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ABSTRACT

Methods to generate, manipulate, and measure optical and atomic fields with global or local an-
gular momentum have a wide range of applications in both fundamental physics research and
technology development. In optics, the engineering of angular momentum states of light can
aid studies of orbital angular momentum (OAM) exchange between light and matter. The engi-
neering of optical angular momentum states can also be used to increase the bandwidth of optical
communications or serve as a means to distribute quantum keys, for example. Similar capabilities
in Bose-Einstein condensates are being investigated to improve our understanding of superfluid
dynamics, superconductivity, and turbulence, the last of which is widely considered to be one of
most ubiquitous yet poorly understood subjects in physics. The first part of this two-part disser-
tation presents an analysis of techniques for measuring and manipulating quantized vortices in
BECs. The second part of this dissertation presents theoretical and numerical analyses of new
methods to engineer the OAM spectra of optical beams.

The superfluid dynamics of a BEC are often well described by a nonlinear Schrödinger equa-
tion. The nonlinearity arises from interatomic scattering and enables BECs to support quantized
vortices, which have quantized circulation and are fundamental structural elements of quantum
turbulence. With the experimental tools to dynamically manipulate and measure quantized vor-
tices, BECs are proving to be a useful medium for testing the theoretical predictions of quantum
turbulence. In this dissertation we analyze a method for making minimally destructive in situ
observations of quantized vortices in a BEC. Secondly, we numerically study a mechanism to
imprint vortex dipoles in a BEC. With these advancements, more robust experiments of vor-
tex dynamics and quantum turbulence will be within reach. A more complete understanding of
quantum turbulence will enable principles of microscopic fluid flow to be related to the statistical
properties of turbulence in a superfluid.

In the second part of this dissertation we explore frequency mixing, a subset of nonlinear
optical processes in which one or more input optical beam(s) are converted into one or more
output beams with different optical frequencies. The ability of parametric nonlinear processes
such as second harmonic generation or parametric amplification to manipulate the OAM spectra
of optical beams is an active area of research. In a theoretical and numerical investigation, two
complimentary methods for sculpting the OAM spectra are developed. The first method employs
second harmonic generation with two non-collinear input beams to develop a broad spectrum
of OAM states in an optical field. The second method utilizes parametric amplification with
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collinear input beams to develop an OAM-dependent gain or attenuation, termed dichroism for
OAM, to effectively narrow the OAM spectrum of an optical beam. The theoretical principles de-
veloped in this dissertation enhance our understanding of how nonlinear processes can be used to
engineer the OAM spectra of optical beams and could serve as methods to increase the bandwidth
of an optical signal by multiplexing over a range of OAM states.
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CHAPTER 1

Introduction

The studies of nonlinear phenomena for optical fields and for atomic Bose-Einstein condensates
(BECs) have developed into broad fields since the first demonstration of second harmonic gen-
eration in 1961 [1] and the first realizations of Bose-Einstein condensation in 1995 [2–5]. The
two fields, nonlinear optics and experimental Bose-Einstein condensation research, share a broad
range of similar properties and in fact an entire field of study known as Nonlinear Atom Optics
is dedicated to studying these similarities [6].

In this dissertation I investigate methods to manipulate, model, and measure nonlinear phe-
nomena for both optical fields and BECs. This introductory chapter describes what this research
entails.

1.1 Nonlinear wave dynamics

Wave-like behavior has been observed on almost every length scale in the known universe ranging
from the quantum mechanical behavior of light and atoms to the recently detected gravitational
waves [7]. Furthermore, waves are present in almost every area of physics: statistical descrip-
tions of gases, liquids, and solids, the description of electromagnetism, gravitation, and quantum
mechanics all can be interpretted in terms of wave dynamics. The wave equation is

∂2ψ

∂t2 = q2∇2ψ (1.1)

where ψ represents an arbitrary field and q represents some proportionality constant. The left
hand side refers to a time derivative and the right hand side accounts for spatial variations.

The propagation of electromagnetic fields through a medium in the absence of free charge,
free current, and bound current can be described by the electromagnetic wave equation in the
following form: (

∇2 −
1
c2

∂2

∂t2

)
E(r, t) =

1
ε0c2

∂2P(r, t)
∂t2 . (1.2)

In this formulation, E represents the vector electric field, P represents the polarization density, c
is the speed of light and ε0 is the permittivity of free space. The nonlinearity of this wave equation
lies in the polarization density, P. Specifically, P can be expressed in terms of a linear component
P(1) ∝ E and a nonlinear component P(NL) that can consist of any number of nonlinear terms.
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The nonlinear polarization term is attributed to the electromagnetic field modifying the medium,
typically a crystal, which then in turn modifies the dynamics of electromagnetic field propaga-
tion. In addition to second harmonic generation, a wide variety of other nonlinear phenomena
exist including other frequency mixing processes such as parametric amplification, which will be
discussed briefly later in this chapter, and self-focusing or defocusing effects, which are mathe-
matically analogous to the nonlinearities in BECs due to inter-atomic scattering contained in the
nonlinear parameter of the Gross-Pitaevskii Equation discussed later.

The Klein-Gordon equation serves as a model for relativistic wave dynamics of matter and
takes a similar form to the electromagnetic wave equation:

1
c2

∂2

∂t2ψ(r, t) − ∇2ψ(r, t) +
m2c2

~2 ψ(r, t) = 0, (1.3)

where ψ represents the complex-valued wave function of a single particle wave, m represents the
particle mass, and c the speed of light. In the non-relativistic form, the Klein-Gordon equation
reduces to the more well-known Schrödinger equation,

i~
∂ψ(r, t)
∂t

= −
~2

2m
∇2ψ(r, t) + V(r)ψ(r, t), (1.4)

where V(r, t) represents the single-particle potential, which can have both spatial and time depen-
dence. The Schrödinger equation in this form is linear; however, in many-atom systems such as
those investigated in this dissertation, the Schrödinger equation often approximates to a nonlinear
form,

i~
∂ψ

∂t
= −
~2

2m
∇2ψ + V(r)ψ(r, t) + Ng|ψ(r, t)|2ψ(r, t), (1.5)

known as the Gross-Pitaevskii equation [8–10] or the nonlinear Schrödinger equation. The non-
linearity in BECs is due to the presence of multiple atoms and inter-atomic scattering, which is
characterized in this formulation by the nonlinear parameter g and the atom number N.

The presence of a nonlinear parameter in a wave equation results in a variety of phenomena
depending on the type of nonlinearity. In 87Rb BECs for example, the interaction term is repul-
sive (g > 0); however, in other experimental configurations it can take on an attractive (g < 0)
behavior, which is analogous to self-focusing effects in optical fields resulting from the Kerr non-
linearity. The presence of a strong repulsive nonlinearity in matter waves results in the existence
of highly localized quantized vortices, which enables experimental tests of quantum turbulence.

1.2 BEC manipulation and measurement

A single-component scalar BEC’s wave function ψ(r, t) is a complex-valued function of position
and time. The modulus of the wave function squared, |ψ(r, t)|2, is the probability density and is
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perhaps the most easily measured property of the atom cloud; however the phase information
of the wave function can not be deduced directly from the probability density. An energetically
stable vortex is characterized by a 2π phase winding about an axis in the complex-valued wave
function, the existence of which was first predicted by Lars Onsager in 1947 [11] and is one of
the most notable features that distinguishes a superfluid from a classical fluid [12, 13]. Super-
fluid velocity corresponds to the gradient of the wave function’s phase and a 2π phase winding
corresponds to fluid circulation about an axis. The existence of a 2π phase winding about an
axis requires a phase discontinuity at the axis, which forces the axial density to zero in a single-
component BEC.

Vortices are of particular interest in studying superfluids and one key reason is their stability;
they are topological defects and so they cannot simply vanish through damping mechanisms.
They can, however, be destroyed by annihilation with an anti-vortex or by moving to the BEC
boundary where the local density approaches zero. Similarly, a single vortex cannot suddenly
nucleate in the center of a BEC. On the other hand, vortex-antivortex pairs can be brought into
existence in the bulk of a BEC [14],

The mechanisms behind vortex nucleation are an important topic of study for two primary
reasons. First of all, knowledge of these mechanisms will serve to improve our understanding
of superfluid physics. Second of all, developing the ability to nucleate vortices in a BEC is a
step towards engineering an arbitrary wave function in order to study mechanisms involved in a
turbulent system’s dynamics.

The vortex core, the local density dip at the center of a vortex, makes quantized vortices
optically detectable.This is convenient for the study of quantum turbulence, as it allows the posi-
tion of vortices to be measured, which can help determine the background fluid flow. Quantized
vortices have thus been a large area of interest over the past several decades in the field of Bose-
Einstein condensation. They were first observed experimentally in 1999 [15]. In 2000 one of
the first techniques for forcibly creating vortices by spinning a BEC using a blue-detuned optical
barrier was reported [16]. More recently, efforts have been made to characterize and utilize the
mechanisms of vortex formation. A method of shedding vortex dipoles off of a barrier moving
above a critical velocity has been investigated at length [14, 17, 18]. Additionally, a technique
has been developed to nucleate a vortex dipole and use two optical “vortex tweezers” to precisely
place the nucleated vortices in predefined positions [19]. Additionally it has been observed that
by modulating the intensity of a stationary repulsive barrier vortex dipoles can also be nucleated;
however, the physics behind this method are not well understood [20]. In Chapter 4, a new mech-
anism for imprinting a vortex dipole onto a BEC is investigated numerically and theoretically.
Additionally an experimental layout is proposed and prototyped.

An ideal complete measurement of a BEC wave function would fully recover the complex-
valued wave function without affecting the BEC’s dynamics. Unfortunately, this is fundamen-
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tally impossible. Spatial resolution is limited by the physical principles behind optical imaging
including the discretized sensor itself, whether it is a CCD, CMOS, or other type of detector. Fur-
thermore, the interaction of the BEC with light is an inherently destructive process; by actively
illuminating a BEC sample some fraction of the atoms will always interact with the illumination
and thereby undergo a change in dynamics.

The atom probability density, which is measurable through optical imaging methods, is given
by the modulus squared of the wave function: |ψ(r, t)|2. The gradient of the phase φ(r, t), on the
other hand, corresponds to the local superfluid velocity v(r, t) = ~

m∇φ(r, t), and is not as easily
measured; however, it is possible with interference measurements to determine phase profiles.

Methods for measuring the shapes of BECs are well established and discussed at length else-
where [21, 22]. In general, current imaging methods excel at measuring low spatial frequency
features of the bulk density profile of BECs without consideration for destructiveness.

In addition to density measurements, extensive work has been done in the field of phase profile
measurement. Interference measurements of BECs used to recover phase information were first
demonstrated in 1997 [23]. In 1999 the coherence of BECs was measured using Bragg beams in
ballistic expansion [24]. The phase dynamics of a BEC can be measured on a chip in an atom
Michelson interferometer or in a waveguide Mach-Zehnder atom interferometer [25, 26]. More
recently, a Mach-Zehnder atom inteferometry using BECs was demonstrated in microgravity
[27]. Several research groups have demonstrated the interference of two BECs separated and
later recombined by an optical barrier [28–32]. In Chapter 2 I describe new experimental and
analytical methods that we developed for making in situ measurements of nonlinear phenomena
in BECs with particular attention to quantized vortices.

1.3 Applications to turbulence studies

In addition to the primary goal of studying the physics of superfluid flow and vortex nucleation,
the BECs studied here also serve as a medium to study turbulence. A hydrodynamic system
is considered turbulent if it has a disordered flow, has energies distributed over a wide range of
length scales, has rapid mixing time scales, and for which the time evolution is unpredictable [33].
Put another way, an infinitesimal variation in initial conditions of a turbulent system will result
in a completely different time evolution of the system.

When restricted to two rather than three dimensions, the turbulent behavior of a hydrody-
namic fluid changes. In particular, energy dissipation at small length scales is inhibited. Con-
sequently, in two-dimensional fluid flow energy tends to transfer to larger length scales, unlike
that of a three-dimensional fluid. An interesting consequence of this is the growth of vorticity
at large length scales. Using a point-vortex model, Lars Onsager hypothesized that a two di-
mensional quantum system will exhibit negative temperature states whereby quantized vortices
of similar circulation will cluster together [11]. With the appropriate experimental capabilities
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to generate arbitrary vortex configurations and to make minimally destructive measurements of
vortex locations, new experiments will be able to test Onsager’s point vortex model leading to a
better understanding of vortex dynamics and energy spectra in two-dimensional quantum turbu-
lence [34, 35].

