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ABSTRACT

Turbulence in classical fluids has been the subject of scientific study for centuries,

yet there is still no complete general theory of classical turbulence connecting mi-

croscopic physics to macroscopic fluid flows, and this remains one of the open prob-

lems in physics. In contrast, the phenomenon of quantum turbulence in superfluids

has well-defined theoretical descriptions, based on first principles and microscopic

physics, and represents a realm of physics that can connect the classical and quan-

tum worlds. Studies of quantum turbulence may thus be viewed as a path for

progress on the long-standing problem of turbulence.

A dilute-gas Bose-Einstein condensate (BEC) is, in most cases, a superfluid

that supports quantized vortices, the primary structural elements of quantum tur-

bulence. BECs are particularly convenient systems for the study of vortices, as

standard techniques allow the microscopic structure and dynamics of the vortices to

be investigated. Vortices in BECs can be created and manipulated using a variety of

techniques, hence BECs are potentially powerful systems for the microscopic study

of quantum turbulence.

This dissertation focuses on quantized vortices in BECs, specifically experimen-

tal and numerical studies of their formation, dynamics, and decay, in an effort to

understand the microscopic nature of vortices as elements of quantum turbulence.

Four main experiments were performed, and are described in the main chapters of

this dissertation, after introductions to vortices, experimental methods, and tur-

bulence are presented. These experiments were aimed at understanding various

aspects of how vortices are created and behave in a superfluid system. They in-

volved vortex dipole nucleation in the breakdown of superfluidity, persistent current

generation from a turbulent state in the presence of energy dissipation, decay of

angular momentum of a BEC due to trapping potential impurities, and exploration
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of the spontaneous formation of vortices during the BEC phase transition. These

experiments represent progress towards enhanced understanding of the formation,

dynamics, and decay of vortices in BECs and thus may be foundational to more

general studies of quantum turbulence in superfluids.
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CHAPTER 1

INTRODUCTION

The first experimental realizations of dilute-gas Bose-Einstein condensation in

1995 [1, 2, 3] represented the completion of a goal nearly 70 years old. A broad and

active field of research studying and working with Bose-Einstein condensates (BECs)

has now opened up, particularly distinguished by the exquisite control over exper-

imental parameters that may be used to microscopically manipulate these macro-

scopic quantum systems. Fundamental investigations of quantum phase transitions,

tests of superfluidity, studies of coherence, quantum atom-optics, and nonlinear

atom-optics, for example, have come out of BEC research; some overviews of this

rich field may be found in [4, 5, 6, 7]. Among the phenomenology associated with

BECs, aspects of superfluidity are of primary interest in this dissertation. In par-

ticular, a property of superfluidity that may be explored in BECs is the expected

ability of a BEC to support quantum (superfluid) turbulence, characterized by dis-

ordered superfluid flow, a disordered arrangement of vortices, and signature bulk

statistical properties (see Section 3.3). Accounts of work towards understanding

key elements of superfluid turbulence at a microscopic level, specifically focusing on

the generation, dynamics and decay of quantized vortices, make up the bulk of the

material described in this dissertation. Although bulk properties of quantum tur-

bulence were not investigated quantitatively in the four main experiments that are

here described, these studies may prove foundational for additional work pursuing

and understanding experimental realizations of quantum turbulence in BECs.

1.1 Outline of this dissertation

In order to provide a guide to the contents of this dissertation, a brief discussion of

the primary content of each of the subsequent chapters is first given. After this, an
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introduction to vortices in BECs is given, and the remainder of this introductory

chapter contains a summary of previous BEC vortex experiments, in order to provide

a brief overview of relevant vortex work that has led to the ability to study quantum

turbulence in BECs.

Chapter 2 outlines some basic aspects of the experimental apparatus used to

create, manipulate, and study BECs and vortices in our lab. Included are several

modifications to the previous experimental apparatus, which was described in the

two previous PhD dissertations from the group [8, 9]. These modifications were

instrumental in conducting the experiments described in this dissertation, including

the addition of optical fields used to modify the trapping potential that holds the

BEC, and techniques used to transfer atoms into a trap consisting of a spherical

quadrupole magnetic field and an optical trapping beam. While only used for one

experiment, this combined spherical quadrupole magnetic field and optical beam

trap may prove very useful in future work.

Chapter 3 outlines some of the basic concepts in classical and quantum tur-

bulence, and gives reasons why BECs represent a particularly convenient system

for the study of quantum turbulence at a microscopic level. Although the experi-

ments described within this dissertation were not direct investigations of quantum

turbulence1, prototype experiments that exhibit some characteristic properties of

quantum turbulence are described at the end of Chapter 3; these prototype experi-

ments served as motivation for some of the other studies described in the following

chapters of this dissertation.

Chapter 4 describes an experiment in which a building block of quantum turbu-

lence, a vortex dipole (a pair of oppositely charged vortex cores), was controllably

generated and the vortex dipole formation, dynamics, and decay were studied. In

an extension of these techniques, Chapter 5 describes an experiment in which vortex

dipole generation was utilized to generate quantum turbulence. Along with ther-

1It can be appropriately argued that the dynamics of the BEC phase transition, described

in Chapter 7, involve superfluid turbulence. This relationship will be more fully described in

Chapter 7.
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mal damping, the turbulent initial state was used to establish persistent superflows

(persistent currents) in a toroidal trap geometry.

Chapter 6 describes investigations of the loss of angular momentum from a rotat-

ing BEC due to the addition of asymmetry to the trapping potential. Asymmetries

in the trapping potential, as an imposed experimental parameter or natural feature

of the system, may generally result in systematic limitations of vortex lifetimes and

vortex dynamics, and are consequently important in understanding the behavior of

turbulence in the system.

Chapter 7 explores the spontaneous formation of vortices resulting from a non-

equilibrium quench through the BEC phase transition. The dynamics of the phase

transition can be described in terms of the evolution of an initially turbulent state

into quasi-equilibrium through thermal damping; the non-equilibrium state is char-

acterized by the presence of quantized vortices, and in this experiment, vortices can

be used as signatures of phase transition dynamics.

Finally, concluding remarks are given in Chapter 8.

1.2 Vortices in BEC

A system that exhibits superfluidity possesses properties markedly different than

those found in classical fluid systems. Primary among these is a complete lack of

viscosity for the superfluid portion of the system; fluid flows are not dissipated as

there is no resistance to flow for low-enough fluid velocities, and thus a flow may

“persist” indefinitely. A superfluid may even be succinctly characterized as a system

that exhibits persistence of flow, and that supports quantized vortices. For relevant

reviews of superfluidity in helium, see Refs. [10, 11, 12, 13]. Macroscopic phase

coherence is at the origin of quantized vorticity, and it is most easily understood by

utilizing a macroscopic wavefunction description for the quantum fluid:

ψ(r, t) =
√

n(r, t)eiφ(r,t), (1.1)
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where n(r, t) the density of the superfluid, and φ(r, t) is the phase profile2 [4]. While

this description breaks down for strongly interacting systems and some BEC exper-

iments, it is appropriate for the experiments described here. Consequent of this

description and the probability current of a quantum system [14], the superfluid

flow velocity v(r), at the position r within the fluid, may be written as:

v(r) =
h̄

m
∇φ(r), (1.2)

where m is the mass of an atom in the fluid. In other words, superfluid flow velocity

is intimately related to the phase profile of the quantum system.

Dynamics of dilute superfluid systems, and Bose-Einstein condensates in partic-

ular, are often well described by the nonlinear Schrödinger equation known as the

time-dependent Gross-Pitaevskii equation (GPE) [4]:

ih̄
∂ψ(r, t)

∂t
= − h̄2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t) + g|ψ(r, t)|2ψ(r, t). (1.3)

In this equation, g = 4πh̄2a/m characterizes the strength of non-linear dynamics

dependent on the s-wave scattering length a, and V (r, t) is the external potential

used to trap and manipulate the BEC. The nonlinear term originates in particle-

particle interactions and is a good approximation for dilute systems or systems with

weak interactions between particles. This equation is strictly appropriate in the

zero-temperature limit.

Since the wavefunction must be single-valued for self-consistency, the phase may

only change by multiples of 2π about any closed loop, referred to as the Onsager-

Feynman condition [15]. Circulation, or fluid flow about a given point in the super-

fluid system, is thus quantized, and a phase-winding of 2π defines a singly-quantized

vortex. At the center of the phase loop, the phase is undefined. However, when

examining the fluid flow about this center point, ∇φ(r) and thus v(r) diverge as

2This aspect of phase coherence and the appropriateness of a macroscopic wavefunction turns

out to be most relevant for a dilute gas BEC, although less so for a bulk superfluid with strong

interatomic interactions. Theoretical details on the relevance and attainment of a macroscopic

wavefunction will not be discussed here, see Refs. [4, 5, 7] for further discussion.
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the center point is approached. Since the system contains finite energy, fluid flow is

not supported at the discontinuity. Fluid is thus absent at the center of the phase

loop, and in fact the fluid density n(r, t) decreases continuously from its bulk value

to zero at the discontinuity. This density zero in the fluid defines a line through the

thin core of the quantized vortex, which has a radius on the order of the healing

length for the fluid, given by:

ξ = [8πan(r, t)]−1/2. (1.4)

The healing length is the characteristic shortest distance over which the density can

drop from its bulk value to zero, limited by the energy of the system.

The quantization of circulation present in a superfluid is markedly different from

a classical fluid, where any value of circulation can be manifest. Additionally, the

vortex will not spontaneously decay, as the quantum phase profile requirements and

the inviscid nature of the superfluid prevent its sudden disappearance. Instead,

vortices must be removed (or added) to the system by other means, described later

in this dissertation.

Example images of vortices in a BEC are shown in Fig. 1.1. Although the cir-

culation about a vortex core is quantized, the net angular momentum of the fluid

system can take on a range of values, depending on the location of the vortex within

the BEC. Gradually moving a vortex in from the edge of the BEC to the center, for

example, the angular momentum per particle smoothly increases from 0 to h̄ [16].

With multiple vortices of the same direction of circulation in the BEC, the stable

equilibrium configuration is a hexagonal lattice. With N vortices arranged in a

lattice, the angular momentum per particle is equal to Nh̄/2 [11, 17, 18].

1.3 Experimental vortex studies in BEC: a bibliographic reference

The study of quantized vortices represents an active and extensive section of BEC

research since vortices were first created and observed in 1999 [19]. The observation

of quantized vortices was essential in providing evidence for the superfluid nature of
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Figure 1.1: (a) Image showing the presence of a vortex core approximately at the
center of a BEC, represented by the dark spot in the middle of the image, for a BEC
formed in a flattened trap (see Section 2.6). Lighter shades in the image indicate
higher column densities integrated along the line of sight (experimental techniques
are discussed in Chapter 2). Additional fringes and density variations are artifacts
from the imaging process. With a single vortex aligned at the center of a BEC, each
atom in the BEC carries h̄ of angular momentum. (b) Image showing the presence of
multiple vortices in a BEC formed in a TOP trap (see Section 2.3). With multiple
vortices in the BEC, the stable configuration is a hexagonal lattice. This image
contains ∼ 24 vortices, in an arrangement approaching a lattice, implying that
there is ∼ 12h̄ of angular momentum per atom about the line-of-sight axis.

dilute atomic gas BECs. As a fundamental collective excitation of the BEC system,

quantized vortices are connected to a variety of physical processes in BECs [16]. It

is impractical to review here all the work that has been done with vortices in BECs

since 1999. Further, good reviews already exist; see for example Refs. [6, 16, 20].

However, as an aid to researchers in the field and in an effort to place the research

described in this dissertation within the body of vortex work in BECs, what follows is

an attempt to compile a complete list of all published experiments studying vortex

creation, dynamics, decay, and observation in degenerate gases, both with Bose-

Einstein condensates and degenerate Fermi gases. The titles for the papers are given,

and reading these gives a quick sense of the areas of emphasis and main achievements

in BEC vortex research over the past 11 years. All included citations have been found

by searching through ISI records and many lists of references in published papers.

It is nevertheless likely that there are some papers that have been inadvertently left

out. Only articles that contain experimental results published prior to early 2010

are listed (chronologically), and papers that are strictly theoretical or numerical are

not included. Review papers and eprints are also not included.
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1.3.1 Vortex experiments, arranged chronologically

1999

• [19] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman,

and E. A. Cornell. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett.,

83(13):2498, Sep 1999

2000

• [21] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex for-

mation in a stirred Bose-Einstein condensate. Phys. Rev. Lett., 84(5):806, Jan

2000

• [22] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortices in a

stirred Bose-Einstein condensate. J. Mod. Opt., 47(14-15):2715, Nov 2000

• [23] F. Chevy, K. W. Madison, and J. Dalibard. Measurement of the an-

gular momentum of a rotating Bose-Einstein condensate. Phys. Rev. Lett.,

85(11):2223, Sep 2000

• [24] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell. Vortex

precession in Bose-Einstein condensates: Observations with filled and empty

cores. Phys. Rev. Lett., 85(14):2857, Oct 2000

2001

• [25] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation

of vortex lattices in Bose-Einstein condensates. Science, 292(5516):476, Apr

2001

• [26] B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins,

C. W. Clark, and E. A. Cornell. Watching dark solitons decay into vortex

rings in a Bose-Einstein condensate. Phys. Rev. Lett., 86(14):2926, Apr 2001
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• [27] P. C. Haljan, B. P. Anderson, I. Coddington, and E. A. Cornell. Use of

surface-wave spectroscopy to characterize tilt modes of a vortex in a Bose-

Einstein condensate. Phys. Rev. Lett., 86(14):2922, Apr 2001

• [28] K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard. Stationary states

of a rotating Bose-Einstein condensate: Routes to vortex nucleation. Phys.

Rev. Lett., 86(20):4443, May 2001

• [29] Z. Dutton, M. Budde, C. Slowe, and L. V. Hau. Observation of quantum

shock waves created with ultra-compressed slow light pulses in a Bose-Einstein

condensate. Science, 293(5530):663, Jul 2001

• [30] F. Chevy, K. W. Madison, V. Bretin, and J. Dalibard. Interferometric

detection of a single vortex in a dilute Bose-Einstein condensate. Phys. Rev.

A, 64(3):031601, Aug 2001

• [31] S. Inouye, S. Gupta, T. Rosenband, A. P. Chikkatur, A. Görlitz, T. L.

Gustavson, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle. Observation

of vortex phase singularities in Bose-Einstein condensates. Phys. Rev. Lett.,

87(8):080402, Aug 2001

• [32] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell. Driving Bose-

Einstein-condensate vorticity with a rotating normal cloud. Phys. Rev. Lett.,

87(21):210403, Nov 2001

• [33] C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle.

Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett.,

87(21):210402, Nov 2001

• [34] E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragò, and C. J.

Foot. Vortex nucleation in Bose-Einstein condensates in an oblate, purely

magnetic potential. Phys. Rev. Lett., 88(1):010405, Dec 2001
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2002

• [35] J. R. Abo-Shaeer, C. Raman, and W. Ketterle. Formation and decay of

vortex lattices in Bose-Einstein condensates at finite temperatures. Phys. Rev.

Lett., 88(7):070409, Feb 2002

• [36] P. Rosenbusch, D. S. Petrov, S. Sinha, F. Chevy, V. Bretin, Y. Castin,

G. Shlyapnikov, and J. Dalibard. Critical rotation of a harmonically trapped

Bose gas. Phys. Rev. Lett., 88(25):250403, Jun 2002

• [37] P. Engels, I. Coddington, P. C. Haljan, and E. A. Cornell. Nonequilibrium

effects of anisotropic compression applied to vortex lattices in Bose-Einstein

condensates. Phys. Rev. Lett., 89(10):100403, Aug 2002

• [38] A. E. Leanhardt, A. Görlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E.

Pritchard, and W. Ketterle. Imprinting vortices in a Bose-Einstein condensate

using topological phases. Phys. Rev. Lett., 89(19):190403, Oct 2002

• [39] P. Rosenbusch, V. Bretin, and J. Dalibard. Dynamics of a single vortex

line in a Bose-Einstein condensate. Phys. Rev. Lett., 89(20):200403, Oct 2002

2003

• [40] V. Bretin, P. Rosenbusch, F. Chevy, G. V. Shlyapnikov, and J. Dalibard.

Quadrupole oscillation of a single-vortex Bose-Einstein condensate: Evidence

for Kelvin modes. Phys. Rev. Lett., 90(10):100403, Mar 2003

• [41] V. Bretin, P. Rosenbusch, and J. Dalibard. Dynamics of a single vor-

tex line in a Bose-Einstein condensate. Journal of Optics B: Quantum and

Semiclassical Optics, 5(2):S23, Apr 2003

• [42] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle.

Coreless vortex formation in a spinor Bose-Einstein condensate. Phys. Rev.

Lett., 90(14):140403, Apr 2003
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• [43] P. Engels, I. Coddington, P. C. Haljan, V. Schweikhard, and E. A. Cornell.

Observation of long-lived vortex aggregates in rapidly rotating Bose-Einstein

condensates. Phys. Rev. Lett., 90(17):170405, May 2003

• [44] P. Engels, I. Coddington, P. C. Haljan, and E. A. Cornell. Using

anisotropic compression to melt a vortex lattice in a Bose-Einstein conden-

sate. Physica B: Cond. Mat., 329(1):7, May 2003

• [45] E. Hodby, S. A. Hopkins, G. Hechenblaikner, N. L. Smith, and C. J. Foot.

Experimental observation of a superfluid gyroscope in a dilute Bose-Einstein

condensate. Phys. Rev. Lett., 91(9):090403, Aug 2003

• [46] I. Coddington, P. Engels, V. Schweikhard, and E. A. Cornell. Observation

of Tkachenko oscillations in rapidly rotating Bose-Einstein condensates. Phys.

Rev. Lett., 91(10):100402, Sep 2003

2004

• [47] P. Engels, I. Coddington, V. Schweikhard, and E. A. Cornell. Vortex

lattice dynamics in a dilute gas BEC. J. Low Temp. Phys, 134:683, Jan 2004

• [48] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A.

Cornell. Rapidly rotating Bose-Einstein condensates in and near the lowest

Landau level. Phys. Rev. Lett., 92(4):040404, Jan 2004

• [49] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard. Fast rotation of a Bose-

Einstein condensate. Phys. Rev. Lett., 92(5):050403, Feb 2004

• [50] S. Stock, V. Bretin, F. Chevy, and J. Dalibard. Shape oscillation of a

rotating Bose-Einstein condensate. Europhys. Lett., 65(5):594, Mar 2004

• [51] P. Rosenbusch, V. Bretin, F. Chevy, G. V. Shlyapnikov, and J. Dalibard.

Evidence for Kelvin modes in a single vortex Bose-Einstein condensate. Laser

Phys., 14(4):545, 2004
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• [52] N. L. Smith, W. H. Heathcote, J. M. Krueger, and C. J. Foot. Exper-

imental observation of the tilting mode of an array of vortices in a dilute

Bose-Einstein condensate. Phys. Rev. Lett., 93(8):080406, Aug 2004

• [53] Y. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner, A. E. Lean-

hardt, M. Prentiss, D. E. Pritchard, and W. Ketterle. Dynamical instability

of a doubly quantized vortex in a Bose-Einstein condensate. Phys. Rev. Lett.,

93(16):160406, Oct 2004

• [54] V. Schweikhard, I. Coddington, P. Engels, S. Tung, and E. A. Cornell.

Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates. Phys.

Rev. Lett., 93(21):210403, Nov 2004

• [55] I. Coddington, P. C. Haljan, P. Engels, V. Schweikhard, S. Tung, and

E. A. Cornell. Experimental studies of equilibrium vortex properties in a

Bose-condensed gas. Phys. Rev. A, 70(6):063607, Dec 2004

2005

• [56] N. S. Ginsberg, J. Brand, and L. V. Hau. Observation of hybrid soli-

ton vortex-ring structures in Bose-Einstein condensates. Phys. Rev. Lett.,

94(4):040403, Jan 2005

• [57] S. Stock, B. Battelier, V. Bretin, Z. Hadzibabic, and J. Dalibard. Bose-

Einstein condensates in fast rotation. Laser Phys. Lett., 2(6):275, Jan 2005

• [58] T. P. Simula, P. Engels, I. Coddington, V. Schweikhard, E. A. Cornell,

and R. J. Ballagh. Observations on sound propagation in rapidly rotating

Bose-Einstein condensates. Phys. Rev. Lett., 94(8):080404, Mar 2005

• [59] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and

W. Ketterle. Vortices and superfluidity in a strongly interacting Fermi gas.

Nature, 435(7045):1047, Jun 2005
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• [60] S . Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, and J. Dalibard. Ob-

servation of phase defects in quasi-two-dimensional Bose-Einstein condensates.

Phys. Rev. Lett., 95(19):190403, Nov 2005

2006

• [61] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle. Fermionic

superfluidity with imbalanced spin populations. Science, 311(5760):492, Jan

2006

• [62] M. Kumakura, T. Hirotani, M. Okano, T. Yabuzaki, and Y. Takahashi.

Topological creation of a multiply charged quantized vortex in the Rb Bose-

Einstein condensate. Laser Phys., 16(2):371, Feb 2006

• [63] S. R. Muniz, D. S. Naik, and C. Raman. Bragg spectroscopy of vortex

lattices in Bose-Einstein condensates. Phys. Rev. A, 73(4):041605, Apr 2006

• [64] Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and J. Dalibard.

Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature,

441(7097):1118, Jun 2006

• [65] M. Kumakura, T. Hirotani, M. Okano, Y. Takahashi, and T. Yabuzaki.

Topological formation of a multiply charged vortex in the Rb Bose-Einstein

condensate: Effectiveness of the gravity compensation. Phys. Rev. A,

73(6):063605, Jun 2006

• [66] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M.

Stamper-Kurn. Spontaneous symmetry breaking in a quenched ferromagnetic

spinor Bose-Einstein condensate. Nature, 443(7109):312, Sep 2006

• [67] M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson,

and W. D. Phillips. Quantized rotation of atoms from photons with orbital

angular momentum. Phys. Rev. Lett., 97(17):170406, Oct 2006
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• [68] S. Tung, V. Schweikhard, and E. A. Cornell. Observation of vortex pinning

in Bose-Einstein condensates. Phys. Rev. Lett., 97(24):240402, Dec 2006

2007

• [69] C. H. Schunck, M. W. Zwierlein, A. Schirotzek, and W. Ketterle. Super-

fluid expansion of a rotating Fermi gas. Phys. Rev. Lett., 98(5):050404, Feb

2007

• [70] S. R. Muniz, D. S. Naik, M. Bhattacharya, and C. Raman. Dynamics of

rotating Bose-Einstein condensates probed by Bragg scattering. Mathematics

and Computers in Simulation, 74(4-5):397, Mar 2007

• [71] D. R. Scherer, C. N. Weiler, T. W. Neely, and B. P. Anderson. Vortex

formation by merging of multiple trapped Bose-Einstein condensates. Phys.

Rev. Lett., 98(11):110402, Mar 2007

• [72] K. Helmerson, M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri,

and W.D. Phillips. Generating persistent currents states of atoms using orbital

angular momentum of photons. Nuclear Physics A, 790(1-4):705c, Jun 2007

• [73] V. Schweikhard, S. Tung, and E. A. Cornell. Vortex proliferation in the

Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-

Einstein condensates. Phys. Rev. Lett., 99(3):030401, Jul 2007

• [74] T. Isoshima, M. Okano, H. Yasuda, K. Kasa, J. A. M. Huhtamäki, M. Ku-

makura, and Y. Takahashi. Spontaneous splitting of a quadruply charged

vortex. Phys. Rev. Lett., 99(20):200403, Nov 2007

• [75] C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and

W. D. Phillips. Observation of persistent flow of a Bose-Einstein condensate

in a toroidal trap. Phys. Rev. Lett., 99(26):260401, Dec 2007
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2008

• [76] Z. Hadzibabic, P. Kruger, M. Cheneau, S. P. Rath, and J. Dalibard.

The trapped two-dimensional Bose gas: from Bose-Einstein condensation to

Berezinskii-Kosterlitz-Thouless physics. New Journal of Physics, 10(4):045006,

Apr 2008

• [77] K. C. Wright, L. S. Leslie, and N. P. Bigelow. Optical control of the internal

and external angular momentum of a Bose-Einstein condensate. Phys. Rev.

