
High-Performance
Computing Using GPUs

Luca Caucci
caucci@email.arizona.edu

Center for Gamma-Ray Imaging

November 7, 2012

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Outline Slide 1 of 27

Why GPUs? What is CUDA?

The CUDA programming model

Anatomy of a CUDA program

An application in medical imaging

Conclusions

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Why GPUs? What is CUDA? Slide 2 of 27

GPU stands for “graphics processing unit”

A GPU is a specialized computing device that offloads
and accelerates graphics rendering from the CPU

GPUs are very efficient at manipulating computer
graphics and they are highly parallel (hundreds of cores)

Originally designed for the entertainment industry (video
coding, 3D rendering, games, . . .), they have become
suited for general-purpose complex algorithms as well

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Why GPUs? What is CUDA? Slide 3 of 27

GPU Card
Number
Cores

Total
Memory

Single Prec.
GFLOP/s

Price

GeForce GTX 480 480 1.5 GB 1344 $200

GeForce GTX 580 512 3 GB 1581 $530

GeForce GTX 690 3072 4 GB 5622 $1000

Tesla C2075 448 6 GB 1288 $2000

Tesla K10 3072 8 GB 5340 $3400

Tesla K20 — To Be Announced —

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Why GPUs? What is CUDA? Slide 4 of 27

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Why GPUs? What is CUDA? Slide 5 of 27

http://www.nvidia.com/

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

http://www.nvidia.com/
caucci@email.arizona.edu

Why GPUs? What is CUDA? Slide 6 of 27

http://www.nvidia.com/

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

http://www.nvidia.com/
caucci@email.arizona.edu

Why GPUs? What is CUDA? Slide 7 of 27

To satisfy the need of a convenient way to develop code
for execution on a GPU device, NVIDIA developed CUDA

CUDA stands for “compute unified device architecture”

CUDA gives developers access to the instruction set and
memory of the parallel computational elements of GPUs

CUDA is a minimal extension to C/C++

Many threads run in parallel slowly (rather than executing
a single thread very fast, as on a CPU)

CUDA SDK includes CUFFT, CUBLAS libraries, sparse
matrices, random numbers, . . .

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Why GPUs? What is CUDA? Slide 8 of 27

GPU:
Threads are extremely lightweight
Very little creation/scheduling overhead
Threads scheduled by the hardware
100’s or 1000’s threads for full efficiency

CPU:
Usually, OS schedules threads
Multi-core CPUs need only a few threads

http://www.nvidia.com/

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

http://www.nvidia.com/
caucci@email.arizona.edu

The CUDA programming model Slide 9 of 27

Data-parallel portions of an application are executed as
kernels, which run in parallel on many threads

Threads are organized in a hierarchy of grids of thread
blocks

Blocks can have up to 3 dimensions and contain up to
1024 threads. Threads in the same block can share data
via shared memory

Grids can have up to 2 dimensions and 65535 × 65535
blocks. No communication between blocks

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

The CUDA programming model Slide 10 of 27

Thread

Block

Grid

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

The CUDA programming model Slide 11 of 27

In CUDA, threads execute on a physically separated
device, that operates as a coprocessor to the host

Both the host and the device have separate memory
spaces, called host memory and device memory

Device memory includes shared, global, constant,
texture, . . . memories

A thread can only access device memory

Calls to the CUDA runtime (a library) allow manage
device memory, and data transfer between host and
device memory

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

The CUDA programming model Slide 12 of 27

GPU device

Device memory GPU logic GPU cores

I/O Host memory CPU

Disk

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

The CUDA programming model Slide 13 of 27

Value type qualifiers:

__device__: declares a variable that resides in the
device memory
__host__: declares a variable that resides in the host
memory (default)
__shared__: declares a variable that resides in the
shared memory space of a thread block
__constant__: declares a variable that resides in
constant memory space on the device

Function type qualifiers:

__global__: runs on device, called from host code
__device__: runs on device, called from device code
__host__: runs on host, called from host code (default)

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

The CUDA programming model Slide 14 of 27

Memory Location Cached? Access Scope Lifetime

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads
in block Block

Global Off-chip No R/W All threads
and host Application

Constant Off-chip Yes R All threads
and host Application

Texture Off-chip Yes R All threads
and host Application

Use shared memory to improve performance (trade-off:
16 or 48 KB of shared memory per block)

Global memory very slow; recalculation instead of retrieve

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

The CUDA programming model Slide 15 of 27

Built-in vector types: charn, ucharn, shortn, ushorn,
intn, uintn, longn, ulongn, floatn, double1,
double2, for n = 1, . . . , 4

These are 1D, 2D, 3D, 4D vector types. They are
structures with .x, .y, .z, .w fields

Built-in variables: gridDim, blockIdx, blockDim,
threadIdx. They are of type dim3, which is the same as
uint3

Built-in variables used by threads to calculate indexes in
arrays, matrices, etc.

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

The CUDA programming model Slide 16 of 27

<<<...>>> is used to invoke a kernel from the host code

The <<<...>>> CUDA syntax instructs the hardware to
generate and run threads on the device

For example, my_kernel<<<N, M>>>(...)