With the new experimental techniques developed in this dissertation the range of possible
studies of two-dimensional quantum turbulence will be expanded, and further developments to-
wards an understanding an quantum turbulence and how it relates to classical turbulence will be
within closer reach.

1.4 Modeling nonlinear wave phenomena in optical beams

Some of the most interesting aspects of nonlinear phenomena for matter waves are their analo-
gies to nonlinear phenomena for optical fields. One of the principal differences is that the most
commonly discussed nonlinear property for matter waves is a result of inter-atomic interactions
or collisions, whereas in nonlinear optics the nonlinearities are the result of interactions with a
separate medium, such as a crystal [36]. In Chapters 5 and 6, the nonlinear properties of light are
investigated with particular attention to their orbital angular momentum spectra.

Atoms can possess angular momentum in the form of spin angular momentum and orbital
angular momentum. The ability of atoms to possess angular momentum is relatively intuitive in
the sense that as humans we interact with rotating bodies of mass on a daily basis. Less intuitive
is that angular momentum is quantized. Perhaps even less intuitive is that light can also possess
quantized angular momentum [37]. It was hypothesized early on that the circular polarization
of light is related to the angular momentum of light [38]. In addition to angular momentum due
to the circular polarization of light, which can also be referred to as spin angular momentum,
light beams possess a quantized orbital angular momentum corresponding to the azimuthal phase
winding ei`θ, where θ represents the azimuthal angle in position space and comes in discrete
units specified by an integer, `. The first mechanical measurement of angular momentum of light
was in 1936 [39]. More recently in 1979, the helical wavefront of a beam with orbital angular
momentum was measured using optical interference techniques [40]. In the work described in
Chapters 5 and 6 I develop techniques for engineering the OAM spectra of optical beams by
exploiting the nonlinear optical properties of crystals.
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CHAPTER 2

In situ detection of vortices in Bose-Einstein condensates

2.1 Introduction

The goal of the work described in this chapter is to develop methods to make in situ observations
of quantized vortices and other high spatial frequency features in BECs with particular attention
to minimally destructive measurements. Minimally destructive methods of in situ imaging are
even more challenging because the atom-light interaction affects the dynamics and also induces
atom loss. Historically, most vortex detection methods have been completely destructive and
executed after ballistic expansion [14–16, 41–47]. Vortices were first observed in Bose-Einstein
condensates in 1999 using two-component BECs where the atoms of one component were used
to fill the vortices, causing the vortex core radius to increase in size up to a factor of 13 at which
point the vortex core size, which would otherwise be on the order of 0.25µm, is large enough to
be optically imaged in situ [15].

Until recently, the positions of bare vortices in a single-component BEC had not been ob-
served in situ. Instead, it was necessary to first expand the condensate in order to make the vor-
tices visible, and in doing so, immediately halt its dynamics. This destructive imaging technique
typically limits measurements to one image per condensate. One method developed to record the
dynamics of bare vortices is to transfer a small fraction of atoms into an untrapped state where
they are permitted to ballistically expand and then be imaged optically while the remaining atoms
remain trapped [48]. While this method permits sequential non-destructive measurements of the
locations of vortices, it still relies on an expansion of the atoms imaged. The disadvantage of
this technique is that the expansion dynamics do not necessarily reproduce the trapped BEC vor-
tex distribution, especially in the case of annular or flat-bottom traps. Furthermore, the vortex
core size expands more rapidly than the bulk BEC geometry, potentially reducing the imaging
system’s ability to resolve and differentiate nearby vortices. More recently, it has been demon-
strated that in situ phase information can be retrieved from a BEC using magnon interferometry
with high enough fidelity to make minimally-destructive measurements of the location and cir-
culation of a vortex in a BEC [49]. This impressive technique permits minimally-destructive in
situ measurement of vortex locations; however, this method requires an all-optical trap with mul-
tiple atomic components. Vortices are located by analyzing interference fringe patterns which
could become extremely difficult or impossible for larger numbers of vortices, as is the case for
a turbulent BEC.
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This chapter describes new methods to image BECs, developed to better characterize vortex
dynamics and fluid turbulence, specifically the dynamics of vortices in BECs exhibiting two-
dimensional quantum turbulence. The ability to detect and locate vortices in particular is relevant
to the understanding of vortex formation [14], two-dimensional quantum turbulence [50, 51],
persistent current formation [52–54] and also the Berezinskii-Kosterlitz-Thouless transition [55–
57]. A new imaging system is described that permits the real-time imaging of a BEC’s fluid
dynamics. This new imaging system has enabled real time in situ observation bare vortices in
Bose-Einstein condensates. The primary benefits of this system are its ability to make in situ
measurements that do not require ballistic expansion and a spatial resolution that is good enough
to resolve very large numbers of vortices, in some instances up to fifty — while still being only
partially destructive and permitting multiple images of the same condensate and vortices. The
imaging system presented here, and demonstrations of in situ imaging of vortices in BECs, were
described in depth in the PhD dissertation of Kali Wilson [58]. This chapter focuses on presenting
a new detailed quantitative examination of image quality, image noise factors, and the signal-to-
noise ratio that can be expected with in situ imaging of vortices.

The in situ imaging of bare vortices in a BEC has proven to be a challenging task. This is par-
ticularly true because it is necessary to distinguish between multiple vortex cores, each appearing
as density dips in the BEC cloud with a sub-micron diameter and separated by several microns.
Furthermore, the BEC is observed by illuminating the atoms with a near-resonant light source,
a destructive process, necessitating the use of short exposure times and low illumination power.
The remainder of this chapter describes the basics of atom-light interaction, imaging of cold
atoms, and then delves into the specifics of the various imaging techniques used to make min-
imally destructive in situ measurements of vortex locations. The methods described here were
ultimately capable of taking up to six sequential images of the same BEC with vortex visibility in
all images. Not without limitation, these new imaging methods still affect the BEC dynamics by
removing atoms from the cloud with every image, vortex circulation is not immediately known,
and the maximum image number is limited to about six in its current form. With the advance-
ments discussed in this work in addition to efforts currently underway aimed at developing a BEC
lab with the specific intent of vortex studies, new experimental tests of 2D quantum turbulence
will be possible [34, 59–61].

2.2 Optical properties of atoms

A ground-state BEC created with atoms having repulsive interatomic interactions confined in
a harmonic trap takes on a parabolic density profile. In the case of the University of Arizona
BEC lab, which uses 87Rb atoms, cylindrically symmetric harmonic traps are typically used.
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Accordingly, the three-dimensional density profile is described by

D(r, z) = max
[
D0

(
1 −

r2

r2
0

−
z2

z2
0

)
, 0

]
. (2.1)

Three terms have been introduced: the peak density D0, the radial Thomas-Fermi radius r0, and
the axial Thomas-Fermi radius z0.

Both the dispersive and the absorptive nature of an atom cloud can be exploited for the pur-
pose of imaging and measurement and so a complex index of refraction is considered. For sim-
plicity and the sake of qualitative understanding, we consider a two-level atom in the regime
where the real index of refraction is approximately one and the intensity1 I is much less than the
saturation intensity Isat. In this limit,

n = nr + ini = 1 +
σ0D(x, y, z)λ

4π

(
i

1 + 4∆2/Γ2 −
2∆/Γ

1 + 4∆2/Γ2

)
, (2.2)

where σ0 is the resonant atom-photon scattering cross-section and λ = 780 nm is the atomic
resonance.

In the above formulation, D(x, y, z) represents the atom density profile, ∆ is the detuning
of the probe light from resonance, and Γ is the natural linewidth. In the context of a single-
axis imaging system, the full three-dimensional density profile can not be directly recovered;
however, with this two-dimensional projection and knowledge of the harmonic trap geometry, a
three-dimensional reconstruction of the bulk BEC geometry can be recovered.

In order to analyze the atom-light interaction, I assume a coherent illumination source prop-
agating along the axial (z) direction of the BEC with intensity I0(r) corresponding to an electric
field E0(r). In practice, the beamfront will have a gaussian profile but for now I assume the
beam is large enough such that any spatial variations in intensity can be ignored. In general for a
homogeneous medium the electric field varies as

E(r, θ, z, t) = <
{
E0(r, θ, z, t)ei(2π(nR+inI )z/λ0−ωt

}
, (2.3)

and the BEC applies a transmission and phase mask to the illumination field,

E = <

{
E0 exp

[
−
σ0

2
1

1 + 4∆2/Γ2 D̃(r, θ)
]

exp
[
−i
σ0

2
2∆/Γ

1 + 4∆2/Γ2 D̃(r, θ)
]}
, (2.4)

where

D̃(r, θ) =

∫ ∞

−∞

D(r, θ, z)dz (2.5)

is the column density of the atom cloud [21, 22].
The BEC applies a spatially dependent transmission t = exp

[
−
σ0
2

1
1+4∆2/Γ2 D̃(r, θ)

]
and phase

mask φ = σ0
2

2∆/Γ
1+4∆2/Γ2 D̃(r, θ) to the field where the intensity scales as I(r, θ) = I0|t(r, θ)|2. It is

convenient to define the intensity transmission, T = |t|2, and the optical depth,D = − ln(T ).
1Intensity refers to a quantity with units of power per unit area.
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2.3 Image quality

There are countless ways to evaluate the quality of an image. In the context of typical cold atom
experiments, key metrics could be dynamic range, spatial resolution, and signal-to-noise ratio
(SNR). In the case of making minimally destructive in situ measurements of vortex locations
in BECs, the most relevant metrics could be anything having to do with the system’s ability to
non-destructively measure vortex location.

I consider three primary metrics: (1) The resolution of the system dictates how close two
vortices can be while still being able to separately identify them. The target resolution will be
on the order of 2µm, which was found in studies of 2D quantum turbulence to be a characteristic
length scale for vortex separation in BECs similar to those studied in our lab [35]. (2) The
signal-to-noise ratio (SNR) is another important metric. While the resolution dictates how near
two objects can be, the SNR dictates how easy it is to identify a single vortex. (3) A final
metric for image quality is the destructiveness of the measurement, which can be characterized
as what fraction of the atom number remains after a measurement. A completely nondestructive
measurement would have 100% atoms remaining, whereas a completely destructive measurement
would have 0% atoms remaining.

2.3.1 Imaging system

The primary imaging system used in these studies consists of a custom imaging objective opti-
mized for 780 nm transmission [58] . The objective’s transmission is approximately 88% at 780
nm. The numerical aperture is 0.26. One of the most unique features of this objective is the
long working distance of 35.6mm. This is an extraordinarily long working distance for a typical
microscope objective and was necessitated by the configuration of the magnetic coils around the
BEC cell. The focal length of the imaging objective is 36.7 mm. The theoretical diffraction-
limited resolution is 2.2 µm. The custom objective was ordered from Lens-Optics in Germany
for approximately 1299 USD.

A layout of the imaging configuration is shown in figure 2.1. Not shown is the 400 mm tube
lens and the camera downstream. Additionally a flip mirror is located after the tube lens that is
used to select either a Princeton Instruments PIXIS 1024 BR or a Photometrics Cascade 512B
EMCCD camera for imaging [62, 63].

A collimated beam of near-resonant or detuned light is directed upwards with a gaussian
beam radius of approximately 2 mm. The polarization of this light can be chosen to be circularly
or linearly polarized. A half-wave plate (HWP) before the BEC cell is used to further select the
angle of linear polarization. The beam propagates through the BEC cell and the BEC itself before
entering the objective lens. At the rear focal point behind the objective there is an optional dark
field (DF) mask, which is simply an absorptive central obscuration with diameter ranging from
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PBS

HWP
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21mm Rear Focal Length
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HWP

780 nm probe

Figure 2.1: This figure illustrates a scale diagram of the imaging system not including the down-
stream tube lens (400mm) and camera.

400 µm to 1.2 mm. After the optional dark field mask, an additional half wave plate is used
to optionally rotate the linearly polarized light before reaching a polarizing beam splitter (PBS)
cube. The utility of the polarizing beam splitter cube and the half-wave plates will become clear
later in this chapter in the section describing Faraday imaging.