A, 77(4):041601, Apr 2008

• [78] D. McKay, M. White, M. Pasienski, and B. DeMarco. Phase-slip-induced

dissipation in an atomic Bose-Hubbard system. Nature, 453(7191):76, May

2008

• [79] C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis,

and B. P. Anderson. Spontaneous vortices in the formation of Bose-Einstein

condensates. Nature, 455(7215):948, Oct 2008

2009

• [80] K. C. Wright, L. S. Leslie, A. Hansen, and N. P. Bigelow. Sculpting the

vortex state of a spinor BEC. Phys. Rev. Lett., 102(3):030405, Jan 2009

• [81] E. A. L. Henn, J. A. Seman, E. R. F. Ramos, M. Caracanhas, P. Castilho,

E. P. Oĺımpio, G. Roati, D. V. Magalhães, K. M. F. Magalhães, and V. S.

Bagnato. Observation of vortex formation in an oscillating trapped Bose-

Einstein condensate. Phys. Rev. A, 79(4):043618, Apr 2009

• [82] E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, and V. S.

Bagnato. Emergence of turbulence in an oscillating Bose-Einstein condensate.

Phys. Rev. Lett., 103(4):045301, Jul 2009

• [83] Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I. B.

Spielman. Synthetic magnetic fields for ultracold neutral atoms. Nature,

462(7273):628, Dec 2009
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• [84] K. Helmerson, M. F. Andersen, P. Cladé, V. Natarajan, W. D. Phillips,

A. Ramanathan, C. Ryu, and A. Vaziri. Vortices and persistent currents:

Rotating a Bose-Einstein condensate using photons with orbital angular mo-

mentum. Topologica, 2(1):002, 2009

2010

• [85] E. Henn, J. Seman, G. Roati, K. Magalhães, and V. Bagnato. Gen-

eration of vortices and observation of quantum turbulence in an oscillating

Bose-Einstein condensate. J. Low Temp. Phys., 158(3):435, Feb 2010

• [86] R. A. Williams, S. Al-Assam, and C. J. Foot. Observation of vortex

nucleation in a rotating two-dimensional lattice of Bose-Einstein condensates.

Phys. Rev. Lett., 104(5):050404, Feb 2010

• [87] T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P. Anderson.

Observation of vortex dipoles in an oblate Bose-Einstein condensate. Phys.

Rev. Lett., 104(16):160401, Apr 2010

1.3.2 Brief summary of BEC vortex experiments

Although a review of these experiments will not be given here, we can briefly

summarize the areas of emphasis of these experiments. First, the bulk of these

experiments are related to creating and studying rotating condensates: experi-

ments where the BEC is rotating in a well-defined direction about a well-defined

axis. This case encompasses rotation techniques base on quantum engineer-

ing [19, 24, 27, 38, 42, 53, 62, 65, 67, 72, 74, 75, 84], trap deformation and rotation,

leading to a rotating BEC [18, 21, 22, 23, 28, 30, 33, 34, 35, 36, 39, 40, 41, 45,

49, 50, 51, 52, 57, 59, 61, 63, 69, 70], thermal cloud rotation followed by condensa-

tion [32, 37, 43, 44, 46, 47, 48, 54, 55, 58, 68], and BEC rotation from a rotating

superimposed optical lattice [86]. We might also place the experiments of Ref. [83]

into this category; although the BEC was not rotating in the lab frame of reference,

the vortices created were of uniform and well-defined orientation.
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Next, we can identify a small subset of experiments in which vortex arrangements

did not define a rotating state, but were nevertheless reproducibly created. This

category includes quantum engineering methods with spinor condensates [77, 80]

and vortex dipole nucleation [87] (see Chapter 4).

Finally, a third category includes experiments where vortex numbers, orienta-

tions, and arrangements were not controlled. This category includes experiments

studying physics related to the superfluid Berezinskii-Kosterlitz-Thouless (BKT)

transition [60, 64, 73, 76], spontaneous formation of spinor vortices in a quenched

ferromagnetic phase transition [66], spontaneous formation of vortices in the BEC

phase transition [79], vortex and vortex ring formation via dynamical instabili-

ties [26, 29, 56], vortex formation by interference [71], (see also [73, 86]), vortex

formation accompanying phase-slip induced dissipation [78], vortex formation due

to moving obstacles within the BEC [31], and vortex formation due to oscillating

traps [81, 82, 85].

Of all of these, only a few mention turbulence or quantum turbulence [21, 23, 31,

33, 54, 59, 79, 81, 82, 85]. Furthermore, only two recent papers have been specifically

oriented towards studying properties of quantum turbulence [82, 85].

We thus end this chapter by noting that with nearly 70 papers on BEC vortex

experiments throughout the last decade, quantum turbulence studies in BECs are

just now underway. Due to the difficult nature of such experiments (mentioned

in Chapter 3), our approach to the problem encompasses learning about how vor-

tices interact such that turbulent states may be better understood. This subject is

discussed at the end of Chapter 3.
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CHAPTER 2

EXPERIMENTAL SETUP

2.1 Introduction

This chapter summarizes the apparatus and methods used to create our 87Rb BECs.

The apparatus was primarily built by two former graduate students in the lab, David

Scherer and Chad Weiler1. Extensive descriptions of the experimental apparatus

may be found in the PhD thesis of David Scherer [8]; a brief review is presented

here, with emphasis on modifications to the apparatus that were utilized in the

experiments described in this dissertation.

First, the laser cooling process, transfer of atoms, and evaporative cooling in

a magnetic trap are described. Next, techniques used for modifying the trapping

potential through the addition of optical fields are discussed. Imaging methods and

analysis techniques used to understand the content of the images are described, and

the chapter concludes with a discussion of a modification to the magnetic trap that

removes any rotating component, resulting in a BEC in a “DC” magnetic spherical

quadrupole and optical combined trap.

2.2 Laser cooling and the magneto-optical trap

A two-stage laser cooling process is utilized in the experiment. The apparatus

consists of a two-chamber ultra-high vacuum system, with a single magneto-optical

trap (MOT). The apparatus achieves a pressure of ∼ 10−10 Torr in the glass cell used

for initial cooling, and pressures as low as ∼ 10−12 Torr in the “science” cell where

the BECs are created. The system is supplied with low-pressure 87Rb gas from a

1Former students Elaine Ulrich and M. David Henry also made significant contributions to the

construction of the apparatus.
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set of SAES 87Rb dispensers located at the back end of the MOT cell. A picture

showing the vacuum system with the two glass cells visible is shown in Fig. 2.1(a).

The MOT cell is located in the middle-right of the picture, and the science cell can

be seen on the left.

The first stage of the experimental sequence involves laser cooling of the 87Rb

atoms in the MOT cell. This is accomplished by splitting ∼ 500 mW of near-

resonant 780-nm laser light into six beams, which are directed at the MOT cell from

all sides and gently diverge as they propagate, resulting in ∼ 2 in. diameter beams

at the MOT cell center. The light is red-detuned from the resonant wavelength for

the |5 2S1/2, F = 2〉 → |5 2P3/2, F
′ = 3〉 transition in 87Rb by 4.5Γ, where Γ is the

natural linewidth of the 87Rb transition, equal to an angular frequency of 2π × 5.9

MHz. In Doppler cooling, atoms moving towards a beam will see the light Doppler-

shifted into resonance and scatter light preferentially for the counter-propagating

beam(s), losing kinetic energy. Since beam pairs originate from three orthogonal

directions, the average velocity of the atoms is greatly reduced. With the addition

of an 8 G/cm axial spherical quadrupole magnetic field and a repump beam tuned

near to the |F = 1〉 → |F ′ = 2〉 transition, with ∼ 30 mW of total beam power split

into four beams and directed from two orthogonal directions, a MOT containing

∼ 3× 109 atoms at tens of µK is formed. Extensive details of our MOT setup may

be found in Ref. [8], and more detailed descriptions of the laser cooling process may

be found in several review articles and books [88, 89, 90]. Details of the first MOT

may also be found in Ref. [91].

2.3 Magnetic transfer to a time-averaged orbiting potential magnetic trap

Once the MOT has been created, the next sequence in the experiment magneti-

cally transfers the atom cloud to the science cell. The atoms undergo an initial

compressed MOT (CMOT) [92] stage lasting 60 ms, increasing the density through

spatial compression; this is accomplished through sudden increased detuning of the

cooling beams to ∼ −10Γ, a reduction in the repump beam light intensity to ∼ 10%
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Figure 2.1: (a) Picture of the vacuum system with the magnetic transfer coils re-
moved. The MOT cell is located in the right of the picture, and the science (BEC)
cell is located in the left foreground. (b) Vacuum system with the magnetic transfer
coils attached. Figure taken from Ref. [8].
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of its initial value, and a ramp-off of the quadrupole field to 0 G. As a result of this

sequence, the atoms are optically pumped to the |F = 1〉 ground state. The atoms

are then loaded in a spherical quadrupole magnetic field with an axial gradient of

160 G/cm, which traps atoms projected into the |F = 1,mF = −1〉 state. An

optical molasses cooling stage is not used.

The atom cloud is then transferred to the science cell by ramping on and off

the magnetic coil pairs partially visible in Fig. 2.1(b). This sequence adiabatically

moves the atoms to the science cell in ∼ 4 seconds over a distance of ∼ 80 cm.

Details of the control electronics, coils geometries, and current waveforms may be

found in Ref. [8].

Upon arriving at the science cell, the atoms equilibrate in the B′
z = 160 G/cm

field for one second before the field is snapped to a value of B′
z = 266 G/cm,

where B′
z denotes the axial magnetic field gradient, |dB/dz|, along the coil axis. An

additional bias magnetic field with a strength of B0 = 43 G, is then added; this

field points in the horizontal plane and the direction of the field rotates in the plane

with an angular frequency of ωrot = 2π × 4 kHz. The gradients due to this field

are negligible. The bias-field acts to push the zero point of the quadrupole field

in a circular orbit, and since the low kinetic energy of the atoms ensure that they

are are only sensitive to the time average of the rotating bias magnetic field, the

resulting time-averaged trap is harmonic, with radial and axial trapping frequencies

of (ωr, ωz) ' 2π × (40, 80) Hz, respectively. This trap configuration is known as

a time-averaged orbiting potential (TOP) trap, and detailed descriptions of TOP

traps may be found in the JILA PhD thesis of Jason Ensher [93].

2.4 Evaporative cooling

With the atoms held magnetically in the harmonic potential, the bias-field strength

B0 is ramped to 5 G and simultaneous radio-frequency (RF) induced evaporation

further cools the cloud over ∼ 60 s. B′
z is simultaneously ramped from 160 G/cm

to a value of 52 G/cm, and the center-of-mass position of the cloud in this weak
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trap sags due to gravity2 by 0.56 mm. This “sagged TOP trap” configuration has

trapping frequencies considerably weaker than those of the initial TOP trap, with

measured trap frequencies of (ωr, ωz) ' 2π × (7.8, 15.3) Hz. A final stage of RF-

induced cooling in the weak trap results in a BEC with Nc ≈ 1× 106 atoms with a

critical temperature of Tc ∼ 42 nK.

2.5 Imaging techniques and expansion

Images of the atom clouds represent the primary data collected in BEC experiments.

Two methods of imaging are used in our experiment: near-resonant absorption

imaging and off-resonant phase-contrast imaging.

Near-resonant absorption imaging utilizes laser light tuned closely to the |F =

2〉 → |F ′ = 3〉 transition. The light is collimated and directed through the science

cell. Since the trapped atoms are in the |F = 1,mF = −1〉 ground state, a dark

state relative to the imaging light, a ∼ 50-µs pulse of additional laser light is used

to optically pump the atoms to the |5 2S1/2, F = 2〉 level. Immediately after this

pulse of light, tuned to the |F = 1〉 → |F ′ = 2〉 transition, a 20-µs pulse of light

tuned near the |F = 2〉 → |F ′ = 3〉 transition with an intensity on the order of 1.6

mW/cm2 is directed at the atoms; light is resonantly scattered out of the collimated

imaging beam, and the resulting shadow of the cloud, due to absorption through

the integrated optical depth, is imaged onto a near-infrared sensitive CCD camera.

The imaging system utilizes two imaging axes, horizontal (along y) and vertical

(along the trap’s axial direction, z ). A diagram of the imaging system is given in

Fig. 2.2(a), showing the two imaging axes. The magnification of each system is 5X.

Phase-contrast imaging is accomplished through the use of detuned light, typi-

cally 900 MHz red-detuned from the |F = 1〉 → |F ′ = 2〉 transition. The light passes

2Following the methods of Ref. [93], a sag of 0.73 mm is calculated when using the magnetic field

values defined above, different from the measured value of 0.56 mm. We attribute this difference

to a calibration error in the magnetic fields. However, the BEC trap frequencies quoted in this

dissertation were directly measured, and actual magnetic field values are generally unimportant to

the physics examined and discussed here.



35

Figure 2.2: (a) Layout of the vertical and horizontal imaging systems, taken from
Ref. [8]. Both axes may be used for phase contrast and absorption imaging, although
in practice the horizontal system was primarily used for phase-contrast, and the
vertical system used for absorption (phase dot removed). (b) Horizontal in-situ
phase-contrast image of a BEC. (c) Vertical absorption image in expansion, showing
the presence of a vortex in the upper right of the cloud.
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through a 100 µm x 100 µm phase dot located at an intermediate focus, shown in

Fig. 2.2(a). The phase dot induces a 3π/2 phase shift in the imaging light. Since the

light scattered from the BEC is collimated in this intermediate plane, it is negligibly

effected by the phase dot, and the resulting constructive interference at the image

plane at the CCD produces a bright image of the cloud on a gray background. The

phase dot is removed for absorption imaging.

Because the size of a vortex core in our system is ∼ 0.3 µm, below the effective 3.4

µm imaging resolution [8], observations of vortices in the atom clouds cannot be done

in-situ. In order to resolve the vortex cores, expansion of the BEC is implemented

using standard methods: the bias-field B0 is snapped off and an additional magnetic

field is added to B′
z. This addition of the spherical quadrupole magnetic field and

the extra field produces a total axial gradient of ∼ 32 G/cm which levitates the

atoms against gravity by canceling the force of gravity with an oppositely directed

magnetic force. This configuration also institutes a weak anti-trapping potential in

the horizontal direction. The result is near-ballistic expansion of the atom cloud,

and ∼ 50 ms of expansion of the cloud and vortex cores is sufficient to render vortices

resolvable by the imaging system. Example images are seen in Fig. 2.2(b,c), with

horizontal in-situ phase-contrast and vertical absorption in expansion images shown.

The weak TOP trap represents the basic magnetic trap configuration for our ex-

periment, and was used as a starting point for each of the experiments described in

this dissertation. The next few sections describe further modifications to this trap-

ping scheme, allowing for different trapping frequencies and trap frequency ratios

(trap geometries), critical temperatures, formation rates, and final atom numbers.

2.6 Combined magnetic and optical potentials

The conservative potential induced by a far-off-resonant intense light field is given

by the following relation:

Ubeam =
h̄Γ

8

Ibeam/Isat

∆/Γ
, (2.1)



37

where Isat is the saturation intensity of a 87Rb atom, and ∆ is the detuning of

the optical field from the resonant wavelength of ∼780 nm for 87Rb. Provided the

energies of the atoms are low enough, they can be trapped and manipulated by an

optical potential derived from a standard laser beam.

2.6.1 Optical potential implementation

A primary modification of the trap involves modification of the axial (vertical) trap-

ping frequency of the weak TOP trap by overlapping a cylindrically focused, red-

detuned laser beam at the cloud position. This beam creates an attractive potential

in the axial (vertical) direction, greatly increasing the trap strength (trap frequency)

in that direction. In order to create this trapping potential, light from an SPI Pho-

tonics 1090-nm 10-W fiber laser is used. Fig. 2.3(a) shows a simplified schematic of

the optical system. The output light from the fiber laser has a random polarization

and is sent first through a shutter and then through a polarizing beam-splitting

cube, resulting in a vertically polarized beam with 5 W of total power; the other

output from the cube is not used and is dumped onto a beam block. The vertically

polarized light is sent through an 80 MHz acousto-optic modulator (AOM), and the

+1 order from the AOM is picked off and collimated to a Gaussian beam radius

of 2 mm. By modulating the power of the RF signal being sent to the AOM, the

intensity of the light in the collimated beam is controlled. After free space propaga-

tion towards the science cell along the x axis, the light is sent through a cylindrical

lens of focal length 100 mm. The lens focuses the beam in the vertical (z ) direction

only, resulting in a sheet of light at the BEC position, with a focused beam waist of

w0,z ∼ 23µm in the z direction and a collimated beam radius of w0,y ∼ 2 mm in the

y direction. The light is monitored by a quadrant photodiode on the opposite side

of the science cell, as seen in Fig. 2.3(a). The photodiode serves a joint purpose,

as the sum of the four quadrants indicates the total intensity of the light incident

on the photodiode, and the difference between adjacent quadrants provides beam

alignment information. The photodiode is thus used for both intensity and position

stabilization, described below.
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Figure 2.3: (a) Simplified diagram of the optical system for imaging 1090-nm red-
detuned light to the science cell, allowing for combined magnetic and optical trap-
ping. The cylindrical lens produces a sheet of light at its focus, primarily modifying
the vertical trapping frequency ωz. The 80 MHz AOM allows the intensity of the
beam to be controlled and stabilized. (b) Simplified intensity-lock circuit diagram.
See text for explanation.
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Utilizing the sum signal from the photodiode, an active proportional-feedback

system was implemented. One of the laser lock boxes available in the lab was

modified in order to produce the required circuit. Fig. 2.3(b) diagrams the relevant

circuit used to implement active feedback. The circuit utilizes two inputs from the

experiment and generates an output that drives the AOM. The “control in” voltage

is generated by the experiment control computer, which allows the intensity of the

beam to be controlled by the overall experiment timing and control program. The

“photodiode in” input receives the sum signal from the photodiode located at the

end of the optical path; the voltage level of this signal can be adjusted with the

potentiometer shown on the circuit diagram. With the shutter open, AOM enabled,

and the control input at a voltage typically on the order of 0 V - 2 V, light initially

shines on the photodiode. This signal is subtracted from the control, generating an

error voltage, which is added to the control in the “sum op-amp.” If the error voltage

is non-zero, the output will drive the AOM amplitude (thus changing the photodiode

signal through increase or decrease of the optical intensity), until the calibrated

photodiode signal and control signal match. To simplify the diagram, some of the

electronics have been left off; these components are represented by the box labeled

“Polarity,” which changes the sign of the error voltage; “Loop gain,” which amplifies

the error voltage; and “Loop enable,” which enables or disables the feedback loop.

The overall light level incident on the photodiode may be controlled by increasing

or decreasing the strength of the neutral density filter shown in Fig. 2.3(a). In total,

the circuit allows for an arbitrary intensity at the photodiode to be calibrated to

an arbitrary control voltage from the computer. The intensity of the beam is thus

tied to the control voltage, allowing a smooth ramp-on or off of the 1090-nm beam

intensity.

By subtracting the photodiode signal from the top and bottom quadrants, and

the right and left quadrants respectively, the position of the beam is monitored.

The vertical position is controlled through a New Focus PicomotorTM piezo-electric

actuator, located on the vertical tilt axis of the final mirror mount, allowing precise

control over the focused light sheet’s vertical position. Active feedback of the beam
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position was implemented, but position stability is good enough that the active

feedback system was unnecessary. Instead, minor adjustments of the beam position

are made at the beginning of a day of data runs, and the vertical beam position

remains stable within ±7 µm throughout the day.

2.6.2 BEC formation in the combined magnetic and optical trap

The atoms are loaded into the combined magnetic and optical trap just before the

final stage of evaporation. In this sequence, the cloud is first held in a weak TOP

trap3, with B′
z = 44 G/cm and B0 = 3.41 G. By ramping the 1090-nm beam

on to ∼ 1 W of power over 4 seconds, with the beam precisely aligned at the

center-of-mass position of the cloud, efficient loading is possible. Although a linear

ramp of the beam intensity is generated by the control computer, the ramp is sent

through a τ = 280-ms time-constant RC filter, rounding out the corners of the

ramp, which was found to increase the trap-loading efficiency. Care has to be taken

to eliminate extraneous vibrations; in particular a cooling fan used to reduce the

temperature of the TOP coils has to be disabled for this part of the sequence, as

coupled vibrations heat the cloud. The resulting trap depth Ubeam is several µK when

converted into temperature units, which when compared with critical temperatures

of BEC formation on the order of ∼ 50 nK indicates a strong trapping potential for

atoms in the BEC.

Once the cloud is loaded into the combined trap, a forced evaporative cooling RF

ramp, similar to that used in the bare magnetic trap, is utilized to form a BEC. The

trap frequencies of the combined trap were directly measured through two methods.

To measure the vertical trap frequency, a BEC was formed in the combined trap,

and the bias-field strength B0 was modulated harmonically, identical to methods

described later in Section 3.4. By looking for catastrophic heating and loss of the

BEC as a function of frequency, the vertical trap frequency was determined to be

3A final value of B0 = 3.41 G was sometimes used instead of B0 = 5 G, as described earlier.

With B′
z = 44 G/cm, the sagged TOP trap position was approximately the same as for B0 = 5 G,

B′
z = 52 G/cm.
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Figure 2.4: (a) In-situ horizontal phase-contrast image showing a BEC formed in
the combined magnetic and optical potential. Apparent defects visible in the image
are artifacts of the imaging process. (b) Vertical absorption image , also in-situ.

ωz ≈ 2π × 90 Hz. The radial trap frequencies were measured to be ωx ≈ ωy =

2π × 8 Hz by using a magnetic impulse, provided by a single coil, to kick the

cloud in a horizontal direction and measure the resulting oscillation period. These

measurements imply a weak addition to the radial potential, resulting from the

beam, of ∼ 1.7 Hz; the radial restoring force generated by the beam is thus ∼ 5%

of the force generated by the harmonic magnetic trap, implying that the beam

primarily effects only the vertical confinement of the atom cloud. In-situ vertical

absorption4 and horizontal phase-contrast images in this Rr:Rz = 11:1 aspect ratio

trap are shown in Fig. 2.4(a,b), where Rr and Rz are the radial and axial Thomas-

Fermi radii of a BEC in this trap. BECs formed in this trap typically contain

2(0.5) × 106 atoms5 at T ∼ 52 nK (T/Tc ∼ 0.6). Despite the compressed aspect

ratio, the BEC chemical potential is µ0 ∼ 8 h̄ωz, placing our BECs well within the

three-dimensional regime [5, 94, 95].

In several experiments described in this dissertation, an axially propagating blue-

detuned repulsive barrier, generated with the use of 660-nm laser light, was also

utilized. This beam was mainly used to create a moveable barrier within the trap,

4In the context of absorption images, the term in-situ implies the magnetic fields are snapped off

immediately prior to the pulse of imaging light, hence, although no longer confined to a magnetic

trapping potential, the atoms expand minimally before imaging.
5Throughout this dissertation, parenthetical notation for uncertainties is used. The value in

parentheses (equivalent to ±) is the uncertainty on the same scale as the quoted or mean values.

For example, 2(0.5)× 106 is equivalent to 2× 106 ± 0.5× 106.
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or when aligned at the center of the cloud, a toroidal trap geometry was created. A

diagram of the typical optical system used to create this barrier is seen in Fig. 2.5.

The focused blue-detuned beam size utilized was chosen specific to the particular

experiment being conducted, and was implemented either along with or independent

of the red-detuned beam.

2.6.3 Expansion from the combined trap

The highly anisotropic aspect ratio of the combined trap implies a highly asymmetric

ballistic expansion as the resulting velocity profile of the cloud is proportional to

the harmonic oscillator frequency [1]. By simply snapping the trap to the expansion

field, as described previously, and simultaneously snapping off the 1090-nm beam,

the aspect ratio of the cloud reverses during expansion; this limits the radial cross-

section of the cloud. This expansion proved non-ideal for resolving vortex cores

oriented along z. Instead, the magnetic field is snapped to the expansion field, as

previously described, but the 1090-nm beam is left on for ∼ 10− 15 ms, expanding

the cloud in the radial plane. Subsequently, the 1090-nm field is snapped off and

the cloud expands for an additional ∼ 40 ms. The final expanded cloud aspect ratio

is ∼ 2:1 (horizontal:vertical).

2.6.4 Transfer to a DC magnetic and optical combined trap

Another useful trap configuration involves the combination of the spherical

quadrupole trap and the optical potential, without the rotating bias-field. This

creates what we refer to as a “DC” trap. The primary motivation for transfer into

a DC trap was the removal of any rotating field; this was of interest in experiments

involving the spontaneous formation of vortices, as described later in Section 7.5.3.

However, transfer from the TOP trap to a DC trap presented a series of technical

problems that needed to be solved.

