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Abstract

Dilute gas Bose-Einstein condensates (BECs) provide unique and powerful experi-

mental platforms to study fluid turbulence. Some aspects of BEC hydrodynamics

are specific to atomic quantum fluids such as quantized vortices and flexible trapping

geometries. However, there are features of turbulence that are universal and simpler

to understand in such systems. BECs are also of interest in fundamental physics in

their own right and a rich synthesis of theory and experiment has yielded power-

ful numerical methods to simulate and study BEC dynamics. In this dissertation I

present two experiments, one conducted and one proposed, describing novel aspects

of the generation and detection of vorticity in Bose-Einstein condensates.

Models of BEC dynamics at zero temperature are provided by the Gross-Pitaevskii

equation. Simple and fast numerical solutions of this equation have yielded a wealth

of literature. However, in experimental reality the atomic ensemble exists at a finite

temperature and consists of a BEC coexisting with a thermal cloud of non-condensed

atoms. The interaction between the condensate and the thermal fraction yields rich

and complex physics that require more advanced models. We present an experiment

demonstrating the relaxation dynamics of a BEC in a rotating trap perturbed by a

repulsive laser barrier. The data provided by this experiment are valuable to further

development of theoretical models that incorporate interactions between the BEC

and noncondensed atoms.

In the field of quantum fluid dynamics, an experimental method to determine

the position and circulation of vortices is a highly sought-after capability. Onsager’s

point-vortex model of turbulence completely determines the kinetic energy spectrum

of an incompressible fluid by these degrees of freedom. We present proof-of-principle

simulations that describe a new method of spatially sampling the velocity field of a

two-dimensional BEC by using an optical lattice analogously to a Shack-Hartmann
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Wavefront Sensor. Extracting vortex information from the appropriately sampled

velocity field can be accomplished either qualitatively or with detection algorithms.

This method requires minimal experimental infrastructure and is generally applicable

across atomic species. The implications of measuring a condensate velocity field are

broad and these initial results provide the first step towards realizing a valuable tool

in BEC physics.
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CHAPTER 1

Introduction

Since the Bose-Einstein condensate (BEC) was first conceived in 1924 by its epony-

mous theorists [1, 2] and first realized in an atomic gas by the group of Cornell and 

Wieman [3] in 1995 it has shown immense promise as a tool to investigate a broad 

range of physical phenomena. The primary property of a BEC that this dissertation 

is concerned with is superfluidity. Superfluidity, first reported in 1938 by Allen, Mis-

ener and Kapitza [4,5] in liquid helium occurs when the fluid is cooled below a critical 

temperature TC and undergoes a phase transition characterized by a precipitous drop 

in viscosity and the onset of other properties not seen in classical fluids. One of these 

properties is the quantization of circulation of the superfluid. Any circulation in the 

superfluid must be due to the presence quantum vortices (in increments of h/m where 

h is Planck’s constant and m is the particle mass) as first postulated by Onsager in 

1949 [6]. In the same paper, Onsager developed a statistical mechanical theory by 

which a turbulent flow in a bounded 2D incompressible fluid is characterized by the 

locations and circulations of point vortices. Quantum vortices, which are realizations 

of Onsager’s point vortex model, are concentrated regions of fluid circulation about 

a phase singularity; in a condensate they manifest as zero points of the condensate 

density. Studying large, disordered distributions of these vortices is the basis of the 

field of quantum turbulence and as such there has been much work put into the gen-

eration and detection of these states [7–22]. Turbulence is characterized by a cascade 

of energy across a spectrum of length scales from the scale at which kinetic energy 

is injected to the scale at which it is dissipated. The energy spectrum of a turbulent 

flow displays various power-law behaviors in different regimes [23]. These statisti-

cal signatures of turbulence are universal across platforms. The accessible nature
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of quantum vortices coupled with the accurate numerical simulations provided by

the Gross-Pitaevski equation [24] make BECs a powerful medium in which to study

turbulent fluid motion and its relation to statistical measures such as energy spec-

tra. Experimental measurements of a power-law energy spectrum in BEC quantum

turbulence have never been realized and remain a major open problem in quantum

turbulence. The problem comes down to obtaining the velocity field of a BEC. Previ-

ous experimental methods have been difficult to implement as they have requirements

like complex timing and control sequences, stable phase references or are specific to

atomic species.

A related problem has been solved in astronomical optics through the advent of

adaptive optics and the Shack-Hartmann Wavefront Sensor (SHWS) to reconstruct

the phase profile of linear optical fields [25, 26]. The SHWS is comprised of a grid of

lenslets of identical focal length that sample the wavefront at discrete points. When

the wavefront has non-zero slope the focused spot is displaced from the optical axis

of the lenslet by a distance proportional to the wavefront slope. By measuring the

spot displacements the gradient of the phase of the optical field is determined locally

and thus the phase profile of the full wavefront may be approximated. Adapting

the experimental techniques and processing algorithms of this field to atom-optical

physics may yield powerful and easily implementable tools of investigation for BEC

experiments.

The study of BEC dynamics faces many experimental hurdles. Due to their deli-

cate nature, condensates are rapidly degraded by most imaging techniques via heating

and other atom loss mechanisms. As a result, the large majority of data regarding

the hydrodynamics of BECs is a statistical aggregation of many experimental runs.

This information is valuable and, at times, sufficient for cases where the condensate

is in equilibrium or where repeatability is not an issue. However, studies of non-

equilibrium cases such as turbulence are seriously hampered because dynamics are

extremely sensitive to initial conditions. Some “holy grail” measurements for BEC
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turbulence which are still being developed are

• Many-frame stroboscopic imaging of vortex distributions or “making movies;”

• Simultaneously determining the charge and location of vortices in a two-dimensional

BEC;

• Measuring the kinetic energy spectrum of a BEC, which can be obtained from

a phase reconstruction or a velocity field measurement.

Work towards making movies of BEC vortex distributions has been put forth by

Wilson et al. [9,10] and the dissertation of Zach Newman [27] details the construction

of a BEC device that is suited to this end. Since the Onsager point vortex model

completely characterizes the spatial distribution of an incompressible fluid’s kinetic

energy according to the charge and location of vortices, the measurement of these

degrees of freedom is important to the study of superfluid hydrodynamics. Such

measurements have been made in three dimensional condensates via matter-wave

interference by several groups [20–22] and Seo et al. have used spatially resolved

Bragg scattering [19]. However, these measurements do not provide the full velocity

field and are specific to atomic species. The measurement of a kinetic energy spectrum

in a Bose-Einstein condensate is generally difficult, or inaccessible to normal methods

due to the nonlinearity of the condensate. Such a measurement would provide deep

insight into the processes of energy transport in fluids. The three measurements listed

above are open problems in BEC physics and in this dissertation we propose possible

experimental approaches to the latter two. The discussion that follows in the rest

of this section describes the concepts and theory which underpin and motivate the

experiments and numerical simulations in the rest of this dissertation.
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1.1 Format of This Dissertation

In this dissertation I present two studies, one experimental and one numerical, de-

scribing novel experiments concerned with the generation and detection of vorticity

in Bose-Einstein condensates. The first is an experiment demonstrating the relax-

ation dynamics of a BEC in a rotating Time-averaged Orbiting Potential (TOP)

trap [11,28] perturbed by a repulsive laser barrier. The data provided by this exper-

iment are valuable to theoretical models as they present insight into the interactions

between the condensed and thermal fractions of the atom cloud. The second is a nu-

merical proof-of-principle study of a novel method of measuring the velocity field of a

Bose-Einstein condensate using a 2D optical lattice in a manner analogous to a Shack-

Hartmann Wavefront Sensor. This, among other applications, allows us to locate and

determine the charge of quantum vortices. We call this method the Atom-Optical

Shack-Hartmann Wavefront Sensor (AOSHWS).

The following sections of this chapter give an introduction to the history and

physics of BECs. This chapter also covers the basics of quantum hydrodynamics as

well as classical and quantum turbulence. Chapter 2 details important aspects of our

experimental instrumentation. This includes diagrams of the magnetic coil assembly,

mathematical descriptions of the relevant trapping fields and various other pieces of

infrastructure. Chapter 3 details our experimental findings studying the relaxation

of a BEC in a spinning TOP trap. It begins with a discussion of our optimization

method for producing and imaging vortex lattices in-situ. We then discuss the free

parameters of the experiment and present our results and conclusions. Chapter 4

details the theoretical underpinnings of the AOSHWS. We begin with a discussion of

the classical Shack-Hartmann Wavefront Sensor from both the geometric and wave-

optical perspectives. We then mathematically treat the AOSHWS to draw direct

analogy between the two and discuss an algorithm for vortex identification. Chapter

5 presents the results of our numerical model of the AOSHWS and discusses its
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performance for various configurations of parameters. Finally, Chapter 6 covers our

conclusions and thoughts for future work to develop both of these subjects.

1.2 Background

1.2.1 Bose-Einstein Condensation

In 1924 Satyendra Nath Bose wrote a paper presenting a novel method to derive

Plank’s radiation law without relying on results derived from classical electromag-

netism [1]. His method used a new method of counting the microscopic states of

light quanta (photons) that preserved their indistinguishable nature and accounted

for the limit on phase space volume dictated by the quantization of momentum and

energy. In the same year Einstein, recognizing the importance of Bose’s insight,

demonstrated that the same method could be used for matter and presented a theory

of a monoatomic ideal gas based on what is now called Bose-Einstein statistics [2].

The next year, Einstein returned to this theory to remark on an unusual property.

He noted:

According to the developed equation of state of the ideal gas there is for

every temperature a maximum density of molecules being in agitation. If

this density is exceeded, the excess molecules fall out into an unmoving

state (they “condense” without attractive forces) [29].

This population of the lowest energy state by constituent particles above a critical

density in an atomic gas is the first postulation of the state of matter known as a

Bose-Einstein condensate. A BEC occurs when a macroscopic portion of an ensemble

of bosons occupy the same quantum state in thermal equilibrium with the rest of the

particles. Einstein’s condensate would not be experimentally realized in an atomic

gas (though not for lack of effort) until 1995 [3].
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Modern physicists have developed a more detailed picture of the BEC phenomenon.

The critical density Einstein postulated corresponds to the limit when the average

inter-atomic spacing approximately matches the thermal DeBroglie wavelength of the

atoms. When this occurs we may describe the dynamics of the resulting condensate

with a single macroscopic wave function that describes all N particles

ΨN(r, t) =
√
n(r, t)eiφ(r,t) =

√
NΨs(r, t). (1.2.1)

Here, n(r, t) and φ(r, t) are the atomic density and phase functions respectively at

position r and time t. Ψs(r, t) is a single-particle wave function that denotes the

quantum state occupied by a given particle in the system. The wave function ΨN(r, t)

obeys the normalization relation:∫
dV |ΨN(r, t)|2 = N. (1.2.2)

where N is the number of atoms and dV is the R3 volume element. The single-

particle wave function Ψs(r, t) is normalized to unity. Equation 1.2.2 demonstrates

that probability densities of the entire ensemble of N particles are described by the

field ΨN(r, t) and thus, they are all in the same quantum state.

The wave function ΨN(r, t) will be used extensively in following sections to de-

scribe the condensate. However, for the remainder of this section through 1.2.2 we

will use the single-particle wave function Ψs(r, t) for illustrative purposes and drop

the subscript s. The dynamics of these wave functions are well-described at zero

temperature by the Gross-Pitaevskii Equation (GPE) [24]. We obtain the GPE by

minimizing the action associated with the many-particle Hamiltonian

H =
N∑
j=1

[
− ~2

2m
∇2
j + V1(rj)

]
+

4π~2as
m

N∑
i>j=1

δ(ri − rj). (1.2.3)

Where ri is the location of the ith particle, i and j are integers defined over the range

1, 2, ..., N , as is the atomic s-wave scattering length, ∇2 is the Laplacian operator,
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V1(r) is the single-particle potential and the right-most term is a two particle pseudo-

potential. We arrive at the simplified form of the pseudo-potential by assuming a gas

of low temperature and dilute density and may now write the action

S =

∫
dt

∫
dr1...

∫
drnΦ∗

[
i~
∂

∂t
+

~2

2m

N∑
j=1

∇2
j −

N∑
j=1

V1(rj) ... (1.2.4)

... −4π~2as
m

N∑
i>j=1

δ(ri − rj)

]
Φ.

The utility of the action is that by using variational methods we may use it to de-

rive equations of motion for our system in terms of the multiparticle wave function

Φ(r1, r2, ...rN , t). However, it would be of even greater utility if we could formulate

our equations of motion in terms of the single-particle wave functions Ψ(rj, t) in a

manner that allows us to link their form to the two-particle interaction. To do this

we use the Hartree approximation that assumes all particles occupy the same state,

and has the form

Φ(r1, r2, ...rN , t) =
N∏
j=1

Ψ(rj , t) (1.2.5)

where each single-particle wave function is normalized to unity. Substituting this into

the action we then evaluate the Euler-Lagrange equation for Ψ∗

∂

∂t

∂L
∂Ψ̇∗

=
∂L
∂Ψ∗

−
∑
j

∂j
∂L

∂(∂jΨ∗)
(1.2.6)

where Ψ̇∗ denotes the time derivative of Ψ∗ and L is the Lagrangian density

L = Ψ∗

[
i~
∂

∂t
+

~2

2m

N∑
j=1

∇2
j −

N∑
j=1

V1(rj)−
4π~2as
m

N∑
i>j=1

δ(ri − rj)

]
Ψ. (1.2.7)

This yields the three-dimensional Gross-Pitaevskii Equation

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + V1(r)Ψ +

4π~2as
m

(N − 1)|Ψ|2Ψ, (1.2.8)

a nonlinear Schrödinger equation that describes the behavior of the single-particle

wave function when modified by the presence of multiple interacting particles or, in
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our case, a BEC at T = 0K. The right-most term describes the nonlinearity of the

system that depends entirely on two-particle interactions. V1(r) is the single-particle

potential experienced equally by every particle in the system. The linear Schrödinger

equation is recovered in the limits as → 0 or N → 1. For most of the following

discussion we will make our treatment more compact by defining g3D ≡ 4π~2as
m

and

noting that for large ensembles of atoms (N − 1) ≈ N . The strength and sign of the

nonlinearity depend on this constant coefficient.