N, of type dim3 or int, tells the grid size

M, of type dim3 or int, tells the block size

Thread scheduling is performed automatically by the
hardware

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Anatomy of a CUDA program Slide 17 of 27

General idea:

Execute serial code (such load data from disk) on host
Allocate memory on device
Copy data from host memory to device memory
Call kernel using <<<...>>> syntax
Copy result from device memory to host memory
Release memory allocated on device

Include cuda.h for the CUDA runtime

Compile using the NVIDIA nvcc compiler

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Anatomy of a CUDA program Slide 18 of 27

GPU

CPU

cudaMalloc(...) cudaMemcpy(...) cudaMemcpy(...) cudaFree(...)

my_kernel<<<N, M>>>(...)

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Anatomy of a CUDA program Slide 19 of 27

An example of a CUDA application: add two vectors a
and b together to produce c

The kernel code is shown below

__global__ void add_kernel(float *a, float *b, float *c, int n) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if(i < n) {

c[i] = a[i] + b[i];

}

return;

}

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Anatomy of a CUDA program Slide 20 of 27

#include <cuda.h>

__global__ void add_kernel(float *a, float *b, float *c, int n);

int main(int argv, char **argv) {

float a[1024], b[1024], c[1024];

float *a_dev, *b_dev, *c_dev;

int i;

... // Fill out arrays a and b

cudaMalloc((void **) (& a_dev), 1024 * sizeof(float));

cudaMalloc((void **) (& b_dev), 1024 * sizeof(float));

cudaMalloc((void **) (& c_dev), 1024 * sizeof(float));

cudaMemcpy(a_dev, a, 1024 * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(b_dev, b, 1024 * sizeof(float), cudaMemcpyHostToDevice);

add_kernel<<<4, 256>>>(a_dev, b_dev, c_dev, 1024);

cudaMemcpy(c, c_dev, 1024 * sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(a_dev); cudaFree(b_dev); cudaFree(c_dev);

... // Use data in array c

return(0);

}

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

An application in medical imaging Slide 21 of 27

R̂
(j)
1

R̂
(j)
2

D1 D2

FOV

X

Y Z

Simple PET setup

Gamma-ray photons emitted by
object

Points R̂
(j)

1 and R̂
(j)

2 estimated
from PMT data

Define Â
(j)

=
(
R̂

(j)

1 , R̂
(j)

2

)
Build list Â =

{
Â

(1)
, . . . , Â

(J)}

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

An application in medical imaging Slide 22 of 27

We want to reconstruct object f from list Â

Use the list-mode (LM) MLEM algorithm:

f̂
(k+1)
n = f̂

(k)
n

8<: 1

τ

JX
j=1

pr(Â
(j) | n)PN

n′=1 pr(Â
(j) | n′)sn′ f̂

(k)
n′

9=;
Need to calculate probability of Â

(j)
given emission

within nth voxel:

pr(Â
(j) | n) =

µ2
pe

4πZ 2
max

×

×
Z
D1

pr(R̂
(j)
1 | R(j)

1)
e−µtot∆1(R

(j)
1 ;rn)

|R(j)
1 − rn |2

Z
D2

pr(R̂
(j)
2 | R(j)

2)e−µtot∆2(R
(j)
2 ;rn)×

×
Z ∞
−∞

ψD2

`
R

(j)
1 +(rn−R

(j)
1)`

´
δDir

`
R

(j)
2 −R

(j)
1 −(rn−R

(j)
1)`

´
d` d3R

(j)
2 d3R

(j)
1

Integrals amenable to GPU computation

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

An application in medical imaging Slide 23 of 27

Task

Computing Platform pr
`
Â

(j) | n
´

LMMLEM

Intel® Xeon® L5506 2.13 GHz

(
9347.17

10.70
s
events/s

2.17
0.22

s
s/iter

NVIDIA Tesla C2050, 2 devices

(
30.30

3311.45
s (308.49×)
events/s

n/a

NVIDIA Tesla C2050, 4 devices

(
15.52

6442.47
s (602.27×)
events/s

n/a

NVIDIA Tesla C2050, 6 devices

(
11.22

8911.21
s (833.08×)
events/s

n/a

NVIDIA Tesla C2050, 8 devices

(
9.74

10264.06
s (959.67×)
events/s

n/a

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

An application in medical imaging Slide 24 of 27

18F-NaF bone scan for a normal mouse

J = 2280715 elements in list Â

88 mm× 88 mm× 32 mm FOV size

550 μm× 550 μm× 500 μm voxel size

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Conclusions Slide 25 of 27

GPU hardware viable for high-performance computing
(many ×100’s speedup)

Many products on the market

Prices constantly falling; performance constantly
increasing

CUDA: minimal extensions to C/C++

CUDA programming model is easy and scales well

Tools to use GPUs with Matlab, Mathematica, . . .

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

Conclusions Slide 26 of 27

Enormous potential for number crunching applications:

SPECT, PET, CT, MRI, . . .
Physics, chemistry, biology, material science, . . .
Matrix operations
Video/audio manipulation
. . .

Lots of resources:

www.nvidia.com
NVIDIA CUDA™ C Programming Guide
Examples
Books
Forums
. . .

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

www.nvidia.com
caucci@email.arizona.edu

Conclusions Slide 27 of 27

Questions?

Luca Caucci caucci@email.arizona.edu High-Performance Computing Using GPUs

caucci@email.arizona.edu