2.3.2 Noise sources

Cold atoms, whether a thermal cloud or a BEC, can be be optically imaged, and based on fitting
algorithms, the resulting image can be fit to either a BEC profile (typically Thomas-Fermi) or
a thermal cloud profile. With knowledge of the trapping geometry, the only free parameters
in the fitting algorithm are the thermal cloud radii, the Thomas-Fermi radii of the BEC, and
the relative optical depth of the thermal and BEC components of the cloud. This information
can be used to calculate the atom number and atom temperature. Vortices themselves are two
orders of magnitude smaller than the Thomas-Fermi radius: their width is on the order of the
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healing length of the BEC, about 0.3 µm. Until recently, the primary method for imaging vortices
was to first ballistically expand the BEC, during which time the vortices rapidly expanded in
size, and then image the expanded atom cloud and expanded vortex cores. While this method
can permit the detection of quantized vortices, it is not without limitations. First, the expanded
BECs are not necessarily self-similar during expansion, meaning, the expanded BEC and vortex
distribution is not necessarily a simple magnification of the in situ BEC and vortex distribution.
Expansion is not self-similar when BECs are suddenly released from anharmonic traps such as
flat-bottom traps [64] and toroidal traps [50], which are both of particular interest in studies of
two-dimensional quantum turbulence. Second, the process of ballistic expansion of the entire
BEC is completely destructive, whereas minimally destructive in situ vortex imaging can be used
to capture multiple frames of vortex dynamics.

Signal-to-noise ratio (SNR) is a useful measure for the quality of any signal to be measured
and the utility of SNR extends to CCD imaging measurements. In the BEC apparatus, a CCD
camera is used to detect photons; this is the main form of optical measurement used in the labo-
ratory. Therefore, a brief overview of the noise sources is provided.

With any CCD imaging sensor, there are three principle noise sources: photon shot noise,
readout noise, and dark noise. As will be shown in the following subsections, different noise
sources will dominate depending on the imaging technique and requirements of the BEC labora-
tory. This criteria drives the choice of camera, as will be discussed later in this section.

Shot noise

Shot noise is a consequence of the discretization of both light (in the form of photons) and electric
charge (in the form of electrons). Such a noise source boils down to known physical laws and
for the purposes of this research, it is assumed that it cannot be eliminated [65]. The specific
consequence of shot noise is that, if a given light burst corresponding to Np photons incident
on a detector, if repeatedly measured there will be a Poissonian distribution of photon detection
events. For larger photon numbers, the distribution will become Gaussian with standard deviation
NS N =

√
Ne =

√
Npη, where Np is the number of photons incident on the pixel and η represents

the detector’s quantum efficiency. For a shot-noise dominated system the SNR scales with the
square root of the average number of photons detected: SNR = ηNp/

√
ηNp =

√
ηNp. The

absolute shot-noise level increases with signal level and becomes the dominant noise source for
high signal levels, because as will be seen next the two other primary noise sources in CCD
detection do not scale with signal level. When multiplication gain is used, the shot noise level
approaches

√
2Ne rather than

√
Ne for high gain [66].
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Readout noise

The next noise source of concern is readout noise. After the photon-to-electron conversion, the
electrons are counted using an analog-to-digital converter (ADC). This process is not perfect and
acts as an additional noise source. The read noise, NRO, is typically a flat amount independent
of signal level. Therefore, it tends to dominate at low signal levels. The Princeton Instruments
camera has two different readout speeds: 100 kHz and 2 MHz. At the high readout speed, 2 MHz,
the read noise is specified to be 9 electrons. By using the slower readout speed, 100 kHz, the read
noise is reduced to 3 electrons rms. Note, however, that for a 1024 x 1024 array, 100 kHz readout
would require a ten second readout, whereas the readout is approximately 600 milliseconds at 2
MHz.

Dark noise

The final form of noise introduced by any CCD camera is dark noise. In the absence of light
on a CCD detector, there is still some amount of electrical current that is produced due to the
random generation of electrons and holes in the depletion region of a pixel’s P-N junction. This
is referred to as dark current, Idark, and is typically given in units of rms electrons per pixel per
second. In its nominal operation, the CCD integrates current generated by the photodetector.
Unfortunately, there’s no easy way to separate out the current associated with photon detections
from this dark current. A consequence of this, then, is that each pixel will collect an additional
amount of charge or number of electrons, Ndark = Idark∆t, where ∆t is the exposure time. The
dark current is the same in every frame, so a secondary frame with the shutter closed can be
taken and then subtracted off from the main image. As with shot noise, the accumulation of
dark charge is a statistical process with a Poissonian distribution and introduces an additional
noise source known as dark noise: NDark =

√
Idark∆t. By cooling the PIXIS 1024 BR’s sensor

down to -70 degrees C, the sensor’s dark current is reduced to be IDark = 0.02 rms electrons per
pixel per second. The sensor’s quantum efficiency is lower at lower temperatures. Our typical
camera exposure times are on the order of 10 milliseconds. Our dark noise is computed to be
NDark =

√
0.02 sec−1 × 10−2 sec ≈ 0.01 electrons per pixel rms. This noise level turns out to be

two orders of magnitude lower than readout noise and shot noise when any appreciable signal
is present and furthermore it is far below the quantization value of one electron and therefore is
negligible in this case. For scientific experiments requiring much longer exposures, as is the case
for astronomical observations, dark current can be a dominant noise source.

Dark noise is negligible at the operating temperature of the CCD for our exposure times in
both the case of a Photometrics Cascade 512B and a Princeton Instruments PIXIS 1024. In
principle, because the temperature is significantly lower than it needs to be for our applications,
the system performance may be increased by raising the CCD temperature slightly to improve
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quantum efficiency.

Noise level prediction

The CCD detection is subjected to three noise sources. The total noise level is computed by
summing the individual noise sources in quadrature, the least of which, dark noise, is negligible:

Ntot =

√
N2

Shot +N2
RO +N2

Dark ≈

√
N2

Shot +N2
RO. (2.6)

The relative readout noise levels for the cameras available in the lab are shown in table 2.1.
The Cascade 512B can achieve effective readout noise levels of less than 1 e- when EM gain is
enabled. This capability proves useful for minimally destructive in situ detection of vortices.

Camera Readout Noise
PIXIS 1024BR 100 kHz 3 e- RMS
PIXIS 1024BR 2 MHz 9 e- RMS
Cascade 512B 1 MHz < 1 e- RMS (effective)

Table 2.1: Noise levels specified by manufacturer for Photometrics Cascade 512B and Princeton
Instruments PIXIS 1024 BR Cameras [62, 63]

Minimizing noise

The effect of photon shot noise is minimized by increasing the photons incident on each pixel. In
the scenarios described here, this is done primarily by increasing the system quantum efficiency,
exposure time, or illumination intensity. With the exception of quantum efficiency, these other
parameters all necessitate more photons interacting with the atom sample — in other words, this
corresponds to an increase in destructiveness.

Readout noise is a fundamental property of the analog signal chain including the analog-to-
digital conversion process. In the case of our apparatus, this is effectively eliminated through the
use of electron multiplying (EM) gain; however, high EM gain will increase the photon shot noise
by a factor of up to

√
2 [66] and so it is only advantageous to use EM gain when readout-noise

limited.
Dark noise is effectively eliminated by using a very short exposure time and actively cooling

the CCD sensor to -50 deg C in the case of the Photometrics Cascade or -70 deg C in the case of
the Princeton Instruments PIXIS.

The remaining noise is dominated by photon shot noise. For simplicity, we consider a system
with only photon shot noise and assume high EM gain. In this scenario, for a given pixel and ex-
posure, the pixel collects Ne electrons, has a noise level of

√
2Ne and a SNR of

√
Ne/2 assuming
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high multiplication gain. Fundamentally, the only way to increase the SNR in this system is to
increase the total electron count per pixel. Under these constraints, this can be done by improving
the QE, increasing the fill factor, or by increasing the pixel size in general.

The PIXIS camera has a 100% fill factor [62]. The fill factor of the Cascade camera is
unknown but is assumed to be on the order of one, which is typical for scientific cameras. The
temperature of a CCD can be increased slightly to improve the quantum efficiency since dark
current is not a limiting factor [67].

2.3.3 Image subtraction and noise

Frequently in absorption imaging three images are taken. The shadow image of the atoms with
NS electron counts on a given pixel, the background image with NI counts on the pixel, and the
dark image with ND counts.2 The transmission corresponding to that pixel is calculated as

T =
NS − ND

NI − ND
. (2.7)

The optical depth3 is calculated to be

D = − ln(T ). (2.8)

Typically, it is the final result D that is inspected to analyze the BEC. In this case, the atom
signal itself is contained in the first frame. This image is subjected to noise. The noise in

this frame can be estimated as NS =
√
N2

RO +N2
S,SN =

√
N2

RO + (NS − ND), in the absence

of stray light. The background image will have an additional noise level, NI =
√
N2

RO +N2
I,SN =√

N2
RO + (NI − ND). The dark frame will only contain readout noise: ND = NRO.
Image subtraction – particularly when illumination is highly nonuniform and high spatial fre-

quency artifacts are present in the illumination beam – proves useful. Furthermore, it is necessary
to accurately quantify the transmission, optical depth, and atom column density. However, for
very low signal-to-noise environments such as minimally destructive imaging of vortices in situ,
the additional noise acquired from performing image subtraction is at times significant enough to
obscure the vortex signal.

One potential solution to this problem that would allow numerically accurate post-processing
without adding additional noise that has not been tried. A background frame could be taken with
a much longer exposure time increased by a factor β to improve the SNR and the signal could
then be divided by the same factor β to provide a time averaged background frame. Increasing
the exposure time will only hurt the dark frame; however, a large number of dark frames could

2From here forward I assume the camera gain to be 1 count per electron.
3Optical depth uses a base e logarithm and differs from optical density, which uses a base 10 logarithm.
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be taken and an averaged dark frame could then be used to reduce dark frame noise. One disad-
vantage of this approach is that air currents could blur out high spatial frequency features in the
background image, introducing artifacts into the processed data.

This source of noise may seem like a minute detail; however, it was not obvious at first that
our data contained signatures of vortices because we defaulted to looking at the post-processed
data. Upon inspection of the raw data, it was clear that there were vortices in the images.

2.4 Stray light

Stray light is an umbrella term that accounts for any photons that are incident on the photodetector
that are not directly due to the object being imaged or the direct imaging light. Stray light can
be a problem for a variety of reasons. If the stray light level is extraordinarily high, the gain
will have to be turned down on the camera and the dynamic range of the data could be severely
compromised. Stray light could also destructively interact with the BEC by causing atom loss or
changing the superfluid dynamics. Lastly, stray light can add unwanted signal to the images and
must be properly subtracted off. Furthermore, image subtraction only removes the mean stray
light level and cannot subtract off noise due to stray light.

In the previous section, a brief overview of noise sources was given and the noise level in a
signal frame was found to be

Ntot ≈

√
N2

SN +N2
RO. (2.9)

Stray light contributes to the termNSN and proves to be non-negligible in the system, particularly
when trying to observe weak signals such as those arising form vortex cores.

2.4.1 Stray light sources

Stray light in the BEC imaging system can be attributed to at least four different sources. First
of all, ambient light from the room can leak in through holes in the enclosure. A well designed
enclosure will minimize this. Second of all, some percentage of the imaging light that we intend
to use will always scatter off of optical defects, dust, and residual reflections from transmissive
optics. For this reason, it is important to use anti-reflection coated surfaces whenever possible
and to keep optical surfaces in the imaging path as clean as possible. Thirdly, the 1090-nm optical
trapping beam has the potential to scatter off of optical elements. Lastly, when in use, the 660-nm
and 850-nm laser beams can also scatter off of optics and send unwanted stray light to the camera
sensor. The amount of stray light is difficult to predict accurately because most of the stray light
is the result of difficult-to-quantify misalignments, defects, and contaminants.