Dimensional Reduction of the GPE to 2D form: Many of the turbulence experiments

performed in BEC are done in a 2D geometry. This places fundamental constraints

on the phase space of the system and simplifies the detection of vortices as the cores

are aligned to the same axis and cannot form tangles. It therefore seems pertinent to

include the process by which we modify the three-dimensional GPE to describe a BEC

in this limit. Though the following treatment is suitable for a variety of potentials

we will use a radially symmetric cylindrical harmonic oscillator potential

V1(r) =
1

2
mω2

zz
2 + Ṽ1(ρ) =

1

2
mω2

zz
2 +

1

2
mω2

ρ|ρ|2 (1.2.9)

where m is the mass of the atom, z is the axial coordinate, ρ is the transverse

coordinate vector and ωz and ωρ are the associated oscillator frequencies. In the

2D limit the atoms are tightly bound in the z-direction relative to the transverse

dimensions such that ωz >> ωρ. The tight confinement allows us to assume that for

any level of excitation we may reasonably expect the system will remain in its ground

state along z. This allows us to perform a dimensional reduction via separation of

variables into axial and transverse components. The relevant relations that stem from

these assumptions are

Ψ(r, t) = Ψt(ρ, t)χg(z)e−
i
~Egz t

∇2 =
∂2

∂z2
+∇2

ρ

(1.2.10)
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where Ψt(ρ, t) and χg(z) are separately normalized and Egz is the single-particle

ground state energy of the trap along the z direction. Substituting these relations

into the 3D GPE, multiplying through by χ∗g(z) and integrating over z we separate

the GPE into two independent equations.

− ~2

2m
∇2
ρΨt(ρ, t) + Ṽ1(ρ)Ψt(ρ, t) +

Ng3D

leff
|Ψt(ρ, t)|2Ψt(ρ, t) = i~∂Ψt(ρ,t)

∂t
(1.2.11)

− ~2

2m

∂2

∂z2
χg(z) +

1

2
mω2

zz
2χg(z) = Egzχg(z)(1.2.12)

where 1
leff

=
∫ +∞
−∞ dz|χg(z, t)|4 has units of inverse length. Thus we find that when we

reduce dimensions the energy per particle is reduced by a factor of leff such that we

can write g2D = g3D
leff

= g3D

∫ +∞
−∞ dz|χg(z, t)|4. We may then conclude that Equation

1.2.11 can be used to describe the dynamics of a flat,“pancake shaped” BEC. Our

final step is to produce the time-independent 2D GPE by introducing the following

form of the transverse wave function:

Ψt(ρ, t) = ψ(ρ)e−
i
~µt (1.2.13)

where µ is the chemical potential of the condensate and is a measure of the energy due

to interactions. Substituting and simplifying yields the time independent 2D GPE:

− ~2

2m
∇2
ρψ(ρ) + Ṽ1(ρ))ψ(ρ) +Ng2D|ψ(ρ)|2ψ(ρ) = µψ(ρ). (1.2.14)

The majority of the simulations presented in this thesis are accomplished by a split-

step numerical solving of Equation 1.2.11 [30].

1.2.2 The Condensate Wave Function

Now that we have developed a model for a 2D condensate we would like use it to

determine an appropriate wave function. As the GPE is a nonlinear partial differential

equation there are few cases where an analytical solution is possible. We will discuss

two different methods to determine an approximate solution for the ground state and
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from them develop expressions for important properties of the condensate. These

methods are well-known [24] and so we will be brief. Further, we will assume a

cylindrically symmetric, harmonic trapping potential and restrict analysis to two

dimensions.

The Variational Gaussian Method: We will start from the following trial solution in

the loosely bound direction:

ψ(ρ) =
1

√
2π(πW 2

ρ )
1
4

e
−ρ2

2W2
ρ (1.2.15)

where ρ = |ρ| and Wρ is a real constant to be varied. This function is then substituted

into the energy functional that corresponds to our 2D GPE that may be derived as

follows: Multiply both sides of the 2D GPE by ψ∗ and integrate over all space. The

former step gives an expression for the chemical potential, µ = ∂E
∂N

. Integrate the

chemical potential over N to obtain the total energy, yielding

E = N

∫
dρ

[
~2

2m
|∇ρψ(ρ)|2 + Ṽ1(ρ)|ψ(ρ)|2 +

Ng2D

2
|ψ(ρ)|4

]
. (1.2.16)

The method then follows standard variational principles allowing the widths to vary

such that the energy is extremized assuming the condensate is tightly bound in the

z-direction.

The Thomas-Fermi Approximation: The Thomas-Fermi solution to the GPE is one of

the most common and important in the BEC literature. Valid for repulsive interaction

and large atom number, the approximation is to assume that the non-linearity and

potential energy dominate the kinetic energy term. We can then ignore the spatial

derivatives in the GPE which allows us to solve for the wave function algebraically:

ψ(ρ) =

(
µ− 1

2
mω2

ρρ
2)

gN
)
1
2 ρ ≤

√
2µ
mω2

ρ

0 Otherwise.
(1.2.17)

This wave function represents the spatial distribution of particles that occurs at

equilibrium between the potential and the inter-particle repulsion. We compare the
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magnitudes of the two energy terms numerically by expressing the nonlinear ampli-

tude Ng2D in units of the natural harmonic oscillator energy E0 = ~ωρ. Figure 1.1

compares the Thomas-Fermi distribution with the single-particle ground state versus

multiples of the natural harmonic oscillator length σ0 =
√

~/mωρ.
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Figure 1.1. The Thomas-Fermi ground state and single-particle ground state square
amplitudes divided by the single-particle ground state maximum for comparison.

From Figure 1.1 we can see that the Thomas-Fermi wave function abruptly van-

ishes at some maximum condensate radius. This is important to note as the ap-

proximation breaks down since the wave function derivative is discontinuous at this

boundary. This can be dealt with numerically, however, for our purposes this de-

tail should not pose a problem. Finding the zeroes of the wave function yields an
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expression for the condensate radius

Rmax =

(
2µ

mω2
ρ

) 1
2

. (1.2.18)

We can derive an expression for the chemical potential from this model by enforcing

the normalization of the wave function over its domain and rearranging the resulting

expression. We may then calculate the total energy by integrating over particle

number. In two dimensions we find the following:

µ = 2~ωρ
(
Nas
leff

)1/2

(1.2.19)

E =

∫
dNµ =

2

3
Nµ. (1.2.20)

These results allow us to completely characterize the wave function with the trap-

ping frequencies and Thomas-Fermi radii which are easily accessible to experimental

measurement.

1.2.3 Vortices in Bose-Einstein Condensates

Though the Hartree approximation in Equation 1.2.5 assumes the condensate consists

of a collection of atoms occupying the same single-particle ground state of a confining

potential there can be perturbative excitations of atoms above the ground state.

These excitation modes are dealt with via Bogoliubov theory which we consider here

in 3D. The wave function is broken into bulk and perturbative components like

ψ(r, t) = e−iµt [ψ(r) + δψ(r, t)] (1.2.21)

By subbing this form of the wave function into the GPE and truncating the δψ terms

at second order we can develop equations of motion and solve for the various possible

modes of excitation [24]. An important figure of merit that characterizes the BEC

with respect to perturbation is the healing length

ξ(r) = 1/
√

8πasn(r). (1.2.22)
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The healing length is the distance over which the BEC density returns to the bulk

value from zero due to a delta function repulsive perturbation. It can be intuited as

a measure of the width of the condensate’s spatial impulse response or the matter

wave coherence length and establishes a natural scale that we will use to quantify

disturbances to the condensate. We can see that it depends inversely on the local

density and so, in general, the dynamics of various excitations will be affected by

the BEC density profile. For a sense of scale, most BECs created in this experiment

have a trapped diameter on the order of 100 microns for atom numbers N ∼ 106, the

corresponding healing length in the bulk fluid is about half a micron.

Hydrodynamic Picture of Superfluidity: As we stated previously we are particularly

interested in the superfluid properties of BEC. In the following we will show how

quantized vortices follow from the basic properties of superfluidity and discuss their

qualities. Much of this treatment will follow Pethick and Smith [24]. Though much

of the following is general to three dimensions we will restrict our discussion to 2D

and define r as the R2 coordinate vector.

The BEC is described by the N -particle wave function ΨN(r, t) and we will drop

the subscript for the rest of our treatment.

Ψ(r, t) ≡ ΨN(r, t) =
√
n(r, t)eiφ(r,t) (1.2.23)

From a hydrodynamic perspective a BEC can be thought of as a small droplet of

superfluid characterized by a velocity field

v(r, t) =
~
m
∇φ(r, t) (1.2.24)

where φ(r, t) is the phase profile of the condensate order parameter defined in Equa-

tion 1.2.23 which must everywhere have a single value. From Equation 1.2.24 we can

see that a superfluid must be irrotational since the curl of a gradient field must be

zero.

∇× v(r, t) = Υ(r, t) = 0 (1.2.25)
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However, this condition is lifted at a phase singularity where the curl becomes infinite

and the density necessarily drops to zero so that the wave function stays single-valued

and energy is conserved. Since there is no fluid in the region of the singularity a

contour through the superfluid may not contain it and thus remains irrotational. The

region near the singularity is referred to as the vortex core and has a radius on the

order of the healing length. From the single-valued condition it also follows that the

change of the phase around a closed loop anywhere in the condensate must equal an

integer multiple of 2π. This constrains the circulation of the condensate like

Γ =

∮
v · dl =

~
m

2πγ (1.2.26)

Where l is a closed loop and γ = ...− 1, 0, 1... is an integer called the winding number

or charge. The winding number is non-zero only if the contour l encloses the axis

of a vortex. Thus we see that Onsager’s intuition was correct and that any vortex

in a superfluid must have circulation quantized in units of h
m

. From Equation 1.2.25

we conclude that a superfluid can fluid circulating only due to the presence of one or

more quantized vortices.

Assuming a cylindrically symmetric condensate and a single, centrally placed vor-

tex, single-valuedness also necessitates that the wave function must vary like eiγφ

where φ is the azimuthal angle. We may therefore derive from Equation 1.2.24 that

the rotational velocity of a quantized vortex must vary like

vφ =
γ~
mr

(1.2.27)

where r is the radial distance from the vortex core. Since the velocity diverges in the

limit where r approaches zero the condensate density function n(r, t) must vanish at

the axis of the vortex in order to conserve energy. To calculate the energy required

to excite a condensate of the lowest energy state to a single vortex state of charge

|γ| = 1 under these assumed conditions we write the wave function for the condensate

as

ψ(r) = f(r)eiγφ. (1.2.28)
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We can evaluate the energy functional for this wave function using the Hamiltonian

from Equation 1.2.3

E =

∫
drψ∗Hψ (1.2.29)

In doing so we find the same form of the energy as the uniform state plus an extra

term ∫
dr

~2γ2f 2

2mr2
. (1.2.30)

This is just the contribution from the kinetic energy density of the vortex 1
2
mv2

φf
2 and

by evaluating the integral we may calculate the excited state energy of the condensate

under these conditions.

We have so far assumed a single vortex placed at the center of a cylindrically

symmetric trap oriented along the z-axis. We can generalize our treatment to include

multiple vortices with arbitrary placements in the x-y plane by modifying Equation

1.2.25 like

∇× v = ẑ
h

m

M∑
i=1

γiδ
2(ri) (1.2.31)

where δ2(r) is a two-dimensional delta function in the x-y plane, M is the number

of vortices and γi and ri are the charge and location of the ith vortex respectively.

The addition of multiple vortices at various locations introduces a rich variety of

dynamics into the system as vortex cores move due to each other’s velocity fields. In

addition a vortex located off of the point of symmetry of a superfluid of finite extent

will experience forces due to to boundary. These forces may be accounted for using

a method of image vortices similar to that used in electrodynamics for charges.

Structure of a Quantum Vortex: We have, in a somewhat hand-waving manner, said

that the superfluid density vanishes at the location of the vortex phase singularity.

We have not discussed the manner in which the density decreases to zero or how the

shapes of the cores effect the properties of the superfluid flow. There are a number
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of methods to treat this problem and its ramifications are too numerous to be fully

within the scope of this document but we will now present a brief overview.

The problem comes down to determining a solution for the function f(r) which

first appeared in Equation 1.2.28. We will consider the problem in two dimensions by

assuming tight confinement in the z-direction and integrating the density along this

axis. We consider only a single vortex placed at r = 0 so that r = |r| is the distance

from the vortex core. Defining the scaled amplitude Avort(r) = f(r)/f0 where f0 is

the bulk amplitude of the condensate we can separate the wave function amplitude

into the product √
n(r) = g(r)Avort(r) (1.2.32)

where g(r) is the density of the condensate and Avort(r) is the vortex density envelope

function. This envelope function may be calculated by minimizing the total energy

per unit length associated with the vortex for a strategically chosen ansatz. The

resulting form is

Avort(r) =
r√

(ξ/Λ)2 + r2
(1.2.33)

where Λ is the variational constant that determines the slope of the vortex core at a

chosen location.

1.2.4 Basic Concepts of Turbulence

Turbulence in fluids is classified as flow that displays chaotic changes in pressure and

velocity [31]. Spectra of length scales l and associated spatial frequencies k = 2π
l

are associated with the modes of fluid motion. A forcing mechanism injects kinetic

energy into modes associated with the corresponding length scales. This energy is

then transferred to modes of different length scales in an energy cascade. In idealized

3D classical turbulence the energy cascade conserves and carries kinetic energy from

the scale of the forcing mechanism to smaller scales, eventually to the scale of vis-

cous damping where energy is dissipated. When forcing is not present the fluid will
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come to rest after the kinetic energy is depleted by the damping. In contrast, in 2D

turbulence forcing at small length scales results in an inverse energy that transports

energy to larger length scales up to the size of the system. The region of the spectrum

over which an energy cascade occurs is called the inertial range. Since the spatial

structures of turbulent flows are irregular they are quantified statistically by measures

such as energy spectra. Classical 3D turbulence is characterized by a spectrum that

is proportional to k−5/3 in the inertial range as shown in 1941 by Kolmogorov [32,33].

Also characteristic of 3D turbulence is a cascade of vorticity from large to small rotat-

ing patches known as a Richardson cascade [34]. Classical turbulence in an unforced,

undamped, 2D fluid conserves a statistical quantity called enstrophy. Enstrophy is

related to the square average vorticity according to

Z =
1

2
〈Υ2〉. (1.2.34)

Due to this inviscid invariant 2D turbulence displays an inverse energy cascade from

the scale of forcing to that of the system and, as a result, an inverse Richardson

cascade. This establishes an inertial range over a different region of the spectrum.

The enstrophy, however, cascades from the forcing scale to smaller scales. Thus, there

are several distinct trends present over the spectrum [35].

