (2004)	  
[12]	  B.	  Vastenhouw	  and	  F.	  Beekman,	  J.	  Nucl.	  Med.	  48	  (2007)	  
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Op+miza+on	  Results	  
9	  Bed	  PosiFons	  

 

 

 
•  POI	  in	  the	  heart	  
•  RelaFve	  increase	  in	  CNRj:	  10%	  
•  ~ 5-‐10	  minutes	  
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Figure 1: Plot of the CNR versus iteration during the optimization. / Plot of the analytical CNR versus iteration during
the optimization. / Plot of the CNR versus iteration, using the optimization algorithm with changing time step.

CNRAN	  

23%	  total	  
Fme	  

0	  

Uniform	  
Time	  

OpFmal	  
Time	  
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MOBY	  Phantom	   3.4x10-‐3	   5.1x10-‐3	   8.9x10-‐3	   9.3x10-‐3	  

MOBY	  Phantom	  
Without	  extra-‐
cardiac	  acFvity	  

5.5x10-‐3	   7.7x10-‐3	   13.5x10-‐3	   13.9x10-‐3	  

Valida+on	  of	  Image	  Quality	  
calcula+on	  
•  Same	  total	  Fme	  (45min)	  

•  Uniform	  Fme	  per	  bed	  posiFon	  

•  Transversal	  bed	  shi]s	  

CNRj	  values	  (analy+cal)	  

Transversal	   Sagital	  

POI	  
7.6	  *	  Act(POI)	  

Bed	  
Posi+ons	  

	  

Phantom	  
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Conclusion	  

•  We	  presented	  an	  efficient	  method	  to:	  
1.  Evaluate	  Image	  Quality	  at	  a	  POI	  
2.  OpFmize	  Fme	  per	  angle	  (Case	  1)/bed	  posiFon	  (Case	  2)	  

•  OpFmizaFon	  works	  in	  both	  cases	  studied,	  more	  impact	  in	  Case	  1	  

•  Case	  1:	  analyFcal	  CNR	  values	  consistent	  with	  reconstrucFons	  

•  Case	  2:	  analyFcal	  CNR	  values	  for	  the	  full	  MOBY	  phantom	  seem	  to	  agree	  
with	  literature[10],	  but	  further	  invesFgaFon	  is	  needed	  
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