The camera exposure time is typically set to around ∆tCCD ≈ 10 msec which permits timing
jitter for shutters to open and close as well as the illumination source to turn on and off. The illu-
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mination itself, the near-resonant light that illuminates the BEC, is typically enabled for around
∆tAOM ≈ 10 µsec. Because the CCD exposure time is three orders of magnitude longer than the
illumination light, light sources other than the illumination beam can be especially problematic.
A stray light source that is continuously on will be active for the duration of the camera exposure.
Furthermore, the illumination beam itself is very low power — on the order of 100 µW, whereas
the power in the 1090-nm trapping laser, for example, is on the order of 100 mW or 1 W. Thus
the total optical energy entering the enclosed system due to the trapping laser over the course of
one camera exposure can be six orders of magnitude larger than the energy in the illumination
beam itself and if 1 part in one million of this optical power is scattered onto the CCD there could
be significant image quality degradation. It is therefore essential to ensure that the 1090-nm trap-
ping beam is properly aligned and properly baffled; even a beam block could scatter a significant
amount of light onto the imaging sensor.

Another source of stray light is the optical stirring beams which are brought to focus at the
BEC in order to manipulate atoms and thus are also refocused at the image plane. These beams
are attenuated with a bandpass filter. Prior to 2016, the filter in use had an optical density of 3,
corresponding to a 1000X attenuation. While this is a very large attenuation, the camera will be
exposed to this beam for 1000X longer than the illumination beam if they remain on during the
imaging sequence, and so it is not sufficient attenuation. Recently, an additional filter was put in
place and should serve to nearly completely eliminate stray light due to the optical stirring beams.
A total optical density of about 6 should be used to attenuate stirring beams in the imaging path
if their intensity is on the order of the illumination intensity.

There are two sources of photons incident on the detector: signal photons and stray light
photons. Only the signal photons contribute to signal level. In a typical imaging sequence, the
first image is taken with the atoms illuminated, the second image is taken with the illumination
on but no atoms present, and the third image is taken without the illumination source. In order
to account for stray light photons, if a light source such as the 1090 nm, 660 nm, and 850 nm
perturbing lasers must be enabled during the first image, it should also be left on during both
the background frame (in the case of absorption imaging) and the dark frame — otherwise the
stray light will cause the atom density to appear lower than it actually is. This is particularly
evident if a beam is left on during the absorption and background image but turned off during the
dark frame — with the post-processing algorithms this will be interpreted as illumination light
that is transmitted through the cloud and therefore suggest that the local density is very low. By
imaging the stray light source in the dark frame as well, this light is not interpreted as transmitted
illumination light and the measurement will be more accurate quantitatively.
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2.4.2 Dark frame subtraction

The third image of the imaging sequence is essential for two reasons. It serves to measure the
illumination intensity by subtracting off the bias. Secondly, the bias varies over the course of a
day and this third frame serves as a means to measure the bias for a given image.

The CCD sensor has a 16 bit analog-to-digital converter. Accordingly, it bins the analog
voltage into 65536 different digital levels at each pixel. During the collection of a bias frame,
there is zero exposure time: no dark current is integrated and no photons are captured. The
collected charge (zero) is converted by the camera electronics to an analog voltage. During the
conversion process, a nonzero DC voltage offset is added before conversion to digital counts. This
results in the bias counts. In both the Princeton Instruments camera and the Photometrics Cascade
camera, the DC offset corresponds to approximately 500 counts. This DC bias requires a loss of
dynamic range: 500 levels of the 65536 are now dedicated to measuring the offset. However, this
represents a less than one percent loss in dynamic range. In principle and under ideal operating
conditions, the bias should not vary over the course of the day. Due to environmental fluctuations,
however, the bias voltage does drift. For this reason, a dark frame is captured with every data
point in the experiment. This improves the overall SNR.

Originally, only one camera was used in making our BEC measurements: the Princeton In-
struments PIXIS 1024BR. The recent introduction of a second camera into the apparatus enclo-
sure raised the ambient ambient temperature to about 79 degrees Fahrenheit which caused the the
bias counts on the Princeton Instruments camera to vary significantly throughout the day.

2.5 Noise vs spatial resolution

Ideally, an imaging system will have both unlimited resolution and infinite SNR. In practice,
however, this is far from the case. In fact, the two metrics will often compete with each other.
The SNR can be increased at the expense of spatial resolution and vice versa.

An increase in pixel size will typically improve the SNR of an imaging system; however, this
is not without tradeoff. So far, emphasis has been placed entirely on SNR and spatial resolution
has been mostly ignored. The number of electrons collected scales with the square of the pixel
pitch – assuming constant fill factor. The SNR, which scales with the square root of the electrons
collected, scales linearly with pixel pitch, δx (again assuming constant fill factor). The cost being
that the spatial Nyquist frequency — the frequency above which a signal cannot be accurately
registered without aliasing — scales as fN = 1/2δx in image space.

The subject of resolution is an important one, and the system’s design parameters determine
how necessary spatial resolution is. In the cases studied here, the bulk BEC geometry is approxi-
mately 100 µm wide. Bulk BEC measurements could in principle be made with as few as two or
three samples across the spatial extent of the BEC in order to fit data to the Thomas-Fermi profile
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per the Shannon-Nyquist sampling theorem [68–71]. However, it is of interest to detect vortex
cores. With a BEC healing length of approximately ξ ≈ 0.3µm, the diameter of a vortex can be
approximated as twice the healing length, 2ξ ≈ 0.6µm.

It is important to distinguish between detecting a feature, measuring the structure of a feature,
and distinguishing one feature from another. The easiest task is to detect an object. It is more
difficult to distinguish two nearby objects from each other. And it is generally even more difficult
to measure the internal structure of a small feature. Because it is prohibitively difficult to measure
the structure of a vortex core at this point in time, in this study we limit our goals to detecting
vortices and to distinguishing neighboring vortices. This goal raises two questions: is there
an optimal pixel size and magnification combination for detecting a single vortex and is there
an optimal pixel size and magnification combination for detecting a vortex pair separated by a
distance d, and what separation distance d is relevant?

Based on experimental measurements and images after ballistic expansion, it appears that
vortices are statistically typically at least several healing lengths apart. Vortex-antivortex pairs are
increasingly lower energy as their separation decreases. For smaller separation there will also be
less dipolar fluid flow and ultimately for small enough vortex-antivortex separation they collide
and annihilate. Neely et al identified numerically a vortex dipole separation of approximately
6.7ξ to be a lower bound for vortex dipole self-annihilation in their experimental configuration
[35]. On the other hand, vortices of similar circulation are increasingly higher energy as their
separation is reduced.

If a single vortex core is estimated as being a point source in an imaging system there is
actually no resolution requirement for single vortex detection. This is similar to how the existence
of a single star in the night sky could be detected by a single-pixel-detector with a wide field-
of-view lens. Thus, for single-vortex detection, there is no lower limit for the necessary Nyquist
frequency. On the contrary, in order to distinguish two point sources, they must be at least a
distance of 1/ fN apart, where fN is the spatial Nyquist frequency. For the sake of choosing a
Nyquist frequency on a relevant length scale, one could specify the Nyquist frequency based on
the findings of Neely [35]. I define the lower bound of vortex dipole distance to be dVD = 6.7ξ
and assume a system with magnification M. The point separation in image space is then MdVD

and the Nyquist frequency will be chosen such that 1/ fN = MdVD.
The numerical aperture is essentially limited based on geometrical constraints of the appara-

tus. The magnification of the system can be chosen to match the diffraction-limited spot size in
image space to correspond to the sensor Nyquist frequency. The spatial resolution of a diffraction-
limited objective lens is d = 0.61λ/NA where NA = DEP/ f , DEP is the entrance pupil diameter,
and f is the objective focal length. This distance d refers to the radial distance from an imaged
point source corresponding to the first zero of the Airy pattern in object space. In image space,
this resolution is magnified to dM = M0.61λ/NA. For our system, the magnification is M = 11
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and the numerical aperture is NA = 0.26, thus the resolution limit in object space is 1.83 µm
and the resolution limit in image space is 20.1 µm. Ideally, magnification is chosen such that the
resolution limit is equal to twice the pixel pitch. In this apparatus, two cameras are used: occa-
sionally the PIXIS with xp = 13 µm is used with this imaging system, but primarily the Cascade
with xp = 16 µm is used. Twice the pixel pitch corresponds to 26 µm or 32 µm respectively,
which suggests that the detector is undersampling the resolution limit in the case of our system.
In general, a theoretical ideal magnification for a given sensor size and numerical aperture is
given by:

MI =
2xp NA
0.61λ

≈ 17.5. (2.10)

This magnification is ideal in the sense that any higher magnification will not produce higher
resolution because the system is diffraction-limited at this point. For particular applications, a
lower magnification may be desirable in order to increase SNR. In either case, the magnification
can be easily corrected without modifying the objective by exchanging the 400 mm tube lens for
a 630 mm tube lens, for example.

2.6 Absorption imaging

2.6.1 Overview

The most straightforward method of imaging a BEC is on-resonant or near-resonant absorp-
tion imaging. This standard method requires taking three images: first a transmission image is
taken of the BEC. The BEC is illuminated only briefly, ∼ 10µsec, with a laser beam of intensity
I(x, y). Because the coherent illumination contains ringing features and intensity fluctuations due
to diffraction from dust, defects, and other contaminants, I(x, y) is a function of position. In order
to then calculate the transmission, a second image is taken with the same illumination, I(x, y).
A third image is taken without any illumination to record the dark counts on the camera. The
transmission is then calculated as follows:

Tatoms =
Itransmission(x, y) − Idark(x, y)
Ibackground(x, y) − Idark(x, y)

. (2.11)

From the absorption profile, the optical depthD(x, y) = − ln Tatoms is computed. From the optical
depth and knowledge of the trapping geometry, the BEC’s bulk profile can be inferred.

2.6.2 Photon detection and digitization

In analyzing measurements, it is essential to consider the photon detection and digitization pro-
cesses.
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In the previous subsection, we derived an intensity distribution Itransmission(x, y) that contains
a shadow of the BEC and atoms. At this point, we must introduce the system magnification, M,
sensor pixel width dx (which is equal to the pixel pitch xp when there is a 100% fill factor, which
I assume per the Princeton Instruments PIXIS specifications [62]), detector quantum efficiency
η and exposure time dt. Furthermore, I also introduce the imaging system transmission, Timaging,
which represents the net transmission of all optical elements after the BEC. Transmission of op-
tical elements before the BEC is not as important because the imaging intensity can be increased
to overcome these losses without affecting SNR. Given these parameters, the average number of
photons incident upon the detector with an atom transmission profile Tatoms is computed as:

Nphotons =
TimagingTatomsI(x, y)(dx)2dt

~ω0M2 . (2.12)

I compute the number of electrons Nelectrons by considering the sensor’s quantum efficiency:

Nelectrons =
ηTimagingTatoms(x, y)I(x, y)(dx)2dt

~ω0M2 . (2.13)

It is during the conversion from photons to electrons that one of the main sources of noise, photon
shot noise, is introduced. Photon shot noise scales with the square root of electron count as

NSN =

√
ηTimagingTatoms(x, y)I(x, y)(dx)2dt

~ω0M2 . (2.14)

With an understanding of photon shot noise, it is now clear that the choice of detuning is essential.
The SNR is given by

SNR =
Nelectrons

NSN
=

√
Nelectrons =

√
ηTimaginge−D(x,y)(x, y)I(r, θ)(dx)2dt

~ω0M2 , (2.15)

where the optical depth,D(x, y) = − ln[Tatoms], is given by

D(x, y) = σ0
1

1 + 4∆2/Γ2 D̃(r, θ) (2.16)

in the limit of I � Isat. Large optical depths will reduce SNR; this can be reversed by increasing
either intensity (though only slight in order to maintain I � Isat), exposure time, or detuning.
Increasing intensity or exposure time when close to resonance increases the destructiveness of
the image, therefore it is preferable to increase the detuning.

Of interesting and important note in this expression is that the SNR is a function of atom
column density. If the system is designed to optimize the SNR for the peak atom column density,
it will not be optimized for low column density regions and vice versa. This comes into play when
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measuring vortex location; vortex cores are regions with very low column density. Accordingly,
higher SNR for vortex detection is achieved by using very low imaging intensities. In fact, the
imaging intensities are so low that the system is in some cases no longer shot noise limited, which
is when the EMCCD’s multiplication gain can be used to further improve SNR by overcoming
readout noise.