Onsager developed a statistical theory for 2D turbulence based on a Hamiltonian

model for point vortices [36]. Point-vortices are an idealization of two-dimensional

rotational flow where a velocity field circulates about a highly localized source. In

Onsager’s model, the equations of motion for N such vortices in an infinite plane are

κi
dxi
dt

=
∂H

∂yi
(1.2.35)

κi
dyi
dt

=
∂H

∂xi
(1.2.36)

where κi is the circulation of the ith vortex, (xi, yi) is its location and H is the kinetic

energy of the fluid. In this model H is completely determined by the two degrees of
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freedom of each vortex:

H = − 1

2π

∑
i<j

κiκj ln(rij/L) (1.2.37)

where rij is the spatial separation between the ith and jth vortex and L is an arbi-

trary length scale. For a more general, bound system the natural logarithm may be

replaced with a Green’s function for the Laplacian that takes boundary conditions

into account. Based on our previous description of quantum vortices and superfluid

hydrodynamics this model seems like a good starting point for a description of 2D

quantum turbulence.

1.2.5 Quantum Turbulence

Superfluid motion has distinct characteristics from classical fluid motion including

quantized vorticity and lack of viscosity. The implications of these properties with

respect to superfluid turbulence are discussed by Barenghi et al. [37]. As previously

stated, the work in this dissertation is primarily motivated by 2D quantum turbulence

(2DQT). The compressible nature of atomic BECs along with the ability to create

highly oblate trapping geometries allow us to experimentally access a quasi-2D regime

of superfluid motion. The characteristics of compressible quantum turbulence in two

dimensions are discussed by Neely et al. [38].

Since a BEC is compressible we can split the fluid motion into incompressible and

compressible components [23]:

v(r) = vi(r) + vc(r). (1.2.38)

The incompressible portion must follow the relation

∇ · [
√
n(r)vi(r)] = 0. (1.2.39)

A velocity field satisfying this relation must contain no sound waves. This relation

holds to good approximation in the presence of multiple vortices so long as the cores
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are separated by a few healing lengths. The kinetic energy spectra are given by

E =
m

2

∑
j=x,y

|F j(k)|2

=
m

2

∑
j=x,y

|
∫
d2re−ik·rvj(r)|2

(1.2.40)

where F j(k) is the Fourier transform of the velocity field. The incompressible spec-

trum corresponds to quantum vortices while the compressible portion is contributed

by acoustic waves. The dynamics of the system and therefore the spectrum will vary

greatly in different regimes due to coupling between these two components. For in-

stance, oppositely charged vortices may recombine to release a sound wave coupling

kinetic energy from the incompressible spectrum directly into the acoustic field. In a

regime where this process dominates, it can suppress an inverse energy cascade since

enstrophy is not conserved. However, in a regime where like-charged vortex cluster-

ing dominates (due to an inverse Richardson cascade) recombination is suppressed

since the oppositely charged populations are kept separate. Under these conditions an

inverse cascade may be observed. These two scenarios are determined by how enstro-

phy is introduced into the system that, in turn, depends on the nature of the forcing.

Neely et al. and Helmerson et al. produced experimental results in 2019 that suggest

the observation of large scale clustering of quantized vortices in 2D BECs [12,39].

For a single quantum vortex and no other excitations of the condensate the kinetic

energy spectrum is purely incompressible. Defining the unit of enstrophy as

Ω ≡ 2π~2n0

mξ2
(1.2.41)

where n0 is the bulk density of the superfluid, the spectrum for this vortex can be

expressed for two limiting cases as

E1
i (k)|kξ�1 = Ωξ3Λ−1

(
1

kξ

)
and E1

i (k)|kξ�1 = Ωξ3Λ−1

[
Λ2

(kξ)3

]
, (1.2.42)

where we have used the vortex density profile from Equation 1.2.33. The regimes

kξ � 1 and kξ � 1 are known as the infrared and ultraviolet, respectively. There is
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a crossover region in the vicinity of kξ ∼ 1 that corresponds to a length scale on the

order of the vortex core. This analysis can be extended to an N -vortex arrangement

and yields the kinetic-energy spectrum

EN
i (k) =

Ωξ3

Λ
F (kξ)

N∑
p=1,q=1

κpκqJ0(k|rp − rq|) (1.2.43)

where Jn(x) is an nth order Bessel function of the first kind. We note that Equation

1.2.43 is analogous to the Green’s function generalization of Onsager’s point vortex

Hamiltonian in Equation 1.2.37. Equation 1.2.43 gives us the incompressible energy

spectra over various length scale ranges for arbitrary configurations of vortices. One

main goals of this dissertation is to present a realistic experimental method to measure

the velocity field of a BEC. This allows determination of the kinetic energy spectrum

in two ways. The first way is by direct Fourier transform of the velocity field as

in Equation 1.2.40 which is valid for both compressible and incompressible velocity

fields. The second way is to analyze the velocity field spatially to determine the

location and charge of every vortex and determine the incompressible kinetic energy

spectrum via Equation 1.2.43. Comparing the results from the two methods would

allow us to determine the accuracy and regimes of validity of the Onsager point vortex

model.

1.2.6 A Review of Vortex Lattices

We have, for several sections, discussed aspects of vortices in a condensate. We

have not, however, presented an experimental method by which to induce rotation.

There are numerous methods to generate vorticity in a BEC, the first of which was

realized by Matthews et al. in 1999 [16] following a proposal by Williams and Holland

the same year [17]. Some other methods have been demonstrated by Leanhardt et

al. in 2002 where vortices were imprinted into a BEC via a quadrupole magnetic

field [15], Scherer et al. in 2007 where vortices were generated by merging three
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separated condensates [13] and vortex dipoles were generated by Neely et al. in

2010 by swiping a repulsive barrier through a BEC [7], along with many others. A

method of generating vortices by rotating the confining potential was demonstrated

by Hodby et al. in 2001 [11]. In this dissertation we propose a new method of

generating vorticity in BECs trapped in potentials rotating far from surface wave

resonances. We provide new data regarding the relaxation of an out-of-equilibrium,

finite temperature BEC in a rotating TOP trap. We hope that the techniques and

data presented here will serve theoretical interests to develop finite-temperature GPE

models of these dynamics.

A superfluid in a trap cannot be induced to rotate by spinning the trap about any

axis of symmetry. This is because angular momentum is conserved about such an axis

and there are no frictional interactions with the container walls. In order to couple

angular momentum into a condensate by spinning its trap we must induce anisotropy

about the rotation axis. A detailed explanation of the experimental methods that we

use in our lab to achieve BEC rotation are discussed in Chapter 3. The energy of a

cloud of atoms in a rotating frame is given by

E ′ = E −L · ωs (1.2.44)

where E is the energy of the cloud in the stationary frame, L is the angular momentum

vector of the atom cloud and ωs is the angular velocity vector of the rotating trap

anisotropy. In the rotating frame we can see that the ground state wave function

of the non-rotating trap is no longer energetically favorable so long as the angular

velocity exceeds a value corresponding to the energy gap between the ground state

EL and the lowest excited state of the stationary frame E0. If a state has angular

momentum magnitude L along the rotation axis its critical angular velocity is given

by

ωc =
EL − E0

L
. (1.2.45)

This value will depend on the specific excitation. The lower critical angular velocity,
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ωc1 is that below which the non-rotating state is favorable. It can be shown that

the lower critical angular velocities correspond to various vortex states while surface

waves can be excited at higher angular velocities. As |ωs| becomes large compared to

ωc1 the lowest energy state for a condensate is one consisting of Nv regularly spaced

vortices where

Nv =
mR|ωs|

~
(1.2.46)

and R is the radius of the BEC [24]. In 1965 Tkachenko showed that this spacing

corresponds to the vortex cores being arranged at the verticies of a triangular lattice

[40]. Thus, to generate a many vortex state in a rotating BEC one may rotate the trap

at a high angular velocity resonant with a surface wave. If the trap remains rotating,

the higher energy excitation will decay into the equilibrium state: a triangular vortex

lattice. A vortex lattice in an atomic gas BEC was first observed in BEC by Madison

et al. in 2000 and for larger numbers of vortices by Abo-Shareer et al. in 2001

[14,41]. The vortex lattice is an important state as it is the equilibrium of a rotating

condensate towards which any unstable state must evolve in a rotating trap. An

example of a vortex lattice generated by spinning a TOP trap is shown in Figure 1.2.
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Figure 1.2. In-situ image of a vortex lattice in a BEC.
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CHAPTER 2

Experimental Instrumentation

The large majority of the experimental apparatus used in this dissertation is described 

in the theses of David Scherer and Kali Wilson [10, 13]. However, certain methods 

regarding the TOP trap are important to this work and we will review them in the 

following sections. We also made significant changes to the process of evaporation 

which will be detailed.

2.1 TOP Trap

Magnetic field traps may generally be separated into two varieties: those that have a 

potential minimum at zero-field and those that have their minimum at a finite value. 

Our cooling process begins with a sample of atoms in a spherical quadrupole magnetic 

trap, generated by an anti-Helmholtz coil pair, which allows for efficient cooling due 

to a high elastic collision rate. However, once the ensemble reaches a low enough 

temperature, Majorana losses start to kick in due to the zero-point in the field. To 

continue cooling we must transfer the atom cloud to the latter variety of trap [24].
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Figure 2.1. A top view of the layout of the coils used to magnetically confine the
atoms in the BEC vacuum chamber. Distances are not to scale.

We use a variety known as a Time-averaged Orbiting Potential (TOP) trap [42].

Our TOP trap consists of a spherical quadrupole field with gradient B′ and an AC

bias of strength B0 and direction that is modulated at frequency ωTOP = 2π×4 KHz.

These fields are generated by two pairs of Helmholtz coils in a plane defined by their

axes of symmetry, mutually orthogonal with the axis of a pair of anti-Helmoholtz

coils as shown in Figure 2.1. Adding a bias field to the spherical quadrupole gradient

shifts the zero point of the field by an amount rd = B0/B
′, known as the “Circle of

Death” radius. If we vary their field like

Bb(t) = B0 [cos(ωTOP t)êx + sin(ωTOP t)êy] (2.1.1)

then the zero-point of the field will rotate in a circle in the plane. If the bias field is

large enough or the gradient small enough the radius of the circle will be larger than

the radius of the atom cloud and the resulting time-averaged potential for an atom

with magnetic moment µ will be

UTOP (r) =
µ

2
(B′′rr

2 +B′′z z
2),

B′′r ≡
B′2

2B0

, B′′z ≡
4B′2

B0

(2.1.2)
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which is a harmonic trap [28] with circular symmetry in the x-y plane and the po-

tential at the center of the trap is UTOP (r = 0) = µmB0. The resulting trapping

frequencies are

ωx = ωy =

[
µB′2z
8mB0

(1 + η2)
√

1− η2

]1/2

ωz =

[
µB′2z
mB0

(1− η2)3/2

]1/2
(2.1.3)

where m is the atomic mass of 87Rb and η = mg/µB′z is a factor that accounts for

sag due to gravity measured relative to a quadrupole trap minimum [43]. Our BECs

are formed in a trap with frequencies ωr,z = 2π × (8.9, 17.8) Hz.

The condensates in this dissertation are in the 52S1/2 F = 1 ground state manifold

of 87Rb that has one magnetically trappable Zeeman spin state |F = 1,mf = −1〉

and two untrapped states |F = 1,mf = 0〉 and |F = 1,mf = 1〉. The atoms start as

a thermal cloud at ∼300 µK of around 109 atoms transferred from a 3D MOT to a

quadrupole field of B′z = 133.3 G/cm which is ramped to 221.6 G/cm over 3 s when

evaporative cooling begins. The details of this process are as follows. Evaporative

cooling of the thermal cloud occurs by inducing a transition from the trapped state to

the untrapped states driven by an RF field swept linearly in frequency from high to

low in segments called cuts. Between each cut is a period of rethermalization where

elastic collisions distribute the kinetic energy of the remaining atoms. Evaporative

cooling begins with a high frequency cut from νHF = 100 MHz to 80 MHz over 2

s to remove the most energetic atoms in the sample. The quadrupole cut begins at

νQC = 80 MHz and ends at 12.7 MHz over 12 s yielding a thermal cloud with a

temperature of ∼100 µK. This cut rapidly cools the cloud to a point just before the

Majorana loss rate begins to dominate evaporative phase-space gains. We then ramp

the field gradient to a value of B′z = 75 G/cm over 500 ms before snapping it back to

221.6 G/cm while simultaneously turning on the AC bias field at B0 = 27.3 G. This

process approximately mode-matches the cooled cloud in the quadrupole trap with
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the harmonic TOP trap and is called the TOP catch. The cloud is held in the TOP

trap for 2 s with no RF to rethermalize. The bias field strength is then ramped from

its catch value to B0 = 5 G over 25 s while the RF follows this ramp at a frequency

equal to 98 percent of the Zeeman splitting at the circle of death. This magnetic trap

configuration with fields B0 = 5 G, B′z = 221.6 G/cm is called the tight trap. The

cloud in the tight trap has a temperature on the order of ∼ 1 µK. In the tight cut we

sweep the RF frequency down to νTC = 4.535 MHz over 10 s and then hold the cloud

for 4s. This cut is designed to bring the cloud to a temperature approximately twice

that of the critical temperature (∼ 50 nK) for condensation with an atom number

N ≈ 5 × 106. We then ramp the gradient to B′z = 47 G/cm, a condition called

the sagged trap. During this time we also ramp the RF to 71 % of the sagged trap

circle of death and subsequently sweep it down to approximately νSC = 4.85 MHz

in a ramp called the sag cut. After a final 4s hold this results in a condensate of

1.5× 106 − 3× 106 atoms.

2.2 Rotating the TOP Trap

To create a rotating trap we follow the work of Hodby et al. [11] and add a modulating

signal to the AC TOP trap coils at frequency ωs. This stretches the potential in

the x-y plane into an ellipse whose major axis rotates in the plane at a frequency

ωspin = |ωs−ωTOP |
2

. The magnetic field then is

Bb(t) = [B0 cos(ωTOP t) +Bε cos(ωst)] êx + [B0 sin(ωTOP t)−Bε sin(ωst)] êy (2.2.1)

where Bε is the strength of the modulating magnetic field which induces trap rotation.

Increasing Bε increases the ellipticity of the trap that is defined as E = Bε
B0

. The

ellipticity of the trap is also characterized by the deformation parameter

ε =
ω2

0 − ω2
ε

ω2
0 + ω2

ε

. (2.2.2)
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Our AC TOP field is generated by a DS345 SRS function generator which outputs

a ωTOP = 2π × 4 KHz sine wave with a peak-to-peak voltage of 1.24 V. The TOP

is ramped by modulating this amplitude with a second SRS that outputs an arbi-

trary waveform written to it from the computer via GPIB. This signal goes through a

phase-shifter circuit described in the thesis of David Scherer [13] that splits the signal

into two channels for the x and y coil pairs and allows adjustment of their relative

amplitude and phase. The output of this pair then goes directly into an audio power

amplifier that provides the necessary current in each channel to drive the bias coils.