A quadrupole trap is plagued by the phenomena of spin-flip Majorana losses [96],

where atoms crossing near the B=0 point of the magnetic field lose spin quantization
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Figure 2.5: Diagram of the optical system used to focus the 660-nm blue-detuned
beam onto the BEC location. An image of the resulting focused spot of the beam
is shown, with a typical spot size utilized in the experiments of this dissertation.
The axially-propagating beam creates a repulsive barrier which may penetrate the
BEC, depending on the strength of the barrier. The push coil shown on the figure
allowed a magnetic bias field to be created along the y direction, shifting the center
of the harmonic trap. There is also a corresponding push coil in the x direction (not
shown). These coils allowed the harmonic trap to be shifted in two dimensions.
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and are lost from the trap with high probability. This loss mechanism prevents

implementation of the entire evaporative sequence in a quadrupole trap, hence the

use of TOP traps to form BECs in many experiments. Since the bottom of the

weak TOP trap sags, due to gravity [93], from the quadrupole magnetic origin by

0.56 mm in our experiment, the atoms will not experience Majorana losses in a pure

quadrupole field as long as they can be confined at the center-of-mass position of

the sagged TOP trap. In other words, if they can be kept away from the B = 0

point, they will not be lost due to spin flips. However, simply removing the rotating

bias field by ramping it to 0 G does not work; the effective gradient due to gravity

is ∼ 31.6 G/cm, so in a B′
z = 52 G/cm field, the atoms will experience a gradient

that accelerates them back towards the magnetic origin. In order to keep the atoms

at the sagged trap position of the TOP trap, the cloud must remain stationary as

the bias field B0 is ramped to 0 and B′
z is simultaneously ramped to 31.6 G/cm, in

order to exactly cancel the effect of gravity. This requirement is complicated by the

non-linear relationship between the sagged position and the two magnetic fields, B′
z

and B0. As explained in Ref. [93], the equilibrium trap position in the TOP trap

(i.e. the “sag”) is given by:

~rmin = −B0

B′
z

η√
1− η2

ẑ, (2.2)

where B′
z is the quadrupole field gradient, and η = mg

µB′z
, with mg

µ
≈ 31.6 G/cm for

our atoms. To achieve a constant center-of-mass position rmin, the exact expression

for the bias field B0, as a function of B′
z, is given by

B0(B
′
z) = rminB

′
z

√
1− η2

η
, (2.3)

where the (-) has been absorbed in the constant rmin. This function is plotted in

Fig. 2.6(a) for a constant sag of rmin = 0.56 mm. However, the analytical expression

may be approximated by the following function:

B0,approx(B
′
z) ≈ C1(B

′
z −B′

g) + C2

√
(B′

z −B′
g), (2.4)
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Figure 2.6: (a) Analytical expression of B0 as a function of B′
z for a constant sag

of rmin = 0.56 mm. (b) Residuals resulting from subtracting equation Eq. 2.4 from
the analytical expression; C1 = 0.1 cm and C2 = 0.33

√
G · cm. This implies that

the approximate expression is good to ∼ 0.1 G over the range of values of B′
z.

where B′
g = 31.6 G/cm. The residuals generated by subtracting the approximate fit

function, with C1 = 0.1 cm and C2 = 0.33
√

G · cm, from the analytical expression

for B0 are plotted in Fig. 2.6(b). By ramping the gradient B′
z to 31.6 G/cm and

ensuring the bias field B0 follows this functional form, the residuals indicate there

is minimal vertical force applied to the atoms during the transfer sequence; the

equilibrium trap position shifts by ∼ ±0.02 mm over the range of B′
z. Since the

atoms are confined by the optical potential in the axial direction (the direction of

any residual force), implementation of this function allows for transfer to the DC

trap.

In order to implement this technique in the experiment, control over a voltage

Vout controlling the amplitude B0 of the bias field was transferred to a circuit which

implements the following function:

Vout = A[α(V1 − V2) +
√

α(V1 − V2)], (2.5)

where the constants A, α, and V2 are adjustable parameters. A diagram of this

circuit is shown in Fig. 2.7. V1 is the voltage that corresponds to B′
z. B′

z is set

by the control computer, and voltage V1 originates from a Hall-effect probe that
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measures the current flowing through the quadrupole coils. V2 is the voltage from

the Hall probe that corresponds to the current in the quadrupole coils used to

produce B′
g

Using this circuit, the desired transfer to a B′
z = 31.6 G/cm field gradient was

accomplished by enabling the circuit and gradually reducing B′
z using the control

computer. This sequence was initiated in the trap with B′
z = 44 G/cm and B0 = 3.41

G, and the field B′
z was ramped over several seconds. In order to calibrate the

circuit, the procedure was initially done without the 1090-nm beam enabled, and

the constants A and α were adjusted until the cloud exhibited minimal vertical

movement during the ramp. Although there are two adjustable parameters, the

calibration procedure mainly involves the adjustment of A; since the circuit must

match a B0 = 3.41 G field for B′
z = 44 G/cm, the calibration for α may be found

by compensating for adjustments in A to satisfy this requirement.

Once A and α were adjusted to keep the cloud approximately stationary, transfer

of a thermal cloud starting from the combined magnetic and optical trap was im-

plemented, and condensation was achieved in the DC trap, with a final evaporative

cooling RF value of ∼ 1.68 MHz. The calculated horizontal trap frequency in this

trap is ωr ' 2π × 12 Hz, with the vertical trap frequency (primarily determined by

the 1090-nm beam) remaining essentially unchanged from the initial combined trap.

Expansion of BECs from this trap allowed vortices to be observed in absorption,

and example images, including horizontal phase-contrast and vertical absorption in

expansion, are shown in Fig. 2.8(a,b).

2.7 Summary of trap configurations

Table 2.1 summarizes the various trap configurations used in the experiments de-

scribed throughout this dissertation. The configurations include the bare TOP trap,

the TOP with the vertically confining 1090-nm beam, and the DC trap, utilizing

the 1090-nm beam and the quadrupole potential.
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Figure 2.7: Diagram of circuit used to calculate the appropriate bias-field B0 to
approximately maintain a constant sagged TOP trap position. The section labeled
A computes (V1− V2), with V2 adjustable using the 1 kΩ potentiometer. Section B
provides adjustable gain, using the 20 kΩ potentiometer, giving −α(V1 − V2). The

AD532 chip and op-amp, labeled C, is used to calculate −α
√

(V1 − V2). The final
stage D, an adding op-amp with adjustable gain, using the 200 kΩ potentiometer,

gives the desired output: Vout = A[α(V1 − V2) +
√

α(V1 − V2)].
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Figure 2.8: (a) In-situ horizontal phase-contrast image of a BEC formed in the DC
trap. (b) Expanded absorption image of a BEC formed in the DC trap, showing the
presence of vortex cores.

Table 2.1: Typical trap configurations used in this dissertation
Trap type B′

z (G/cm) B0 (G) 1090-nm? ωr/2π (Hz) ωz/2π (Hz)

TOP 52 5 no 7.8 15.2
TOP + 1090-nm 44 3.41 yes 8 90
Quad. + 1090-nm 31.6 0 yes 12 90
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CHAPTER 3

CLASSICAL AND QUANTUM TURBULENCE

3.1 Introduction

Turbulent systems are of everyday familiarity: from the eddies in a mountain stream

as it flows over a rock, to the airflow at the trailing edge of a moving vehicle, or the

convective currents that move heat around a room, one is surrounded by turbulent

fluid flows. The study of these systems has a rich history, engaging scientific minds

for centuries, dating back to Leonardo Da Vinci [97, 98, 99]. Upon examining his

notebooks [100], one finds the following text accompanying a beautifully detailed

drawing of flows and eddies:

“Observe the motion of the surface of the water which resembles that of hair, and

has two motions, of which one goes on with the flow of the surface, the other forms

the lines of the eddies; thus the water forms eddying whirlpools one part of which are

due to the impetus of the principal current and the other to the incidental motion

and return flow.”

Study of turbulent systems is not only interesting from a basic science perspec-

tive, but is a field of importance to applied sciences and engineering, where precise

modeling of turbulent systems is sought, and may lead to more efficient designs [101].

However, fundamental challenges exist in the effort to produce a fully developed the-

ory of turbulence, as turbulent phenomena possess non-linear dynamics that evade

simple description from first principles.

In the study of classical turbulence, theoretical and experimental work has in-

stead centered on descriptions of the phenomenological and statistical properties of

turbulent systems [98, 99]. This chapter first reviews some of these basic proper-

ties of turbulent classical systems, serving to preface a discussion of turbulence in
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quantum systems. Vortex-based models of turbulence are introduced, having special

importance in descriptions of quantum turbulence [13, 102, 103] and providing the

basis for a microscopic theory of turbulent dynamics in superfluids.

However, not all aspects of such a vortex-based theory are directly testable at a

microscopic level in superfluid helium systems, where quantum turbulence has been

most studied. Furthermore, some aspects of such theories do not quantitatively

match experimental conditions in superfluid helium. Progress in understanding all

aspects of vortex creation, dynamics, and dissipation mechanisms in superfluids may

therefore further provide a path towards a better understanding of quantum turbu-

lence and, perhaps, classical turbulence. In particular, BECs may be advantageous

systems for the study of quantum turbulence beyond what has been accomplished

in other superfluid systems. This is due to three factors: experimental methods that

permit unprecedented control over vortex creation and manipulation; observation

techniques that can track single and multiple vortex dynamics; and quantitatively

accurate numerical simulations and theoretical methods based on microscopic mod-

els of atom interactions in potential wells and at finite temperatures.

Towards the end of this chapter, experimental investigations conducted in the lab

are discussed, where the excitation of a BEC through several methods led to highly

excited states that qualitatively appear similar to what might be expected from

quantum turbulence. Although these initial results were not immediately pursued,

these experiments prompted many of the subsequent investigations contained within

this dissertation, which describe efforts to study the formation, dynamics, and decay

of quantized vortices in BECs.

3.2 Properties of classical turbulence

The transition to turbulence for a viscous classical fluid occurs with the increase of

a quantity known as the Reynolds number:

R =
Lu

ν
, (3.1)
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where L is a characteristic length scale, u a characteristic velocity, and ν the fluid’s

kinematic viscosity. When calculating the Reynolds number in fluid dynamics prob-

lems such as the flow around an object, or through a pipe, the characteristic length

L is equal to the measured distance to the contact edge of the object, or for flow

through a pipe it is equal to the pipe diameter. Fixing the viscosity, but increasing R

through increase of the velocity u, relative to the fixed object or pipe wall, a smooth

laminar flow of the fluid begins to break up into more complicated fluid flows con-

taining arrangements of non-quantized vortices and eddies. Eventually the system

exhibits highly disordered flows, and the average velocity of the flow, relative to the

object, is limited. Examining the flow around a cylindrical barrier, for example,

as the Reynolds number is increased, the transition region to turbulence generally

occurs around R = 40 − 75. Up to this point, a pair of mirror-image eddies have

formed in the wake of the cylinder. This symmetry of the flow is broken as these

Reynolds numbers are surpassed, and with increasing Reynolds numbers approach-

ing R ∼200, the resulting disordered flow is in general chaotic in the wake of the

cylinder (at least within the inertial range, explained below), exhibiting sensitivity

to initial conditions and other signatures of chaos. For very high Reynolds numbers

(R ≥ 1000), the turbulence is described as well developed [99].

Some basic theoretical concepts in classical turbulence are now summarized.

The fundamental equation of classical fluid dynamics is known as the Navier-Stokes

equation (NSE):

Du

Dt
= −∇p +

1

R
∇2u + F, (3.2)

where the operator D/Dt is given by D/Dt = ∂
∂t

+ u · ∇ [104]. Here, u(r, t) is

the velocity of the fluid at position r, ∇p the pressure force, and F the sum of

any external forces. Application of this nonlinear equation, along with boundary

conditions proper to the problem at hand, is likely capable of modeling the entirety

of the fluid flow, including all of its of turbulent aspects [99]. By taking the curl of

this equation one arrives at the equation for an important quantity known as the

vorticity ξ, defined as ξ = ∇× u:
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dξ

dt
= (ξ · ∇)u +

∇2ξ

R
. (3.3)

The vorticity field describes the rotational aspects of the fluid flow. A vortex sur-

face is defined as a surface tangent to ξ at each of its points, and vortex lines,

or filaments, are defined as the intersection between two of these tangent surfaces.

Conversely, a vortex core, or tube, is a closed loop of surface which is nowhere

tangent to ξ, and the circulation about a vortex tube is given by Γ =
∫
Σ ξ · dΣ,

with dΣ the cross-sectional tube area. In contrast to the quantum case described

in Section 1.2, the circulation in the classical case can take on any value. Also, one

can instead calculate the velocity field starting with the vorticity field, in analogy

to electromagnetics and a current carrying wire, by using the Biot-Savart law about

a vortex filament [104]. These vortices form the basis of the vortex filament model,

where one models the turbulent flow by utilizing vortex filaments as building blocks.

This model attempts to provide a microscopic explanation for the statistical proper-

ties of turbulence, described below, but classical vortices exhibit some problematic

characteristics, and there is also some controversy as to the importance of vortex

filaments at high Reynolds numbers [99]. Namely, the vortices are unstable and

may continually disappear and reappear, the circulation about a vortex is viscously

dissipated and not conserved, and the vortex may take on any value of circulation

from a continuum [98]. However, for quantum systems, the theory of vortex fila-

ments is convenient and well-developed, forming the basis of theories of quantum

turbulence, and will be described in Section 3.3.

Incorporating the vorticity into a general description of the fluid, one can de-

compose the velocity vector u(r, t) between adjacent points r and r + h as follows:

u(r + h) = u(r) +
1

2
ξ × h +

1

2
(∇u + (∇u)T ) · h, (3.4)

where the last term on the right hand side, 1
2
(∇u+(∇u)T )·h, represents deformation

of the fluid, and ∇u is a matrix of partial derivatives, (∇u)ij = δiuj, and ∇uT its

transpose. Thus, in general, we may think of the fluid velocity being characterized
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by the three parameters of rigid translation, rigid rotation (parameterized by the

vorticity), and deformation.

3.2.1 Kolmogorov spectrum

A significant component of the phenomenological description of classical turbulence

is the Kolmogorov spectrum [105]. This energy spectrum is an important analyti-

cal result in the study of turbulence and is significant for many turbulent systems.

Conceptually, the model takes the following approach: given the complicated micro-

scopic dynamics of turbulence, one may instead parameterize the system by looking

at macroscopic statistical properties of the fluid. One may think of turbulent flow

as being comprised of various eddies of different length scales or sizes in the fluid.

We may assign the wave-number k0 to the scale L at which excitations are being

injected into the system, where k0 = 1/L. For example, in the case of the flow

about a cylinder described above, the relevant length scale is again approximately

the diameter of the cylinder. In a viscous fluid with dissipation, there is also a

minimum length scale η, corresponding to a maximum wave-number kmax, where

viscous dissipation becomes significant, given by η = ν3

ε1/4 . Here, ν is the viscosity

and ε is the rate of energy dissipation, ε = d
dt

∫
E(k)dk (the time derivative of the

total energy, where E(k) is the energy per unit mass contained at wavenumber k,

in units of length3/time2. The range [η, ..., L] is known as the inertial range. The

resulting relation for E(k) is

E(k) = Cε2/3k−5/3, (3.5)

where C is the dimensionless Kolmogorov constant of order unity [104]. A log-log

plot of energy versus wavenumber k shows a constant slope of -5/3.

This expression represents the quasi-steady-state energy spectrum of a turbu-

lent fluid at the end of what is known as a Richardson cascade. Drawing pictorial

analogy, for convenient visualization, again to the turbulence seen in the wake of

a cylinder in a fast moving stream, one sees the initial formation of large vortices
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immediately after the cylinder. These gradually decay into smaller eddies, a pro-

cess terminating with viscous dissipation at the length scale η at the end of the

inertial range. The process spreads energy across higher wavenumbers, giving the

Kolmogorov spectrum E(k). Multiple systems have provided evidence for the reality

of this energy spectrum and, as a broad phenomenological characteristic of turbu-

lent systems, evidence of this energy spectrum is sufficient for determining whether

a system exhibits turbulence. However, the microscopic cascade dynamics and the

specifics of the Richardson cascade remain controversial [98].

Given these descriptions, one might ask why the problem of classical turbulence

remains open. Despite the expected power of the NSE, most of our knowledge

of turbulence has come from laboratory and numerical experiments. The NSE is

solvable for a class of problems at low Reynolds numbers. However, a complete set

of solutions to the NSE is necessary for full understanding of classical turbulence,

and the task of finding this set is complicated by several difficulties. The NSE is

nonlinear, which in itself is not necessarily a fatal blow, but the equation is also

not integrable, implying that convergent solutions do not exist for all Reynolds

numbers, and in particular for large Reynolds numbers. Further, the NSE is also

non-local, coupling small length scales, characterized by the vorticity field, to large

length scales, characterized by the velocity field, and vice-a-versa. This non-local

aspect presents difficulties for practical models of turbulence, as fluctuations at

small, unresolved length scales have a significant effect on the phenomena at resolved

length scales [106]. Is it possible to connect the NSE to microscopic models of the

turbulent flow, based on vortices? Such a microscopic model is well developed for

quantum turbulence, described in the following sections, and may represent part of

a path to more complete understanding of classical turbulence [98].

3.3 Quantum turbulence

Feynman was the first to suggest that quantum turbulence in a superfluid might

be characterized by a vortex tangle [11], consisting of many quantized vortices of
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either sign of circulation and orientation, and dynamically characterized by vortex

core reconnections and vortex dynamics. Numerical work by Schwarz, simulating

the vortex filament model, supported this vortex-tangle picture of quantum turbu-

lence [107, 108]. This picture does not necessarily have an analog in classical turbu-

lence, given the elusive nature of vortices in classical turbulence compared with the

stable and well-defined nature of quantum vortices, as described in Section 1.2. How-

ever, it has been suggested that the correspondingly well-defined aspects of quantum

turbulence may present a path to better understanding of turbulence across classical

systems as well. In particular, it is expected that quantum turbulence is likely very

similar to classical turbulence on scales large compared with the spacing between

individual vortex lines [109]. Additionally, quantum turbulence is theoretically ex-

pected to exhibit the Kolmogorov energy spectrum [110], and such conclusions have

been supported experimentally in superfluid 4He [111, 112].

Utilizing the vortex filament model described above, in this application more

appropriate than in the classical case, the buildup of the Kolmogorov spectrum can

be understood through vortex reconnections and vortex dynamics. With a large

number of vortices in a superfluid system, and a significant normal component,

friction between the two fluid components dissipates energy and drives dynamics.

Vortex filaments that pass close enough to each other may cross and connect, with

associated sound (phonon) radiation corresponding to each event; sound emission

represents another dissipative process in addition to normal-component friction.

This Richardson-type cascade is analogous to the classical case, as reconnections

distribute energy across smaller length scales. At zero temperature there is no fric-

tional dissipation. However, a particular excitation of vortices known as Kelvin

waves [12, 40, 51], which deform a vortex line into a helix in a three-dimensional

fluid, are also associated with the radiation of phonons. Phonon radiation is most

efficient for large Kelvin-wavenumbers, and Kelvin waves exhibit non-linear inter-

actions which can transfer energy from small wavenumbers to larger wavenumbers.

With phonon emission at these large wavenumbers, a route for energy dissipation

is established [113]. This quantum Kelvin-wave cascade continues to distribute en-
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ergy at smaller length scales at the lower limit of the inertial range [98]. However,

Kelvin-wave cascades have yet to be directly observed experimentally.

3.3.1 Generation of quantum turbulence

In superfluid 4He, the first quantum turbulence experiments were realized in fluid

counterflow, where the normal and superfluid components flow in opposite direc-

tions. Further experiments at the University of Oregon in superfluid 4He [114]

realized turbulent superfluid flow in the wake of a grid. Turbulence may also

be generated through vibrating structures within the superfluid, including micro-

spheres [115], wires [116], and vibrating grids [117]. Interestingly, the critical ve-

locities for the creation of turbulence in superfluid 4He are quite low, ∼ 5% of the

Landau critical velocity1 expected. This extreme reduction in critical velocity is at-

tributed to vortices remaining from the superfluid transition2 which are connected

to a boundary layer in the fluid; typically, the vortex forms a bridge between the

vibrating wire and the container wall. These remnant vortices act to seed the result-

ing quantum turbulence, and have been the subject of several recent experimental

and theoretical investigations [118, 119]. Connections to BEC physics are open for

interpretation and speculation, as the absence of boundary layers in a trapped BEC

complicate the connection.

The relationship between quantum turbulence in superfluid helium and classical

turbulence in a viscous fluid now appears to be established. By supplementing

these studies with further quantitative investigations of quantum turbulence in other

superfluid systems, such as BECs, an overall better understanding of turbulence in

all systems may thus be approached.

3.3.2 Microscopic, mesoscopic, and macroscopic

In this dissertation, the word microscopic is often used to discuss a level of under-

standing of vortices. Here, what is meant by this term is briefly clarified. Generally,

1An experiment investigating the critical velocity in BEC is described in Chapter 4.
2See, for example, Chapter 7 for experiments in spontaneous vortex formation in BEC.
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models of superfluid vortices fall into three categories: microscopic, mesoscopic, and

macroscopic [13]. Microscopic models resolve the vortex core structure, and all as-

pects of the dynamics are important and monitored. The dynamics modeled by the

GPE equation, especially relevant in BEC experiments, where the GPE is strictly

appropriate in the zero-temperature limit, resolve the vortex core structure and rep-

resent a microscopic model. BECs thus present a convenient system for resolving

the microscopic details of vortices, as numerical models have particular relevance

when combined with experiments. In mesoscopic models, the vortex core position is

important but the microscopic structure is not. The Schwarz equation is an example

of a mesoscopic model and is utilized to analyze fluid flow dynamics3. The fluid flow

about a point vortex is modeled, influencing other point vortices in the system and

feeling their respective influence, limited by the boundary conditions of the system.

Macroscopic models are concerned with bulk properties, where individual vortices

are invisible; the Kolmogorov model is an example.

3.3.3 Turbulence in BECs

Despite the difficulty in studying bulk fluid properties due to small system size and

density inhomogeneities, BECs provide some additional advantages over superfluid

helium when studying quantized vortices. In contrast to superfluid helium, the

vortex core size in a BEC is large enough to image the vortex through optical

methods, though only after expansion of the BEC (at least, in experiments to date),

or in muli-component BECs [19]. The trapping potentials utilized in BEC work

are also highly customizable. These parameters suggest BECs may be convenient

systems for studies of quantum turbulence.

The term “turbulence” has been utilized in describing several different exper-

iments in BECs. Experiments that generate disordered arrangements of vortex

cores, generated through periodic stirring, have been theoretically predicted to ex-

hibit a turbulent Kolmogorov spectrum [103, 120], and have been experimentally

3For a two-dimensional application of the Schwarz equation to map vortex dynamics, see

Section 4.3.1.
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investigated by several groups [21, 23, 54, 59]. Each of these experiments exhibit

a turbulent stage or regime where disordered arrangements of like-charge vortices,

approximately aligned with the stirring axis, were observed. The final relaxed state

in these cases is a vortex lattice, and these stirring methods have been widely im-

plemented in BECs as a technique for creating vortex lattices4 and achieving rapid

rotations of BECs [34]. Additionally, observations were made of bent and tilted

vortex cores generated through periodic stirring. These vortex arrangements were

described as a vortex tangle, although limited numbers of vortices were observed [33].

Turbulent vortex tangles have also been utilized as a model for describing the

quasi-coherence of a BEC during non-equilibrium relaxation through the BEC phase-

transition [121] and the resulting final states have been experimentally investigated

in BECs5 [79].

“Turbulent flow” was established in Ref. [31] by moving a repulsive laser beam

across a BEC6; vortex-antivortex7 pairs were uncontrollably nucleated by this pro-

cess. Interferometric methods were used to indirectly observe the vortices generated.

Turbulent states are also accessible through other excitation methods of a

ground-state BEC, and a technique utilizing rotations about two different axes has

been theoretically described [103], and experimentally implemented [81, 82, 85]. The

resulting clouds show evidence of vortices, although direct measurements demon-

strating the Kolmogorov spectrum remain elusive. Referring to Ref. [82], a defini-

tion of quantum turbulence is offered:

“...Quantum turbulence is characterized by the appearance of quantized vortices dis-

tributed in a tangled way, not forming regular lattices.”

This definition relates what is meant in this dissertation when describing the state of

a BEC as “turbulent,” however, without confirmation of the Kolmogorov spectrum

4See Chapter 6 for the description of an experiment utilizing this method of stirring.
5See also Chapter 7.
6See also Chapter 4.
7The term “antivortex,” used throughout this dissertation, refers to a vortex with the opposite

direction of fluid flow.
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or other macroscopic properties of the system, the definition should be viewed as

qualitative.

