Homework 9 OPTI 507 (due November 4, 2021)

Problem 1:

Starting from the following expression for the absorption coefficient of a 3-dimensional two-band semiconductor,

$$\alpha(\omega) = \frac{8\pi\hbar\omega}{n_b c} \left| d_{c,v}(0) \right|^2 s_d \frac{1}{V} \sum_{\vec{k}} \frac{\pi}{2\hbar} \delta(\varepsilon_{cv}(k) - \hbar\omega)$$

where s_d is the spin degeneracy factor (which in "the book" is taken to be 2), derive an analytical expression for α . Here, we have assumed the transition to be first-class dipole allowed (i.e. the dipole matrix element is independent of k), and we assume the transition energy to be parabolic, i.e. $\varepsilon_{cv}(k) = \varepsilon_{c,k} - \varepsilon_{v,k} = \frac{\hbar^2 k^2}{2m_r} + E_g$ where $\frac{1}{m_r} = \frac{1}{m_e} + \frac{1}{m_h}$ is the inverse reduced mass. This expression for $\alpha(\omega)$ contains a factor that is the so-called

joint density of states, $g_{cv}(\hbar\omega) = \frac{1}{V} \sum_{\vec{k}} \delta(\varepsilon_{cv}(k) - \hbar\omega)$. Determine the joint DOS for the

parabolic transition energies used in this problem through a simple comparison of the known DOS of parabolic bands by appropriately replacing parameters. You don't need to derive the expression for the DOS of a parabolic band.

(10 points)

Problem 2:

Sketch the result from Problem 1 for the case of GaAs, assuming $s_d=2$, $r_{\rm cv}=0.35$ nm, $m_e=0.065~m_0$, $m_h=0.32~m_0$ ($m_0=$ electron mass in vacuum), $n_b=3.2$, $E_g=1.46~{\rm eV}$. The frequency axis should range from 1.30 eV to 1.7 eV. Use the fine structure constant in Gauss units, $\frac{e^2}{\hbar c} \approx \frac{1}{137}$, to eliminate the squared electron charge e^2 .

(10 points)

Problem 3:

Same as Problem 1, but now do <u>not</u> use the concept of density of states. Evaluate the k-sum directly.

(10 points)