The ellipse is generated by another DS345 SRS that provides amplitude modulation

and an Agilent 3312A function generator providing the sinusoid. The ellipse function

generators are triggered separately from the TOP trap generators and have an inde-

pendently variable frequency ωs and amplitude Vε. The output of the ellipse function

generator pair goes to a second input to the phase-shifter circuit where it is processed

by a circuit identical to that which handles the TOP trap signal. The ellipse signal is

split into two copies with variable relative phase and amplitude. These two voltages

are then added to the respective channels of the main TOP signal as shown in Figure

2.2.

Figure 2.2. Block diagram showing the TOP and ellipser electrical system flow.

There is a surface wave resonance at ωspin = 0.7 × ωtrap = 2π × 6.25 Hz which

excites a quadrupole mode of the condensate that will decay into a large number of

co-circulating vortices [11]. This is the primary method by which we have generated
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large vortex distributions in the past. However, if we spin the trap at a frequency

away from this resonance the condensate will remain stationary in a rotating trap.

Since the minimum energy state of a BEC in rotating frame is a vortex lattice at

discussed previously, the uniform, Thomas-Fermi state must be metastable. Studying

the dynamics during relaxation of the uniform state to the rotating state will be the

basis for the experiment described in Chapter 3.

2.3 Optical and Magnetic Trap

In order to achieve the trap geometry necessary to realize the 2D dynamics we have

previously discussed we employ a hybrid optical and magnetic trap. We do not use this

trap for the experimental work in this dissertation. However, since the simulations

that follow in Chapter 6 are all in a 2D BEC we will give a short description of

the experimental system that has been used to create highly oblate BECs. A more

complete description of the system may be found in the thesis of Tyler Neely [8].

Figure 2.3. Hybrid trap layout.

To reach a 2D limit we create a trap that has a harmonic trapping frequency

ωz ≈ 10ωx,y. This is achieved with a red-detuned 1090 nm laser propagating in the

negative y direction, cylindrically focused in the z-direction and incident on the BEC
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held in the TOP trap. As shown in the layout of the optical trap system in Figure 2.3

the 1090 nm beam propagates along the y axis through an f = 100 mm cylindrical

lens. The beam is focused to 1/e2 radii of wx ∼ 2 mm and wz ∼ 20 µm at the

location of the BEC. For a laser power P1090 ∼ 300 mW the trap frequency in the

confining direction has been measured at ωz = 2π×70 Hz [10]. For sagged trap radial

frequencies measured at ωρ = 2π × 8.9 Hz we can easily reach the 10:1 ratio with

slightly higher laser powers.

2.4 TOP Trap Interlock Circuit

To protect the AC TOP coils from current surges or other failure modes we created a

current interlock system. The circuit diagram is shown in Figure 2.4. An F.W. Bell

CLN-200 Hall probe monitors the 4 KHz AC current from both channels of the audio

power amplifier. The Hall probe signal is fed into the interlock circuit that begins

with two half-wave rectifiers with a 180-degree phase difference and their outputs

are then summed and inverted. This provides a fully positive signal that we then

feed into an integrator circuit. The integrator circuit includes a MOSFET in parallel

with the feedback capacitor with a gate voltage supplied by a 4KHz sine wave. This

periodically resets the integrator so that we can sample the current level over a set

time interval. We feed the inverted output from the integrator into a comparator with

a variable reference voltage. By adjusting the potentiometer voltage divider that sets

the reference level we can determine the threshold current that will trip the interlock.

The comparator output is fed to a latch so that the interlock state will hold once it is

tripped. The latch can be reset with a manual switch on the interlock box. The latch

output then goes to a Xantech AC1 DC controlled AC outlet that provides the power

to the audio amplifier. This outlet has a fast on/off switch that depends on the digital

input from the interlock circuit. Thus, if the AC TOP coils enter a failure mode which

could cause damage, the interlock outputs a logical low and the Xantech controlled
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outlet cuts power to the audio power amplifier that provides current. Power can be

restored by flipping the manual reset switch on the interlock box up and down.

Figure 2.4. Circuit diagram for TOP current interlock.

2.5 660 nm Poking Beam

Our experiment in Chapter 3 requires a tuneable and repeatable perturbation of the

condensate. To this end we use a 660 nm laser beam as a blue-detuned, repulsive

barrier called the poking beam. This beam was generated with a Thorlabs L660P120

diode and driven with an Arroyo Instruments 4200DR laser driver. The power of the

beam was varied by externally modulating the driver current with an analog ramp

provided by the computer. The beam is collimated with a Thorlabs ALT230P-B

collimating tube to a 1/e2 radius of 2.5 mm and subsequently expanded with a 4:1
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Keplerian telescope before being focused onto the BEC with an f = 500 mm lens to a

1/e2 radius of 22.2 µm. We used this system to achieve a range of irradiances at the

BEC from 1.14 mW
mm2 to 155.7 mW

mm2 for our experiments. As shown in Figure 2.5 the

expanded beam is folded along the y axis, propagates through an f = 500 mm lens

and through a beamsplitter below the magnetic coil assembly to be reflected upwards

along the positive z axis and onto the condensate. The poking beam is blocked from

the camera by a notch filter with a pass band centered at 780 nm and a full-width-

half-max of 2 nm. Ramping this beam on and off allows us to perturb the density of

the condensate and couple energy into it. In Figure 2.6 we can see both the beam in

the plane of the BEC and an example of a BEC perturbed by the beam.

Figure 2.5. Optical layout for the 660nm poking beam. a. x-y plane view of the
beam optics for collimation, expansion and focusing. b. z-y plane view of the poking
beam path into the BEC cell and magnetic coil assembly.



49

Figure 2.6. a. Image of the 660 nm poking beam in the BEC plane with 1/e2 radius
w0 = 22.2 µm. b. Image of beam on BEC with a peak irradiance of 64 mW

mm2 .
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CHAPTER 3

Relaxation of a BEC in a Spinning TOP Trap

In this section we provide a description of an experimental system in which to study 

out-of-equilibrium BEC physics as well as a summary of the resulting data. The 

general idea of the experiment is to examine the relaxation dynamics of a condensate 

in a rotating trap. We start with a BEC in a TOP trap and ramp on a modulating 

field as described in Section 2 in order to rotate the trap. If the trap is rotated at a 

frequency far from any surface wave resonance then no vorticity will be introduced 

into the BEC and therefore it will remain stationary. However, as also previously 

discussed in Subsection 1.2.6 the ground state of a condensate in a rotating frame 

is a vortex lattice containing a number of vortices related to the angular velocity of 

the trap. Thus, the uniform Thomas-Fermi state is no longer the ground state and 

must be, at most, metastable. Once the BEC is in the rotating frame we quickly 

flash on a 660 nm laser beam to form a repulsive barrier. This disturbance introduces 

energy into the condensate highly exciting it out of its metastable state. After a 

holding period in the rotating frame the condensate is found to be in a rotating state 

with a number of quantized vortices. The number of vortices and their arrangement 

depends on the specific experimental conditions and is a measure of the condensate’s 

equilibration with the trap.

3.1 In-situ Imaging of Vortices

All data in this experiment come from images of condensates without expansion from 

the trap. The 10X magnification imaging optics we used are detailed by Wilson et 

al. [9, 10]. We used an absorption imaging modality on the |F = 2〉 → |F ′ = 3〉

transition. During the imaging process all trapping fields were snapped off 0.5 ms
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before interrogation to avoid spatially dependant Zeeman splitting. The atoms were

pumped into the |F = 2〉 state from |F = 1〉 with a 30 µs pulse of on-resonance laser

light propagating in the negative z-direction. The imaging pulse lasted for another

30 µs during which the repump light was left on so that the atoms would cycle on

the |F = 2〉 → |F ′ = 3〉 transition to improve the signal. The image pulse detuning

ranged over the interval ∆ = 2π × [−7.38,−10.33] MHz.

In order to obtain the resolution needed to image single vortex cores in-situ the

system had to be carefully focused. To do so we used generated large vortex lattices

using the method of Hodby et al. [11]. Vortex lattices provide excellent targets for

focusing as they are highly repeatable, they deform the boundary of the cloud into

a hexagonal shape making it easy to detect their presence even outside of the focal

plane and they create a highly recognizable, periodic pattern that can be used to

qualitatively identify imaging artifacts, and finally they contain vortex cores which

are the smallest objects we need to resolve. The timing procedure we used to generate

vortex lattices, as seen in Figure 3.1 is almost identical to that we use for the spin

and poke experiment in Figure 3.3. The differences are that, in the case where we

only spin, imaging is done after the modulating bias field ramps down and there is,

of course, no laser pulse.
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Figure 3.1. Timing sequence to generate vortex lattices by rotating the TOP trap.
We ramp the modulating bias from zero to its peak over 1.5 s, hold at its peak for
9 s and then ramp off over 1.5 s. The trap is rotated at the surface wave resonance
of νs = 6.25 Hz. The RF ramps up from the sag cut value of 4.85MHz to 7.5-7.8
MHz before the modulating bias ramps up. It holds at this value for the duration
of the spin cycle and quickly ramps down to the holding value (6.55 MHz) after the
modulating bias is ramped off. The imaging time is arbitrary but happens after a
hold time 6 s.

Using this technique to generate lattices we then manually adjusted the height of

the microscope objective until we were able to clearly resolve the constituent vortex

cores. Once we found approximate best focus we measured the system magnification

to be 9.18. As a final optimization step we made fine adjustments to the relative

phase and amplitude of the TOP rotating bias and modulation bias channels to

maximize the number of vortices produced by a spin cycle. This served as a highly

sensitive measure of the circular symmetry of the TOP trap and the modulating bias.

Representative in-situ images of vortex lattices generated using this technique are

shown in Figure 3.2.
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100 μm100 μm 100 μm

Figure 3.2. Some representative in-situ images of vortex lattices generated using
the procedure described above.

3.2 Exciting the BEC

The primary experiment performed in the following has three basic parts. All exper-

iments start with a Bose-Einstein condensate with N ≈ 2 × 106 atoms in a sagged

TOP trap with rotating bias B0 = 5 G with rotational frequency νTOP = 4 KHz and

gradient B′z = 46.98 G/cm. This yields trapping frequencies ωρ,z = 2π×(8.9, 17.8) Hz

where ρ is the transverse coordinate. We then ramp up a second bias waveform, added

to the TOP signal rotating at cycle frequency νs. This causes the TOP trap to become

elliptical and spin about the z-axis with cycle frequency νspin = |νs−νTOP |
2

. At peak

modulation the magnetic fields along the major and minor ellipse axes are Bε = 6.25

G and B0 = 3.5 G respectively. This yields trapping frequencies ωε = 2π × 7.96 Hz

and ω0 = 2π × 10.64 Hz which gives a deformation parameter of ε = 0.28. After the

modulating bias has fully ramped up we hold for one second before ramping on a 660

nm laser focused on the center of the BEC to a 1/e2 radius ≈ 22.2 µm with an 85

mm focal length achromat. This beam is held on for a variable amount of time and

then ramped off again. The potential depth of the poking beam varied over the range

U0 = 2 × 10−33 J to 2.7 × 10−31 J. The condensate is held in the rotating trap for

several seconds. Before the modulating field is ramped down all magnetic fields are

snapped off to avoid detuning due to spatially dependent Zeeman shifts and the BEC
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is immediately imaged along the z-axis. A typical experimental sequence is shown in

Figure 3.3. Clearly this system creates a large parameter space. In the following we

explore this space by adjusting the poke hold time the poke amplitude and the trap

rotation frequency and observing the subsequent number of generated vortices. We

also study the dynamics of the system during the poking process and relaxation.

Figure 3.3. Timing sequence for the basic experimental template. We ramp the
modulating bias from zero to its peak over 1.5 s, hold at its peak for 9 s and then
ramp off over 1.5 s. The laser intensity begins to ramp up 2.5 s after the spinning
starts. Unless otherwise stated, the ramps are equal in length and generally 0.1 s
long while the typical value of the poke hold ∼ 0.5 s. The RF ramps up from the
sag cut value 4.85 MHz to 7.5-7.8 MHz before the modulating bias is ramped on. It
holds at this value for the duration of the spin cycle and quickly ramps down to the
holding value 6.55 MHz after the modulating bias is ramped off. The imaging time
is arbitrary but happens before ramp down so that the condensate remains in the
rotating frame.
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3.3 Experimental Results

We performed a variety of experiments to characterize the behaviour of the condensate

subject to the previously described conditions. Once we were certain our sequence

was generating vortices we obtained a series of images examining the cloud dynamics

through the poking process both with and without a rotating trap. In the case

where the trap was spinning we observed a distortion of the cloud where it expanded,

became asymmetric and appeared to rotate. A series of images demonstrating poking

dynamics is shown in Figure 3.4.

32 μm

Figure 3.4. Images of different condensates at various times during the poke without
the trap spinning. There is a 100 ms ramp up process and then each image corresponds
to a time during the poke hold which lasted a total of 500 ms. a. The condensate
before poking b. 50 ms of poke hold c. 100 ms into poke hold d. 150 ms of poke
hold e. 250 ms of poke hold f. 500 ms of poke hold. All images were taken for a peak
irradiance of 41 mW

mm2 .
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During the poking process the initial distribution expands about the beam and

contracts in a damped, periodic manner. The period of this oscillation calculated from

these images Tosc ≈ 100 ms is approximately equal to the radial trap period Ttrap =

1/8.9 = 112 ms as expected. The cloud maintains a generally circular symmetry

and no vortices or solitons are observed. The periodic expansion of the cloud then is

due to the coupling of acoustic energy from to poking beam into the condensate. In

contrast, Figure 3.5 shows the condensate dynamics during the poking process in a

rotating trap.
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Figure 3.5. Images of the condensate at different times during the poke and spin
process. There is a 100 ms ramp up process and then each image corresponds to a
time during the poke hold which lasted a total of 500 ms. a. The condensate before
poking b. 20 ms of poke hold c. 50 ms into poke hold d. 150 ms of poke hold e. 300
ms of poke hold f. 350 ms of poke hold g. 400 ms of poke hold h. 500 ms of poke
hold. All images were taken for a peak irradiance of 41 mW

mm2 and νspin = 12 Hz.