3.4 Prototype experiments

Section 2.6 details the production of condensates in our laboratory in an oblate,

radially symmetric ∼11:1 aspect ratio trap. By implementing surface-mode excita-

tions as in [34], vortices were seen emerging at a wide variety of rotation frequencies

above and below the radial trap frequency ωr. In efforts to explore the vortex

creation process, the rotating elliptical modulations of the trapping potential (the

“stirring” process) were replaced with a pure harmonic modulation of the radial

trapping frequency ωr. In other words, the trap remained symmetric, no rotations

occurred, and only the strength of the trap varied in time. This experiment was

performed as follows: after creating a BEC, the amplitude of the of the TOP trap’s

magnetic bias field B0 was modulated at 9 Hz (compared with a radial trapping

frequency of ωr = 2π × 8 Hz) with a modulation amplitude of ∼ 5% of B0 for a

variable time tmod, with the RF field held at its final value for evaporation. The

modulation of the bias field B0 induces a corresponding modulation in the radial

trapping frequency (Ref. [93] details the relationship between B0 and ωr), while the

vertical trap frequency is generally fixed by the red-detuned light sheet. After the

excitation sequence, the BEC was expanded and imaged axially along the radial

symmetry axis with near resonant light.

With increasing modulation time tmod, vortices began to appear in the cloud. A

sequence of images is shown in Fig. 3.1(a), with each image representing a different

run of the experiment. With increased modulation time tmod, vortices, indicated by

density dips in the atom cloud image, began to emerge from the cloud edges. Since

there is no net angular momentum added to the system, momentum conservation

leads one to expect the vortices nucleated in the system are of either sign of cir-

culation about the trap axis. The anisotropic 11:1 aspect ratio trap also implies

that vortices will be aligned axially, thus exhibiting good visibility along the imag-
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Figure 3.1: Excitation of a harmonically trapped BEC through harmonic modula-
tion of the trapping potential radial frequency, with images obtained in absorption
after expansion. Each image represents a separate run of the experiment. (a) With
increased modulation time tmod, vortices begin to appear in the cloud, located ini-
tially near the cloud edges. The BEC was expanded for imaging immediately after
the excitation sequence. (b) After 1.5 s of modulation, the BEC was held in trap
for variable hold time th. With enough hold time, the BEC returns to the ground
state, though with an increased thermal component. On average, it appears that
all vortices annihilate each other eventually, suggesting no net angular momentum
is added to the cloud during excitation.

ing axis, since the vortex lines should be relatively impervious to tilting [27] and

bending [40].

In another test, after a fixed modulation time, a variable hold time th in the

harmonic trap was added before expansion. With increased hold time th, the cloud

eventually returned to a state free of vortices, but with an increased thermal compo-

nent, as shown in Fig. 3.1(b). In particular, a modulation time tmod of 10 s resulted

in the complete loss of the BEC. The heating seen indicates the addition of energy

to the BEC, and the loss of vortices is consistent with possible damping mechanisms

for vortices, including vortex-antivortex annihilation.

These techniques were also implemented in a toroidal trap geometry, created

through the use of an additional, axially propagating blue-detuned barrier8 (de-

8For an example of a similar toroidal trap, see Chapter 5.
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Figure 3.2: Excitation of a toroidally trapped BEC through harmonic modulation
of the trapping potential. (a,b) In-situ images of the BEC in a toroidal trap, using
horizontal phase-contrast and vertical (axial) absorption imaging, respectively. (c)
Absorption images in expansion, with each image representing a separate run of the
experiment. As the modulation time tmod is increased, vortices begin to appear in
the system. In this case, the required modulation time before establishing a highly
excited state is much shorter than in the pure harmonic trap case. Additionally,
vortices are well defined and appear to originate from within the cloud.

scribed in Section 2.6). Example in-trap images of such a BEC are shown in

Fig. 3.2(a,b). By implementing a similar harmonic excitation of the magnetic bias

field B0 at 6.5 Hz, here with an amplitude of ∼ 10% of B0, the system is very

quickly driven to an excited state, characterized by the presence of vortex cores.

Qualitative differences, when compared with the harmonic trap, are apparent in

the image sequence; in addition to much shorter modulation times, the vortices are

better defined and appear to originate from within the cloud, rather than near its

edge.

Yet another type of excitation was briefly studied to test vortex formation mech-

anisms potentially relevant for studies of quantum turbulence in BECs. In this case,

an axially propagating blue-detuned beam was aligned near the center of the trap,

similar to the toroidal trap described above. An in-situ image of a BEC with

the beam aligned at the center of the BEC and penetrating the cloud is shown in

Fig. 3.3(a). However, rather than forming a BEC in this toroidal trap, the BEC was

first formed in the harmonic trap, and then the blue-detuned beam was instanta-

neously turned on to an intensity that penetrated the cloud, as in Fig. 3.3(a), for a

short period of time, equal to ∼ 7 ms. After the beam was instantaneously turned

off, vortex observations were studied as a function of hold time th in the harmonic
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Figure 3.3: Excitation of a harmonically trapped BEC by flashing on an axially-
propagating blue-detuned beam for a short period of time (∼ 7 ms). (a) In-situ
image of the BEC formed in the presence of the beam, demonstrating the beam
position near the center of the cloud and a beam intensity that penetrates the BEC.
(b) By instead forming a BEC in the harmonic trap and then flashing the beam,
excitation of the cloud was observed. Images are axial absorption in expansion, with
each image representing a separate run of the experiment. The length scale is the
same for each image. As the hold time th is increased after flashing the blue-detuned
beam, strong density fluctuations in the cloud evolve into vortices. With enough
hold time the vortices gradually leave the system. Similar to the other method of
exciting a harmonically trapped BEC, the vortices appear to originate on the edge
of the cloud.

trap. A sequence of images is shown in Fig. 3.3(b). Apparent strong initial density

variations in the cloud immediately after flashing the beam evolve into large num-

bers of vortices before the system gradually begins to relax with increased hold time

th. Similar to the case where the magnetic field was modulated in the harmonic

trap, vortices appear to originate on the edge of the cloud.

The physical mechanisms at work to produce vortices in these three experiments

are not clear. Symmetric harmonic oscillation of the trap will induce correspond-

ing breathing-type oscillations of the BEC, however, such symmetric fluid flows

should not be able to produce vortices. There are certainly residual asymmetries

in the trap, although any role contributed by these small asymmetries is unknown,

but might be accessed through further experiments and simulations. Some aspects

of the experiments appear qualitatively similar to what might be expected from
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a turbulent state, particularly the large number of vortices present, along with the

heating evident in the relaxed system, as shown in Fig. 3.1(b). These states do seem

to satisfy the qualitative definition of turbulence offered above, being comprised of

many vortices distributed in an irregular way. However, a quantitative connection

to turbulence, without measurements indicating a Kolmogorov energy spectrum, is

speculative. These experiments do bear some possible similarity to what might be

expected from counterflow turbulence, obtained when superfluid is driven into a

normal fluid, and thoroughly investigated in superfluid helium. Alternatively, cavi-

tation of vacuum bubbles might be responsible for vortex production [122]. Whether

such physical processes are possible in BECs is as yet unknown, and this topic is

currently under investigation in the laboratory.

Also interesting is the possible effect of the trapping geometry on turbulence in

the system. As noted above, in this flattened cloud vortex bending and tilting are

inhibited, limiting vortex dynamics to an unknown degree. These limits on vortex

dynamics may effect the development of turbulence and the establishment of the

Kolmogorov spectrum in the system [123].

3.5 Relation to the vortex experiments of this dissertation

Considering the difficulty in characterizing these highly excited states, an alternative

approach to studying turbulence in BECs was initiated in our laboratory and in the

experiments described in this dissertation. Given the paucity of experiments dealing

with vortices and antivortices and their dynamics in BEC we have embarked on a

long-term study of quantum turbulence by first understanding the many

aspects of vortex creation, dynamics, annihilation, and decay in BECs,

coupling experimental studies with theory and numerical simulations. As

experiments become more complicated, we aim to posess refined experimen-

tal and theoretical tools to better understand the microscopic physics of

quantum turbulence in BECs. Our ultimate goal is to connect a firm, quanti-

tative, microscopic understanding of quantum turbulence in BECs with the wealth
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of information available from quantum turbulence studies in superfluid helium. We

can thereby dream of a more complete understanding of quantum turbulence at all

levels, from the microscopic to the macroscopic.

With these goals in mind, a simplified system was explored, described next in

Chapter 4, where a single vortex-antivortex pair was controllably created and stud-

ied. By extending the technique utilized to create single vortex pairs, multiple

vortex pairs were then created in a toroidal trap, described in Chapter 5, leading

to the establishment of superfluid persistent currents. The physics of these two

experiments may have particular bearing on the highly excited states generated

through harmonic oscillation of the toroidal trap, as well as providing controlled

studies of vortex-antivortex dynamics and lifetimes. Subsequent to these chapters,

Chapter 6 describes an experiment exploring the loss of vorticity from a rapidly

rotating BEC due to a controllable inhomogeneity in the trapping potential. These

results are important in studying vortex damping mechanisms due to asymmetries

in the system, which play an important role in vortex dynamics and vortex life-

times, and consequently would have a significant role in the dynamics and decay

of quantum turbulence in superfluid systems. Finally, a study of vortices resulting

from non-equilibrium relaxation through the BEC phase-transition is described in

Chapter 7. The quasi-equilibrium states observed result from the evolution of a

state theoretically predicted to exhibit turbulence [121].
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CHAPTER 4

VORTEX DIPOLES

4.1 Introduction

A vortex dipole in a classical or quantum fluid consists of a pair of vortices of op-

posite circulation, with the dynamics of each vortex core dominated by interaction

with the fluid flow pattern of the counterpart oppositely-charged vortex, as well as

the boundary conditions in the fluid. Although single vortices carry angular mo-

mentum, vortex dipoles can be considered as basic topological structures that carry

linear momentum [124] in stratified or two dimensional fluids. Vortex dipoles are

widespread in classical fluid flows, appearing for example in ocean currents [125]

and soap films [126], and have been described as the primary vortex structures in

two-dimensional turbulent flows [124]. In superfluids, the role of vortex dipoles is

less well established; however, vortices and antivortices are prevalent in superfluid

turbulence, as discussed in Chapter 3. Vortex dipoles are also significant in the

Berezinskii-Kosterlitz-Thouless (BKT) transition [64], and phase transition dynam-

ics [79, 121, 127, 128]. This prevalence across a broad set of systems and scenarios

implies a quantitative study of vortex dipoles will contribute to a broader and deeper

understanding of superfluid phenomena. The realization of vortex dipoles in dilute

BECs is especially significant as BECs provide a clean testing ground for the micro-

scopic physics of superfluid vortices [6, 16, 17, 129]. As mentioned previously, the

dilute nature of BECs allow for precise modeling with the Gross-Pitaevskii equation

(GPE), a relatively simple nonlinear Schrödinger equation. In this chapter an ex-

perimental and numerical study of the formation, dynamics, and lifetimes of single

and multiply charged vortex dipoles in highly oblate BECs is presented.

Numerical simulations based on the GPE have shown that vortex dipoles are

nucleated when a superfluid moves past an impurity faster than a critical velocity,
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above which vortex shedding induces a drag force [130, 131]. Vortex shedding is

therefore believed to be a mechanism for the breakdown of superfluidity [132, 133].

Experimental studies of periodic stirring of a BEC with a laser beam have mea-

sured a critical velocity for the onset of heating and a drag force on superfluid

flow [134, 135]. These measurements were based on a sharp increase in the heating

rate at a particular stirring velocity, and thus can be considered as macroscopic

type measurements. Similarly, vortex phase singularities were observed in the wake

of a moving laser beam in a subsequent experiment [31, 136], a type of mesoscopic

observation. However, a microscopic picture of vortex dipole formation and the en-

suing dynamics has not been established experimentally, prior to the work reported

here. In the experiment described in this chapter, single vortex dipoles were deter-

ministically nucleated by causing the highly oblate, harmonically trapped BEC to

move past a repulsive barrier, while the BEC was held in the combined magnetic

and optical trap. We measured a critical velocity for vortex dipole shedding, and

found good agreement with numerical simulations and earlier theory [137]. Experi-

mentally, the nucleation process exhibited a high degree of coherence and stability,

allowing us to map out the orbital dynamics of a vortex dipole, and we found that

vortex dipoles could survive for many seconds in the BEC without self-annihilation.

We also provide evidence for the formation of multi-quantum vortex dipoles.

4.2 Experimental approach

This experiment utilized the trapping potential described in Section 2.6. We created

an 87Rb BEC in the combined 1090-nm and B′
z = 44 G/cm, B0 = 3.41 G TOP trap,

with trapping frequencies (ωr, ωz) = 2π × (8, 90) Hz. Evaporation in this trap

achieved condensation at a critical temperature of Tc ∼ 90 nK, and produced a

BEC of Nc = 2(0.5)×106 atoms at a final temperature of T ∼ 52 nK. The resulting

BEC exhibited a Rr = 52 µm measured radial Thomas-Fermi radius, and an axial

Thomas-Fermi radius of Rz ∼ 5 µm.

In addition to the vertically-confining red-detuned 1090-nm beam, a repulsive
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optical potential was created through the use of a focused blue-detuned laser beam

that penetrated the BEC. The beam was focused onto the BEC by the optical

system illustrated in Fig. 2.5 and had a Gaussian 1/e2 radius of 10(2) µm. The

initial location of the beam was 20 µm to the left of the minimum of the harmonic

trap, as shown in Fig. 4.1(a). To nucleate vortices, we translated the harmonic

potential in the horizontal (x) direction at a constant velocity until the obstacle

ended up 14 µm to the right of the harmonic trap minimum, using a magnetic push

coil similar to that shown in Fig. 2.5. The maximum energy of the obstacle was

U0 ≈ 1.2µ0 (where µ0 ∼ 8h̄ωz ≈ 90h̄ωr is the BEC chemical potential), and was

held on and constant during evaporative cooling; i.e. the BEC was formed in the

presence of this beam. Coincident with the sweep, the height of the obstacle was

linearly ramped to zero as shown in Fig. 4.1(b,c). This allowed us to gently create

a vortex dipole that was unaffected by the presence of the obstacle, or by heating

due to moving the obstacle through the edges of the BEC, where the local speed of

sound was small. After a subsequent variable hold time th we removed the trapping

potential and expanded the BEC for imaging, as described in Section 2.6.3, causing

the vortex cores to expand relative to the condensate radius until they were optically

resolvable.

4.2.1 Theory details

Simulations of the experimental procedure were performed by Ashton Bradley at

the University of Otago, in collaboration with Matthew Davis at the University of

Queensland. The methods and results of these simulations are reported in this chap-

ter. At zero temperature, the experiment is simulated using a 3D GPE. An initial

state for the combined harmonic-plus-obstacle trap with 2 × 106 atoms was found

by integrating the GPE in imaginary time. The potential due to the obstacle laser

beam used in the simulations was US(x, y, t) = U0(t) exp {−2([x− x0(t)]
2 + y2)/w2

0},
where U0(0) = 93 h̄ωr = kB×35 nK ∼ µ0, and w0 = 10 µm. The barrier is assumed

to be constant over the axial position coordinate z, and x and y are radial position

coordinates with (x, y, z) = (0, 0, 0) corresponding to the harmonic trap center. The
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Figure 4.1: The BEC initial state and illustration of the experimental sequence. (a)
In-situ axial absorption image of the BEC initial state with the obstacle located at
xs = −20 µm relative to the BEC center. (b,c) The maximum repulsive potential
energy of the obstacle is U0 ≈ 1.2µ0 (where µ0 ∼ 8h̄ωz is the BEC chemical potential)
and is held constant during evaporative cooling. It is ramped down linearly as the
trap translates; relative to the trap center, the beam moves from position xs = −20
µm to xs = 14 µm over a variable sweep time ts. The BEC is then held in the
harmonic trap for a variable time th prior to expansion and absorption imaging.

vortex dipole nucleation procedure was modeled by translating the obstacle while

leaving the harmonic trap center fixed at (x, y, z) = (0, 0, 0). The obstacle laser

beam moves along the x-axis from position x0(0) = −20 µm to x0(ts) = 14 µm dur-

ing time ts and at a variable velocity. As in the experiment, the laser intensity, and

thus U0(t), linearly ramps to zero over time ts.

4.2.2 Vortex nucleation results

In order to characterize vortex dipole nucleation, we studied the observations of

vortex cores as function of the trap translation velocity. For example, in Fig. 4.2(a),

a nucleated vortex pair is visible after expansion and absorption imaging. The

average number of vortices observed as a function of the trap translation velocity

vs is plotted in Fig. 4.2(b). In our experimental procedure we found a ∼ 30%

likelihood of a single vortex occurring during condensate formation even prior to

trap translation; see Ref. [79] and Chapter 7 for further discussion of spontaneously

formed vortices. This gave a non-zero probability of observing a single vortex for
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Figure 4.2: For vs ∼ 190 µm/s, images show a single pair of vortices having formed
in the experiment (a) and simulations (b). Because the vortex core diameters are
well below our imaging resolution, the BEC is expanded prior to imaging. Similarly,
the vortex cores in the unexpanded numerical image are barely visible; a 10-µm-
wide inset provides a magnified scale for the core size. (c) Average number of vortex
cores observed for a range of translation velocities vs with Nc ∼ 2 × 106 atoms in
the BEC. Experimental data points (black diamonds) are averages of 10 runs each,
with error bars showing the standard deviation of the observations. Numerical data
for Nc = 2 × 106 at a system temperature of T = 52 nK, corresponding to the
experimental conditions, are indicated by triangles joined with dotted lines. Fewer
atoms and lower temperatures reduce the critical velocity; as an example, open
circles show the results of numerical simulations using Nc = 1.3 × 106 and T = 0.
Above vs ∼ 200 µm/s, multiply-charged vortex dipoles are observed. The critical
velocity calculated using the methods of Ref. [137] is indicated by the vertical dashed
line.

the lowest translation velocities in Fig. 4.2 even when flow without drag is expected.

Referring to Fig. 4.2(b), there is good agreement between simulation and exper-

imental results, and we identified a critical velocity vc for vortex dipole formation

between 170 µm/s and 190 µm/s for Nc = 2 × 106 atoms and temperature T = 52

nK. Experimental data points (black diamonds) are averages of 10 runs each, with

error bars showing the standard deviation of the observations. Numerical data for

Nc = 2 × 106 at a system temperature of T = 52 nK, which corresponded to the

experimental conditions, are indicated by triangles joined with dotted lines.

Recently, Crescimanno et al. [137] have calculated the critical velocity for vortex
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dipole formation in a 2D BEC in the Thomas-Fermi regime. By using the nonlin-

earity and chemical potential of our 3D system in their 2D expression, we estimated

a critical velocity of 200 µm/s. For our conditions, the maximum speed of sound at

the trap center was calculated to be c ∼ 1700 µm/s; our measurements showed that

vc ∼ 0.1c, consistent with previous measurements of a critical velocity for the onset

of a drag force obtained with comparable methods [135].

We emphasize that the simulations described above did not directly correspond

to the experimental sequence, where the harmonic trap is translated rather than

the obstacle. The acceleration of the BEC due to the turn-on of the magnetic push

coil resulted in a small oscillation about the trap center as it translated. Bradley

and Davis performed additional simulations to investigate the “impulse” regime

where the harmonic trap was instantly accelerated to the sweep velocity, inducing

a center-of-mass oscillation of the BEC. The resulting oscillation amplitude was 10

µm or more near the critical velocity, which resulted in a significantly lower critical

velocity (∼ 80 µm/s), and multiple vortex pairs (see below) were much more readily

nucleated at lower trap translation velocities. However, the amplitude of such an

oscillation in the experiment was measured to be ≤ 1 µm. These observations thus

suggested that the experiment corresponded closer to an adiabatic regime where the

translation of the trap is equivalent to translation of the beam. A complete model of

the experiment would need to incorporate details of the trap acceleration that were

not obtained. However, given the excellent agreement between the adiabatic regime

of simulations and the full set of experimental results, including the experimental

observations showing minimal BEC sloshing after trap acceleration, we concluded

that the simulation methods were appropriate for comparisons with the experimental

data.

4.3 Vortex dipole dynamics

In an axi-symmetric trap such as ours, a vortex dipole coincides with a meta-stable

state of superfluid flow with potentially long lifetimes [138, 139, 140]. The vortices
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exhibit periodic orbital motion, a 2D analogue of the dynamics of a single vortex

ring [26, 136]. To observe these dynamics we nucleated a single vortex dipole and

held the BEC for variable time th prior to expansion and imaging, with results shown

in Fig. 4.3(a). Back-to-back expansion images from the experiment are shown, with

200 ms of successive hold time between the 180-µm-square images. The data se-

quence was taken using an obstacle height 3.15 times larger than that used for the

data of Fig. 4.2, as we found this gave the highest degree of repeatability and the

least sensitivity to beam displacement.

The repeatability and coherence of the vortex nucleation process was clear: in

the back-to-back images with increasing th, the vortex positions and orbital dynam-

ics could be followed and the dipolar nature and structure of the superfluid flow is

microscopically determined. These measurements also determined the direction of

superfluid circulation about the vortex cores, analogous to the case of single vor-

tices [24]: the image sequence showed counter-clockwise fluid circulation about the

vortex core in the upper half of the BEC and clockwise circulation in the lower half.

The orbital dynamics were also examined in zero-temperature GPE simulations,

as shown in Fig. 4.3(b), showing 62-µm-square images, as the data represents in-trap

rather than expanded BECs; the apparent vortex core size is thus smaller in these

images. The experimental and numerical data were in good agreement regarding

vortex dipole trajectories; Fig. 4.3 (c) shows the average positions xv and yv, relative

to the center of a Thomas-Fermi fit of the data, of each of the two vortices from 5

sequences of experimental data, generated with an identical sequence as was used to

generate the images in Fig. 4.3(a). The larger circle around each average position

point represents the standard deviation of the vortex positions at that specific hold

time, and was calculated from the 5 images obtained at that time step. A continuous

dipole trajectory from sequence (b) was re-scaled to the Thomas-Fermi radius of the

expanded experimental images, and superimposed as solid lines on the experimental

data. The lifetime of a single vortex dipole was much longer than the first orbital

period of ∼1.2 s (discussed in Section 4.3.2), although after the first orbit the vortex

trajectories became less repeatable from shot-to-shot. However, it is the large-scale
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Figure 4.3: Sequences of images showing the first orbit of vortex dipole dynamics.
(a) Back-to-back images showing the dipole orbit for a single dipole, with 200 ms
between successive images and each 180 µm-square image showing an expanded
BEC. (b) 62 µm-square images from numerical data obtained for conditions similar
to the data of sequence (a), but for a temperature of T = 0. The orbital period is
∼1.2 s, and the apparent vortex core size is smaller in the simulations because we
show in-trap numerical data. (c) Black and dark gray small circles show average
positions xv and yv, relative to the center of the Thomas-Fermi distribution, of
each of the two vortices from 5 sequences of experimental data, with each sequence
using a procedure identical to that of sequence (a). The larger circle around each
average position point represents the standard deviation of the vortex positions at
that specific hold time, and is calculated from the 5 images obtained at that time
step. A continuous dipole trajectory from sequence (b) is re-scaled to the Thomas-
Fermi radius of the expanded experimental images, and superimposed as solid lines
on the experimental data; no further adjustments are made for this comparison.

flow pattern of the first orbit that is perhaps most indicative of the qualitative

connection with 2D dipolar fluid flows.

4.3.1 Multiply-charged vortex dipoles

For trap translation velocities well above vc we observed the nucleation of multiply-

charged vortex dipoles both experimentally and numerically, as shown in Fig. 4.4(a-

d). Viewed on a coarse scale the ensuing dynamics were consistent with that of

a dipole comprised of a highly charged vortex and antivortex. On a fine scale,

particularly in numerical data, we saw loose aggregations of singly quantized vortices

with the same circulation at the two loci of vorticity in the dipolar flow. In the

experimental images obtained at higher sweep speeds, many individual vortices were

often not clearly resolvable for the short hold times shown. Nevertheless, the data

resembled characteristics of highly charged dipoles and suggest the formation of
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Figure 4.4: (a) Similar to the sequence of Fig. 4.3(b), but for a faster translation
velocity with which a doubly charged vortex dipole is formed. Images are spaced
in time by 150 ms, and the orbital period is 900 ms. (b) An experimental image
in which a doubly charged vortex is formed. (c,d) Similar to (a,b) but for a triply
charged dipole. The images of (c) have 112 ms between images and an orbital period
of 675 ms.

many vortices because (i) the apparent vortex core sizes became larger, (ii) the

orbital time period for the dipole structure was shorter, as expected for higher

numbers of cores and faster superfluid flow, and (iii) multiple individual vortex

cores were observable for longer hold times.