2.6.3 Modeling vortex SNR

In order to understand the imaging of BECs and to corroborate experimental observations, it is
essential to have some idea of what one is looking for. In the University of Arizona BEC lab, an
anisotropic harmonic trap is used with radial trapping frequency fR ≈ 8 Hz and axial trapping
frequency fz ≈ 90 Hz. The overall single-particle potential of the trap is thus

V0 =
1
2

mω2
Rr2 +

1
2

mω2
z z2 (2.17)

where ωR = 2π fR and ωz = 2π fZ are the radial and axial trapping angular frequencies. In
the limit of no inter-atomic interaction, the atoms assume the single-particle gaussian ground
state in all three dimensions. In the case of a strongly repulsive interaction, the Thomas-Fermi
approximation provides an adequate starting point for a BEC geometry:

|Ψ(T F)
g (r, z)|2 = max

{
1
gN

[
µ −

1
2

m
(
ω2

Rr2 + ω2
z z2

)]
, 0

}
(2.18)

where g = 4π~2a/m is the interaction term, a represents the s-wave scattering length, m the
atomic mass, N is the atom number, and

µ =
151/2

2

(Na
r̄

)2/5

~ω̄ (2.19)

is the chemical potential. Note that r̄ and ω̄ represent the geometric mean oscillator length and
the geometric mean oscillator frequency respectively [12].

The radial structure of a vortex in a BEC’s wavefunction is approximated by [12]

f (ρ, z) =
ρ/ξ√

2 + (ρ/ξ)2
(2.20)

where the healing length, ξ, is given by ξ(x, y, z) =
√

1
8πaD(x,y,z) , D(x, y, z) represents the local

atom density and ρ represents the distance away from the center of a vortex core [12]. Because
the healing length ξ is a function of the local density D(x, y, z), both ξ and the core structure f
are functions of x, y, and z.

For the sake of studying the optical transmissive and absorptive properties of a BEC with
a vortex, I consider a BEC within the Thomas-Fermi approximation and a vortex oriented
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in the axial direction (which minimizes energy) located in the center of the BEC so that
r =

√
x2 + y2 = ρ. I further assume that the vortex is small enough such that the bulk BEC

density does not vary significantly over the area immediately surrounding the vortex. The atom
density in the vicinity of the centrally located vortex is approximated by

DV(x, y, z) = Dg(x, y, z) f (r, z)2, (2.21)

where Dg(x, y, z) represents the ground state density profile with no vortex. The column density
is found by integrating the probability density with respect to z,

D̃V(x, y) =

∫
Dg(x, y, z) f (r, z)2 dz. (2.22)

From this expression, the optical depth, which is a function of the integrated atom column density
as shown in equation 2.16, can be written as:

DV(x, y) = −
σ0

2
1

1 + 4∆2/Γ2 D̃V(x, y). (2.23)

I define the peak optical depth to be

DPeak = −
σ0

2
1

1 + 4∆2/Γ2 D̃max, (2.24)

where D̃(max) represents the peak column density in the absence of a vortex,

D̃max =

∫
Dg(x, y, z)dz =

µ

gN
4z0

3
, (2.25)

and where z0 is the axial Thomas-Fermi radius.
The illumination without the atoms present is assumed to be perfectly uniform intensity I0.

The illumination transmitted by the atoms is then: I(r, θ) = I0e−D(r,θ). This distribution is numeri-
cally sampled at 0.0446 microns, much less than the BEC healing length which is approximately
0.23 µm. The illumination distribution is convolved with an Airy pattern, A(x, y), with first zero
at 1.22λ/2NA = 1.83µm, which corresponds to the diffraction-limited spot size of the microscope
objective used in the apparatus, to produce the convolved intensity distribution

Ic(r, θ) = I(r, θ) ∗ ∗A(r, θ) (2.26)

where ∗∗ denotes a two-dimensional convolution operation. This distribution is binned into a
grid of pixels with with ∆x/M where ∆x = 16µm is the pixel pitch in image space and M is
the system magnification. This computation yields a two-dimensional matrix Ic[ j, k] containing
the energies per pixel per unit time in regions where a vortex exists and in regions where there
is no vortex. The variables j and k represent discrete indices. The energy per pixel E[ j, k] is
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found by multiplying the energy per pixel per unit time Ic[ j, k] by the exposure time ∆t. The
energy per unit pixel is converted to photons per pixel P[ j, k] by dividing through by photon
energy hc/λ. The electrons per pixel N[ j, k] is found by multiplying the photons per pixel by
the quantum efficiency η. In the absence of stray light, it is the electrons per pixel N[ j, k] that
serves as the signal. The shot noise is the square root of the electrons: NSN[ j, k] =

√
N[ j, k]

or in the case of high electron multiplying gain, the shot noise is increased by a factor of
√

2:
N

(EM)
SN [ j, k] =

√
2N[ j, k]. The total noise is assumed to be shot noise limited when EM gain

is in use: Ntot = N
(EM)
SN . When EM gain is not in use, as is the case for the PIXIS, the total

noise must include readout noise NRO[ j, k] = constant and the total noise is then quantified as
Ntot[ j, k] =

√
NSN[ j, k]2 +NRO[ j, k]2.

With these calculations in mind, a spatially dependent SNR is calculated. I am mainly inter-
ested how the presence of a vortex affects the signal. I therefore perform the above calculations
twice: once to calculate the signal counts with a vortex imprinted on the density profile NV and
once without NNV . The vortex signal is computed to be the difference S V = NV − NNV and the
noise on the signal is given by the noise associated with NV , which may or may not include
readout noise and may or may not have multiplication noise due to EM gain. I define the vortex
signal-to-noise ratio to be

SNRV =
S V

Ntot
. (2.27)

With an analytical prediction for SNR, the SNR can be readily computed as a function of any
variable. The calculated SNR is shown in figure 2.2 as a function of the peak optical depth of
the BEC. This figure assumes that EM gain is on so that readout noise is negligible, the quantum
efficiency is η = 0.70, the exposure time is 30 µs, the beam power is 25 µW, beam waist is 2 mm
and the system magnification is 11.2. It appears that the optimal peak OD is about 2.2 for vortex
detection given these imaging parameters.

Figure 2.3 shows the predicted SNR vs system magnification assuming EM gain is on so
that readout noise is negligible, the quantum efficiency is η = 0.70, the exposure time is 30 µs,
the beam power is 25 µW, beam waist is 2 mm and the peak OD is 2.2. It appears that the
optimal system magnification is about 11 for vortex detection given these imaging parameters
for absorption imaging. The initial increase in SNR with magnification for low magnification is
because larger magnification will correspond to the blurred vortex core filling a larger fraction
of the pixel, thus the pixel will contain less bulk BEC signal, which would otherwise spatially
average out the vortex signal. For very high system magnification, the SNR decreases; this is
because the shot noise becomes increasingly problematic as the number of photons decreases per
pixel as magnification increases.

In both of the plots shown above the SNR for vortex detection tops out at about 3.3. This
is good enough to detect a regularly spaced lattice of features, however, the confidence level in
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Figure 2.2: SNR Prediction as a function of peak optical depth with EM gain on, 0.70 QE, 30
µsec exposure, 25µW beam power, 2mm beam waist and magnification 11.2.

detecting a single vortex is much lower. A desirable SNR for single vortex detection would be on
the order of 10.

2.7 Example images

The primary goal in this imaging study was to detect vortices in situ. For the purposes of under-
standing how vortex detection differs from bulk BEC measurements, it is helpful to first look at
processed BEC images with high frequency spatial features such as soliton trains. In this case,
an optical barrier was used to separate a BEC into two regions. The barrier was then lowered,
allowing the two regions to crash into each other forming a soliton train. The resulting images
are shown in figure 2.4. The observations were made with bright field absorption imaging with
∆t = 30µs, optical pumping intensity I/Isat ∼ 2 near resonance with |F = 1〉 → |F′ = 2〉 transi-
tion with probe light with intensity I/Isat ∼ 2 at detuning ∆ = +2Γ from the |F = 2〉 → |F′ = 3〉
transition.

These images illustrate typical in situ measurements of BEC parameters. In these data sets, a
shadow image, background image, and dark frame are used to calculate the transmission and thus
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Figure 2.3: SNR Prediction as a function of peak optical depth with EM gain on, 0.70 QE, 30
µsec exposure, 25µW beam power, 2mm beam waist and peak optical depth of 2.2

optical depth. Shown in the figures is the calculated optical depth rather than the raw data. The
key things to note are that the presence of atoms corresponds to a brighter signal when viewed in
this manner. The high frequency features of note are shown in the center of the right image. The
fringes are visible but their apparent contrast is low; in actuality, the density dips must go to zero
because they correspond to a phase discontinuity in the waveform. Lastly, note the dark marks
located sporadically around the BECs. These dark marks are not density features but instead
imaging artifacts most likely resulting from non-uniform illumination due to contaminants or
defects in the imaging path.

Representative images of BECs with vortex lattices are shown in figure 2.5. In these images
the raw unprocessed data are shown. The images shown here are of approximately 106 atoms
harmonically trapped in the

∣∣∣F = 1,m f = −1
〉

state with fRadial = 8 Hz and fAxial = 16 Hz. The
atoms are illuminated with light near resonance with the |F = 1〉 → |F′ = 2〉 transition with
intensity I/Isat ∼ 1 and exposure time of 20 µs. The three images shown in this figure are the
unprocessed absorption images only and are of the same BEC with the same vortex lattice — a
demonstration of minimally destructive in situ imaging.

As mentioned earlier in the analysis of noise sources, the vortex cores were not easily identi-
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Figure 2.4: Observation of soliton train in situ. Top row is view from above. Bottom row is
view from side using phase contrast imaging. Left column is with optical barrier raised and right
column shows the collision of the two clouds and formation of the soliton train.

fiable after typical post-processing, but are clearly visible before processing. This is because the
standard post-processing algorithm, which involves both a background frame and a dark frame,
adds additional noise to the data, particularly when light levels are low. Note that the vortices are
sized on the order of a pixel. The 16 micron pixel pitch corresponds to 1.43 µm in object space
assuming a magnification of 11.2. Furthermore, the diffraction-limited spot size in object space
is d = 1.22λ f /# ≈ 1.83 µm assuming a numerical aperture of 0.26.

2.7.1 Signal-to-noise measurements

Earlier in this chapter, calculations were done to predict the SNR for vortex detection. The SNR
can also be measured directly by analyzing an image of a vortex lattice. The advantage of the
vortex lattice is that because lattice is a regular pattern of vortices, the lattice site locations are
known regardless of the SNR at that location.

Specifically, in a single BEC image with a vortex lattice, there are NV vortices, each labelled
with an index i. The average vortex signal, 〈S V〉, is found by calculating the mean of the electron
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Figure 2.5: Representative in situ absorption images of a lattice of vortices in a BEC

counts at each vortex site,

〈S V〉 =
1

NV

NV∑
i=1

S (i)
V , (2.28)

where the electron counts at an individual vortex site is S (i)
V . The signal due to a single vortex

often spans multiple pixels; typically one of which is bright enough to subjectively say there is a
vortex present, whereas the less bright pixels are typically much darker and would not suggest to
the viewer the presence of vortex. For the purposes of this computation, the brightest pixel at a
vortex site is used. In the event that one single pixel is not significantly brighter than the others,
a pixel at the lattice site will be chosen at random. Without perfect knowledge of the BEC wave
function, this method does overlook the possibility of a vortex lattice defect by assuming the
presence of vortices at every lattice site; if there is indeed no vortex at a lattice site, we assume
that there is a vortex present simply with low signal level because there is no way to know for
certain.

The mean bulk BEC signal level, 〈S B〉, is estimated in a similar way by finding the average
pixel value at NNV randomly chosen pixels corresponding to non-vortex sites in the bulk BEC.
Because the bulk BEC is continuous, a sample size is chosen on the order of NNV = 50 of the bulk
BEC to perform the same measurement. The average bulk signal, 〈S B〉, is found by calculating
the mean of the electron counts at a large sampling of NNV non-vortex sites S (i)

B :

〈S B〉 =
1

NNV

NNV∑
i=1

S (i)
B . (2.29)

With the mean number of counts at a lattice site and in the bulk BEC known, the signal due
to a vortex can be computed explicitly:

Vortex Signal = 〈S V〉 − 〈S B〉. (2.30)
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Furthermore, the noise is defined to be the standard deviation of the data set {S (i)
V }:

σV =

√√
1

NNV

NNV∑
i=1

(
S (i)

V − 〈S V〉
)2
. (2.31)

Lastly, the experimental SNR is given by:

SNR =
〈S V〉 − 〈S B〉√

1
NV

∑NV
i=1

(
S (i)

V − 〈S V〉
)2
. (2.32)
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Figure 2.6: The first of a three image sequence, each containing a clear vortex lattice. This
image was taken with on resonance illumination with I/Isat ∼ 1 on the |F = 1〉 → |F′ = 2〉
transition with a 20 µs exposure time. The SNR is calculated by evaluating 35 vortex sites and
35 non-vortex sites to be SNR ∼ 2.28.