The initial condensate distribution in the rotating trap is an approximately uni-

form Thomas-Fermi distribution. Under the influence of the poking beam the cloud
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again, expands and contracts but as it expands it loses its circular symmetry and

appears to rotate. There are no vortices evident in this series of images. We per-

formed a similar set of measurements to capture the dynamics of the condensate after

the poke. The conditions under which this experiment was performed produce few

vortices Nvort ∼ 2− 4.

a. b. c. d.

e. f. g.

Figure 3.6. Images of the condensate at different times after the poke with the trap
spinning. a. .1s of hold b. .25 s of hold c. .5 s of hold d. 1 s of hold e. 2 s of hold
f. 4 s of hold g. 6 s of hold. All images were taken for a peak irradiance of 18 mW

mm2

and νspin = 4.5 Hz.

In Figure 3.6 the condensate is spinning in the rotating trap with an elliptical

symmetry. In the absence of a poking perturbation the cloud would remain stationary

with a circular symmetry as shown in Figure 3.5a. Small numbers of vortices can be

seen forming at the boundary of the cloud and after six seconds of relaxation we see

a circular condensate with two vortices.

A variety of different vortex distributions from vortex pairs to larger lattices can



58

be obtained by varying the experimental parameters. Figure 3.7 displays a range of

vortex distributions generated using this method.

50 μm

Figure 3.7. Images of different vortex distributions. a. νspin = 5Hz, Sag Cut =
4.85 MHz, Spin RF = 7.72 MHz, Peak Irradiance = 29.5 mW

mm2 b. νspin = 11.5Hz, Sag
Cut = 4.86 MHz, Spin RF = 7.5 MHz, Peak Irradiance = 18mW/mm2 c. νspin =
22.5Hz, Sag Cut = 4.85 MHz, Spin RF = 7.72 MHz, Peak Irradiance = 29.5 mW

mm2 d.
νspin = 10Hz, Sag Cut = 4.85 MHz, Spin RF = 7.72 MHz, Peak Irradiance = 29.5
mW
mm2 e. νspin = 4.5Hz, Sag Cut = 4.86 MHz, Spin RF = 7.5 MHz, Peak Irradiance =
18 mW

mm2 f. νspin = 5Hz, Sag Cut = 4.86 MHz, Spin RF = 7.5 MHz, Peak Irradiance
= 18 mW

mm2 .

To understand how our experimental parameter space effects the dynamics of

the system we aggregated a number of experimental runs with different settings and

recorded the number of vortices generated. We estimated the error of each data point

as the Poissonian mean of the average number of vortices observed divided by the

square-root of the number of measurements averaged:
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Error = ±
√
〈NV ortices〉√

Nmeasurements

. (3.3.1)

Figure 3.8 displays data gathered from a set of experimental runs in which the peak

irradiance of the poking beam was varied while the other experimental parameters

remained fixed.
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Figure 3.8. Average number of vortex cores observed versus the peak irradiance of
the poking beam. For these measurements we fixed νspin = 12 Hz, Poke Hold = 500
ms, Sag Cut = 4.85 MHz and Spin RF = 7.55 MHz.

We found that for fixed conditions, there was a definite upward trend in the

number of vortices with increasing peak poking irradiance. This makes intuitive

sense as a high poking power would couple the condensate to more highly excited

trap modes, making it more likely to relax from its metastable, non-rotating state
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to a many-vortex state. We also found that an off-center poking beam behaved

identically to a centered one.

A possible false-positive vortex generation mechanism would be the BEC rotating

about an elliptical obstacle and we wanted to determine whether the vorticity was

generated in this manner as opposed to a perturbation of the fluid decaying in the

rotating frame. We hypothesized the if the vortices were generated due to flow then

the number of cores should increase with the amount of time the obstacle remains in

the rotating trap. To test this we varied the poke hold time from 0.01 ms - 800 ms

as displayed in Figure 3.9.
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Figure 3.9. Average number of vortex cores observed versus the time we hold the
660 nm beam at peak irradiance with ramp up and down times of 100 ms. The trap
spinning frequency for all points was νspin = 22.5 Hz, the number of vortex cores is
averaged over Spin RF frequencies ranging from 7.6 - 7.72 MHz and Peak Irradiances
from 18.3 - 158.5 mW

mm2 .

We found that there was little, if any, dependence of the number of cores observed

on the poke hold time over the range investigated. There seemed to be a lower bound

at which the number of observed cores decreased that we expect corresponds to a

time scale at which the fluid has not fully responded to the perturbing potential.

Generally we found that the dependence of vortex number on νspin was weak.

There were two regions that were exceptions, below νspin ≈ 4.5 Hz where we did

not observe any generated vortices (we suspect this corresponds to a critical angular
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velocity below which vortices are not favorable) and in the vicinity of νspin = 8 Hz

≈ ωρ
2π

, where the condensate is destroyed due to a resonance with the TOP trap. We

also avoid the vicinity of the surface wave resonance at νspin = 6.25 Hz since we

can not differentiate between vortices generated via the different excitation methods.

Except near the regions addressed previously, the number of vortex cores does not

seem to follow a strictly upwards trend with the trap spinning frequency nor does it

seem to exhibit signs of a resonance.

0 5 10 15 20 25

spin
 (Hz)

0

2

4

6

8

10

12

14

16

18

N
um

be
r 

of
 C

or
es

Below and near resonance
Above resonance

Figure 3.10. Average number of vortex cores observed versus the trap spinning
frequency. The open diamonds represent data points below or near the trap resonance
while the filled circles represent points above resonance. Data points are averaged
over many different experimental conditions. The number of averaged points varies
from one to five.
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3.4 Conclusions and Future Measurements

We have presented the first set of experimental data describing the relaxation of a

BEC perturbed by a laser pulse in an elliptical TOP trap rotating at frequencies higher

than the trapping frequencies. From the data in the previous section it appears that

vortices are indeed generated by the relaxation of the BEC in the rotating trap. Since

we did not find an increase in the number of vortices generated with increased poking

time we can rule out vortex generation due to fluid flow about a boundary. Because

we observed that vortices were nucleated at the boundary of the cloud rather than

inside the condensate we can also determine that vortex generation is not due to the

poke itself. In addition, we found that the condensate would relax into a vortex-state

regardless of the trap rotational frequency so long as it was greater than νspin = 4.5

Hz. This lower bound could be interpreted as the lower critical angular velocity

discussed in Sub-Section 1.2.6. The only strong trend in vortex number that we

found was with increasing peak poking irradiance which determined the perturbation

amplitude. We suspect that the relaxation dynamics are temperature dependent.

That is, the condensate reaches the ground state of the rotating trap via interactions

with the presumably rotating thermal atoms. Future measurements might probe the

effects of varying the Spin RF as well as the temperature of the initial atom cloud

which is controlled by the Sag Cut. In addition, it would be worthwhile to explore

how the number of vortices generated varies with the trap deformation parameter as

all data presented here was collected for a single trap ellipticity. We hope that the

data provided by this experimental platform will seed theoretical interests. Namely

that it will provide insight into stochastic GPE models for finite-temperature matter

waves that include interactions with the thermal fraction.
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CHAPTER 4

The Classical Shack-Hartmann Wavefront 
Sensor

As we have discussed in previous sections, a major hurdle to overcome in BEC 2D 

quantum turbulence is the measurement of a kinetic energy spectrum and detection 

of vorticity, particularly the in-situ positions and dynamics of vortices and their di-

rections of circulation. In this dissertation we present an atom-optical analogue to 

the Shack-Hartmann Wavefront Sensor (SHWS), a device commonly used in astro-

nomical and ophthalmic optics to reconstruct the phase distribution of an optical 

field at the plane of the sensor, called the phase map, from discrete measurements of 

the local phase gradient, called the wavefront slope. We propose our Atom-Optical 

Shack-Hartmann Wavefront Sensor (AOSHWS) as a realistic technique that will fa-

cilitate these valuable measurements. To motivate this and provide intuition for the 

simulations in Chapter 6 we give a brief overview here of the theory of Shack-Hartman 

Wavefront Sensors and extraction of slope information.

4.1 Introduction to the SHWS

The classical Shack-Hartmann Wavefront Sensor (SHWS) was first described in a 

conference abstract by Platt and Shack in 1971 [44, 45] as a device to characterize 

aberrations in optical imaging systems for low-light environments. Since its inception 

it has become a workhorse in the field of wavefront sensing. It consists of a square, 2D 

grid of small lenslets of focal length f, center-to-center separation p. Other geometries, 

such as hexagonal, are sometimes used but we will not consider them here. As shown 

in Figure 4.1, a plane wave propagating parallel to the SHWS optical axis will be 

focused to a grid of spots observed one focal length from the plane of the lenslets,
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the position of each spot lying on the optical axis of the lenslet. If a patch of the

wave front is distorted then the spot corresponding to the lenslet in this region will

be shifted perpendicular to its optical axis by a distance d. we define the center

locations of the lenses to be at (xi, yj), where i and j are integers defined over the

ranges 1, 2..., N and 1, 2...,M respectively. By measuring the displacements of the

spots yielded by a distorted wavefront from their neutral position in the plane of

detection we may calculate the local wavefront slope at each lenslet as

sx,yi,j = dx,yi,j /f. (4.1.1)

Here, sx,yi,j is a 2 by 1 column vector that contains the spot displacements in the x and

y directions for the lenslet located at point (xi, yj). The wave front slope is equivalent

to what is called the transverse ray error in optical aberration theory and is related

to the wavefront error according to

sx(xi, yj) = −2f

D

∂

∂x
W (xi, yj) (4.1.2)

sy(xi, yj) = −2f

D

∂

∂y
W (xi, yj) (4.1.3)

where D is the illuminated diameter of the grid and W is the wavefront error defined as

the optical path difference between the incident wave and an ideal reference wave [46].
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Figure 4.1. Visual representation of the operation of a classical Shack-Hartmann
Wavefront Sensor. a. Incident plane wave propagating along optical axis. b. Dis-
torted wavefront.

The spatial arrangement of these points of irradiance in the detection plane is

called the Hartmanngram. Once the slope data have been calculated from the Hart-

manngram the phase may be estimated by solving the fundamental equation of the

SHWS:

s = Aφ (4.1.4)

where A is a continuous to discrete operator called the geometry matrix that relates

the phase map φ to the N ×M × 2 slope data matrix s composed of the elements

sx,yi,j . There are a number of methods to invert the geometry matrix to reconstruct the

phase [47]. Here we will only consider the common case of calculating a least-squares

fit by the pseudo-inverse of A, called the reconstructor, and decomposing the data

onto a basis of Zernike polynomials. However, for the purposes of the measurement

we wish to propose, these methods are unnecessary as we only need the slope data.
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4.2 Wave Optical Theory of the SHWS

The previous description of the SHWS is the most common and intuitive model

based on geometrical optics. The corresponding wave optics picture is one where the

incident wavefront is broken up by the SHWS and the area covered by each lenslet

sub-aperture is sufficiently small so that the wavefront is approximately plane. The

Hartmanngram is then the sum of N ×M tilted plane waves. However, it assumes

that the sub-wavefront from each lenslet is independent from another which is valid

only in the case of low F/#. For many operating conditions this may be unrealistic

so we develop a short wave optical treatment of the SHWS following Primot [48].

Since we are observing the field at the back focal plane of the lenslets we may

treat the propagation with Fraunhoffer diffraction theory. The phase grating of the

SHWS is given by the function

Γ(x, y) =

[
exp iπ

(x2 + y2)

λf
rectp,p(x, y)

]
∗ combp,p(x, y)

= γ(x, y) ∗ combp,p(x, y).

(4.2.1)

The function γ(x, y) is the spatial phase shift imprinted by a single lenslet, rectp,p(x, y)

is a function defined as unity over the support −p/2 < x < p/2,−p/2 < y < p/2 and

zero elsewhere, combp,p(x, y) =
∑N

n=0

∑M
m=0 δ(x − np, y − mp) where δ(x, y) is the

2D Dirac delta function and ∗ denotes convolution. Since Γ(x, y) is periodic in both

arguments we can write it as a Fourier series:

Γ(x, y) =
1

p2

∞∑
n=−∞

∞∑
m=−∞

cn,m exp

[
2iπ

p
(nx+my)

]
. (4.2.2)

The cn,m characterize the SHWS and may be calculated in the usual way.

cn,m = 〈e
2iπ
p

(nx+my)|γ(x, y)〉

= FT [γ(x, y)]u=n/p,v=m/p

≡ Ξ(u =
n

p
, v =

m

p
)

(4.2.3)
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where FT denotes the Fourier transform operator. Evaluating the Fourier transform

in Equation 4.2.3 for an arbitrary point we get the relation:

Ξ(u, v) = [sinc(πpu)sinc(πpv)] ∗ exp
[
iπλf(u2 + v2)

]
(4.2.4)

which is the point spread function for a thin lens with square edges. The character

of the irradiance distribution in the observation plane will then depend on the width

and rate of variation of this function which is determined by variables p, f and

the dimensions of the SHWS grid. Having determined the Fourier properties of the

phase grating, the amplitude of the electric field at the focal plane may be calculated

using standard, integral methods. Primot identifies two regimes associated with this

treatment: the independence regime and the cross-talk regime [48]. The independence

regime occurs in the limit of small F-numbers and yields an irradiance distribution

which is the sum of tilted replicas of the input wavefront. This regime mimics the

behavior described in Platt and Shack’s original paper; laterally translated spots

independent from neighboring sub-wavefronts. The cross-talk regime occurs at larger

F-numbers and can display a variety of behaviors depending on the specific conditions.

4.3 Detecting Vorticity from Linear Wavefront Slope Data

Once wavefront slope or vorticity data has been collected we are particularly inter-

ested in locating vortices and identifying their circulation. There are several methods

to do so as discussed by Murphy and Dainty [49] however, we will only discuss one.

The vortex potential method of E.O. Le Bigot and W.J. Wild [50, 51] is straightfor-

ward in implementation, robust to noise and computationally fast. The approach of

this method is to convert the discrete velocity field, s into a continuous scalar field, h,

called the vortex potential field, whose amplitude corresponds to the local circulation

and diverges logarithmically at the location of vortex singularities. These extrema

are positive or negative depending on vortex circulation direction and have high con-
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trast with the background potential. This contrast can increased by raising h to an

arbitrary power. We provide a derivation for h in the remainder of this section.

The conceptual core of the problem is to rotate the components of s to turn a

calculation of curl into one of divergence as shown in Figure 4.2 .

Figure 4.2. In 2D the problem of calculating the curl of a vector field becomes
equivalent to calculating its divergence if each component is rotated by −π/2.