Although we did not performed an exhaustive analysis of these states, these

results are presented to bring attention to these interesting metastable superfluid

vortex structures. Examining Fig. 4.4, the times that the loci of the two dipolar

flow elements took to complete one orbit were ∼ (900, 675) ms for Fig. 4.4 (a,c)

respectively. One might at first expect the ratios of these numbers to strictly de-

pend on the ratios of the number of singly quantized vortices around each locus of

vorticity. However, this was clearly not the case, and we believe that the orbital

periods were strongly influenced by the inhomogeneous BEC density distribution,

as discussed below. Second, the numerical data of Fig. 4.4 appear to show that

the singly quantized vortices orbit around each moving locus of vorticity. This was

indeed seen in the numerical data when finer time scales were examined, although

the small-scale orbits of vortices around each vortex dipole locus were not resolvable

in our experiments.

Regarding the relative orbital periods, one might expect that the period for a

doubly charged dipole, for example, would be close to half that for a singly charged

dipole, since the motion is determined by self-induced velocity fields that scale with
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the total charge. Experimental and numerical data show that dipoles with higher

charges have shorter orbital periods, but that the orbital frequency is not linearly

proportional to total charge. The origin of this lack of proportionality is not obvious.

The two most likely factors that might influence orbital periods are (i) the fact that

vortices of like charge do not perfectly coincide in location during an orbit of the

entire aggregate, but rather also orbit each other with small spatial separations and

a short orbital period, and (ii) the inhomogeneous density profile of the BEC.

To identify the effects of density inhomogeneity on vortex dipole dynamics,

Bradley analyzed a flat circular system that had a homogeneous density profile

inside radius R and zero density outside. By taking R = 52 µm, corresponding

to the experiment, he proceeded by numerically integrating the Schwarz equation

governing the evolution of point vortices in two dimensions:

dr

dt
= V, (4.1)

where V is the total velocity field induced by all other vortices, their images, and the

image of the vortex itself. An image vortex was introduced for each vortex, to set the

flow normal to the hard wall boundary to zero [141]. The stable points of the dipole

occur at (x, y) = (0,±rs), where rs = R/
√

2 +
√

5, and are indicated by the crosses

in Fig. 4.5; a vortex and antivortex placed at these positions are stationary if there

are no other vortices in the system. Displacing the vortex and antivortex from the

stable points, with reflection symmetry about the x-axis, led to orbital trajectories

qualitatively similar to the dynamics observed in the GPE simulations and the

experiment, though with quantitatively different orbital periods. An advantage of

the Schwarz equation solution was that the dynamics of perfect charge-2 vortices,

such as shown in Fig. 4.4(a), can be compared to the dynamics of doubly charged

aggregates of singly charged vortices, such as is shown in Fig. 4.4(b). As seen here

in Fig. 4.5(a) and (b), the orbital period of a perfect charge-2 dipole is identical

to that of a charge-2 dipole of aggregated single charge vortices. Furthermore, the

orbital period seen for these charge-2 cases is exactly half that of a charge-1 dipole

(not shown). At least in a homogeneous system, the orbital period does not depend
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Figure 4.5: Dynamics of a doubly charged vortex dipole in a homogeneous two-
dimensional BEC of radius R = 52 µm (radius indicated by the thick solid lines) for
two cases: (a) the dipole consists of a doubly charged vortex and a doubly charged
antivortex, and (b) the dipole consists of an aggregate of two singly charged vortices
and a similar aggregate of two singly charged antivortices. In each case, crosses
indicate stable points of vortex dipole motion (see text). (a) An example orbital
trajectory for the two doubly charged vortices is shown as two thin solid lines. In
this example, the period for one complete orbit around the stable points is 4.85 s.
The orbital period seen for this charge-2 case is exactly half that of a charge-1 case
(not shown) for the same initial vortex displacements away from the stable points.
(b) For two charge-2 aggregates of singly charged vortices (a total of two vortices
and two antivortices), the trajectories of each vortex core are again indicated as
thin lines. The initial positions of the center of each aggregate match those for the
vortices of case (a), and vortices within each aggregate are initially separated by 2
µm. As in case (a), the orbital period for the dipole is 4.85 s.

on whether the vortex dipole is made of an aggregate of singly charged vortices

or two multiply-charged single vortices. Thus, the lack of direct proportionality of

orbital frequency to total charge seen in the experiment most likely arises from the

inhomogeneous density profile of the trapped BEC.

4.3.2 Vortex dipole lifetimes

While it is often assumed that in a finite-temperature environment, vortices of op-

posite circulation will attract and annihilate each other at close distances, this is

not necessarily the case: vortices may approach each other so closely that they ap-

pear to coalesce — see for example the sixth image of Fig. 4.3(a) with th = 1 s —

and yet still move away from each other after the encounter. Fig. 4.6 shows mea-

surements of the average number of vortices observed with various hold times after
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nucleating a vortex dipole. The error bars represent statistical uncertainty (as in

Fig. 4.2) rather than counting uncertainty; however, for the doubly charged dipole

case there was additional uncertainty in counting vortex cores because we did not

always resolve 4 well-defined cores at the earlier hold times. Inset in Fig. 4.6 are

two images showing two singly quantized vortices after 4 seconds of hold time in the

harmonic trap. The difference between the two images illustrates the variation of

vortex position observations after such a long hold time, which precluded our ability

to track consistent vortex positions after times much longer than one orbital period.

From this set of data, we concluded that singly and doubly quantized vortex dipoles

may exhibit lifetimes of many seconds, much longer than a single orbital period of

∼ 1.2 s for a singly quantized dipole. With such a strong trap asymmetry between

the radial and axial directions, the vortex lines are relatively impervious to bend-

ing [40] and tilting [27], and annihilation is suppressed because vortex crossings and

reconnections are inhibited.

4.4 Conclusions

Although vortex shedding is the microscopic mechanism for the breakdown of su-

perfluid flow and the onset of a drag force, the nucleation of a vortex dipole does

not imply immediate superfluid heating since dipoles are coherent structures that

are metastable and do not immediately decay into phonons. The maximum energy

of a vortex dipole in the BEC was estimated to be kB × 0.45 nK/atom for our sys-

tem [134], so that at T = 52 nK the temperature would increase by less than 0.5%

upon self-annihilation of a single dipole. This temperature change would be very

difficult to measure, and microscopic observations of vortex dipole formation and

dynamics are therefore complementary to heating and drag force observations.

In this experiment, we demonstrated controlled, coherent nucleation of single

vortex dipoles in oblate BECs. The dipole dynamics reveal the topological charges

of the vortices and show that the dipole is a long-lived excitation of superfluid flow.

Sufficiently rapid translation of the harmonic trap causes vortices with identical
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Figure 4.6: Number of vortices remaining after dipole nucleation as a function of
hold time th, averaged over 17 realizations per data point. The circles show condi-
tions for which a singly charged dipole is created, while the squares show data from
a faster sweep where four cores (a doubly charged dipole) preferably occur. The
error bars represent statistical uncertainty (as in Fig. 4.2(b)) rather than counting
uncertainty; however, for the doubly charged dipole case there is additional uncer-
tainty in counting vortex cores because 4 well-defined cores were not always resolved
at the earlier hold times. The vortex cores can clearly persist for times much longer
than the dipole orbital period of ∼1.2 s for a singly quantized dipole, and ∼ 0.8 s
for a doubly quantized dipole. Inset figures: experimental images of singly charged
dipoles obtained with identical sweeps and held for 4 seconds in the trap prior to
imaging. The images illustrate the variability of vortex positions after such a long
hold time, precluding our ability to track consistent vortex positions beyond one
orbital period.

charge to aggregate into highly charged dipolar vortex structures that exhibit or-

bital dynamics and long lifetimes analogous to singly charged vortex dipoles. This

suggests that dipole structures are readily accessible in highly oblate and effectively

two-dimensional superfluids, and that they can be qualitatively understood and

studied at a microscopic level.
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CHAPTER 5

PERSISTENT CURRENTS

5.1 Introduction

This chapter describes an extension of the techniques outlined in Chapter 4 in order

to create persistent currents in a BEC from an initially turbulent BEC. Persistent

currents are interesting in their own right, but this experiment has further implica-

tions regarding how vortices interact with trap impurities or roughness, and with a

thermal cloud. First a brief introduction to persistent currents is provided, followed

by a detailed description of our method used to create these superflows (superfluid

flows). Discussion of the persistence of the resulting superflows is provided.

The ability of a superfluid to support fluidic persistent currents follows from

fundamental aspects of superfluids confined in multiply-connected geometries [142].

Such a current may persist for long periods of time, as the fluid does not exhibit

viscous damping. Crucial to the maintenance of such a flow is a multiply-connected

geometry. In our BEC experiments, for example, multiply-connected toroidal traps

were created with the addition of a blue-detuned laser beam propagating along the

axial direction through the center of the harmonic trap, repelling atoms from the

beam focus at the trap center. With the barrier located in the fluid, and at sufficient

height such that it penetrates the fluid and sets the size (larger than the healing

length) of the spatial region absent of fluid, quantized circulation is supported about

the barrier location. This process is similar to vortex core “pinning,” where the vor-

tex structure and size is approximately the same as in the bulk fluid, but where the

vortex position is confined near a potential minimum created by a barrier. A vortex

pinned by a laser beam will be somewhat stable [15, 143], as moving the vortex core

and phase discontinuity from the pinning site (beam location) to the bulk atomic

fluid is energetically costly. The vortex thus tends to remain located at the beam,
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and vortex pinning in BECs has been experimentally studied [68]. This behavior

may be generalized to the situation with a large impurity and resulting multiply-

connected trap geometry, as quantized circulation will be stably localized at the

barrier location. For the case of a wide (relative to the healing length) barrier, we

identify this similar with a persistent current [10]. Such currents may exhibit multi-

ple quanta of circulation, and persistent currents have been experimentally observed

in superconductors [144], in superfluid 4He [145], and 3He [146], and persistent cur-

rents were recently observed for the first time in a BEC [75]. In this chapter a

novel mechanism for the creation of multiply-charged currents (superflows) in BECs

through the generation of vortex pairs and subsequent thermal damping in a toroidal

geometry is described, and evidence for the persistence of the flow is given.

5.2 Experimental procedure

As described in Chapter 4, superfluid flow exceeding a critical velocity can result

in the creation of vortex dipoles. The vortex pairs were shown to be long-lived,

dynamically moving throughout the condensate with well-defined orbits. The critical

velocity measured in the system was ∼ 170 µm/sec ≈ vc/10, where vc was the

calculated speed of sound in our system, ∼ 1700 µm/s. We modified this vortex

creation technique, in a way that allowed us to create and selectively collect vortices

leading to superflows, by first creating an 87Rb BEC in a toroidal geometry by

focusing an axially propagating 660-nm blue-detuned beam through the middle of

our harmonic trap, similar to the methods described in Chapter 4 and pictured

in Fig. 2.5. Different from the previous methods, the initial collimated beam was

reduced in diameter before the final lens, yielding a larger diffraction-limited spot

size at the BEC position, with a 1/e2 radius of 23(3) µm. The BEC was formed

through forced RF evaporation in the combined magnetic and optical potential with

the 1090-nm beam and blue-detuned beam turned on. The blue-detuned barrier

height U0 was in the range of U0 ∼ 131h̄ωr to U0 ∼ 151h̄ωr, while the chemical

potential of the BEC was µ0 ∼ 90h̄ωr. Thus, in units of the chemical potential
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Figure 5.1: In-situ images of the BEC in the toroidal trap. (a) Horizontal phase-
contrast image, corresponding to the time-step where vortex pairs are generated,
but without the blue-detuned beam enabled. (b) Vertical absorption image at the
same time-step, with the blue-detuned beam enabled. (c) Vertical absorption image
after additional cooling.

Figure 5.2: Scheme used to create a superflow. (a) RF sequence. (b) Timing se-
quence (see text). (c) Diagram of the spin sequence, shown relative to the harmonic
trap center. The harmonic trap center moves in a circle of r = 5.7(0.2) µm over 333
ms in response to the magnetic push coils (see text). Thus, in the trap rest-frame,
the blue-detuned beam (represented by the solid gray circle) appears to circle about
its initial position, as diagramed in zoomed in portion of the figure (not to scale).
Subsequent to the spin sequence the harmonic trap is held stationary, keeping the
blue-detuned beam centered on the harmonic trap.

the barrier height was in the range of U0 ∼ 1.4µ0 to U0 ∼ 1.8µ0. As expected, this

barrier height produced a clear hole in the middle of the cloud; in-situ images are

given in Fig. 5.1(b,c), where a flat, annular cloud is visible.

Also different in this experiment compared to the methods of Chapter 4 was the

RF evaporation scheme; the scheme is represented in Fig. 5.2(a). The initial jump of

the RF from 4 MHz to 3.61 MHz formed a BEC with a considerable thermal fraction
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(T/Tc ≈ 0.9, with Tc ≈ 116 nK) over 6 seconds. The cloud then equilibrated over

2 seconds as the RF was jumped back out to 4 MHz. A circular movement of the

harmonic trap center was then implemented, using a pair of magnetic push coils (as

seen in Fig. 2.5) driven 90 degrees out of phase. These coils create a bias field in

the radial plane whose direction slowly rotates; this technique is a two-dimensional

extension of the method used to linearly shift the harmonic trap to create vortex

dipoles, as described in Section 4.2. This bias field pushed the harmonic trap center

in a circle of diameter 5.7(0.2) µm in 333 ms (3 Hz), while the RF continued to

be held at 4 MHz, and the BEC followed the harmonic trap center. A diagram of

the spin procedure, in the rest frame of the harmonic trap, is shown in Fig. 5.2(c).

Subsequent to the spin procedure, the blue-detuned beam remained at the center

of the harmonic trap, and after an additional hold at 4 MHz for 1.166 s (Hold 1

in Fig. 5.2(b)) the RF jumped down to 3.5 MHz (Hold 2 in Fig. 5.2(b)), inducing

further cooling. This further evaporation removed much of the remaining thermal

component, resulting in a BEC with T/Tc ≈ 0.6, now with Tc ≈ 82(12) nK after 5 s

of Hold 2. The cloud was then held for a total variable time th (including Holds 1 and

2) of up to 1.166 s + 50 s after spinning, before the blue-detuned barrier height was

ramped to zero over 250 ms and expansion and near-resonant absorption imaging

were implemented. A summary of the BEC and thermal cloud atom numbers and

temperatures during this sequence is given in Table 5.1. Uncertainties quoted in the

table were estimated from the fitting routines used to fit the atom clouds. For small

numbers of atoms however, such as Nthermal = 0.19×106 in the final row of the table,

for example, the fitting routines have limited reliability. Thus, the corresponding

temperatures quoted are less certain than indicated.

Table 5.1: Number and temperature during the spin sequence
Sequence Step Condensate (×106) Thermal (×106) T (nK) Tc(nK)

End of 6 s jump 0.97(0.19) 2.08(0.42) 103(15) 116(17)
At spin 0.95(0.19) 2.15(0.43) 104(16) 118(18)
End of Hold 1 0.85(0.17) 0.82(0.16) 75(11) 96(14)
5 s of Hold 2 0.86(0.17) 0.19(0.10) 47(7) 82(12)
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5.2.1 Vortex creation and pinning

In order to look for the presence of vortices and superflows in our BECs, the above

experimental procedure was implemented and results were studied as a function of

the hold time th, and the evaporative RF values. Examining the first image (th =

0 ms) in Fig. 5.3, it is clear that the movement of the beam led to the creation of

many vortices, represented by density dips in the image1. Such a state has features

of quantum turbulence, as the presence of vortices suggests that movement of the

beam exceeds the critical velocity of the fluid and nucleates vortex pairs. This results

in a disordered arrangement of vortices and antivortices. Treating the blue-detuned

beam as a repulsive cylinder of radius r = 23 µm, a rough estimate of the velocity

of the outer edge point of the cylinder, moving in a circle of 5.7 µm at 3 Hz, gives

a velocity of ∼ 430 µm/sec, much greater than the measured critical velocity of

170 µm/sec. Additionally, the larger beam size implies that the beam edges are

located closer to the edge of the BEC, where the critical velocity is even lower. It is

therefore reasonable to expect many vortices and antivortices to be created during

the 333-ms spin stage, producing a turbulent initial state.

For each of the images in Fig. 5.3, ballistic expansion of the BEC was imple-

mented immediately after the 250-ms ramp-off of the blue-detuned beam. Moving

through the sequence of images in Fig. 5.3, with successive hold time th, it appears

that vortices begin to leave the system. Since this damping rate was found to be

sensitive to the initial thermal fraction immediately before the spin stage, thermal

damping is suggested as the primary mechanism for the loss of vortices, consistent

with prior work examining vortex damping at finite temperature [35].

The circular motion of the harmonic trap serves to bias the system, putting

one sign of vortex closer to the center of the cloud (on average); this implies there

is net angular momentum in the system, as vortices close to the center present a

greater contribution to the total angular momentum [147, 148]. With vortices close

to the blue-detuned beam location, they may be localized to the beam, as was seen

1For ease of description relative movement between the beam and trap center is described in

the frame of the harmonic potential.
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Figure 5.3: Superflow formation process; images are acquired with axial absorption
imaging, expanding immediately after the blue-detuned beam ramp-down. Imaging
just after the spin (th = 0 ms), rotating the trap leads to the creation of a turbulent
initial state (first image). The image scale is identical for each image. With increas-
ing hold time th an apparent superflow is established (indicated by the central dip
in the middle of the BEC) as vortices leave the system. After ∼ 7 s of hold (last
image), a large density dip is visible, suggesting the presence of multiple vortices
(see text) at the center of the BEC and the blue-detuned beam location.

experimentally in the work of Tung et al. [68]. Eventually, with enough hold time,

an apparent superflow is established around the blue-detuned beam in the center

of the cloud, and unpinned vortices simultaneously leave the system. The presence

of the superflow is indicated by the large dark holes in the images of Fig. 5.3; since

these images are taken after the beam ramp off, they are not due to the hole in

the BEC created by the blue-detuned beam. With the ramp-off of the blue-detuned

beam there is no active suppression of the density in the middle of the cloud, and

the time required to fill in a non-topological defect is small when compared with the

ramp-off time [149]. Thus, the density dip indicates the presence of vortices, and

the size of the density dip suggests the presence of multiple quanta of circulation.

when compared with the core size of a single vortex. Two singly quantized vortex

cores may be seen in Fig. 4.2(a) for comparison. We emphasize that this is not
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Figure 5.4: Evidence of current persistence. Average of 5 images (see text) taken
immediately after the blue-detuned beam ramp-off for each indicated hold time th.
The large dark spots are indicative of multiple vortices at the location corresponding
to the blue-detuned beam. The relative drift of the magnetic trap and beam position
(see text) is also apparent in the gradual misalignment of the spot relative to the
cloud center.

necessarily indicative of a “giant vortex” as was observed in the work of Engels et

al. [43], particularly because we do not have the same type of density suppression

mechanism at work or the high rotation rates of that experiment. Furthermore, with

the pinning potential removed the well-known instability of multi-charge vortices

will cause them to break in to single cores [147, 150]. Here, we have removed the

pinning potential immediately prior to expansion, so the vortices are still closely

spaced together and the limited imaging resolution of the imaging system gives the

appearance of a large, central density dip. More details about the loss of circulation

about the central blue-detuned beam are discussed in Section 5.2.3, and there was

some evidence for interesting metastable arrangements of vortices resulting from the

ramp-down of the central blue-detuned beam.

5.2.2 Superflow persistence

By holding a BEC in the toroidal trap for th and looking for evidence of centralized

vortices after the blue-detuned beam was ramped off, we investigated the persistence

of angular momentum in the system. In Fig. 5.4, an average of 5 images2 from the

experiment corresponding to each hold time th is shown. The average was gener-

ated by directly summing the images together. Again, expansion was implemented

2The average image at 11.166 s was generated from 4 images.
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immediately after the ramp-down of the blue-detuned beam, as in Fig. 5.3. The

images, on average, show the presence of a large central dip suggestive of multiple

vortices grouped in the middle of the cloud, as explained above. Over the 31.166 s

of hold time examined in the figure, gradual drift of the central dip to the lower

portion of the cloud is apparent, and gradual loss of the superflow is seen as the

relative contrast of the density dip decreases. Given a measured high degree of

stability in optical alignment, which only required adjustment at the beginning of

a day of data runs, this core movement is likely due to slow drift in the magnetic

trap center: the beam gradually becomes misaligned relative to the harmonic trap.

The corresponding loss of pinned vortices is consistent with previous experiments;

Ref. [75] observed high sensitivity to barrier beam displacements, leading to the loss

of superflows.

In order to resolve individual singly-quantized vortices, we added 3 s of hold time

after ramping off the blue-detuned beam but before expansion. Without the presence

of a pinning potential, and in a finite temperature environment [35], vortices separate

and spread out towards the edges of the cloud. With enough additional hold time,

the vortices were individually resolvable with the imaging system [147, 150]. The

statistical nature of the experiment is apparent, as the number of vortices observed

in a current for early hold times varied from ∼3 to 5 (inset images in Fig. 5.5).

The black squares in Fig. 5.5 show the average number of vortices counted over

10 runs per data point when spinning up and holding a BEC in the toroidal trap,

and implementing 3 seconds of additional hold after the blue-detuned beam ramp-

off, allowing the vortices to separate. An exponential fit to the data gives a vortex

lifetime of 31(4) s for the toroidal trap. In a second measurement, we ramped

down the beam after 5.166 seconds of hold time and then added subsequent hold

time; in this way we measured the lifetime of free vortices in our trap. These

data points are represented by the grey circles in Fig. 5.5. An exponential fit to

this data gives a vortex lifetime of 15(1) s. We see that the lifetime of vortices

in the toroidal geometry is approximately double that of the free vortex lifetime,

indicating the enhanced support of circulation in the toroidal trap. Note, however,
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Figure 5.5: Evidence of current persistence, counting vortices. Black boxes represent
average number of vortex cores over 10 runs per point, allowing 3 s of hold time
after ramp-down of the toroidal beam to resolve individual cores (examples inset).
Error bars represent statistical uncertainty rather than counting uncertainty. An
exponential fit to the data gives a lifetime of 31(4) s. Grey circles show the lifetime
of vortices released from the beam immediately after creating a superflow. An
exponential fit gives the lifetime of these free vortices of 15(1) s. White triangles
show extraneously generated vortices (see text) with the blue-detuned beam held
on but no initial spin of the cloud.
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that the angular momentum damping rate is not what is measured. Here, only the

numbers of vortices are observed, and their positions are not indicated. Thus, the

observations of free vortices show an upper limit of the angular momentum decay

rate, and the difference between angular momentum damping with and without the

blue-detuned beam is likely to be much greater than a factor of 2.

Figure 5.6: Plotted is the BEC atom number for long holds in the TOP trap, without
the blue-detuned beam (Hold 2). The BEC atom number decreases with increasing
hold time, and an exponential fit the data yields a lifetime of 24(3) s for the BEC
atom number.

The white triangles in Fig. 5.5 indicate average vortex observations in the

toroidal trap without rotating the trap or the beam. The point at th = 4 s in-

dicates the observation of spontaneous vortices in our system [79]3. Additional to

the magnetic field drift and beam misalignment, the BEC atom number decreases

with hold time in the trap (Fig. 5.6), likely due heating through coupling of exter-

nal vibrations to the combined optical and magnetic trap or some other unknown

process. An exponential fit to the data yields a lifetime of 24(3) s for the BEC atom

3See also Chapter 7
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number. As the BEC lost atoms, and the blue-detuned beam misaligned relative to

the trap center, the beam eventually approached areas of low density at the edge

of the BEC where the superfluid critical velocity is low, and the creation of vortex

pairs is relatively easy. A short study of the vortex observation statistics for a blue-

detuned beam aligned close to or intersecting the edge of the BEC indicated it was

possible to create vortices without any intentional oscillation of the cloud. Given

the very small amplitude of circular motion of the beam or the trap necessary to

create vortex cores (5.7 µm), along with the reduced critical velocity near or at the

edge of the BEC, residual vibration of the beam is suggested as a possible cause

of the apparent rise in vortex statistics without spinning. Nonetheless, even when

taking into account extraneously created vortices, there is clear separation in vortex

observation statistics between the toroidal and harmonic case over a wide range

of hold times, and the lifetime of the BEC is even shorter than the decay time of

the superfluid current. These are strong indications of current persistence in this

system.

5.2.3 Vortex dynamics after beam ramp-down

The dynamics of the vortices after ramping off the pinning potential presented some

interesting and perhaps unexpected results. Vortices of like charge tend to repel

one another [147, 150], so one might expect that without the pinning potential,

the vortices would quickly separate. Instead, as much as 3 s of hold time was

required to consistently resolve individual vortices. Fig. 5.7(a,b) shows example

images for increasing hold times after the beam ramp down, but before expansion,

corresponding to a cold cloud with T/Tc ≈ 0.6. After as much as a 2-s hold in the

trap with this condition, the vortices are still located in the middle of the cloud.