This SNR can be evaluated for a given image. Figure 2.6 shows a minimally destructive
image taken of a vortex lattice. This is the first image of a three image sequence, each of which
contained a clearly visible vortex lattice. This image was taken with on resonance illumination
with I/Isat ∼ 1 on the |F = 1〉 → |F′ = 2〉 transition with a 20 µs exposure time. Using the method
just described, the SNR is calculated by evaluating 35 vortex sites and 35 non-vortex sites to be
S NR ∼ 2.28. In this example image it is very clear to the observer that a vortex lattice is present
despite the low SNR. There regularity of this pattern absolutely makes it easier to identify. Some
of the vortices in this image would not be easily identified as vortices if they were not in such a
regular pattern.

2.8 Dark field imaging

2.8.1 Qualitative description

The previous section discussed the concept of absorption imaging, which is the conceptually
most simple and familiar imaging technique used in the lab. As it turns out, absorption imaging
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worked quite effectively and perhaps better than any other imaging technique, depending on what
metrics are used to quantify image quality.

Another technique, known as a dark field imaging, was also employed in an attempt to image
vortices in situ. This was not the first use of dark field imaging in BEC science; in fact, some
of the first observations of BEC were done with dark field imaging [72]. Dark field imaging has
also been used to make high sensitive measurements of BECs with very low atom numbers, in
some instances as low as 7 atoms [73]. Dark field imaging is discussed at length in [21, 22].

A single lens optically performs a Fourier transform on the input field. Thus, if one were to
place a sensor at the rear focal plane of an imaging objective, the image observed on the sensor
would be the Fourier transform of the object plane. In dark field imaging, this fact is exploited
by using this Fourier plane to filter out low spatial frequencies. In a two-dimensional Fourier
transform, the lowest spatial frequencies are centrally located and higher spatial frequencies cor-
respond to larger radial distances from the optical axis in this case.

In the BEC imaging techniques described in this paper, the BEC serves both as a transmission
mask and a phase mask. In both cases, the BEC is actively illuminated. The illumination source
itself serves as the lowest spatial frequency in the system. The BEC profile consists of higher
spatial frequencies than the illumination source, because the illumination source is oversized
such that the BEC is approximately uniformly illuminated.

Some of the earliest BEC measurements were made with dark field imaging using a small
central obscuration — either a wire or a dot — designed to block the lowest spatial frequencies
such as those corresponding to the illumination beam only, while permitting spatial frequencies
corresponding to the bulk BEC to be passed by the filter [72]. In traditional absorption imaging,
the BEC cloud corresponds to a dark cloud on a bright illuminated background. In the afore-
mentioned use of dark field imaging, the illumination profile is filtered out and therefore the
background is observed to be dark. The BEC itself will cause a bright cloud to appear on the
sensor rather than a shadowed area. The primary benefit of this technique is that the BEC will
now correspond to a larger photon count on the sensor, which directly results in a higher signal
to noise ratio in the presence of atoms.

In the interest of observing vortices in situ, feature sizes of interest are not only much smaller
than the illumination profile, but also much smaller than the BEC profile itself — thus we ex-
plored larger central obscurations. The theoretical outcome of a properly sized obscuration is
that not only the illumination beam, but also the bulk BEC profile, will be filtered out. What will
ideally remain is only the signal due to very small spatial features such as vortices. The different
behaviors of the illumination beam, light refracted by the bulk BEC, and light refracted by small
features such as vortices is illustrated in figure 2.7.

The BEC is treated as a phase object that coherently refracts light from an imaging probe
beam. The atoms are stroboscopically illuminated with a probe beam with approximately uniform
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intensity I propagating along the axial direction of the BEC. The phase shift φ(x, y) acquired
as the probe passes through the BEC is a function of the integrated column density D̃(x, y) =∫

D(x, y, z)dz and is given by [74]

φ(x, y) = −D̃(x, y)σ0

(
∆/Γ

1 + 4(∆/Γ)2 + I/Isat

)
. (2.33)

In this expression, σ0 represents the atom-light scattering cross-section, ∆ = ω − ω0 is the
detuning of the probe beam of optical frequency ω from the atomic resonance ω0, Γ is the natural
linewidth of the atomic resonance, and Isat is the saturation intensity.

Figure 2.7: Layout of dark field imaging [74]. The light gray collimated input beam is shown
coming to a focus at the dark field mask and is completely obscured. The light interacting with
the bulk BEC profile is scattered into a relatively narrow angular region, which is depicted by the
dotted line and is terminated at the dark field mask. The light interacting with small features such
as vortices is scattered into a larger angular region, depicted with a solid line. This light is able
to bypass the dark field mask because it is scattered into a much larger angular region.

With absorption imaging the maximum SNR should be obtained with on-resonant imaging
light such that in the vicinity of a vortex, the only light seen on the sensor is light that is scattered
by the vortex itself: a bright signal on a dark background will generate a high SNR for feature
detection. Imaging close to resonance has a major disadvantage: this should in principle be
highly destructive because each photon used will have a high probability of causing an atom to
change spin states and be released from the trap. On the other hand, dark field imaging will yield
a bright spot on a dark background regardless of the detuning used. Therefore, by choosing a
detuning far from resonance that is minimally destructive but still allows vortices to be detected
may be a more effective solution for non-destructive in situ imaging. The parameters for such a
non-destructive dark field imaging technique were explored extensively.

2.8.2 Example images

Representative images of BECs with vortex lattices are shown in figure 2.8. The images shown
here are of approximately 106 atoms harmonically trapped in the

∣∣∣F = 1,m f = −1
〉

state with
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fRadial = 8 Hz and fAxial = 16 Hz. The atoms are illuminated with light detuned ∆ ≈ +3Γ with
respect to the |F = 1〉 → |F′ = 2〉 transition with intensity I/Isat ∼ 0.07 with an exposure
time of 100 µs per frame. The three images shown in this figure are the unprocessed dark field
images only and are of the same BEC with the same vortex lattice — another demonstration of
minimally destructive imaging. These images were taken with the Photometrics Cascade 512B
with EM gain enabled, thus reducing the sensor readout noise to effectively less than one electron.
The frames are separated temporally by approximately 102 msec.
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Figure 2.8: Representative in situ dark field images of a lattice of vortices in a BEC

2.9 Faraday imaging

A third imaging technique that is different altogether was successfully used for imaging vortices
in situ. Faraday imaging shares the advantage of dark field imaging in that background illumina-
tion is essentially attenuated to zero.

2.9.1 Qualitative description

Faraday imaging works by illuminating the BEC with linearly polarized light.The BEC is in a
nonzero magnetic field. The linearly polarized light can be written as the super position of σ+

and σ− light. In the presence of the magnetic field, the σ+ and σ− light experience different phase
shifts, which manifests in this scenario as a rotation of the linear polarization angle of the illumi-
nation light that depends on the local column density of the BEC. A polarizing beam splitter is
placed after the imaging objective, which dumps un-rotated light into an unused port and trans-
mits the Faraday rotated light down the imaging path. Therefore, field points in the object plane
that do not contain atoms and therefore do not rotate the linear polarization of the illumination
light, are not imaged onto the camera. In the presence of atoms, however, the illumination light
is Faraday rotated and is imaged onto the camera. For this reason, the presence of atoms appears
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as a bright signal. Furthermore, background subtraction is not necessary in this form of imaging;
however, a dark frame can be subtracted off to account for the DC bias on the sensor readout. The
method of Faraday imaging was described in the first BEC experiments by Randy Hulet using
Lithium and is described in greater length in their observations [5]. Gajdacz et al demonstrated
their Faraday imaging system to produce upwards of one thousand spatially resolved images of a
single BEC [75]. We have seen in our lab upwards of one hundred sequential spatially resolved
images of a single BEC using Faraday imaging; however, not with the SNR needed to detect
vortices.

2.9.2 Example images

Four example images taken using Faraday imaging are shown in figure 2.9. The left two images
are in situ and the right two images are after ∼ 20 ms of ballistic expansion. These images are
unique from the previous images in that first of all, the atoms are confined in a different trapping
geometry: 8 Hz radial by ∼ 32 Hz axial where as earlier there atoms were confined in 8 Hz by
16 Hz and second of all the vortices are a disordered arrangement in all of these images.

For reasons that are not yet fully understood vortex visibility in highly oblate BECs has proven
to be more difficult than in less oblate BECs. These images, which are of BECs with a 4:1 aspect
ratio, show vortices in the most oblate BECs that we were able to detect vortices in. Increasing
the aspect ratio to 6, 8, or 10 resulted in no obvious vortex detection. It is unclear why; the
predicted vortex core size and bulk optical depth are not expected to be significantly difference
in these scenarios.
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Figure 2.9: Example Faraday images taken of a BEC with a 4:1 aspect ratio. The left two images
are taken in situ and the right two images are taken after expansion.

In Faraday images of vortices in a BEC, the optimum vortex signal was achieved by defocus-
ing the BEC by approximately 20-30 µm from the optimal location for on resonance absorption
imaging. This could be because the density profile of a vortex can act as a lens for off-resonant
light.
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2.9.3 Vortex as a microlens

The atom density in the vicinity of a vortex varies approximately as

D ∝
(ρ/ξ)2

2 + (ρ/ξ)2 , (2.34)

which in the vicinity of small (ρ/ξ) can be approximated as the first element of the Taylor series
expansion,

D ≈
(ρ/ξ)2

2
. (2.35)

The phase shift imprinted on the probe beam in the vicinity of the vortex core is then,

φ(ρ) =
σ0

2 1 + 4∆2/Γ2 D̃(r, θ)
(ρ/ξ)2

2
, (2.36)

where I assume that variations in bulk column density (D̃) will be negligible compared to the
variations due to the vortex core. The phase variation applied to a field by a vortex core is
approximately quadratic, just like that of a positive thin lens: [76]

φThin Lens(r) =
π

λ flens
r2, (2.37)

where λ is the imaging wavelength and flens is the focal length of the thin lens. In other words, a
vortex in a BEC can function as a thin lens for off-resonant probe beams with focal length

fvortex =
π

λ

2
σ0

1 + 4∆2/Γ2

2∆/Γ

1
D̃

2ξ2. (2.38)

This effective focal length can be on the order of tens of microns and could account for the vortex
visibility being more prominent when defocused on the order of twenty to thirty microns.

Specifically, as the density of the BEC falls parabolically towards the edge of the BEC, the
“focal length” of a vortex shifts. Furthermore, the local healing length ξ is inversely proportional
to the local density ξ ∝ D−1 and therefore increases parabolically with the radius: ξ ∝ r2. And
lastly, the effective entrance pupil area of the vortex lens scales with the healing length squared.
This measure is significant because the brightness of a vortex detection event scales directly
with the effective entrance pupil area of the vortex lens when appropriately defocused from the
nominal on resonance focus position.

2.10 Conclusion

Three techniques for making in situ observations of quantized vortices in BEC were demonstrated
in this chapter: absorption imaging, dark field imaging, and Faraday imaging. A side-by-side
comparison of the three imaging techniques is shown in figure 2.10.
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Figure 2.10: Comparison of absorption, dark field, and faraday images of vortices in situ, respec-
tively.

Of the three imaging techniques, the Faraday imaging technique had the most repeatable high
SNR results, with a typical SNR of 3.1 calculated according to the method described earlier;
however, multiple images of a single vortex or vortex lattice were never observed for Faraday
imaging. In order to observe vortices in situ using Faraday imaging, the atoms were first pumped
to a secondary atomic state. It is likely that this link in the imaging chain served as the most
destructive part of Faraday imaging, thus making non-destructive imaging with this technique
more difficult. Faraday imaging using the |F = 1〉 → |F′ = 2〉 transition was attempted; how-
ever, the SNR was consistently low and in situ observation of vortices using this technique was
unsuccessful.