This comes from the fact that in 2D

∇ · (R−π/2s) = (∇× s) · ẑ (4.3.1)

where Rθ is a rotation by angle θ and we define s′ = Rπ/2s as the gradient of a scalar

potential function h like

∇h ≡ s′. (4.3.2)

Thus, regions of non-zero divergence in s′ will yield extrema in h. Since this equa-

tion has no exact solution we construct a pseudo inverse by finding a solution that

minimizes the L2 norm. ∫
S

d2x|∇h(x)− s′(x)|2 (4.3.3)
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To do this use switch to the Fourier domain using Parseval’s theorem and the min-

imizing solution turns out to be the projection of the Fourier transform of s′ along

each of its Fourier components

h̃solk = −ik · s̃
′
k

|k|2
(4.3.4)

where a tilde denotes the Fourier transform of the corresponding field and hsol is

optimal solution for the vortex potential field. We set s̃′k=0 = 0, this is essentially

the gradient pseudo inverse. Branch points in phase then show up in the vortex

potential as h(r) = ±2π log(|r|).

To implement this in a matrix form we introduce the geometry matrix A. The

geometry matrix relates the wave front phase to the slope data and is determined

through analysis of the system. We calculate the pseudo inverse like

A+ = lim
m→0

(A†A+m2I)−1A†. (4.3.5)

Here m is a small number that prevents the inverted matrix from being singular and

I is the identity matrix. We can then calculate the vortex potential matrix

h = A+Rπ/2s. (4.3.6)

Thus, once the slope data has been acquired we can completely characterize the

vorticity of the condensate with a single matrix multiplication.

It is important to clarify that the method of Le Bigot and Wild, as described

here, does not work for a non-linear field. Finding the pseudo-inverse of the geom-

etry matrix assumes that the phase can be reconstructed as a linear combination of

components of the singular vector basis. Since the condensate is non-linear this is not

feasible. For the purposes of this thesis it is not necessary to reconstruct the phase

as we only require the wavefront slope to locate vortices and determine their hand-

edness. We provide this discussion only for comparison with the method of vortex

identification we will describe later for a non-linear field.
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CHAPTER 5

The Atom-Optical Shack-Hartmann Wavefront 
Sensor

Since the velocity field of a BEC is proportional to the gradient of its phase, a mea-

surement analogous to the SHWS seems of great interest. The problem then is how to 

create the equivalent of a grid of lenslets for a matter wave. This problem is straight 

forward experimentally as a large body of work on the center-of-mass manipulation of 

neutral atoms with off-resonance lasers via the dipole force has been developed over 

the past few decades. In particular there is preceding body of work in the focusing 

of atomic beams in this manner. In 1978 Bjorkholm et al. focused a beam of neu-

tral sodium atoms using a co-propagating red-detuned TEM0,0 laser beam [52]. The 

limitations of this technique due to spontaneous emission were discussed in a 1980 

paper [53] and they were able to achieve an atomic beam spot size of 28 µm. Balykin 

and Letokhov in 1988 proposed using a blue-detuned TEM0,1 Laguerre-Gaussian laser 

beam as a thin lens focusing potential to guide the atoms through a low-irradiance re-

gion so that the effects of spontaneous emission would be reduced and Angstrom-scale 

spot sizes would be achievable [54]. Gould and Gallatin expanded on this concept in 

1991 by developing a matter wave diffraction integral that allowed a thick lens treat-

ment of the problem [55]. Though this kind of focusing was not achieved, Sleator 

et al. demonstrated focusing of Helium atomic beams experimentally using a large 

period standing wave of light in 1992 [56]. Standing wave atom focusing was further 

demonstrated in following experiments by Timp et al. in Sodium [57] and by McClel-

land et al. in Chromium [58]. McClelland provided a theoretical treatment of this 

technique in 1995 [59]. These works are limited to atomic beams, not BECs and use 

lattice periods that are large compared to the thermal de Broglie wavelength of the
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atoms. They therefore make an assumption not appropriate to this work: that the

potential varies in space slowly compared to the DeBroglie wavelength of the atoms.

In addition, much of the aforementioned work uses a thick-lens treatment in which

timescales of atomic motion are comparable to the length of the laser pulse. Cohen

et al. theoretically studied standing wave thin lens fields for cold atoms in 1999 and

were able to extract approximate analytic formulas for lens parameters such as focal

length and the influence of aberrations [60]. It is on this body of work that we base

our proposed Atom-Optical Shack-Hartmann Wavefront Sensor.

The AOSHWS consists of a far-detuned laser beam periodic in two dimensions in

the plane of a trapped, quasi-2D BEC as shown in Figure 5.1. This potential is flashed

on for a time τ short in comparison with the timescale of BEC fluid dynamics and

the two-photon recoil time tq = 4πm/~2q2 = 2πω−1
q where k = q/2 is the lattice wave

number. This ensures that the condensate is not modulated during the interaction

and that the matter wave is subject purely to phase modulation. The phase curvature

imprinted on the atom cloud by the potential causes the BEC to split into contracting

sub-condensates. During a given focus time tf the sub-condensates follow a center-of-

mass trajectory that depends on the slope of phase of the bulk condensate at the time

of measurement. After this focus time, the atomic distribution is imaged, the location

of the sub-condensate peaks are recorded and the slope data are calculated. This

measurement gives the gradient of the condensate phase and thus an approximated

velocity field of the bulk condensate. For a given sub-condensate we can calculate the

velocity like

sx,yi,j = v(xi, yj) =

(
∆xi
tf

,
∆yi
tf

)
(5.0.1)

where (xi, yj) are the locations of the lattice sites and i and j are integers defined over

the ranges 1, 2, ..., N and 1, 2...,M respectively. From this we can possibly determine

the kinetic energy spectrum, use processing algorithms discussed later to locate and

characterize vorticity or even reconstruct the full phase and density profile of the



73

condensate.
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Figure 5.1. Visual representation of the AOSHWS measurement process at different
times. a. Timing sequence. b. Initial BEC density distribution. c. BEC density dis-
tribution after initial expansion period. d. Lattice field superimposed onto expanded
BEC density distribution. e. Focused BEC density distribution after 2nd expansion
time demonstrating peak displacement.

Ideally the irradiance gradient would have quadratic curvature similar to the lenses

in the SHWS. In principle such fields could be generated using holographic methods

like computer generated holograms or spatial light modulators but these methods

are expensive, not readily accessible and possibly subject to errors that a lattice

is not. Instead we propose to use a 2D optical lattice to break up the BEC at

the nodes or anti-nodes of potential depending on whether the laser is red or blue

detuned, respectively. This technique has the advantage of requiring only a laser,

an acousto-optic modulator and a few focusing optics and mirrors to implement. In

addition, by tuning the angle of the interfering beams we can continuously tune the

sampling resolution to a lower bound of half of the laser wavelength. This allows

us to easily attain a sampling rate on the order of the Nyquist frequency where

fNyquist ≈ ξ/2 ∼ 0.5 µm for quantum vortex cores in BECs.
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The main difference between the focusing properties of the standing-wave and

quadratic potentials is in aberration of the spots. Since a quadratic lens is free of

spherical aberration using a sinusoidal curvature will have a larger spot size at focus.

However, we are not concerned with imaging so this does not pose a serious issue

to us. It would be useful to calculate an approximate focusing timescale and other

imaging parameters for a given set of experimental conditions. To do so we follow the

treatment of Cohen et al. [60] and consider the problem in one spatial dimensional.

We consider the thin lens regime in which the atomic motion will be negligible during

the interaction. With this in mind as well as the fact that the sub-condensates will

have small numbers of atoms we will neglect non-linearity in our dynamics. Since the

condensate will remain axially trapped during the process dynamics are considered

in the time domain.

Consider a standing wave laser field along the x direction

E(x, t) = Ee−iΩtg(t) cos(kx) + c.c. (5.0.2)

where g(t) is an envelope function centered at t = 0 with a peak value of unity and

width τ and k = q/2 = 2π/λ is the propagation wave number. All of the simulations

in Chapter 6 use a square pulse envelope, however, the treatment here is general. The

optical field interacts with a two-level atom with mass m and transition frequency

ω. We assume a large detuning ∆ and a short interaction time relative to the Rabi

frequency χ and spontaneous emission times such that ∆ = Ω − ω � 2|χ| and

2Γτ |χ|2/∆2 � 1. This give a pure phase modulation and after adiabatic elimination

of the excited state yields a Hamiltonian of the form

H =
p2
x

2m
+

2~|χ|2

∆
g2(t) cos(qx). (5.0.3)

Integrating the Shrödinger equation i~∂tψ(x, t) = Hψ(x, t) we get the following ex-
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pression for the field immediately after interaction

(x, t = 0+) = ei
θ
2

cos(qx)ψ(x, t = 0−)

=
∞∑

n=−∞

inJn(θ/2)einqxψ(x, t = 0−)
(5.0.4)

where θ ≡ −4|χ|2
∆

∫∞
−∞ dtg

2(t) is the area of the pulse envelope function squared and

Jn(x) is an nth order Bessel function of the first kind. We have employed the Jacobi-

Anger expansion in Equation 5.0.4 to expand our wave function onto a basis of mo-

mentum eigenstates. The assumption of pure phase modulation is justified in the

Raman-Nath regime that allows us to ignore the kinetic energy term in the Hamilto-

nian so Equation 5.0.4 is valid under the condition

|θ|ωqτ/3� 1. (5.0.5)

If we assume ψ(x, t = 0−) is a plane wave and evolve the system under the free

particle Hamiltonian then each plane wave component is a stationary state and we

can propagate Equation 5.0.4 in time by multiplying by the corresponding phase

factor

ψ(x, t) = e−i
p2x
2m~ tψ(x, t = 0+)

=
∞∑

n=−∞

inJn(θ/2)einqx−n
2ωqt

(5.0.6)

where ωq ≡ ~2q2/2m. This gives us the wave function of the atoms at any time after

the lattice pulse for the given set of assumptions. However, it is difficult to calculate

the dynamics of any given section of the wavefront from this form. To extract a focal

time we take a different approach and use a standard diffraction integral:

ψ(x, t) =

∫ ∞
−∞

dx′G(x− x′, t− t′)ψ(x′, t′). (5.0.7)

We use the free-atom propagator G(x, t) = (4πiωqt)
−1/2 exp [i(qx)2/4ωqt] and the

initial wave function ψ(x′, t′ = 0) = exp[i(θ/2) cos(qx′)]. By considering a single
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lattice site and expanding the wave function about a node/antinode we can make

a parabolic approximation cos(qx′) ≈ 1 − (qx′)2/2 to calculate an ideal focal time.

Deviations from ideal behavior come from small contributions from higher order terms

(aberrations) and non-linear defocusing. Since the wave function is periodic we can

choose the simplest case for x = 0. Evaluating the integral we find the density

ρ(x = 0, t) = |ψ(x = 0, t)|2 ∝ (1− ωqtθ)−1. (5.0.8)

Examining Equation 5.0.8 we see a singularity in the density that corresponds to the

quadratic focal time

tf = (ωqθ)
−1. (5.0.9)

Note that the curvature of the lattice is accounted for in ωq. So now we have es-

tablished constraints for experimental parameters that allow us to ensure our mea-

surement remains in the thin lens regime as well as a focal time that allows us to

characterize our AOSHWS measurement in analogy to the ideal SHWS.

5.1 Vortex Identification with the AOSHWS

Once the velocity field of the condensate has been measured our goal is to determine

the location and handedness of all vortices. Many algorithms already exist for this

purpose in the study of classical fluid turbulence so we do not need to develop a new

one here. We do have a few constraints regarding the type of method we choose. The

first is that our vortex detection method must not depend on a linear interpolation

between discrete measurement points since the condensate is non-linear. Rather, we

should choose one that relies only on the instantaneous velocity data provided by the

AOSHWS at discrete spatial points. Second, that it does not require and aggregation

of multiple measurement sets since we can only measure the condensate once. Such a

method is described by Grafiteaux et al. [61]. Originally developed to analyze Particle

Image Velocimetry (PIV) data sets, this method uses two scalar functions Γ1 and Γ2

to locally characterize the circulation of the velocity field.
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The dimensionless, scalar function Γ1 is used to determine the location of the

vortex core. We define it in the measurement domain as

Γ1(P ) =
1

S

∫
M∈S

(PM × VM ) · ẑ
||PM || · ||VM ||

dS =
1

S

∫
S

sin(θM)dS (5.1.1)

where P and M are points contained in the two dimensional area S and ẑ is the unit

vector orthogonal to the measurement plane. S is centered about P and PM is a

radius vector defined between these two points. VM is the velocity field component

vector at M . It is clear then that θM is the angle between the radius vector and

the velocity field component it intersects at point M . At the location of an ideal,

axisymmetric vortex core the magnitude of this angle, and therefore the magnitude of

Γ1(P ) will be extremized. To locate vortex cores we evaluate Γ1(P ) for every point in

the measurement domain and then search for peaks above an empirically determined

threshold. Since |Γ1| ≤ 1 this number is between 0 and 1. Grafiteaux et al. cite the

optimal threshold to be 0.9 though we have found it to lie between 0.5 and 0.6 [61].

To adapt Equation 5.1.1 to discretely sampled points we simply demand that S be a

fixed rectangular region centered on P , we then replace the integral with a sum over

all the points in S and replace the term 1/S with 1/N , where N is the number of

points contained in S.

To determine the vortex boundary Grafiteaux et al. make use of the Γ2 function

defined similarly to before.

Γ2(P ) =
1

S

∫
M∈S

{PM × (V M − Ṽ P )} · ẑ
||PM || · ||V M − Ṽ P ||

dS. (5.1.2)

Here Ṽ P is the convection velocity of the fluid in the region S defined as: Ṽ P =

(1/S)
∫
S
V dS. The Γ2 function creates a field exhibiting “plateaus” centered at the

vortex location that fall off rapidly after the radial distance at which the vortex

velocity reaches a maximum. The vortex boundary is then determined by searching

for regions in the Γ2 field above a threshold which Grafiteaux et al. cite to be 2/π.

However, we find the optimal value to be closer to 0.4 [61]. The differences in optimal
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thresholds is likely due to differences in the vortex core-geometries considered. Once

the boundary of the vortex core is established, the circulation of the vortex may

be calculated by integrating the velocity field around it. These expressions may be

adapted to discrete measurements in the same manner as Γ1.

In the case of a Bose-Einstein condensate vorticity is quantized. Thus, for cases

of well-separated (on the order of a few healing lengths), singly charged vortices it

is sufficient to know their handedness rather than their circulation. For this purpose

it is unnecessary to calculate Γ2(P ) as the sign of Γ1 depends on vortex handedness.