Fig. 5.7(c,d,e) correspond to a slightly lower BEC fraction, with a relative tem-

perature of T/Tc ≈ 0.74, where Tc ≈ 75 nK, indicating an increased thermal compo-

nent. For these images, the RF field was disabled during Hold 2 for 4 seconds before

ramping down the blue-detuned beam, thus the BEC is heated by collisions with

background atoms, resulting in a higher final cloud temperature. With short holds
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after the ramp down of the beam, regular arrangements of vortices shown in the

figure were seen infrequently. Fig. 5.7(c) corresponds to a 500-ms hold after beam

ramp-down, while Fig. 5.7(d,e) correspond to a 1-s hold after beam ramp-down. As

predicted in Ref. [151], regular arrays of vortices are expected when ramping the

beam to intermediate heights, starting with a persistent current. It seems possible

that the ramp down of the blue-detuned potential implemented above prompted

the generation of these regular arrangements. Exhaustive explorations of this phe-

nomenon, and possible connections to cloud temperature, were not conducted in the

context of the studies described in this chapter. However, these preliminary results

suggest further study of the de-pinning of vortices in this system is warranted.

Figure 5.7: Expansion images after producing a superflow, ramping off the blue-
detuned beam and holding in the harmonic trap for various times before expansion.
(a) 1-s hold after the beam ramps off. (b) 2-s hold. (c) At a slightly higher final cloud
temperature, sometimes regular structures were seen, such as this arrangement of
what appears to be 5 vortices after a 500-ms hold. (d,e) Arrangements of 4 vortices
seen after 1 second of hold.

5.3 Theory results

The stability of a pinned current was investigated by collaborators K. H. Law and

P. Kevrekidis, at the University of Massachusetts, and R. Carretero-González at

San Diego State University. For large enough numbers of atoms in the BEC, the

addition of a central, Gaussian-shaped barrier was found to stabilize a superflow.

As the barrier height increased, windows of instability were suppressed, and even in

the presence of dissipation (phenomenologically modeling finite-temperature condi-

tions), stable conditions were found. The investigation was able to tie increasing
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beam intensity to the ability to pin increasing numbers of vortex cores. In particu-

lar, for N = 2×106 atoms and a Gaussian 1/e2 radius of w0 = 20 µm for the central

barrier, close to the value measured in the experiment of w0 = 23(3) µm, the results

shown in Table 5.2 were found:

Table 5.2: Vortex pinning vs. barrier height, w0 = 20 µm
Number of Vortices Barrier height (h̄ωr)

3 142
4 144
5 146
6 150
7 154

The barrier heights needed to pin 3-5 vortices show excellent agreement with the

experimental conditions (∼ 131h̄ωr → 151h̄ωr), and the experimental results, where

between 3-5 vortices were usually observed after ramping down the blue-detuned

beam and waiting for 3 seconds before expanding and imaging.

5.4 Superflow creation without the 1090-nm beam

Utilizing an evaporative RF and spin sequence closely similar to that described in

Fig. 5.2, attempts were made to create superflows in the magnetic potential without

the 1090-nm beam, but still with the addition of an axially-propagating blue-detuned

beam. The TOP bias field B0 was left at 3.41 G, and with B′
z = 44 G/cm, thus

the vertical trap frequency is slightly different than the TOP trap described in

Section 2.3. The resulting axial trap frequency was ωz ≈ 2π × 13Hz (calculated),

rather than ωz = 2π × 15.3 Hz, and the radial trap frequency was ωr ≈ 2π × 8 Hz.

After forming a BEC with an RF jump to 3.50 MHz for 6 s, the RF was jumped

out to a value of 3.7 MHz, and a 666 ms spin over two rotation cycles was used.

The RF then jumped back to a lower value (3.48 MHz) for a variable hold time,

followed by a 100-ms ramp down of the blue-detuned beam and expansion. Despite

the smaller radial size of the BEC in this trap, the blue-detuned beam spot-size was
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still 23(2) µm. The results in this trap were not as extensively studied, but confirm

vortex creation and pinning dynamics similar to the results seen in the flattened

trap. An image taken immediately after ramping off the blue-detuned beam over

100 ms and then expanding the BEC is shown in Fig. 5.8(a). Again, an intensely

dark spot is seen, with size and optical depth distinctly different from a single vortex

core.

Examining Fig. 5.8(b-e) we see again the separation of the vortex cores as ad-

ditional hold time is added after ramping down the blue-detuned beam. Again,

the vortices remained centralized for short times, gradually separating and allowing

counting. As many as 7-8 vortices were visible after 5 s of hold time.

5.5 Conclusions

One may ask the question of whether these superflows fulfill the expectations asso-

ciated with persistent currents. Since a persistent current is characterized by dissi-

pationless flow in a multiply-connected geometry, the limited lifetimes of circulation

seen in our experiment seem to limit the applicability of this definition. However,

other experimental investigations of persistent currents in BECs (Ref. [75, 84]) saw

similar limits on the lifetimes of their flows (∼ 10 s), suggested as being due to blue-

detuned beam misalignment. The similar relative misalignment of the blue-detuned

beam in our experiment, in combination with the loss of BEC atom number, implies

systematic, rather than fundamental, limits on the persistence of these superflows;

Figure 5.8: Expansion images after producing a current in the trap without the
1090-nm beam, ramping off the beam and holding in the harmonic trap for various
times before expansion. (a) No hold after the beam ramps off. (b) 250-ms hold. (c)
750-ms hold. (d) 3-s hold. (e) 5-s hold.
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in particular the BEC atom number lifetime of 24(3) s is even shorter than the

vortex lifetime of 31(4) s in the toroidal trap. In fact, for particularly long hold

times centralized density dips indicative of a superflow were seen infrequently and

not extensively studied; Fig. 5.9 shows such an image for th = 51.166 s.

The observation of persistent currents in BECs further demonstrates the super-

fluid nature of the condensed gas. These results do not represent the first observa-

tions of persistent currents in BECs, but emphasis is given to the novel mechanism

described for their creation. Although the final results are statistical in nature,

with variable numbers of vortices resulting in any realization of the experiment, the

method was relatively easy to implement.

The suitability of this method for creating persistent currents in a regular TOP

trap highlights the effectiveness and wide applicability of the method, useful in

both flattened condensates where vortex bending [40] and tilting [27] are inhibited,

and in more three-dimensional clouds where they are not. Even though in the

2:1 aspect ratio trap, vortex dipoles are not as visible early in the sequence, and

would be expected to have short lifetimes in this trap [71], the effectiveness of the

blue-detuned beam is apparent. Localized circulation was visible (aligned with the

blue-detuned beam propagation axis), and up to 7-8 vortices were counted after the

beam ramp down. This method thus appears to have wide applicability in TOP

traps for stochastically generating persistent currents with large winding numbers.

Figure 5.9: A centralized density dip, indicating superfluid circulation about the
blue-detuned beam, for th = 51.166 s. The BEC was expanded and imaged im-
mediately after the ramp-down of the blue-detuned beam. Note the smaller size of
the expanded BEC when compared with Fig. 5.7, for example, consistent with the
smaller BEC atom number after a long hold in the toroidal trap.
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Furthermore, it was relatively easy to create large numbers of vortices in a flat-

tened toroidal trap with a small spin amplitudes, or even without spinning. This

relates to the ease of driving the system in to a highly excited state in the flattened

toroidal trap (see Chapter 3). The initially turbulent BEC state was driven into a

persistent current state through interaction with the blue-detuned impurity at the

center of the cloud, and the background thermal atoms. These are perhaps the

most interesting aspects of this persistent-current formation mechanism. With this

work we have demonstrated the possibility of microscopic studies of three impor-

tant pieces of the turbulence puzzle in BECs: (i) the formation, (ii) damping, and

(iii) evolution of such states. This work opens the door for future studies linking

these three ideas. Also, the reliance of the system on thermal damping in order to

establish the current showcases interesting physics. Studies of such “open quantum

systems” are of general and wide interest.
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CHAPTER 6

SPIN DOWN OF A VORTEX LATTICE

6.1 Introduction

In addition to studying how one may rotate a superfluid and introduce vortices into

the system, it is interesting to examine how angular momentum and vorticity is

lost. Of particular interest is the sensitivity of the system to defects and asymmetry

in the trapping potential. These asymmetries may have an important effect on

vortex lifetimes and vortex dynamics, and understanding the behavior of vortices

in the superfluid system is consequently important in understanding the behavior

of quantum turbulence in the system. Studies of rotating superfluid helium have

previously investigated vortex damping, often described in terms of the interaction

between the normal and superfluid components [12]. Damping may also be induced

through the interaction of the vortices with other quasi-particles in the fluid [152].

Vortices may also decay through the emission of phonons and through Kelvin-wave

oscillations [12, 40, 51]. However, few experiments have focussed on damping of

vortices due to impurities. BEC systems are attractive for such a study as the

symmetry and smoothness of the trapping potentials can be highly controlled. For

example, experiments described in Ref. [43] controlled the symmetry of a TOP trap

allowing for very long lived atom-cloud rotations (up to 5 minutes). The careful

control of trap symmetry also allowed for the generation of large vortex lattices.

Conceptually, the effect of radial-plane asymmetry in the trap may be seen from

the following equations [153]. First, we may write the expectation value of the

angular momentum of the BEC about the z-axis:

〈ψ|Lz|ψ〉 = ih̄
∫

ψ∗(~r, t)
∂

∂φ
ψ(~r, t)dr ≡ 〈ψ|(~r× ~p)z|ψ〉. (6.1)
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Here, |ψ〉 is the BEC quantum state, ~r the position operator, and ~p the momentum

operator. We can then take the time derivative of this equation, giving:

d〈Lz〉
dt

=
1

ih̄

∫
|ψ|2(~r× ~p)zV (r)dr. (6.2)

The momentum operator may be written in spherical coordinates as

(~r× ~p)z =
h̄

i

∂

∂φ
. (6.3)

Thus, for a time-independent potential V (r) with radial symmetry, d〈Lz〉
dt

= 0. If

the potential instead has radial asymmetry the angular momentum is not conserved

when considering only the BEC and ignoring any exchange of momentum between

the BEC and the trapping potential.

In order to study the effect of trap asymmetry on the angular momentum of

our BECs, we first spun up the BEC such that many vortices were in the cloud,

and then carefully added an asymmetric element (an impurity) to the potential. By

examining the decay of vortices (thus angular momentum decay) versus interaction

time in the perturbed potential, an experimental picture of the decay of angular

momentum in our system was obtained.

6.2 Vortex lattice creation

Vortices were added to the BEC through direct transfer of angular momentum

from a rotating asymmetric potential. This transfer of angular momentum was

accomplished through the following well-established method, first experimentally

implemented and described in Ref. [34], and widely utilized [18, 154].

In the normal configuration of the TOP trap, the path of the rotating instan-

taneous minimum of the spherical quadrupole potential (see Section 2.3) traces a

circle in the radial plane; the method employed here modifies this circle into an

ellipse, with a slow rotation of the major and minor axes. In the initial TOP trap

configuration, two sinusoidal waveforms at ωrot = 2π × 4 kHz drive two orthogo-

nal coil pairs oriented in the radial plane. The combination of the resulting two
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orthogonal magnetic fields is the bias field of strength B0, whose direction rotates

in the radial plane at angular frequency ωrot. In order to modify the symmetric

trap to create an ellipse in the radial plane, two additional relatively low-amplitude

90◦ out-of-relative-phase sinusoids are generated, at angular frequency ωmod ∼ ωrot.

One of these signals is added to the signal that drives one coil pair, and the other is

added to the signal driving the orthogonal pair. Examining one of the resulting final

signals with the addition of the extra sinusoid, for a fixed phase relationship of 0◦

between the initial signal and the added sinusoid, the amplitude of the total signal

is reduced; the converse situation applies for the orthogonal total signal, which is

increased. Thus, for ωmod ≡ ωrot, implying a fixed phase relationship between the

signals, the result is a stationary ellipse. However, if ωmod 6= ωrot, then the phase

relationship between the signals varies at an angular frequency of ∆ω/2, where

∆ω = |ωmod − ωrot|. As the amplitudes of the two signals vary with the relative

phase, the ellipse rotates in the radial plane at angular frequency ∆ω/2. The ratio

of the minor and major axis (set by the amplitude of the additional sinusoids) of the

ellipse utilized to spin up vortices in our experiment was ∼ 0.8. This approach to

creating vortices is well-known, and details of this trap configuration may be found

in Ref. [34]. More extensive details of the electronic circuit and signal generators

used to create the bias field B0 in our experiment may be found in Ref. [8].

Vortices will be created by rotating the ellipse at ∼ 0.7ωr [34]. In our experiment,

a value of ∆ω ∼ 2π×12 Hz was used (resulting in a 2π×6 Hz = 0.78ωr rotation of the

ellipse). This method was implemented in the magnetic trap without the presence

of the 1090-nm red-detuned beam, hence the trapping frequencies are (ωr, ωz) =

2π×(7.8,15.3) Hz respectively. Crucial to the creation of a vortex lattice in this

scheme is control of the forced evaporation RF values. After creating a BEC with

forced evaporative cooling, the RF was jumped out to a high value (∼ 7 MHz),

for 4 seconds of spinning. The RF was then jumped back down to a lower value

(∼ 5 MHz) and after and 1.5 seconds of hold time th, now back in the normal TOP

trap, we produced a lattice of vortex cores. After subsequent expansion and axial

absorption imaging, such a rotating state is seen in the leftmost image of Fig. 6.1.
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Figure 6.1: Measured vortex lifetime in the bare magnetic potential, each point is
averaged over 4 realizations of the experiment. The error bars represent the standard
deviation. An exponential fit to the data gives τ = 7.3(0.4) sec. (inset) Example
absorption images after expansion, showing the resulting lattice and its decay. Each
image is taken from a different run of the experiment. The length scale for each
image is identical to that shown on the leftmost inset image.
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Figure 6.2: (a) System to focus the blue-detuned Gaussian beam onto the BEC.
The beam focus occurs at the BEC location, and the 1/e2 radius was w0 = 23 µm.
(b) Similar system, but set up to image speckle on to the BEC. The optical fiber
terminates in a collimator, and is incident on a ground-glass diffuser. The ground-
glass plate is placed one focal length away from the closest lens and imaged to the
BEC location through the second lens. An example speckle pattern is shown, with
the Thomas-Fermi radius of the BEC superimposed.
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Due to residual uncontrolled asymmetry in the magnetic trap, as well as the

presence of a thermal cloud [35], the lifetime of vortices is finite. In other words,

vortex number and hence angular momentum decreases with hold time th in our

trap. Starting with a lattice of ∼40 vortices, we held the resulting cloud in the trap

to measure the vortex lifetime, and an exponential fit to the data yields a lifetime

of 7.3(0.4) s as shown in Fig. 6.1. Note that these images were obtained absent the

presence of any impurity.

6.3 Lattice damping with a Gaussian beam

To add asymmetry to the trap, two methods were used: the addition of a Gaus-

sian bump to the potential, and the addition of a disordered potential created by

imaging optical speckle onto the BEC location (Fig. 6.2). First, the addition of a

Gaussian bump to the potential will be described. By focusing a blue-detuned 660-

nm wavelength beam along the axial direction of the trap, a bump is created. The

660-nm laser light propagates through the system shown in Fig. 6.2 with a resulting

focused spot size at the BEC location of 8(2) µm. This repulsive potential was then

positioned at 3 different places within the BEC. These included a spot ∼ 7 µm

away from the center of the BEC, one aligned ∼ 14 µm away from the center of the

BEC (approximately half of the Thomas-Fermi radius of RTF = 30(2) µm), and one

intersecting the edge of the BEC, with the beam center aligned ∼ 20 µm away from

the center. In-situ images in absorption, showing the beam penetrating the BEC

are shown in Fig. 6.3.

For each of the three beam positions, a lattice of cores was produced, the beam

was ramped on with a fixed rate up to a variable intensity, held on for a variable

amount of time, and then ramped off. The cloud was expanded and imaged with

near resonant light, and vortices were counted. Details of the beam ramp-on, hold-

time, and ramp-off are summarized below.

In general, the scheme for investigating the dissipation of angular momentum in

the system is shown in Fig. 6.4. In each case, a lattice was generated with a 4-s
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Figure 6.3: Three different beam positions were utilized in the experiment, here
shown with in-situ absorption images. (a) Beam was aligned ∼ 7 µm away from the
center of the BEC. (b) Beam was aligned ∼ 14 µm away from the center of the BEC,
or approximately half of the Thomas-Fermi radius of the BEC, with RTF = 30(2)
µm.(c) Beam was intersecting the edge of the BEC, with the beam center aligned
∼ 20 µm away from the center of the BEC.

spin, followed by a 2-s hold, allowing for some equilibration of the vortices. The

blue-detuned beam height1 was then ramped on from zero up to full strength over

500 ms and held at full strength in in the following way, before being ramped to

zero again:

• I(a). The Gaussian beam was linearly ramped on to a beam-height value of

Ug, over 500 ms, to each value among a set of 9 beam-height values (defined

below), and held for 250 ms before being ramped to zero over 500 ms. This

represents a constant hold time, variable intensity test.

• I(b). The Gaussian beam was ramped on to a subset of values Ug of the set

of 9 values (defined below) over 500 ms, then held for a variable amount of

time (defined below), before being ramped to zero over 500 ms. This was a

variable hold time, constant intensity test.

Crucially, the cloud was expanded and imaged after 5 s of total hold time after

the spin and equilibration time steps, in an effort to compensate for the natural

decay of the lattice seen in Fig. 6.1. Thus, independent of any ramp and hold

scheme regarding the blue-detuned beam, each image is taken at the same time

1The term “beam height” refers to the peak repulsive potential height resulting from the light-

atom interaction (Eq. 2.1), calculated using the optical intensity at the center of the blue-detuned

focused spot.
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Figure 6.4: The timing sequence for investigating the spin down of the a lattice
due to the Gaussian beam. A lattice was formed by spinning the cloud for 4 s, and
letting it equilibrate for 2 s. The beam was ramped on over tr = 500 ms and then
either held to different beam heights Ug (see text) for a fixed time of th = 250 ms
(case I(a)), or held for a variable time th (case I(b)). The beam height was then
ramped to zero over tr = 500 ms, and any additional hold time was added such that
5 s of total hold time elapsed after the formation of the lattice. The BEC was then
expanded and imaged using near resonant absorption imaging.

step, allowing for comparison between the various blue-detuned beam ramp-and-

hold schemes. The set of beam powers corresponding to case I(a) were: Ptot =(4,

14, 24, 34, 53, 73, 93, 113, 135) µW. Assuming a Gaussian beam profile, one can

calculate the on-axis beam intensity from the following formula: I0 = 2∗Ptot

πw2
0

, where

w0 = 8(2) µm was the measured beam waist at focus. Referring to Eq. 2.1, the

beam heights Ug, given in units of h̄ωr, with ωr = 2π × 7.8 Hz, were calculated to

be Ug =(8, 31, 52, 73, 116, 159, 204, 246, 295) h̄ωr. For case I(b), a subset of three

beam power values was chosen: (4, 14, 24) µW, corresponding to Ug = (8, 31, 52)

h̄ωr. The hold times for case I(b) were th =(0, 0.25, 0.5, 0.75, 1, 2, 3, 4) s.

For each implementation of a ramp scheme, the resulting vortex observations

were tallied over ∼10 runs of the experiment, generating an average vortex observa-

tion statistic for each hold time th and beam height Ug. Due to fluctuations in the

initial lattices day-to-day, data points were normalized to the average initial num-

ber of vortices for each set of runs, in practice ∼ 15− 25 vortices2. Thus, resulting

plots of the aggregate data (as seen in Fig. 6.5, for example), taken from multiple

days of data runs, each start at a value of 1. In order to compare the various ramp

schemes, resulting average vortex observation statistics were plotted vs. a product

2The source of day-to-day fluctuations in vortex numbers was not determined.
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of the beam height U(t) and the time since the beam was turned on (essentially the

area under the curve seen in Fig. 6.4). The resulting metric is thus a beam-height-

time product, where the area is in units of h̄ωr · sec. Vortex observation results are

plotted against this metric, rather than a metric such as the final beam height, as

it provided a consistent way of comparing the resulting data points from the set of

blue-detuned ramp schemes.

The results for case I(a) are shown in Fig. 6.5. The following function was used

to fit the data:

f(βg) = (1− η0)e
−βg/γ + η0, (6.4)

where η0 is some offset normalized vortex number, γ is a decay constant, and βg is

a variable with units of h̄ωr · s. We define βg as βg =
∫

dt U(t), so that βg is the

integrated beam-height and time product (i.e. the area under the curve shown in

Fig. 6.4). This definition includes the ramp on and off of the beam. With the beam

aligned 7 µm off of the center of the BEC, the fit gave γ = 55(17) h̄ωr · s, with an

offset of η0 = 0.39(0.07). For the condition with the beam aligned at approximately

half of the Thomas-Fermi radius, the fit gave γ = 26(5) h̄ωr · s, with an offset of

η0 = 0.24(0.03). With the beam intersecting the edge of the BEC, the fit gave

γ = 25(5) h̄ωr · s, with an offset of η0 = 0.06(0.04).

For case I(b), data points were taken with the beam aligned at approximately

half of the Thomas-Fermi radius for three values of the beam height, Ug = (8, 31, 52)

h̄ωr, and hold times th = (0, 0.25, 0.5, 0.75, 1, 2, 3, 4) s. The vortex observation results

are shown in Fig. 6.6(a,b,c). Fig. 6.6(d) combines all the data onto one plot and fits

the following function to the curve

f(βg) = e−βg/γ. (6.5)

Fitting only the data corresponding to the 24 µW case, Fig. 6.6(c), yields γ =

31.8(2.5)h̄ωr · s. Fitting the combined data from Fig. 6.6(a,b,c) yields γ =

31.4(1.3)h̄ωr · s. It is worth noting that these decay constants, corresponding to a

case in which the hold time was varied, are similar to the decay constant γ = 26(5)

h̄ωr · s from fitting the curve in Fig. 6.5(b), where the intensity was varied. The
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Figure 6.5: Damping results for the Gaussian beam, aligned at the three positions
shown inset in the figure, normalized to the initial number of vortices. Results are
plotted against the beam-height-time product βg. Error bars on the plot represent
the standard deviation of the data points over the ∼ 10 runs of the experiment per
data point. (a) Vortex observation results with the beam aligned just off center
of the BEC. The resulting fit gives a time constant of γ = 55(17) h̄ωr · s, with an
offset of η0 = 0.39(0.07) (see text). (b) Vortex observation results with the beam
aligned at approximately half the Thomas-Fermi radius. The resulting fit gives a
time constant of γ = 26(5) h̄ωr · s, with an offset of η0 = 0.24(0.03). (c) Vortex
observation results with the beam intersecting the edge of the BEC. The resulting
fit gives a time constant of γ = 25(5) h̄ωr · s, with an offset of η0 = 0.06(0.04).
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Figure 6.6: Damping results for the Gaussian beam, aligned at half the Thomas-
Fermi radius, normalized to the initial number of vortices. Results are plotted
against the beam-height-time product. Error bars on the plot represent the standard
deviation of the data points over the ∼ 10 runs of the experiment per data point.
(a,b,c) Damping as a result of a fixed (4,14,24) µW total beam power respectively,
and varied hold time. (d) The results of fitting the curve for 24 µW, shown with a
grey dashed line, yielding γ = 31.8(2.5)h̄ωr · s and the combined data from (a), (b),
(c) (black solid line), yielding γ = 31.4(1.3)h̄ωr · s. Data points from Fig. 6.5(b),
where the final beam height was varied, are also shown with open boxes.
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Figure 6.7: Speckle images, centered on the BEC position, for a typical beam inten-
sity used in the experiment. Overlaid on the plots is the approximate Thomas-Fermi
diameter of the condensate. (a)Blue-detuned speckle. (b) Red-detuned speckle. (c)
Red-detuned speckle, but with a smaller spatial scale than (b).

beam position is the same for both cases, thus, comparison of these sets of data

suggest that the potential-time product we have defined as βg is in fact the signifi-

cant figure of merit in determining the amount of damping in the system. Further

discussion of this metric will be included at the end of this chapter.

6.4 Lattice damping with speckle

The generic optical system shown in Fig. 6.2 was used to image a ground glass

diffuser on to the BEC, resulting in a speckle pattern at the BEC location. For

blue-detuned speckle at a wavelength of 660 nm, a 10◦ diffraction angle ground glass

diffuser was used, and two 75 mm lenses were used in the collimated imaging system.