Dark field imaging permitted upwards of four consecutive images of a single vortex lattice in
situ with degrading image quality for later images. However, the spatial uniformity of the vortex
brightness was relatively low as seen in figure 2.8. In particular, often times vortices on one side
of the BEC were brighter than the other side of the BEC. This could be attributed to the dark
field mask being slightly off center or alternatively the illumination beam not being precisely
orthogonal to the BEC and imaging objective. Additionally, the vortex visibility dropped off

near the perimeter of the BEC. This is not necessarily unexpected. The dark field mask size is
chosen specifically to match the anticipated vortex size. Both the vortex size and the integrated
column density of the BEC will vary over the extent of the BEC: vortices towards the perimeter
of the BEC will correspond to a larger healing length and also a lower integrated column density
of bulk BEC. Both of these facts would cause light to refract into a smaller angular distribution
than a vortex at the center of the BEC with a smaller healing length and larger integrated column
density of the bulk BEC. Thus, a dark field mask optimized to observe vortices in the center of a
BEC will be oversized for vortices on the perimeter of the BEC, thus causing perimeter vortices
to appear dark or not appear at all. The SNR calculated for the example dark field image shown
was found to be about 1.5.

Lastly, standard absorption imaging with low light levels near the atomic resonance proved



47

to consistently permit the observation of vortices in the BEC while being minimally destructive.
Like dark field, this method permitted upwards of four consecutive in situ images of a vortex lat-
tice in a BEC while also having uniform signal across the extent of the BEC as seen in figure 2.5.
The SNR for the absorption imaging, as mentioned earlier, was calculated to be approximately
2.2.

To conclude this chapter, it has been demonstrated that in situ stroboscopic imaging of vor-
tices is possible. The highest SNR was achieved with Faraday imaging techniques and least
destructive imaging was achieved with bright-field-absorption imaging. We have not yet found
parameters for tracking vortices in highly oblate traps in a non-destructive manner.

Going forward, there are several areas that can be improved upon for the next generation
of quantum vortex microscope. First of all, the atoms could be trapped in a state such as |F =

2,mF = +2〉 that has direct access to a cycling transition. As mentioned earlier, Faraday imaging
proved to have the highest SNR; however, in order to access the high SNR faraday imaging it was
necessary to first pump atoms to a state that has direct access to a cycling transition. This pumping
procedure is thought to be the limiting factor for minimally-destructive imaging. By initially
trapping atoms in a state with access to a cycling transition, the pumping procedure will be
unnecessary and thus higher SNR non-destructive Faraday imaging may be possible. Secondly,
a more optimal EMCCD camera that has a QE optimized for 780 nm would reduce the photon
shot noise, permitting lower imaging powers and thus less-destructive illumination. Thirdly,
weaker trapping frequencies could be used with the same aspect ratio to increase the healing
length and vortex size, which would improve the imaging SNR. A more significant apparatus
redesign could be done to permit closer optical access to the BEC cell permitting the use of
potentially superior commercially available objectives and higher numerical aperture imaging. A
different trap geometry could be used that has a static magnetic field vector optimized for the
imaging technique, whether Faraday, dark field, or absorption, rather than using a time-varying
off-axis magnetic field as is the case currently with the TOP trap. Lastly, vortex detection could
be improved by minimizing the number of optical surfaces between the BEC and the camera
sensor in addition to using narrow bandwidth V-coatings, which would be suitable because of the
very narrow imaging bandwidth and can have upwards of 99.9% transmission rather than 98.5%,
which is typical for a broadband NIR filter anti-reflection coating [77]. The current surfaces,
their respective coatings, and approximate respective transmissions are listed in table 2.10 by
assuming 4% reflectance of uncoated surfaces, measured reflectances, assuming 1.5% reflectance
per surface of broadband IR coatings, assuming 99% reflectance of silvered mirrors, and the
measured reflectance of the objective (88.5%) which is consistent with a 1.5% reflectance per
surface of the assumed broadband coatings. The net system transmission including all surfaces
is less than 0.6. If a particular imaging such as absorption imaging is pursued, no longer relevant
optical elements such as polarizing optics could be removed from the system reducing the total
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surface count. By using a V-coating on all remaining surfaces, the system transmission could be
increased to greater than 0.95. This is relevant because as discussed earlier the shot noise limited
vortex SNR scales with the square root of the optical transmission after the BEC

√
Topt.
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CHAPTER 3

A brief guide to numerical simulation of the damped Gross-Pitaevskii equation in the
two-dimensional vortex regime

For the purpose of simulating the dynamics of the BECs in our lab, the two-dimensional (2D)
damped Gross-Pitaevskii Equation (GPE) is propagated numerically using the split step method
(also known as the Fourier or Spectral Method) [78]. The goal of this chapter is to review the
methods used to model the University of Arizona’s BEC system for the sake of future graduate
students interested in modeling the vortex dynamics of our system. The specific methods de-
scribed here are not new, but rather this chapter serves to consolidate resources and information
found in other literature.

3.1 Time-dependent Gross-Pitaevskii equation: 3D, 2D, and dimensionless 2D formulations

The nonlinear Schrödinger equation, also known as the Gross-Pitaevskii Equation (GPE) is a
wave equation, which arises from the Hartree-Fock approximation and can be used to model the
dynamics of Bose-Einstein condensates: [12]

i~
∂ψ(r, t)
∂t

= −
~2

2m
∇2ψ(r, t) + V1(r)ψ(r, t) + g(N − 1)|ψ(r, t)|2ψ(r, t). (3.1)

In the context of this equation, ψ(r, t) represents the complex-valued scalar wave function
of the BEC and is normalized to unity, ~ represents the reduced Planck constant, m the mass of
a single atom, g = 4π~2a

m the nonlinear interaction strength where a is the inter-atomic s-wave
scattering length, and N is the atom number. V1(r) is the single-particle potential. Since N � 1
in our apparatus, I approximate N − 1 ≈ N in the remainder of this chapter.

In this section, we consider a cylindrically symmetric harmonic single-particle potential:
V1(r) = 1

2mω2
r r2 + 1

2mω2
z z2. Under sufficiently tight axial confinement, the wave function ψ(r, t)

can be treated as separable and the z-dependent component is assumed to be in the single-particle
ground state. The wave function can then be written as

ψ(r, t) = ψ⊥(x, y, t)ψz(z, t), (3.2)

where the axial wave function ψz(z, t) can be expressed as a stationary state in the form

ψz(z, t) = ψ(z)
g (z)e−iE(z)

g t/~ (3.3)
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The Laplacian operator, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 can be written as the sum of a transverse Laplacian

∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 and an axial Laplacian ∇2
z = ∂2

∂z2 . The single-particle potential can be written as
V1(x, y, z) = V⊥1 (x, y) + V (z)

1 (z), giving

i~ψz
∂

∂t
ψ⊥ + E(z)

g ψ⊥ψz = −
~2

2m
ψz∇

2
⊥ψ⊥ −

~2

2m
ψ⊥∇

2
zψz + V⊥1 ψ⊥ψz + V (z)

1 ψ⊥ψz + gN|ψ⊥ψz|
2ψ⊥ψz.

(3.4)

For a harmonic potential in z, E(z)
g ψ

(z)
g = − ~

2

2m∇
2
zψ

(z)
g + V (z)

1 ψ(z)
g and this equality permits the elimi-

nation of several terms, yielding the form

i~ψz
∂

∂t
ψ⊥ = −

~2

2m
ψz∇

2
⊥ψ⊥ + V⊥1 ψ⊥ψz + gN|ψ⊥ψz|

2ψ⊥ψz. (3.5)

Multiplication by ψ∗z and integration with respect to z, noting that ψz is normalized to unity, yields
the following form:

i~
∂

∂t
ψ⊥ = −

~2

2m
∇2
⊥ψ⊥ + V⊥1 ψ⊥ + gN|ψ⊥|2ψ⊥

∫ ∞

−∞

|ψ(z)
g |

4dz. (3.6)

Using ψ(z)
g =

(
mωz
π~

)1/4
e−mωzz2/2~, I define a length parameter,

` =

[∫ ∞

−∞

|ψ(z)
g |

4dz
]−1

=

√
2π~
mωz

, (3.7)

which is used to express the 2D GPE as follows:

i~
∂

∂t
ψ⊥ = −

~2

2m
∇2
⊥ψ⊥ + V⊥1 ψ⊥ +

gN
`
|ψ⊥|

2ψ⊥. (3.8)

The two-dimensional single-particle potential V⊥1 = 1
2mω2

r r2 is harmonic and has circular sym-
metry. Beginning with the 2D GPE for a harmonic trap,

i~
∂

∂t
ψ⊥ = −

~2

2m
∇2
⊥ψ⊥ +

1
2

mω2
r r2ψ⊥ +

gN
`
|ψ⊥|

2ψ⊥ (3.9)

a dimensionless time scale, τ = ωrt, is defined. The harmonic oscillator has a natural length,

r0 =
√

~
mωr

, which is used to define dimensionless lengths x̃ = x/r0, ỹ = y/r0, and r̃ = r/r0.

A dimensionless differential operator, ∇̃2 = r2
0∇

2, is also defined. Lastly, the transverse wave
function has units of inverse length. I introduce a dimensionless wave function: ψ̃⊥ = r0ψ⊥.
Using the nonlinear parameter g = 4π~2a/m, I arrive at a dimensionless 2D GPE:

i
∂

∂τ
ψ̃⊥ = −

1
2
∇̃2
⊥ψ̃⊥ +

1
2

r̃2ψ̃⊥ +
4πaN
`
|ψ̃⊥|

2ψ̃⊥. (3.10)
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This convenient formulation depends only on one dimensionless variable η(2D) = 4πNa
`

that regu-
lates the strength of the nonlinearity,

i
∂

∂τ
ψ̃⊥ = −

1
2
∇̃2
⊥ψ̃⊥ +

1
2

r̃2ψ̃⊥ + η(2D)|ψ̃⊥|
2ψ̃⊥. (3.11)

At this point, a two-dimensional Gross-Pitaevskii Equation has been identified and is known
in a dimensional form as well as a dimensionless form. The two-dimensional GPE in dimension-
less form will prove useful for simulations.

In simulations it is convenient to have an energy scale in the 2D GPE. One convenient natural
energy is the dimensionless chemical potential µ̃, which can be determined analytically for the
ground state of the BEC in the harmonic trap. To do so, I consider the dimensionless ground state
of the GPE,

ψ̃⊥ = ψ̃⊥,0e−iµ̃⊥τ, (3.12)

in the limit where interaction energy dominates kinetic energy and the kinetic energy term can be
neglected. Substitution of this form into the 2D GPE results in

µ̃⊥ =
1
2

r̃2 + η(2D)|ψ̃⊥,0|
2, (3.13)

valid for r̃ ≤
√

2µ̃, which is the Thomas-Fermi radius for the symmetric harmonic 2D GPE.
Equivalently, the wavefunction probability density can be expressed in terms of the radial param-
eter and the chemical potential:

|ψ̃⊥,0|
2 = µ̃⊥ −

1
2

r̃2, (3.14)

again valid for r̃ ≤
√

2µ̃. By normalizing the wave function to one,
∫
|ψ(r, t)|dr = 1, the chemical

potential is found to be:

µ̃⊥ =
√
η(2D)/π. (3.15)

This convenient expression for chemical potential will be used as a dimensionless energy scale.

3.2 Dynamical regimes

In the previous section a 2D GPE was derived from the 3D GPE for an axially symmetric har-
monic potential. The dimensional reduction is highly advantageous from a computational stand-
point. To illustrate the need for dimensional reduction, consider the case of a computational grid
that allows resolution on the order of the healing length over the extent of the entire atom cloud.
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The axial Thomas-Fermi radius in our experiments is approximately 5 µm, the radial Thomas-
Fermi radius is approximately 51 µm. The healing length ξ, which is the length over which the
waveform restores itself from a zero-value boundary condition and serves as a metric for the ra-
dius of a vortex core, can be found by equating the kinetic energy per particle (~2/2mξ2) with the
nonlinear interaction energy 4π~2Da/m where D represents the local density: [12]

~2

2mξ2 =
4π~2Da

m
, (3.16)

and solving for the healing length yields

ξ =

√
1

8πDa
, (3.17)

which is approximately 280 nm in the center of the BEC with a radial trapping frequency
ωr = 2π × 8 Hz, axial trapping frequency ωz = 2π × 90 Hz and atom number N = 1.7 × 106

atoms. To ensure appropriate resolution over the extent of the BEC, I choose a grid size with
sampling distance less than the healing length. For a fully three-dimensional grid, this becomes
computationally expensive because the computation time of fast Fourier transforms (FFTs) scales
with number of elements and it is therefore advantageous to reduce the dimensionality of the sim-
ulation whenever possible. The reduction of the computational domain to two dimensions in the
case of our system can increase the processing speed by more than an order of magnitude.