However if vortices of like sign are closely grouped or multiply charged vortices are

present, the Γ2 function allows us to handle these cases. Of course, in the worst case

scenarios it is always possible to rely on qualitative analysis of the velocity field to

identify vortices.

5.1.1 Experimental Implementation of Peak Subtraction

Since the AOSHWS method relies on comparison with a flat phase Hartmanngram

and we can only measure a single BEC once it seems natural to ask how this could

be implemented in experimental reality. To answer this we must state that the only

piece of raw data we can obtain from this process is the Hartmanngram of the state

of arbitrary phase. However, it is assumed that before we make this measurement we

have some initial pieces of information from the characterization of the measurement

apparatus. Namely it is assumed that we know the period and irradiance of the

optical lattice at the location of the BEC. In addition, we should know the duration

of the initial expansion time, the lattice pulse and the second expansion time. Having

obtained the Hartmanngram and determining its width we can back-propagate the

cloud using a numerical GPE solver to approximate the initial Thomas-Fermi radius

and atom number. We can then synthetically generate our truth measurement by

forward propagating the approximated initial state with a flat phase.
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CHAPTER 6

Measurements of Vorticity in Bose-Einstein 
Condensates

In this chapter we discuss numerical studies of two methods to determine the vorticity 

in 2D Bose-Einstein condensates. Both methods make use of optical lattices in order 

to break up the condensate and allow the subsequent distribution to evolve according 

to the local velocity field. Both methods determine the location and handedness of 

vortices providing information about the bulk fluid motion according to the Onsager 

point vortex model [6]. The first method, which uses a 1D lattice, provides this 

information using qualitative analysis of the dislocation of the fringes at the location of 

vortex cores. The second method, which was discussed in Chapter 4, uses a 2D lattice 

and a peak detection algorithm to extract the velocity field of the BEC. The second 

measurement provides a wealth of information but we are specifically interested in 

using it to locate vortex cores and determine their handedness. This can be done 

in two ways: qualitatively by examining the velocity vectors superimposed onto the 

density distribution or by using one of any number of existing algorithms to identify 

vortices in velocity fields. In this dissertation we use the algorithm developed by 

Grafiteaux et al. [61] implemented in the code written by Sebastian Endrikat [62]. 

The purpose of this analysis is not to provide an exhaustive optimization of the 

method but, rather, to give proof-of-principle and demonstrate its feasibility and 

application.

6.1 Details of the Simulations

The simulations presented in this chapter are written in MATLAB code. They are 

performed using a split-step method to solve the 2D Gross-Pitaevskii equation on a
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512x512 grid of spatial extent 150 µm x 150 µm. The ground state is determined

by propagation of a trial wave function according to the damped complex Gross-

Pitaevskii equation (cGPE) [63] for a harmonic trap with frequencies (ωx, ωy, ωz) =

2π × (10, 10, 100) Hz and a cloud of N = 106 87Rb atoms. Once the ground state

is determined, arbitrary phase and density modulations may be introduced into the

BEC. For instance, vortices may be introduced into the condensate at location r′ by

multiplying by the term

Avort(r, r
′) =

|r − r′|√
(r − r′)2 + ξ2

exp

[
±i tan−1 (r − r′)

larb

]
(6.1.1)

where the sign on the exponent determines the vortex handedness and larb is an

arbitrary length scale. We define clockwise rotation to be negative handedness and

counter clockwise rotation to be positive handedness. Using this method we can create

arbitrary distributions of vortices.

Once the initial state has been created, the measurement process consists of three

independently adjustable steps. The first step is a free evolution where the condensate

is released from its radial confinement. The condensate is allowed to expand for a

time texp1 . This serves a few purposes, one is to increase the interatomic distance

and therefore decrease the density so that the vortex cores increase in size and the

velocity field may be sampled at a lower spatial frequency. The other purpose for the

initial expansion time is to reduce the strength of the repulsive non-linearity that can

blur the final density distribution. The second phase applies a λ = 532nm optical

lattice pulse. The variable parameters of the lattice are the length of the pulse tlat, its

amplitude Ulat (quantified in terms of the BEC chemical potential µ) and its period

λlat. After the lattice pulse, the third step step is another period of free expansion

where we allow the BEC to break up into sub-condensates and come to focus. Though

the time over which this happens, texp2 is a degree of freedom, the quadratic focal

time tFocus is determined for a linear atom cloud by the lattice pulse properties as

discussed in Chapter 4.



81

6.2 Previous Methods

To date, measurement of a kinetic energy spectrum of quantum turbulence in a BEC

reamins a challenge. There have been several experiments that detected a vortex and

measured its associated phase winding [20–22]. Most experiments have attempted

to determine the phase through interfereometric methods while one measured vortex

handedness and location via spatially resolved Bragg scattering [19]. Though these

methods are effective for determining vortex location and handedness they do not

measure the velocity field of the condensate and in the case of the interfereometric

measurements require a complex and delicate timing sequence and have not been

demonstrated for complex vortex distributions. In addition, the efficacy of these

methods depends on the species of atom while the method presented here is completely

general.

6.3 Determining Vortex Handedness Using a 1D Optical Lat-
tice

In this method a BEC is subjected to a fast, off-resonant pulse of light patterned as

a 1D lattice in the plane of the condensate. The lattice pulse creates a wave function

with fringe-like regions of high and low density. Since these fringes are the product

of phase modulation versus amplitude modulation the atoms are not trapped by the

optical potential and travel with trajectories determined by their velocities in the

initial state. After a period of free evolution the fringes will display a characteristic

dislocation at the location of the vortex cores. As shown in Figure 6.1 the orientation

of this dislocation is determined by the vortex handedness.
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Figure 6.1. In the 1D lattice measurement the BEC density is broken into periodic
fringes. These fringes are dislocated near the vortex cores in a direction determined
by the vortex handedness.

The nature of this fringe dislocation is different than that considered in the pre-

vious section. Previous investigations [20–22] considered fringes generated from the

interference of two condensates held at different locations in the trap populated by

different Zeeman sublevels. At the location of a vortex core these fringes displayed a

forking geometry or screw dislocation. In contrast, our measurement creates fringes

non-interfereometrically and the dislocations are simply caused by the opposing signs

of the velocity vectors on either side of the vortex core. By using a standing wave of

light to impose periodicity onto the wave function we greatly simplify the experimen-

tal setup and the geometry of the fringes is determined only by the characteristics

of the laser field. In addition, with proper measurement parameters multiple fringes

display dislocation as opposed to the single dislocation displayed in interfereometric

measurements. This makes it easier to resolve optically though closely spaced vortices

can be more difficult to distinguish.

6.4 Numerical Results for 1D Lattice

We performed a short numerical analysis of the 1D lattice system on a 1024x1024

grid of spatial extent 150 µm x 150 µm. We proceeded by varying the experimental

parameters in order to maximize the visual distortion of the fringes at the location of
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vortex cores. We found a good set of parameters to be lattice period λlat = 1.3 µm,

lattice amplitude Ulat = 1µ, lattice pulse duration tlat = 220 µs and final expansion

time texp2 = 1 ms. Figure 6.2 displays our results for a singly charged, centered vortex

of each handedness. Examining this figure it is clear that the orientation of the fringe

dislocation is determined by the vortex charge.

2 μm

2 μm2 μm

2 μm

Figure 6.2. Wave function density distributions for the 1D lattice measurement with
a singly charged centered vortex. Middle: Initial distribution. Top Left: Positive
handedness, texp1 = 0 ms. Top Right: Negative handedness texp1 = 0 ms. Bottom
Left: Positive handedness texp1 = 10 ms. Bottom Right: Negative handedness
texp1 = 10 ms. Simulations performed on 1024x1024 grid with fixed parameters
λlat = 1.3 µ m, Ulat = 1µ, tlat = 220 µs, and texp2 = 1 ms.

We can see that for texp1 = 0 ms the density fringes are extremely blurred. This is

likely due to the non-linear component of the Hamiltonian which is more prominent

for higher density condensates.
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To test how the method would perform with larger vortex distributions and more

closely spaced vortices we performed the same measurement for a distribution of five

singly charged vortices that contained several isolated cores and a cluster of three.

We varied the initial expansion time to see how it would affect our ability to resolve

individual vortices in a cluster.a.

b. c. d.

Scale: 2 μm

20 μm

b.
c.
d.

a.

Figure 6.3. Wave function density distributions for the 1D lattice measurement with
a distribution of five singly charged vortices. a. Full cloud density post measurement
displaying vortex arrangement for texp1 = 0 ms. b. Detail of the three-vortex cluster
for, texp1 = 0 ms c. Detail of the three-vortex cluster for, texp1 = 10 ms d. Detail of
the three-vortex cluster for, texp1 = 20 ms. Simulations performed on 1024x1024 grid
with fixed parameters λlat = 1.3 µm, Ulat = 1µ, tlat = 220 µ s texp2 = 1 ms. Scales of
the zoomed panels may be referenced to the lattice period.

It seems clear that while the measurement is effective for well-separated vortices,

more complicated distributions render it impractical. Longer expansion times are

essential to be able to mitigate the nonlinear fringe-blurring. Furthermore it cannot
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measure compressible velocity components and is only sensitive along one direction.

It may be possible to determine the magnitude of a vortex’s charge by measuring the

width of the fringe dislocation but we did not investigate this. Though its applications

are limited, the 1D lattice measurement is an easily implementable method that

can allow characterization of quantized vorticity fields and provides an intuitive step

towards the measurement of a BEC velocity field with a 2D lattice.

6.5 Measuring the Velocity Spectrum of a BEC with a 2D
Optical Potential

In Section 5 we argued that, under the right conditions, an off-resonance 2D optical

lattice should behave similarly to a conventional Shack-Hartmann Wavefront sensor

for a matter wave. To test the feasibility of this measurement we performed simula-

tions using the method described in the beginning of this chapter. Examples images

of the atom density throughout the measurement process are shown in Figure 6.4.
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Figure 6.4. Wave function density distributions at various points in measurement
process with and without vortex. Top row: No vortex, a. Uniform ground state
before expansion, b. Density after expansion, c. Density after lattice pulse and
second expansion. Bottom Row: Single, centered, vortex, e. Vortex imprinted state
before expansion, f. Density after expansion, g. Density after lattice pulse and second
expansion. Both rows use settings texp1 = 20 ms, tlat = 220 µ s, Ulat = 1µ, λlat = 2 µ
m, and texp2 = tFocus.

All simulations used a square lattice and again, the variable parameters are initial

expansion time texp1 , lattice period λlat, lattice amplitude Ulat and pulse duration

tlat. Final expansion time texp2 is fixed at tFocus unless otherwise specified. Once

the Hartmanngram is obtained the peak locations are measured using a matched-

filter algorithm. To find slopes we generated Hartmanngrams for both the uniform

ground state and the state of arbitrary phase to be measured. The peak locations

are subtracted and converted into column vectors of velocity measurements that are

then mapped to the locations of the lattice nodes as shown in Figures: 6.5 and 6.6.
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Figure 6.5. Example of measurement outcomes for single, centered vortex of charge
+1. Top Left: Full post-measurement density. Bottom Left: Γ1 function eval-
uated for every point in measurement domain. Right: Magnified detail of post-
measurement density with velocity vectors mapped to unperturbed density peak lo-
cations and vortex location and charge information tag. Experimental settings were
texp1 = 20ms, tlat = 500 µs, Ulat = 1µ, λlat = 1.4 µm, texp2 = tFocus = 10 µs.
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Figure 6.6. Example of measurement outcomes for single, centered vortex of charge
-1. Top Left: Full post-measurement density. Bottom Left: Γ1 function eval-
uated for every point in measurement domain. Right: Magnified detail of post-
measurement density with velocity vectors mapped to unperturbed density peak lo-
cations and vortex location and charge information tag. Experimental settings were
texp1 = 20ms, tlat = 500 µs, Ulat = 1µ, λlat = 1.4 µm, texp2 = tFocus = 10 µs.

This measurement technique returns faithful values of the fluid velocity, however,

these values are defined only at the peaks of the Hartmanngram. In the classical

SHWS these measurements are decomposed on a basis of Zernike polynomials that

map the discrete points back to a continuous field. In this case the condensate phase

is non-linear and we cannot linearly interpolate between these values to map the

measurements to every point on the continuous fluid density. Instead, in any case

where interpolation is necessary we take each lattice site and set the value of the

field at the points contained within it equal to the value of the measurement at

the corresponding Hartmanngram peak. Thus we are directly sampling the gradient
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of the phase across the condensate at a period equal to that of the lattice. This

is evident in the plots of the Γ1 and Γ2 fields in Figures 6.5 and 6.6. When the

lattice period is too large we cannot resolve the spatial features of the velocity field

necessary to detect vortices as is expected from standard sampling considerations.

However, if the lattice period becomes too small we run into several other issues.

Each Hartmanngram peak must span a diameter covering enough pixels to be able

to resolve displacements accurately. In this simulation we are limited by our grid size

while in a real experiment we would be limited by the pixel pitch of the camera and

the magnification of the imaging system. In addition, the sub-condensates must not

contact each other before imaging. A smaller lattice period means tFocus must reduce

accordingly and we may reach experimental limits. On a more fundamental level:

a smaller lattice site corresponds to a smaller atom number. The Hartmanngram

spots must contain enough atoms to provide a detectable signal to noise ratio for

the imaging system. The consequences of sampling frequency within the limits of

simulation coupled with the vortex identification algorithm in its current form are a

major part of the analysis we perform in the following section.

6.6 Numerical Results for the AOSHWS

To investigate how the lattice period effects our ability to resolve vorticity in a con-

densate we performed a series of simulations in which we varied λlat for several values

of texp1 on a 512x512 grid of spatial extent 150 µm x 150 µm. These simulations

all used the same initial 10 vortex distribution shown in Figure 6.7. We used this

distribution because it contains several classes of commonly studied vortex structures

including single vortices at various radial positions, a vortex dipole and a cluster of

three vortices. We can see in the left-most panes of the figure that the annihilating

pair produce a large sound wave that propagates through the condensate as it ex-

pands. This adds an irrotational component to the velocity field that the AOSHWS
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method is also able to identify. As a bonus it allows us to demonstrate that the

AOSHWS can detect vorticity in the presence of acoustic disturbances which might

be present in a real BEC experiment.
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Figure 6.7. Initial vortex distribution used to determine optimal range of λlat for
several values of texp1 . Left: texp1 = 0 ms, Top Right: texp1 = 10 ms, Bottom Right:
texp1 = 20 ms. Vortex distribution contains several isolated vortices at various radial
positions, a vortex dipole, a three-vortex cluster and an annihilating vortex pair.