The resulting speckle pattern is shown in Fig. 6.7(a). Red-detuned speckle was also

utilized, using 1090-nm light. Here, an extra 50-mm lens was inserted in to the

system, approximately 45 mm to the right of the ground glass plate in Fig. 6.2(b);

this lens served to approximately focus the input 2-mm radius collimated beam,

onto a 25◦ ground glass diffuser. The plate was then imaged with a 50-mm lens

followed by a 110-mm lens. Since the resulting system has a magnification of ∼2X,

and the light has longer wavelength (1090 nm), the resulting speckle pattern was

larger grained than in the blue-detuned case and is shown in Fig. 6.7(b). Smaller

grained red-detuned speckle was also utilized using an imaging system the same as

that used in the blue-detuned case; an image is shown in Fig. 6.7(c).
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Similar to the Gaussian beam, the input blue-detuned beam to the ground-glass

plate was ramped on to various intensities and held for various times before being

ramped off. However, unlike the Gaussian beam scheme, the ramp time was not

held constant; instead for each of the three speckle fields, a constant ramp slope

dUd/dt (see below) was respectively maintained for each case. A diagram of the

timing sequence is given in Fig. 6.8. Thus, for larger final input beam intensities,

the ramp took longer to reach maximum intensity. Prior to the application of the

speckle, as in the Gaussian beam case, a 4-s spin was followed by a hold, in this case

3 s, allowing a vortex lattice with ∼ 20 vortices to form. The speckle pattern was

then ramped on, held, and ramped off, and any additional hold was implemented

such that all images was taken after a total of 2 s of hold after establishing the

lattice. Three specific ramp schemes were investigated:

• II(a) The beam incident on the ground-glass plate was ramped to various

intensities, resulting in various “disorder strengths” Ud,max (defined below),

with each ramp maintaining the same slope.

• II(b) Using the same slope and ramps as in case II(a), an additional 250 ms

hold was added before ramping the beam off.

• II(c) Using the same slope as in case II(a), one specific disorder strength

Ud,max was chosen from case II(a), and the hold time was varied.

Following [155], the speckle pattern was characterized by taking the standard

deviation over an ∼ 200-µm-square box, centered at the BEC position, characteriz-

ing a “disorder strength,” given here in units of h̄ωr. The standard deviation was

taken on a pixel-by-pixel basis, and the disorder strength Ud is defined as:

Ud =

√√√√ 1

N

N∑

i=1

(Ui − U)2, (6.6)

where N is equal to the total number of pixels, Ui the value of the ith pixel given

in units of h̄ωr, and U is the mean potential energy over the 200-µm-square box.

Although the speckle pattern has an overall approximately Gaussian envelope (due
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to the initial Gaussian input beam), the 1/e2 width of the pattern was on the order

of 900 µm for the blue-detuned speckle; thus the intensity over the 200 µm-square

box is fairly constant. For the blue-detuned speckle, the resulting set of disorder

strengths for case II(a) were Ud,max = (0.17, 0.40, 0.63, 0.87, 0.96, 1.11, 1.21, 1.35,

1.44, 1.54, 1.73) h̄ωr. In ramping on and off the beam incident on the ground-

glass plate, the slope was set to match a 500-ms ramp to Ud,max = 1.35 h̄ωr, or

dUd/dt = 2.7 h̄ωr/s, resulting in corresponding ramp times of tr = (83, 167, 250,

333, 367, 417, 450, 533, 567, 633) ms. For case II(b), a subset of disorder strengths

were used, since with the addition of a 250-ms hold, some of the resulting total ramp

and hold times would have exceeded 2 s. The subset used was Ud,max = (0.17, 0.63,

0.87, 0.96, 1.11, 1.21, 1.35) h̄ωr. For case II(c), a disorder strength of Ud,max = 0.63

h̄ωr was used, with hold times th = (0, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5) s.

For the large-grained red-detuned speckle, the approximate Gaussian envelope

of the speckle was on the order of 500 µm. The speckle is again characterized over

a 200-µm-square box, and the set of disorder strengths used for ramp scheme II(a)

were Ud,max = (0.45, 0.65, 0.84, 1.05, 1.24, 1.45, 1.65) h̄ωr. The slope for this

speckle pattern was chosen to match that of a ramp to Ud,max = 1.45 h̄ωr in 750 ms,

Figure 6.8: The timing sequence for investigating the spin-down of the vortex lattice
due to speckle. A lattice was formed by spinning the cloud for 4 seconds, and
letting it equilibrate for 3 seconds. The beam was ramped on over a variable time tr
resulting in disorder strength Ud,max and then immediately ramped off (case II(a)),
or held at the value Ud,max for 250 ms (case II(b)), or held at a value Ud,max for a
variable time th (case II(c)). Since the slopes dUd/dt were matched for all ramps
for a given speckle pattern, ramps to higher values Ud,max take longer to accomplish.
After the ramp sequence, the cloud was held for any remaining time such that the
image was taken after 2 s of total hold after establishing the lattice.
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or dUd/dt = 1.93 h̄ωr/s, resulting in the corresponding ramps: tr = (214, 321, 428,

535, 642, 750, 857) ms. Again, for case II(b), a subset of disorder strengths were

used: Ud,max = (0.45, 0.65, 0.84, 1.05, 1.24) h̄ωr. For case II(c), with variable hold

times, a disorder strength of Ud,max = 0.65 h̄ωr was used, with hold times th = (0,

0.1, 0.25, 0.5, 0.75, 1) s.

For the small-grained red-detuned speckle, the approximate Gaussian envelope

of the speckle was on the order of 1000 µm. Characterizing the speckle over a

200-µm-square box, the set of disorder strengths used for ramp scheme II(a) were

Ud,max = (0.51, 0.56, 0.64, 0.69, 0.76, 0.89, 1.05) h̄ωr. The slope for this speckle

pattern was chosen to match that of a ramp to Ud,max = 1.05 h̄ωr in 750 ms, or

dUd/dt = 1.40 h̄ωr/s, resulting in the corresponding ramps: tr = (83, 167, 250, 333,

366, 417, 450, 500) ms. Again, for case II(b), a subset of disorder strengths were

used: Ud,max = (0.51, 0.56, 0.64, 0.69, 0.76, 0.89) h̄ωr. For case II(c), with variable

hold times, a disorder strength of Ud,max = 0.51 h̄ωr was used, with hold times th =

(0, 0.1, 0.175, 0.25, 0.5, 0.75) s.

The resulting vortex observation statistics for the three ramp schemes and three

speckle patterns are shown in Fig. 6.9. The data points were plotted against the

disorder-strength-time product, defined as βd =
∫

dt Ud(t), again integrated over

ramp and hold times. Error bars represent the standard deviation over the ex-

perimental runs used to generate each point; here 3 runs of the experiment were

averaged. Again, the simple exponential decay shown in Eq. 6.5 was used to fit the

resulting data; here, the total data corresponding to cases IIa, IIb, and IIc for

each speckle pattern were fitted. For the blue-detuned speckle, the fit to the data

gives γ = 0.53(0.04)h̄ωr · s. For the large-grained red-detuned speckle, the fit gives

γ = 0.57(0.04)h̄ωr · s, and for the small-grained red-detuned speckle, the fit gives

γ = 0.36(0.03)h̄ωr · s.
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Figure 6.9: Damping results for speckle, normalized to the initial number of vortices;
each point is averaged over 3 runs of the experiment and error bars represent the
standard devation. Results are plotted against the disorder-strength-time product
βd. (a) Vortex observation results for the blue-detuned speckle. Data corresponding
to cases II(a), II(b), and II(c) are combined on the plot. The resulting fit to the
total data gives γ = 0.53(0.04) h̄ωr · s (see text). (b) Vortex observation results
for the large-grained red-detuned speckle. The fit to the total data gives a decay
constant of γ = 0.57(0.04) h̄ωr · s. (c) Vortex observation results for the small-
grained red-detuned speckle. The fit to the total data gives a decay constant of
γ = 0.36(0.03) h̄ωr · s.
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6.5 Qualitative comparisons with theory

Initial numerical investigations by Law, Kevrekidis, and Carretero-Gonzáles have

provided some qualitative comparisons to these experiments. The simulations im-

plement a 2-D GPE solver, and represent simulations at zero temperature. Starting

with a lattice of ∼20 vortices, a Gaussian beam was introduced with a beam height

of approximately 96 h̄ωr and aligned at half of the Thomas-Fermi radius. After

5 s of damping, many vortices have left the cloud, and a disordered, non-lattice

arrangement of vortices and corresponding phase was seen, as in Fig. 6.10(a,b).

Such disordered arrangements of vortices were also seen in the experiment, as in

Fig. 6.10(c), shown here for qualitative comparison only. The 3 experimental runs,

each taken under identical conditions, correspond to a beam peak height of 8 h̄ωr,

centered ∼ 14 µm away from the BEC center (approximately half the TF radius),

held on for 4 s, and expanded immediately after ramping the beam off. The beam

height used in the experiment is much lower than that used in the numerical ex-

ample. Further numerical studies will provide for more quantitative comparisons.

In general, though damping is seen in the numerics, it is as yet unclear whether

damping takes place at similar time-scales and beam heights as in the experiment.

6.6 Discussion of results

The introduction of gradual asymmetry into the trap results in the loss of vortices

for both the single displaced Gaussian beam, and red and blue-detuned speckle, in

accordance with expectations. Comparison between the damping with a Gaussian

beam and speckle requires a consistent metric to be utilized in characterizing the

potential. However, though easily assigned in the case of a Gaussian beam, using the

peak intensity of the beam to calculate a beam height, the random and distributed

nature of the speckle intensity field makes it more difficult to pick such a metric.

The use of the standard deviation of the speckle pattern to characterize the disorder

strength is used here, as is consistent with the literature [155], but makes for difficult

comparison with the Gaussian beam. The use of this metric suggests that the
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Figure 6.10: Qualitative comparisons between experiment and theory. (a) Density
profile a cloud, generated with 2-D GPE simulations, showing a disordered set of
vortices after 5 seconds of exposure to a Gaussian beam at height ∼ 96 h̄ωr) and
aligned at half the TF radius, and (b), the corresponding phase profile. The circles
included on the image designate regions in which to count vortices; the initial con-
dition for this run was a lattice of (20,14) vortices within the (white, black) circles
respectively. The final condition shown here contains (14,11) vortices. (c) Shown for
qualitative purposes only, 3 experimental runs, each of the 3 taken under identical
conditions, corresponding to a beam height of 8 h̄ωr, aligned at approximately half
the TF radius, held on for 4 s, and expanded immediately after ramping the beam
off. In the experiment, strong beams such as that used in the numerical simulations
led to a near complete damping of vortices if the beam was held on to near the
imaging time (th = 4 s in case I(b)). A weak beam is thus used here for qualita-
tive comparison with the numerical simulations, as the weak beam allowed many
vortices to remain in the system, allowing the arrangement of the vortex cores to
be observed. The disordered arrangement of vortices is qualitatively similar to the
numerical simulations, despite the difference in vortex number and large difference
in beam intensity.
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damping rate due to speckle is much higher than the rate due to a Gaussian beam,

for a given potential height, Ug or Ud,max, as may be seen through examination of

Fig. 6.5 and Fig. 6.9, for example. The physical implication of this comparison,

given a somewhat inconsistent metric between the two situations, is unclear. There

is some indication when comparing the damping rate for the Gaussian beam near

the center of the cloud, with the damping rate for a beam at the edge of the cloud,

which suggest that the rate of angular momentum loss is faster when the beam is

at the edge of the cloud. This may significant, as a vortex lattice rotates similar

to a solid body relative to the lab frame [11], implying that the fastest rate of

fluid flow relative to a Gaussian beam or speckle pattern (fixed in the lab frame)

would occur at the edge of the BEC. Since the speckle pattern fills the image plane,

and the full area of the BEC, edge effects may be most important. Further work,

including utilizing numerical simulations of the experiment, will ideally allow for

more direct comparisons between the damping rate due to speckle versus a single

Gaussian beam.

Perhaps the most significant aspect of the experiment is the importance of the

beam-height-time product βg or the disorder-strength-time product βd as figures of

merit in determining the loss of angular momentum from the system. Since the

chemical potential of the cloud is estimated to be ∼ 48h̄ωr, and Gaussian beam

heights on the order of 8h̄ωr led to significant damping for the case of the Gaussian

beam, it appears that small defects can have a significant damping effect, assuming

the beam is held on for a long enough time. Similar effects were seen with the

speckle pattern for low disorder strengths.

A significant deviation from this behavior is seen in Fig. 6.5, where the offset η0

is seen. These data points were obtained by varying the intensity of the beam, but

keeping a fixed hold time of 250 ms. The leveling of the curve indicates a departure

from damping dependent on the beam-height-time product. For the purpose of

discussion, we can imagine a Gaussian beam with a peak potential height just over

the chemical potential of the BEC. This beam will fully penetrate the cloud, forming

a hole. Such a precise beam height was not utilized in the experiment; however, if



113

plotted on Fig. 6.5, the point would lie at a value of ∼ 36h̄ωr · s. Thus, data

points located to the right of this value correspond to beam conditions which fully

penetrate the cloud. This value falls close to the decay constant γ values produced

through fitting the data in the figure. Perhaps this behavior indicates a saturation

of damping for a fixed interaction (hold) time as the Gaussian beam potential height

nears the chemical potential, or at least a much larger decay constant, resulting in

the apparent leveling of the decay curve near the value η0. This hypothesis may be

checked in numerical simulations or with further experimental studies.
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CHAPTER 7

SPONTANEOUS VORTICES

7.1 Introduction

This chapter summarizes several experiments conducted in the lab studying the

spontaneous formation of vortices in the BEC transition. First, a review of the

spontaneous vortex formation mechanism is presented from a theoretical stand-

point. A summary of an experiment that may be interpreted as model of the

spontaneous vortex creation mechanism, where three independent BECs were in-

terfered, is given next. An experiment concerning the first experimental observa-

tions of spontaneous vortices in BECs is discussed, and experimental progress on

further study of spontaneous vortex formation in our BECs is described. The spon-

taneous vortex creation mechanism has been theoretically discussed in the context

of superfluid turbulence [121, 156, 157]; the intermediate stages of non-equilibrium

superfluid formation are characterized by the presence of a tangle of vortices and

antivortices and their interactions. The resulting final states represent the evolution

to quasi-equilibrium, and experimental study of these final states may give insight

into vortex-antivortex annihilation and dynamics. Moreover, spontaneously formed

vortices represent a fundamental source of extraneous vortices in each of the ex-

periments described in this dissertation, with observation rates dependent on the

specific experimental sequences.

7.2 BEC phase transition

Phase transitions are ubiquitous across diverse physical systems and occur at all

energy scales, from the familiar phase transition of water to ice, for example, to

the phase transitions that occurred in the early universe [158]. Physical systems
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that are unrelated on a microscopic level can be organized into universality classes

that exhibit similar physics during the phase transition. It is therefore helpful to

broadly characterize dynamics of phase transitions, and how a system reaches an

equilibrium state. The dynamics of the phase transition, especially when a system

is out of equilibrium, present convenient experimental signatures for the study of

spontaneous symmetry breaking through the formation of topological defects [159].

In a BEC, such defects manifest as topological structures such as vortices [79, 128]

or solitons [160].

The process of spontaneous vortex formation in a BEC is related to the growth of

correlations in the system as the gas passes through the condensate phase transition.

A parameter denoted by ξ quantifies the length over which changes in the order

parameter ψ may be accurately predicted. The Kibble-Zurek model [127, 158, 161]

provides a prescription for calculating this correlation length ξ. The relaxation

rate of the system 1/τ quantifies an equilibration time of the system, where τ =

τ0kBT/|µ|, where τ0 is a phenomenological parameter, equal to the elastic collision

time between particles, T the system temperature, and µ is the chemical potential.

We assume the temperature decreases linearly with time; T (t) = (1− t
τQ

)Tc, where

1/τQ characterizes the quench rate of the system and is τQ known as the quench

time. The quench rate may be appropriately thought of as a cooling rate for a

thermodynamic phase transition. The quench rate 1/τQ is not necessarily equal to

1/τ , and in particular, if 1/τQ < 1/τ , the system falls out of equilibrium and the

correlation length ξ is frozen at [128]

ξ = λTc(τc/τ)1/4. (7.1)

Here, λTc is the thermal deBroglie wavelength at the critical temperature Tc. De-

scriptions of the parameters λTc and Tc may be found in Ref. [4]. The freezing-in

of this characteristic length scale is especially significant if ξ is smaller than the

harmonic-oscillator length of a harmonically trapped BEC, the characteristic length

scale describing the size of the BEC for low atom numbers. The transition pro-

cess may be then characterized by the formation of independent phase-uncorrelated
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regions of characteristic size ξ, and this mis-match of length scales implies the ex-

istence of multiple uncorrelated regions, referred to here as “proto-condensates,”

within the emerging condensed region. The progressive interference of these regions

may trap phase loops of 2π, as described in a model experiment in the subsequent

section. Such a phase loop describes a quantized vortex, and the spatial density of

these topological defects is shown in the Kibble-Zurek model to be proportional to

1/ξ2. Significantly, the density of defects is thus tied to the formation rate 1/τQ;

in particular, for faster formation rates a higher density of defects is predicted. A

schematic of the spontaneous vortex formation process is shown in Fig. 7.1.

Figure 7.1: Schematic showing the vortex formation process. As the cloud experi-
ences a quick quench, self-coherent regions of length scale ξ may form. Depending
on the relative phase between adjacent regions, indicated by shades of gray, 2π phase
windings may be present as the BEC continues to grow. These topological defects
appear as vortex cores, with either sign (+/-) of circulation, denoted by the cross
and circle. Figure taken from [79].

7.3 Vortex formation through merging independent BECs

Before discussing our work on spontaneous vortices, it is relevant to summarize

an earlier experiment performed in the group: “Vortex formation by merging of

multiple trapped Bose-Einstein condensates,” published in Physical Review Letters

on March 16, 2007 [71], and more fully discussed in David Scherer’s PhD thesis [8]. A

brief description of the experimental procedure is included below and the relevance

to spontaneous vortex creation is noted.
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7.3.1 BEC formation in a three-well potential

The experiment utilized a blue-detuned laser field to create a repulsive barrier. The

660-nm beam generating the barrier was directed along the axial direction of the

trap, similar to previously described methods used to focus a Gaussian beam to

the BEC position as in Fig. 2.5. Different in this experiment was the shape of the

resulting potential: instead of a Gaussian focused spot, a “Y-shaped” barrier was

imaged onto the trap position. By overlaying this potential with the (ωr, ωz) =

2π × (7.8, 15.3) Hz TOP trap (Section 2.3), the result was a potential with three

local minima, as shown in Fig. 7.2. The barrier was ramped on over two seconds

prior to BEC formation. With a final evaporative RF ramp over 10 seconds, 3

BECs were formed in the combined potential. Depending on the strength of the

blue-detuned barrier, the three independent condensates would either combine as

the BEC continued to grow as in Fig. 7.2(d), for a weak barrier, or remain separated

as in Fig. 7.2(e), for a strong barrier.

Figure 7.2: (a) Potential energy contours of the harmonic trap combined with a
Y-shaped repulsive potential. (b) Binary mask used to create the Y-shaped beam,
and (c) a CCD image of the resulting beam. (d,e) Phase-contrast images of the
condensate, in-trap, viewed along the axial direction. In (d) a weak barrier was
implemented with 45 µW of power in the beam. The image in (e) is representative
of the strong barrier situation with 170 µW of power, yielding three condensates
at the completion of evaporative cooling. Images are 85 µm-square. Adapted from
[71].
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7.3.2 Merging of independent BECs

The relative phases of the three clouds were initially indeterminate. Upon merging,

any phase differences would lead to interference and most likely fluid flow1. Merging

of the condensates was accomplished through two methods: either the condensates

would merge together naturally as they continued to grow, for low-intensity barriers

(weak-barrier regime), or they could be forcibly merged through ramp-down of the

blue-detuned beam (strong-barrier regime).

Depending on the uncertain relative phases between the three condensates, a 2π

phase gradient was theoretically calculated to occur with a probability of Pv = 0.25,

in the limit of slow merging [162]. Since a 2π phase gradient corresponds to a

quantized vortex, in the limit of slow merging we expected the formation of a single

vortex; we emphasize that there is no explicit rotation or spinning added to the

trap, instead, the vortex forms stochastically as a function of the random relative

phases between adjacent condensates. For fast formation rates, interference fringes

were predicted to occur, and the formation of multiple vortices was understood to

be possible through the decay of interference fringes into vortices and antivortices.

Results obtained for various merging times τ in the strong-barrier regime are

shown in Fig. 7.3. By varying the merging time, different vortex observation statis-

tics were observed, and for slow merging times the results approached the expected

value of Pv = 0.25. For faster merging rates greater numbers of vortices were

observed. Vortices were also observed in the weak-barrier regime, with similar ob-

servation results. For additional details on this experiment, see Ref. [153].

7.3.3 Relevance to the Kibble-Zurek model

Seeing vortex formation as a result of the merging of independent condensates serves

as a “3 proto-condensate” model of the Kibble-Zurek mechanism. The situation is

considerably more complicated in the general Kibble-Zurek case, as the number of

proto-condensates and merging time are not fixed or directly controllable quanti-

1fluid flow velocity v ∝ ∇φ, see Eq. 1.2
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ties. However, this experiment functions as a proof-of-principle, showing that vortex

formation is possible when merging independent, phase-uncorrelated BECs.

Figure 7.3: (a,b,c,d) Vortex observations for different merging times, corresponding
to the strong-barrier regime; the barrier was ramped off over the time τ indicated.
(e) By varying τ , the expected value of Pv = 0.25 is approached in the limit of slow
merging (Pv = 0.25 is shown by the dashed line). Figure taken from [8]

7.4 Observation of spontaneous vortex cores in the BEC transition

This section summarizes a second experiment performed in the group: “Spontaneous

vortices in the formation of Bose-Einstein condensates,” published in Nature on

October 16, 2008 [79]. Additional details may be found in Chad Weiler’s PhD

thesis [9]. This work served as motivation for our continued studies on spontaneous

vortex formation.

7.4.1 Spontaneous vortex formation

As described above, for a fast quench one expects to see vortices spontaneously

forming in the wake of condensation. For faster 1/τQ, which can be associated with
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faster condensation, the number of defects observed (defect density) is expected to

increase. We formed a BEC in the 2:1 harmonic trap, as described in Section 2.3.

Two independent evaporative sequences were used to create BECs: a 6-s RF ramp

(Quench A), and a sudden jump to a final RF value (Quench B). Following the

methods of Ref. [128] the correlation length was estimated to be ξ ≈ 0.6 µm. Since

the radial harmonic oscillator length is ar ≈ 3.8 µm, we expected spontaneous

vortex formation in our system. In calculating the quench time τQ, which was then

used to estimate the correlation length, some uncertainty is present as the best

experimental estimator of this parameter is unclear. We used the BEC formation

time tF , which we defined as the time elapsed between the first observation of a

BEC component (∼ 10% of the final BEC number) and the time at which the BEC

number reached ∼ 90% of its final value. Fig. 7.4(a) shows the formation rate for the

two RF evaporative schemes. Included on the plot is work done by Matthew Davis

and Ashton Bradley at the University of Queensland2 who simulated the experiment

numerically using a finite-temperature model of the atomic system. Their data is

represented by the solid lines in Fig. 7.4(a).

Examining figure Fig. 7.4(b), the probability of observing a single vortex is seen,

derived from the numerical simulations. In order to measure vortex observation

statistics in the experiment, we formed a BEC using one of the two evaporative RF

schemes, expanded, and looked for the presence of vortex cores. By repeating the

experiment many times, observation statistics were acquired. For Quench A, 23-

28% of 90 runs contained at least one vortex, and for Quench B 15-20% of 98 runs

showed at least one vortex. Examining Fig. 7.4(b), we see good agreement with the

numerical results; experimental data windows and vortex observation statistics are

represented by the grey boxes. The results agreed well with the numerics.

7.4.2 Spontaneous vortices in a toroidal trap

A toroidal trap was formed with the addition of a blue-detuned beam, propagating

along the axial direction, similar to experiments described previously. This toroidal

2Ashton Bradley is currently at the University of Otago.
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Figure 7.4: (a) Formation rates for the two RF schemes (A,B) and the toroidal
trap (C, see text.) Experimental data is represented by the circles and boxes, the
lines indicate numerical data. (b) Observation probability for a single vortex core
as a function of time. Experiment data windows and vortex observation statistics
are indicated by the grey boxes. (c) Expanded images of BECs showing the pres-
ence of spontaneous vortex cores, taken from the experiment. (d,e) Numerically
derived data, showing the presence of vortex cores in simulated cloumn density and
corresponding phase. Figure adapted from [79].
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Figure 7.5: Vortex core pinning. (a, c), Representation of the experimentally mea-
sured positions R of all vortex cores relative to the Thomas-Fermi radius (RTF )
(outer circles) for (a), the harmonic trap and (c), the toroidal trap. (b, d), Corre-
sponding theoretical results, crosses and circles indicate oppositely charged vortices.
(e, f), Comparison of the statistics of the vortex locations, binned in steps of 0.1RTF ,
for the experimental data (left bars) and theoretical simulations (right bars). Har-
monic trap results are shown in (e), toroidal trap results are shown in (f). For the
experimental data, only images clearly showing a single core are considered. Caption
and figure taken from [9].

trap was constructed without the addition of the red-detuned light sheet, hence the

trap exhibits a ∼2:1 (radial:axial) BEC geometry. The blue-detuned laser beam

had a 6-µm focused spot at the BEC location and was ramped on prior to BEC

formation, as in the 3-well experiment. The final power in the beam was 18 µW,

corresponding to a potential energy of kB × 20 nK. This may be compared to the

chemical potential of the BEC, µ ≈ kB × 20 nK. The beam thus penetrates the

cloud, producing a toroidal total potential.

Evaporation in this trap (quench C on Fig. 7.4(a)) led to the spontaneous cre-

ation of vortices, with ∼ 56-62% of runs containing at least one visible vortex core.

This geometry, as discussed in Chapter 5, can lead to the pinning of vortices, in-

hibiting decay. The results seen experimentally and numerically provided evidence

for the existence of pinned cores. After ramping the beam down and expanding for

imaging, note was taken of the position of vortex cores within the expanded BEC
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over the set of experimental and numerical runs. The aggregate of all data is seen in

Fig. 7.5. When compared with the purely harmonic trap, grouping of vortices at the

trap center is seen in both the experimental and numerical toroidal trap data. This

implied the possibility of pinning of vortices during the BEC formation process.

7.5 New results: faster formation rates in a combined trap

A primary limitation of the experiments discussed so far was a limited formation

rate. In particular, we hoped to obtain faster formation rates to look for the depen-

dence of vortex observation statistics on BEC formation rate. After the completion

of the first spontaneous vortex experiment, we implemented the 1090-nm beam for

combined optical and magnetic traps (see Section 2.6). This section summarizes

how we were able to utilize the combined optical and magnetic trap to condense

more quickly and examine the resulting vortex statistics. Limitations of the work

and directions for future experiments are discussed finally.

7.5.1 New method of evaporation

Typically, forced RF evaporative cooling was the primary method of evaporating in

the combined optical and magnetic trap in order to produce BECs. However, the

addition of the optical beam opens up several new possibilities for BEC formation.

Since the atoms are confined vertically by the optical field, the quadrupole gradient

B′
z may be changed with negligible shift of the vertical position of the combined

trapping potential. Since the equilibrium sag position, given by Eq. 2.2, is sensitive

to B′
z, the cloud will instead feel a net force due to an effective gradient as B′

z

is changed. In effect, one side of the vertically confining potential is “tipped” as

the equilibrium position shifts by ∼ 0.25 mm towards the quadrupole origin. A

diagram of this is shown in Fig. 7.6(a,b). This force can kick atoms out of the

vertically confining beam, providing another evaporative mechanism. By combining

this technique with a simultaneous RF ramp or jump, faster formation rates were

possible. A list of the evaporative schemes used follows:
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Figure 7.6: (a) Initially, the beam is aligned with the center of the magnetic field.
(b) As the quadrupole gradient is shifted to a typical value of B′

z = 60 G/cm, the
atoms continue to be held in place by the beam as the equilibrium position of the
magnetic trap shifts by ∼ 0.25 mm towards the quadrupole origin (z = 0 on plot).
The vertical axis is scaled by kB × Tc, Tc ∼ 100 nK is the critical temperature.

• Evap. I: fastest formation. After transferring a thermal cloud with T ≥ Tc

to the combined optical and magnetic trap, evaporation was implemented by

snapping the RF to a value of 3.9 MHz and implementing a 1-s ramp of the

quadrupole gradient B′
z from 44 G/cm to 57 G/cm, with B0 held at 3.41 G.

In order to determine the formation rate, horizontal phase-contrast images of

the BEC during the evaporative ramps were taken. The results from fitting

the data are shown in Fig. 7.7. By examining the time scale over which the

BEC number Nc rose from ∼10% to ∼90% of its final value, the formation

time was estimated to be tF ≈ 160(40) ms. As discussed earlier, it is not clear

what to use for τQ, so we take this definition of tF as τQ in comparing quench

rates between the various evaporation schemes.

• Evap. II: moderately fast formation. The RF was ramped from 4 MHz to 3.9

MHz with an exponential ramp over 2 s; the exponential time constant was

set to τ = 1 s. Again, the quadrupople gradient was shifted over the 2-s time

interval; this time B′
z ramped from 44 G/cm to 60 G/cm. The results from

fitting the transition data are shown in Fig. 7.8. The formation time for this
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ramp was estimated as tF ≈ 525(75) ms, again by estimating the time taken

for Nc to rise from ∼10% to ∼90% of its final value.

• Evap. III: moderately slow formation. This formation scheme was performed

with B0 = 3.41 G and B′
z = 44 G/cm. A 6-s RF exponential ramp with τ = 2

s from 4 MHz to 3.53 MHz was implemented. The results from fitting the

transition data are shown in Fig. 7.9. The formation time for this ramp was

estimated as tF ≈ 1.30(0.1) s.

• Evap. IV: slowest formation. A 10-s τ = 5 s exponential ramp was performed

in the trap with B0 = 3.41 G and B′
z = 44 G/cm. The results from fitting the

transition data are shown in Fig. 7.9. The formation time for this ramp was

estimated as tF ≈ 2.6(0.2) s.

7.5.2 Spontaneous vortex formation in the combined trap

By expanding and looking for vortices, comparisons were made between the various

formation schemes. Fig. 7.11 shows vortex formation results for Evap. I as a

function of time from the beginning of the formation ramp, with each point an

average of 35 separate runs of the experiment, taken over several days. The vortex

statistics decay with time and the final state of the system is expected from theory

to be a ground-state BEC with no vortices. An exponential fit to the data gives a

time constant of τ = 2.5(0.5) s. Although the signal-to-noise ratio improves with

hold time (as the evaporative ramp completes), the decay of vortices (most likely

due to annihilation) implies that one should look as early as possible in the BEC

formation to accurately count vortices. For fast formation rates with large numbers

of vortices, under counting is thus a potential problem.

For Evap. I, looking as early as possible in the evaporation sequence, the

highest overall spontaneous vortex observation statistic was seen. On a particular

day of data runs, on average 4.8(0.1) vortices were observed over 29 runs of the

experiment, with as many as 9 vortices visible in a few single runs of the experiment.
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Figure 7.7: Results from fitting the transition data for Evap. I, the snap RF
and 1-s B′

z ramp. The formation time was taken from the plot showing Nc, the
condensed atom number. Given the large shot-to-shot fluctuations and fluctuations
in the condensate size and number values, we estimated the formation time for the
early part of this rapid cooling sequence as shown with the solid lines in the second
plot of the first column. By examining the time scale over which Nc rose from ∼10%
to ∼90%, the formation time was estimated to be tF ≈ 160(40) ms. µ (or µ-bar) is
defined as µ/h̄ωr.
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Figure 7.8: Results from fitting the transition data for Evap. II, the 2-s RF and B′
z

ramp. As in Fig. 7.7, the formation time was taken from the plot showing Nc, the
condensed atom number, and was estimated with the lines shown. By examining the
time scale over which Nc rose from ∼10% to ∼90% of its final value, the formation
time was estimated to be tF ≈ 525(75) ms.
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Figure 7.9: Results from fitting the transition data for Evap. III, the 6-second RF
ramp, with B′

z held constant. As in Fig. 7.7 and Fig. 7.8 the formation time was
estimated to be tF ≈ 1.30(0.1) s.
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Figure 7.10: Results from fitting the transition data for Evap. Scheme IV, the
10-second RF ramp. As in Fig. 7.7-7.9, the formation time was determined as
tF ≈ 2.6(0.2) s.
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This vortex observation statistic is considerably higher than was seen in the bare

harmonic trap, where the observation static was ∼ 0.23 vortices per cloud. Example

images, showing the presence of multiple vortices, corresponding to Evap. I are

inset in Fig. 7.12. The vortex observation statistics corresponding to Evap. II, III,

and IV were 2.2(0.2), 1.4(0.1) and 0.6(0.1) vortices respectively.

As a caveat to this analysis of the data, note is taken of the complicated aspect

of accurately counting the number of vortices seen in the cloud, primarily through

the difficulty in selecting the time at which the signal-to-noise ratio was sufficiently

high enough to reliably resolve vortices visually, further complicated by density

fluctuations in the cloud. These non-ideal factors make positive identification of a

vortex difficult, as can be inferred from the inset of Fig. 7.12.

With the ability to vary the formation time, hence τQ, and referring to Eq. 7.1,

one would expect the defect (vortex) density to increase with decreasing formation

time. In Fig. 7.11 and Fig. 7.12, one can see this behavior is manifest in the exper-

imental data, confirming an important characteristic of the Kibble-Zurek model in

this system. The expected defect density Nd predicted by the Kibble-Zurek model

scales with the quench time τQ as Nd ∝ τ
−1/2
Q [128]. Taking the log10 of both sides,

one expects a plot of log10(Nd) vs. log10(τQ) would exhibit a slope of γ = −1/2. A

log-log plot of the data showing the average number of vortices vs. formation time

is shown in Fig. 7.13, and a linear regression fit gives a slope of γfit = −0.71(0.09).

Also plotted is the expected slope of γ = −1/2. However, the final BECs obtained

in each evaporative ramp differed in the final BEC size (volume), with the fastest

ramp (Evap. I) producing the smallest BEC. In order to account for the different

final BEC volumes, the radius of each cloud was measured, giving r ∼ 32 µm for

Evap. I, r ∼ 35 µm for Evap. II, and r ∼ 44 µm for Evap. III and Evap. IV.

An approximate normalized average vortex number can be obtained by multiplying

the average number obtained for Evap. (I, II) by (1.8, 1.4) respectively. The

results are plotted in Fig. 7.14. A fit to this slope yields γfit = −0.94(0.05), with

relatively more narrow 90% confidence bands when compared with Fig. 7.13.

Although the -1/2 slope lies within the confidence bars of the fit in Fig. 7.13,
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Figure 7.11: The decay of vortex observation statistics corresponding to the fastest
formation rate is shown, averaged over several days of data runs. Each point repre-
sents the average of 35 runs of the experiment. Here, t=0 is defined as the start of
the final RF evaporative ramp. An exponential fit to the data gives a time constant
of τ = 2.5(0.5) s.

Figure 7.12: Spontaneous vortex observations as a function of formation time. The
error bars for the average number of vortices are statistical in nature, and data
points represent the average number of vortices seen over a single day of data runs
(with ∼29-100 runs of the experiment for each data point). The error bars for the
formation time were estimated from the plotted formation data. (inset) Example
images in expansion of multiple spontaneously formed vortices for each formation
scheme.
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Figure 7.13: Average vortex observations for the 4 different formation times are
plotted. A linear regression fit to the data (black squares)was performed in order
to compare with [159], giving a slope −0.71(0.09). Additional points (gray circles)
illustrate what a set of data with a slope of -0.5 would show. These points do not
represent experimental or numerical data. This generated line lies within the 90%
confidence bands.

Figure 7.14: Average vortex observations corrected for the differing final BEC sizes
is shown, giving a normalized version of Fig. 7.13. A linear regression fit to the
data (black squares)was performed in order to compare with [159], giving a slope
−0.94(0.05). As in Fig. 7.13, gray circles illustrate a slope of -0.5. The generated
-0.5 slope is now clearly outside the 90% confidence bands in this plot.
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an additional question is posed by the work of Yates and Zurek [159]. There are

two expected slopes: a value of γ = −0.5 is expected for a so-called underdamped

case, and γ = −2/3 for an overdamped case, where overdamping and underdamping

regimes refer to fast and slow respective rates of vortex annihilation.

There may also be additional effects coming in from the inhomogeneity of the

system, which has been shown to affect the defect formation scaling. Qualitatively, in

an inhomogeneous system, the gas does not undergo the phase transition uniformly.

Instead, a phase front forms, which propagates at a velocity given by [160]:

v = v0|ε|ν(z−1), (7.2)

where v0 is determined by the microphysics of the system, and is equal to ξ0/τ0,

and ε = Tc−T
Tc

. In the effectively 1-D system, studied in Ref. [160], the edge of

the propagating phase front propagates along one axis, and values for (ν, z) are

(ν = 2/3, z = 3/2) and (ν = 1/2, z = 2) for a “plausible” and “mean-field” case

respectively [160]. The resulting defect density slope is γ ≈ −1, implying propor-

tionality between the quench rate and the defect density. This value corresponds well

with the normalized vortex slope seen in Fig. 7.14, further complicating the interpre-

tation of the results. Since we have not obtained enough data to clearly distinguish

between the three regimes of overdamping, underdamping, and the inhomogeneous

case, a direct comparison of the scaling phenomena seen in the experiment to the

Kibble-Zurek model remains elusive. Additionally, uncertainty appears in the ex-

perimental estimation of the quench time τQ, which was assumed to be equal to tF ,

as defined above. More discussion follows in the conclusion of this chapter.

7.5.3 Spontaneous vortex formation in a DC trap

A potential conceptual and systematic concern in a TOP-trap Kibble-Zurek exper-

iment is the presence of a rotating component of the trap. Although the frequency

of rotation, at ωrot = 2π × 4 kHz, is large enough such that the cold atoms should

only be sensitive to the time average, atomic micromotion scales are sub-micron,
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Figure 7.15: Spontaneous vortices resulting from a quench in the DC trap, absorp-
tion imaged in expansion.

and micromotion should not lead to turbulence, a check must be made that the

signs of the spontaneously generated vortices do not exhibit bias. Quadrupolar sur-

face mode excitation [23] was utilized in the bare-magnetic trap, and no bias was

found in the data [79]. However, one might simply utilize the DC optical combined

trap (Section 2.6.4), as this trapping configuration contains no rotating component.

Condensation in this trap was achieved by implementing a final RF ramp to 1.68

MHz over 6 s with an exponential time constant of τ = 1 s, after transferring a

thermal cloud just above condensation into the trap. By expanding and imaging

in the normal expansion field, spontaneously generated vortices were observed as

shown in Fig. 7.15. These observations served as a check on our spontaneous vor-

tex observations, further ensuring they were not coming from an external rotating

influence.

7.6 Conclusions and future directions

In total, the experiments described in this chapter are among the first to study the

formation of spontaneous vortices in BEC, and the first to investigate the scaling of

vortex formation with quench time. The ability to reproducibly create condensates

over a range of formation rates, with approximately an order of magnitude difference

between the slowest and fastest formation rates, suggests the possibility of further

rigorous experimental comparison to the Kibble-Zurek model. The results summa-

rized in this chapter are consistent with a primary prediction of the Kibble-Zurek

model: the vortex observation statistics increase with shorter formation time.
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Direct comparison of the defect density power law predicted by the Kibble-Zurek

model with the data is more difficult. The apparent difference between Fig. 7.13

and Fig. 7.14, indicates this difficulty. The dramatic difference between the two

slopes, coupled with the three different possible slopes given by the Kibble-Zurek

model, γ = −1/2 for the homogenous underdamped case, γ = −2/3 for the ho-

mogenous overdamped case, and γ ≈ −1 for the inhomogeneous case, complicates

interpretation of the results.

It seems that the normalized plot (Fig. 7.14) exhibits the best fit, with a slope

of γ = −0.94. However, an overarching difficulty in tallying the vortex observa-

tion statistic is the necessary counting of vortices in the images of the cloud, first

complicated by the signal-to-noise ratio in the images, and density fluctuations. Ad-

ditionally, some difficulty may be seen in distinguishing vortices on the edge of the

cloud where the density of the cloud, hence the optical depth, is low. In total, these

difficulties imply some user dependence in vortex counting numbers and likely un-

derestimation of the error bars in Fig. 7.12, Fig. 7.13, and Fig. 7.14. Also, the decay

of vortices with time provides for possible undercounting of vortices, as mentioned

above. Further work in the lab will seek to examine these states through interfer-

ometric methods, comparing instead correlation length in the system as a function

of formation rate, a metric expected to be proportional to the vortex density.

In addition to exploring the fundamental physics of phase-transitions, investi-

gations of the formation of spontaneous vortices in BECs involve the study, at a

microscopic level, of the evolution of an out-of-equilibrium initial state predicted to

exhibit quantum turbulence. These studies thus form a demonstrated approach for

studying the properties and evolution of quantum turbulence in BECs, including

the influence of finite temperature on the system. When coupled with numerical

simulations, these results, and any additional experimental studies, will continue to

shed light on this regime of quantum turbulence.
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CHAPTER 8

CONCLUSIONS

The results of the four main experiments discussed in Chapters 4-7 show that BECs

represent a particularly convenient system for microscopically studying fundamental

aspects of quantum turbulence. This is particularly true due to resolvable vortex

cores (after ballistic expansion), the dilute nature of the gas amenable to quanti-

tatively accurate modeling with mean-field theories and finite-temperature environ-

ments, and the high level of experimental control over experimental parameters such

as trap geometries. Specifically, for studies of turbulence in BECs, it is crucial to

understand the formation, dynamics, and decay of quantized vortices. The experi-

ments described in this dissertation represent considerable progress towards building

a better microscopic understanding of these aspects of quantized vortices in BECs,

and have set the stage for further work. As numerical studies to be undertaken by

our collaborators model the experiments described within, and as new experimen-

tal and numerical results are obtained, the strengthening of existing connections

between experiment and theory will lead to more complete models and powerful

tools for future work. This concluding chapter provides a brief review of each of the

experiments described in this dissertation, including a discussion of the impact of

each experiment, along with discussions of future direction for experimental work.

8.1 Progress towards studies of quantum turbulence

A primary motivation for many of the experiments described within this disserta-

tion were the experiments described in Section 3.4: by harmonically exciting the

BEC through modulation of the bias field B0, or by suddenly adding energy to a

BEC, excitations and vortices were seen in the system in both simply and multiply-

connected geometries. The apparent ease with which these excitations entered the
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system when the atom cloud was held in a toroidal trap was particularly striking.

Possible connections to vibrating wire experiments, fluid counterflow experiments,

and bubble cavitation experiments in superfluid helium are suggested. Given that

quantum turbulence is characterized by the presence of many vortices and their in-

teractions, the presence of many vortices in our BECs suggests the feasibility of an

ongoing effort into studying and understanding quantum turbulence in our BECs.

However, macroscopic definitive signatures of a turbulent state were not pur-

sued, and the complete nature of these states, absent an exploration of the energy

spectrum in an effort to compare with that expected from the Kolmogorov theory,

remains unknown. Nevertheless, the striking appearance of vortex cores in these

states fits within the qualitative definition of turbulence given in Section 3.3.3, and

initiated our efforts to more completely understand the microscopic behavior of vor-

tices in our system by exploring a variety of simplified and better-controlled vortex

configurations.

8.1.1 Vortex dipoles

By examining the fluid flow in the wake of a moving obstacle (a blue-detuned laser

beam), relative to the rest frame of the harmonic trap, the generation and dynamics

of vortex dipoles were microscopically determined for the first time in BEC ex-

periments. The additional observation of multiply-charged vortex dipoles in both

experiments and numerical simulations represent a new set of metastable fluid-flow

structures in BEC. The dipoles exhibited defined flow patterns organized into peri-

odic orbits of the vortices, in qualitative analogy with classical dipolar flows.

This experiment afforded us much information regarding the behavior of vor-

tices and antivortices in the system: in particular, (i) the long lifetimes of the vor-

tex dipoles indicated that vortices and antivortices can closely approach each other

without annihilation, and (ii) the propensity of like-charge vortices to remain closely

spaced about the loci of circulation in the dipolar flow was unexpected. Addition-

ally the generation of vortices through movement of a barrier through the system

provides important clues to the behavior seen in the harmonically-excited toroidal
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trap.

8.1.2 Persistent currents

Extending our vortex dipole creation techniques into a toroidal, multiply-connected

geometry, we were able to selectively nucleate many vortices near a repulsive barrier

forming the center of a toroidal potential. With the addition of thermal damping

to remove extraneous vortex cores, the initial turbulent state evolved and multiply-

charged persistent currents were stochastically created. These superflow structures

were long-lived, and were able to be created in both the flattened toroidal potential,

created with the addition of the 1090-nm red-detuned light sheet and repulsive

central barrier, as well as in a sagged TOP trap combined with a repulsive central

barrier. The wide applicability of this technique represents a new paradigm for the

creation of persistent currents in harmonically trapped BECs.

The low amplitude of relative beam motion necessary for exciting many vortex

cores, in combination with the increased likelihood of seeing extraneous vortices as

the atom cloud number decayed and the repulsive potential moved to the side of the

BEC provides further information regarding the behavior seen in the harmonically-

excited toroidal trap, where vortices were easily generated through harmonic mod-

ulation of the trap.

8.1.3 Vortex lattice spin-down

By first introducing angular momentum into the system through production of a

vortex lattice, the dynamics of the loss of angular momentum from the BEC sys-

tem was investigated as a response to impurities introduced into the potential well

holding the BEC. Such systematic limits on the lifetime of vortices in the system

necessarily alter the dynamics of vortices, and thus are relevant to the study of

quantum turbulence in the system. A benefit to using BECs in such studies is the

clean and controllable potentials used to confine the gas of atoms. By selectively

adding impurities, physics that may be relevant to other superfluid systems may be
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microscopically explored.

8.1.4 Spontaneous vortices

The spontaneous vortex formation mechanism is characterized by the evolution of

an out-of-equilibrium turbulent state into quasi-equilibrium, characterized by the

presence of vortex cores. Expanding on our previous work, representing the first

observations of spontaneous vortices in BECs, we were able to modify the BEC

formation rate in an effort to compare directly with the Kibble-Zurek model, which

predicts a vortex density dependent on the quench rate.

As a key component of the Kibble-Zurek model, the increased density of vortex

cores with faster formation rates was confirmed in our system. The quantitative

match of the scaling rate with the rate predicted by the Kibble-Zurek model is

somewhat less clear, although the results seem to point towards the relevance of an

inhomogenous Kibble-Zurek model in our system. There is much room for future

work exploring spontaneously formed vortices in BECs as an avenue of understand-

ing phase transition dynamics as well as quantum turbulence.

8.2 Future directions

These research results suggest many different directions for future work. The cre-

ation of vortex dipoles can be extended in various ways, in experiments that attempt

to pin the resulting vortex and antivortex, with the goal of studying vortex anni-

hilation and dynamics with the added ability to controllably place the vortex pair

within the condensate. Details of the resulting orbits of the released dipoles might

be explored, and the behavior near the stable points (see Section 4.3.1) might be

characterized. Additionally, with the introduction of even more beams, it may be

possible to produce more exotic pinned vortex states.

Extending the persistent current work, an experiment might be undertaken that

explores the vortex dynamics as the the barrier beam is ramped down. The regular

configurations of vortex cores occasionally seen in the experiment (see Section 5.2.3),



140

are expected from simulations [151], and an experiment to examine these states in

more detail would be worthwhile.

There is also much work to be done regarding the formation of spontaneous

vortices in the system, as further experiments will hopefully provide for a direct

test of the Kibble-Zurek scaling law in this system. Since a primary limitation of

the experiment was the ability to reliably distinguish vortex cores, interferometric

methods of characterizing the condensate are currently underway, and determining

a coherence length as a function of formation time will be soon tested. With enough

data, this alternative method of characterizing vortex densities will hopefully be

able to distinguish between the various Kibble-Zurek scaling laws, and will also be

applicable to studies of quantum turbulence.

As a broad picture of the formation, dynamics, and decay of quantized vortices in

our system is established, continued studies of turbulence will be facilitated. Finally,

we are confident that experimental and numerical studies of BECs will likely provide

further clues to properties of quantum turbulence, as well as further advance a

microscopic understanding of quantum turbulence built on firm experimental results

and corresponding numerical simulations.
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and W.D. Phillips. Generating persistent currents states of atoms using orbital
angular momentum of photons. Nuclear Physics A, 790(1-4):705c, Jun 2007.

[73] V. Schweikhard, S. Tung, and E. A. Cornell. Vortex proliferation in the
Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-
Einstein condensates. Phys. Rev. Lett., 99(3):030401, Jul 2007.



147

[74] T. Isoshima, M. Okano, H. Yasuda, K. Kasa, J. A. M. Huhtamäki, M. Ku-
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