We varied λlat over the range 1.0 − 3.4 µm for values of texp1 = 0, 10, 20 ms.

We picked three sampling conditions for each expansion time to demonstrate mea-

surement performance for under-sampled, over-sampled and ideally-sampled lattices.

From the plots in Figures 6.8, 6.9 and 6.10 we can see that there are no values of λlat

over the range examined that allowed the vortex identification algorithm to identify all
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present vortices with no initial expansion. It was expected that the annihilating pair

would not be identified as the velocity fields of the closely spaced, oppositely charged

vortices cancel each other out for distances greater than a few healing lengths.

1.6um

Figure 6.8. Initial vortex distribution expanded texp1 = 0 ms sampled at λlat = 1.6
µm. Right:Full post-measurement density with velocity vectors mapped to unper-
turbed density peak locations and vortex location and charge information tag. Top
Left: Magnified detail of upper right vortex dipole with velocity vectors mapped
to unperturbed density peak locations. Bottom Left: (Γ1)3 function evaluated
for every point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ,
texp2 = tFocus.
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2um

Figure 6.9. Initial vortex distribution expanded texp1 = 0 ms sampled at λlat = 2 µm.
Right:Full post-measurement density with velocity vectors mapped to unperturbed
density peak locations and vortex location and charge information tag. Top Left:
Magnified detail of upper right vortex dipole with velocity vectors mapped to un-
perturbed density peak locations. Bottom Left: (Γ1)3 function evaluated for every
point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ, texp2 = tFocus.
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3um

Figure 6.10. Initial vortex distribution expanded texp1 = 0 ms sampled at λlat = 3
µm. Right:Full post-measurement density with velocity vectors mapped to unper-
turbed density peak locations and vortex location and charge information tag. Top
Left: Magnified detail of upper right vortex dipole with velocity vectors mapped
to unperturbed density peak locations. Bottom Left: (Γ1)3 function evaluated
for every point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ,
texp2 = tFocus.

The plots in Figures 6.11, 6.12 and 6.13 show results for an initial expansion time

of 10ms. We were able to correctly identify all present vortices for sampling periods

in the range λlat = 1.6− 1.7 µm However, we could visually identify vortex location

and charge from the velocity field over a much larger range.
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1.4e-6

Figure 6.11. Initial vortex distribution expanded texp1 = 10 ms sampled at λlat = 1.4
µm. Right:Full post-measurement density with velocity vectors mapped to unper-
turbed density peak locations and vortex location and charge information tag. Top
Left: Magnified detail of upper right vortex dipole with velocity vectors mapped
to unperturbed density peak locations. Bottom Left: (Γ1)3 function evaluated
for every point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ,
texp2 = tFocus.
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1.6um

Figure 6.12. Initial vortex distribution expanded texp1 = 10 ms sampled at λlat = 1.6
µm. Right:Full post-measurement density with velocity vectors mapped to unper-
turbed density peak locations and vortex location and charge information tag. Top
Left: Magnified detail of upper right vortex dipole with velocity vectors mapped
to unperturbed density peak locations. Bottom Left: (Γ1)3 function evaluated
for every point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ,
texp2 = tFocus.
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3m

Figure 6.13. Initial vortex distribution expanded texp1 = 10 ms sampled at λlat = 3
µm. Right:Full post-measurement density with velocity vectors mapped to unper-
turbed density peak locations and vortex location and charge information tag. Top
Left: Magnified detail of upper right vortex dipole with velocity vectors mapped
to unperturbed density peak locations. Bottom Left: (Γ1)3 function evaluated
for every point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ,
texp2 = tFocus.

For an initial expansion time of 20 ms we found all vortices were correctly identified

for sampling periods in the range λlat = 1.5 − 2.3 µm and from the corresponding

Figures 6.14, 6.15 and 6.16 we can see that qualitative identification is possible over

almost the full range of tested sampling frequencies.
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1.2um

Figure 6.14. Initial vortex distribution expanded texp1 = 20 ms sampled at λlat =
1.2 µm. Right: Full post-measurement density with velocity vectors mapped to
unperturbed density peak locations and vortex location and charge information tag.
Top Left: Magnified detail of upper right vortex dipole with velocity vectors mapped
to unperturbed density peak locations. Bottom Left: (Γ1)3 function evaluated
for every point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ,
texp2 = tFocus.
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1.5um

Figure 6.15. Initial vortex distribution expanded texp1 = 20 ms sampled at λlat =
1.5 µm. Right: Full post-measurement density with velocity vectors mapped to
unperturbed density peak locations and vortex location and charge information tag.
Top Left: Magnified detail of upper right vortex dipole with velocity vectors mapped
to unperturbed density peak locations. Bottom Left: (Γ1)3 function evaluated
for every point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ,
texp2 = tFocus.
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3um

Figure 6.16. Initial vortex distribution expanded texp1 = 20 ms sampled at λlat = 3
µm. Right: Full post-measurement density with velocity vectors mapped to unper-
turbed density peak locations and vortex location and charge information tag. Top
Left: Magnified detail of upper right vortex dipole with velocity vectors mapped
to unperturbed density peak locations. Bottom Left: (Γ1)3 function evaluated
for every point in measurement domain. Fixed settings: tlat = 500 µs, Ulat = 1µ,
texp2 = tFocus.

Increased range of the ideal sampling period with expansion time is an expected

result. We found that for each expansion time we were able to measure faithful

velocity fields for a large range of lattice periods above λlat = 1 µm even if vortices

were not identified by the algorithm. Below this value velocity fields were nonsensical

over most of the condensate due to numerical sampling limits stemming from the

grid size. Figure 6.17 plots the percentage of vortices correctly identified in the initial

distribution for each sampling condition. In the case of texp1 = 0 ms we neglected the

annihilating pair so each case considers eight singly charged vortices. To calculate

the success percentage we counted the number of properly located vortices (NLocated)
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and the number of properly assigned charges (NCharged) for each condition. We then

compared this to a perfect score (in this case: 82) as in Equation 6.6.1:

%Success = 100×
[
1− N2

V ortices −NLocated ×NCharged

N2
V ortices

]
. (6.6.1)

Figure 6.17 clearly shows that performance in the ideal sampling region improves

with initial expansion time. However, in the under-sampled region texp1 = 0 ms

outperforms the other expansion times.
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Figure 6.17. Percent of vortices in sample distribution correctly identified for each
λlat and texp1 considered. Simulations were carried out on a 512x512 grid of spatial
extent 150 µm x 150 µm with fixed settings tlat = 500 µs, Ulat = 1µ, texp2 = tFocus,
ΓThreshold1 = 0.5, ΓThreshold2 = 0.35.

To try to distinguish between physical and numerical limitations in the system as

well as explore smaller lattice periods we performed a similar set of measurements
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on a 1024x1024 grid. We used a different initial vortex distribution that contained

similar sub-structures shown in Figure 6.18.

Figure 6.18. Initial vortex distribution used for AOSHWS analysis on a 1024x1024
of spatial extent 150 µm x 150 µm grid.

With the larger grid we found that the average success percentage of vortex de-

tection increased while the optimal range of lattice periods did not shift appreciably.
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The exception to this is for texp1 = 0 ms though considering the behaviour at the other

initial expansion times this is likely due to the vortex distribution rather than the

grid size or underlying physics. The larger grid did allow us to resolve Hartmanngram

peak displacements for lattice periods less than or equal to 1 µm. However, the vortex

detection algorithm was not very successful at these higher sampling frequencies.
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Figure 6.19. Percent of vortices in sample distribution correctly identified for each
λlat and texp1 considered. Simulations were carried out on a 1024x1024 grid of spatial
extent 150 µm x 150 µm with fixed settings tlat = 500 µs, Ulat = 1µ, texp2 = tFocus,
ΓThreshold1 = 0.5, ΓThreshold2 = 0.35.

To improve performance at these sampling frequencies we varied Ulat and texp2 for

a test lattice period of 1 µm. The vortex identification success rate was not improved

varying the lattice amplitude over the range Ulat = 0.5µ−1.5µ. Varying the secondary
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expansion time for fixed λlat = 1 µm and texp1 = 0 ms we found an increase in vortex

identification success rate of 100 percent over the range texp2 = 8tFocus − 10tFocus

as shown in Figure 6.20. There was no improvement for initial expansion times

texp1 = 10, 20 ms. This points to an important relation between the non-linearity

of the condensate and the focusing parameters of the lattice wherein the quadratic

approximation to the induced phase-curvature breaks down for higher BEC densities.

However, we must be careful when drawing conclusions about the physical properties

of the system from the performance of the vortex algorithm as it presents its own

variables for optimization. A detailed numerical study of the relation between the

optical focal time of the lattice and the initial expansion time is not presented here

but should be part of any further investigation into the AOSHWS.

Figure 6.20. Percent of vortices in sample distribution correctly identified for each
texp2 and texp1 considered. Simulations were carried out on a 1024x1024 grid of spatial
extent 150 µm x 150 µm with fixed settings tlat = 500 µs, Ulat = 1µ, λlat = 1 µm,
ΓThreshold1 = 0.5, ΓThreshold2 = 0.35.

To summarize our findings: using the AOSHWS we are able to measure velocity
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fields that qualitatively match what we would expect for a known vortex distribution

over a range of parameter settings. This range depends on the initial expansion time.

Though the fields seem to faithfully represent the system dynamics, the range over

which our vortex identification algorithm is successful is much narrower. This leads

us to believe that the vortex identification algorithm we have chosen is largely at

fault as it is not optimized for the specifics of quantum vortices. We were not able to

find such an algorithm in the literature, however, as a proof-of-principle we deem it

a success. Future work to improve the AOSHWS method should start with a study

of how the focal properties of the lattice are effected by the initial expansion time

as well as an investigation into optimization of the vortex identification algorithm

for quantum vortices. The latter seems a natural application for machine learning

techniques.
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CHAPTER 7

Conclusions

We experimentally explored the behaviour of a BEC in an out-of-equilibrium state in a 

rotating TOP trap. This technique involved loading a BEC into a TOP trap rotating

off-resonance from surface wave modes and perturbing the condensate with a 660 nm

laser pulse. The condensate was then held in the rotating trap for a thermalization

time on the order of 5 s before being imaged without expansion using an absorption

modality. A variety of different vortex distributions were generated depending on the

experimental conditions as the condensate sought a rotating, vortex lattice ground

state. Through various experimental checks we verified that the vorticity was not

being generated by fluid flow around a repulsive barrier. We also found no evidence of

a resonance with respect to the trap rotational frequency introduced by the presence

of a central barrier. However a strong upward trend in the number of generated

vortices was evident as the peak irradiance of the perturbing pulse was increased.

We hypothesize that this is because a more powerful perturbation adds more energy

to the BEC and puts it into a broader superposition over energy states increasing

the likelihood that we will find it in a many-vortex state. By imaging the cloud at

various stages during the process we found that the initially uniform BEC distorted

upon being perturbed. After several seconds of thermalization, vortices began to

enter the condensate from the edges. We expect the data gathered will shed light on

the relaxation dynamics of non-equilibrium BECs and interactions with the thermal

fraction and aid development of stochastic GPE models. These models are essential

to the understanding of finite temperature BEC physics as well as a broader class of

problems in non-equilibrium physics.

We provided proof-of-principle simulations and analysis of two novel and related
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methods to detect and characterize vorticity in a BEC using optical lattices. In the

first method we allow the condensate to expand for an initial period and subsequently

apply a 1D lattice to break up the condensate density into fringes with the same

periodicity. In the presence of vortices, the opposing velocity vectors on opposite

sides of the cores create dislocations in the fringes. By analyzing the orientation of

the fringes at the dislocation we can determine the handedness. In doing so we can

determine the Onsager point vortex Hamiltonian for simple, singly charged vortex

distributions. We found that our ability to resolve the lattice fringes depended on the

initial expansion time of the condensate. Further work may measure the displacement

of the fringes at the dislocation to determine the magnitude of the vortex charge.

The process of the second method is identical except that the condensate is broken

up with a 2D lattice. This acts as a measurement of the velocity spectrum in a manner

directly analogous to a Shack-Hartmann Wavefront by using Raman-Nath scattering

to imprint a sinusoidal phase curvature on the condensate. We refer to this method as

the Atom-Optical Shack-Hartmann Wavefront Sensor. Once the velocity spectrum is

measured we make use of an identification algorithm that determines the location and

charge of vortex singularities. Though we have shown that the AOSHWS method is

sound in principle, there are quite a number of variables for optimization. The ability

to resolve vortices depends strongly on the periodicity of the lattice which corresponds

directly to the spatial frequency at which we sample the velocity field. When we

use a quadratic approximation to the focal time after the lattice pulse the range of

sampling frequencies which yield 100 percent success increases with initial expansion

time. Longer initial expansion times present experimental difficulty for the AOSHWS

since releasing BECs from traps commonly yields random momentum kicks. Since

this effectively creates a random shift in the lattice location, longer initial expansion

times have the potential to introduce error into peak displacement measurements. As

such, it is experimentally favorable to use zero initial expansion time. We found that

at smaller initial expansion times the optimal focal time deviated significantly from
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the quadratic approximation. This is likely due to a stronger contribution from the

non-linearity in the denser, non-expanded cloud. Investigations into the relationship

between the initial expansion time and the optimal focal time for a given lattice will

be essential for future development of this method. As we are able to measure faithful

velocity fields over a broad range of lattice periods we believe our system is currently

limited by the vortex detection algorithm. Thus we expect great improvements will be

made through detailed optimization of the lattice parameters as well as the machine

vision problem of quantum vortex detection.

The work presented in the dissertation provides the first proof-of-principle stages

following the introduction of this method. The simple set of variables that define the

measurement show a rich interplay of trade-offs which require careful analysis. In

this dissertation we have focused on its use for vortex detection but the AOSHWS

has broad applications. Once the measurement is properly characterized we believe

it to be an experimental method capable of determining the kinetic energy spectrum

of a BEC directly from the measured velocity field. Since both vortex identification

and a velocity field measurement give us access to the kinetic energy spectrum the

AOSHWS might allow us to compare results to test the accuracy and validity of the

Onsager point vortex model. In addition, the AOSHWS provides varying degrees

of angular and position information simultaneously depending on the lattice period.

This capability makes it of use to studies of quantum coherence in matter waves.

Finally we note that the method does not depend on the properties of any specific

atomic species and is therefore fully adaptable to any atomic gas BEC laboratory.

Though there is still much work to be done to optimize the method we believe the

Atom-Optical Shack-Hartmann Wavefront Sensor will prove to be a valuable tool for

BEC physics.
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