For fully three-dimensional systems with aspect ratios on the order of unity and many atoms,
the Thomas-Fermi approximation serves as a good approximation for the ground-state profile of
a BEC [12]. For sufficiently anisotropic systems with cylindrical symmetry, there exist regimes
wherein the wave function’s dynamics are restricted to one or two dimensions. The reason for
this is that in highly anisotropic systems, the trapping frequency can be made sufficiently strong
such that excitations in the tight dimensions are energetically forbidden or energetically highly
improbable. Being forced into the ground state in the tight dimensions, the matter wave assumes
the single-particle gaussian ground state for harmonic trapping in those dimensions — and the
Thomas-Fermi approximation is no longer valid in these dimensions. This is the assumption that
was made in the previous section in order to derive the 2D GPE [79]. The applicability of the
2D GPE rests on the assumption that the trap is sufficiently anisotropic such that the matter wave
will not have any excitations in the tightly trapped dimension. For highly anisotropic systems
with cylindrical symmetry, there exists a crossover atom number, Ncrossover. If N < Ncrossover, the
dynamics can be assumed frozen in the tight axial dimension. For oblate BECs, [79]

Ncrossover =
a
r̄

Γ−5/3

√
32

225
, (3.18)

where Γ = ωr/ωz is the trapping aspect ratio for cylindrically symmetric harmonic trapping,
and is less than one for an oblate disk geometry. The quasi-two-dimensional crossover atom
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number for our experimental system is approximately 104, or two orders of magnitude less than
the experimental atom number of about 1.7×106 and so our system is well within the 3D regime.
This crossover is determined by equating the chemical potential (computed using the Thomas-
Fermi approximation) with the energy necessary to excite an atom in the tight dimension to the
first excited state, ~ωz. The significance of this is that the energy necessary for an excitation in
this dimension is set to be approximately the energy necessary for an atom to enter or exit the
BEC. The experimental parameters studied in this dissertation are not within this limit, but the
2D GPE can still be suitable for modeling dynamics of BECs in our highly oblate traps.

3.3 Defining a nonlinear parameter

In our highly oblate traps, the BEC is not in the quasi-two-dimensional regime. However, the
vortex dynamics are in a two-dimensional regime and therefore the 2D GPE can serve as a useful
model for vortex dynamics [80]. In this two-dimensional vortex regime Kelvin waves, which
correspond to the bending modes of a vortex core, are suppressed, therefore keeping vortices
aligned along the axial dimension of the BEC. To implement 2D GPE simulations an appropriate
effective nonlinear coefficient must first be established.

Rather than using ` =
√

2π~/mωz, where ωz is the actual axial trap frequency, we take an
alternative approach. We define an effective number of atoms Neff, an effective radial trap fre-
quency ωeff, and an effective length parameter `eff that collectively match the central density,
chemical potential, and radial Thomas-Fermi radius of our experimental system of interest to
the same measures of our numerics. By matching the Thomas-Fermi radius, central density, and
chemical potential of the experiment, the speed of sound of the numerical system is also matched
to the experimental system and direct comparison of time, velocity, and length scales between
experimental and numerical results is facilitated [81].

3.3.1 The effective 2D chemical potential

In this subsection I compute the two-dimensional chemical potential, µeff. I begin with the two-
dimensional GPE:

i~
∂ψ⊥
∂t

= −
~2

2m
∇2ψ⊥ + Vψ⊥ +

Neffg

`eff

|ψ⊥|
2ψ⊥, (3.19)

where V = 1
2mω2

eff
r2 is the single particle potential. I neglect the kinetic energy term per the

Thomas-Fermi approximation and assume a stationary state ψ⊥ = ψ⊥0e−iµeff,⊥t/~, leading to

µeff,⊥ = V +
Neffg

`eff

|ψ⊥0|
2. (3.20)
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Solving for the probability density gives

|ψ⊥0|
2 =

`eff

Neffg

(
µeff,⊥ −

1
2

mω2
effr2

)
Θ(r − rTF), (3.21)

where Θ(x) is the Heaviside step function and rTF =
√

2µeff,⊥

mω2
eff

is the radial Thomas-Fermi radius.
To solve for the chemical potential, I use the normalization of ψ⊥0:

1 =

∫ ∞

0
r dr

∫ 2π

0
dθ |ψ⊥0|

2 =

∫ ∞

0
r dr

∫ 2π

0
dθ

`eff

Neffg

(
µeff,⊥ −

1
2

mω2
effr2

)
Θ(r − rTF), (3.22)

giving

µeff,⊥ = 2~ωeff

√
Neffa
`eff

. (3.23)

The corresponding effective 3D chemical potential is found by adding the single-particle axial
ground state energy:

µeff = µeff,⊥ +
1
2
~ωz,eff. (3.24)

Using the approach from earlier, the effective length parameter is now found to be to be `eff =√
2π~/mωz,eff, where ωz,eff is an effective trapping frequency in the axial dimension, and so the

full effective chemical potential is found to be [82]

µeff = 2~ωeff

√
Neffa/`eff +

π~2

m`2
eff

. (3.25)

3.3.2 The effective 2D radial Thomas-Fermi radius

The Thomas-Fermi radius of the effective two-dimensional system corresponds to where the wave
function goes to zero:

rTF,eff = 2

√
~

mωeff

(
Neffa
`eff

)1/4

. (3.26)

3.3.3 The effective 2D central density

The two-dimensional GPE requires that atoms be in the z-dimensional harmonic oscillator ground
state; however, in the radial dimensions, the atoms assume a Thomas-Fermi profile:

ψ(r, θ, z) = Ne−πz2/`2
effMax

(√
1 − r2/r2

TF, 0
)

(3.27)
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where

N = 23/4π−1/4`−1/2
eff

r−1
TF (3.28)

is a normalization constant. The peak atom density is found by multiplying the normalized central
probability density |ψ(r = 0, z = 0)|2 by the effective number of atoms:

Neff|ψ(r = 0, z = 0)|2 = Neffmωeff

1
π~

√
Neff

2a`eff

. (3.29)

3.3.4 The 3D chemical potential

To compute the 3D chemical potential of the experimental BECs, I use [12]

µ =
152/5

2

(Na
r̄

)2/5

~ω̄. (3.30)

This expression is a good approximation for BECs in anisotropic harmonic traps where the
Thomas-Fermi approximation is valid. In this form, r̄ is the geometric mean of the natural oscil-
lator lengths and ω̄ is the geometric mean of the oscillator frequencies.

3.3.5 The 3D radial Thomas-Fermi radius

With an analytical expression for the full 3D chemical potential, the radial Thomas-Fermi radius
can be expressed explicitly in terms of trap geometry and atom number as

rTF:r =

√
~ω̄

mω2
r
151/5

(Na
r̄

)1/5

. (3.31)

3.3.6 The 3D peak density

For the experimental parameters that are in the 3D regime, the probability density,

|ψ|2 =
1

Ng
Max {(µ − V) , 0} =

1
Ng

Max


µ −∑

i

1
2

mω2
i x2

i

 , 0
 , (3.32)

is normalized to one. By multiplying the total number of atoms N by the normalized probability
density, the peak density is evaluated to be

N |ψ|2max = N
m

4π~2a
152/5

2

(Na
r̄

)2/5

~ω̄. (3.33)
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3.4 Solving for the effective two-dimensional parameters

In the previous section analytical expressions were found for the chemical potential, peak den-
sity, and Thomas-Fermi radius of both the three-dimensional case as well as the effective two-
dimensional case. The experimental system corresponds to a three-dimensional matter wave,
though in the two-dimensional vortex dynamics regime. An effective atom number,

Neff =
153/5

16

√
π

a

√
2 +
√

2

√
~ω̄3

mω4
r

(Na
r̄

)3/5

, (3.34)

effective radial trapping frequency,

ωeff = 2−1/4ωr, (3.35)

and effective length parameter

`eff =

√
π~

mω̄

√
2
√

2 +
√

215−1/5
(Na

r̄

)−1/5

(3.36)

(3.37)

are found by equating the three-dimensional Thomas-Fermi radius, chemical potential, and peak
density with the effective two-dimensional Thomas-Fermi radius, chemical potential, and peak
density respectively in a system of equations. In the above expressions, N denotes the experimen-
tal atom number, ω̄ denotes the geometric average experimental trapping frequency, r̄ denotes the
geometric average natural harmonic oscillator length of the experimental system, ωeff denotes the
effective two-dimensional radial trapping frequency, `eff corresponds to the effective length pa-
rameter described earlier, and Neff describes the effective two-dimensional atom number.

The dimensionless effective two-dimensional nonlinear parameter found earlier can now be
written explicitly in terms of the effective atom number and the effective length parameter as

η(2D) =
4πaNeff

`eff

. (3.38)

The role of ωeff is to scale the dimensionless time: τ = ωefft. A dimensionless phenomenological
damping parameter, γ, can also be used in simulation. The inclusion of the damping parame-
ter serves a dual purpose: firstly to account for phenomenological dissipation and secondly, by
damping out higher energy modes, higher dissipation factors permit the simulation to run at a
lower temporal resolution and so requiring fewer calculations per simulation. In this work a
dissipation factor of γ ≈ 0.003 is used and is on the upper end of experimentally realistic phe-
nomenological damping parameters [83, 84]. The final form of the GPE used in the numerical
study described in the following chapter is:

i
∂

∂τ
ψ̃⊥ = (1 − iγ)

[
−

1
2
∇̃2
⊥ψ̃⊥ +

1
2

r̃2ψ̃⊥ + η(2D)|ψ̃⊥|
2ψ̃⊥

]
. (3.39)
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CHAPTER 4

A method for nucleating vortex dipoles in BECs

In the previous chapter, the numerical methods for simulating the GPE in the two-dimensional
vortex regime were reviewed. In this chapter, a mechanism for imprinting a vortex dipole onto
a BEC is investigated numerically and theoretically. Additionally an experimental layout is pro-
posed and prototyped.

The method developed in this chapter seeks to push the state-of-the-art wave function en-
gineering to include the ability to imprint a vortex dipole on demand arbitrarily within a BEC.
While other methods currently exist to nucleate a vortex dipole, they either require a barrier mov-
ing above a critical velocity that disturbs a significant portion of the BEC or in the case of a
modulating repulsive barrier, the physics behind vortex dipole nucleation are not understood and
therefore the method is not yet very precise. An experimentally-realizable method using station-
ary barriers to imprint vortex dipoles in a BEC on demand is investigated numerically in this
chapter and a corresponding experimental method is outlined and prototyped.

4.1 Vortex dipole basics

A vortex dipole is an isolated vortex-antivortex pair: one vortex with positive circulation and
another with negative circulation about a common axis. This is particularly interesting in two-
dimensional superfluid dynamics where all vortex circulation vectors must be oriented in one of
two directions (up or down). The energy of a vortex dipole in a two-dimensional BEC can be
expressed analytically: [12]

EVD ≈
2π~2n2D

m
ln

(
d
ξ

)
(4.1)

where n2D is the number of atoms per unit area of the ground-state BEC in the vicinity of the vor-
tex dipole, m is the atomic mass, d is the vortex-anti-vortex separation, and ξ is the BEC healing
length. The energy scales logarithmically with vortex-anti-vortex separation. This corroborates
the observation in numerical simulations described later in this chapter that weaker perturbations
lead to smaller dipoles and for slightly underpowered perturbations, a Jones-Roberts soliton [85].
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4.2 Overview of method

The mechanism used to nucleate vortex dipoles in this chapter requires two optical dipole barriers
to manipulate the local single particle potential seen by the atoms. The atomic resonance of
87Rb is approximately 780nm. The presence of an optical beam detuned far from resonance
functions as either an attractive potential or a repulsive potential. Specifically, a red-detuned
beam with wavelength longer than that of the atomic resonance serves as an attractive potential,
whereas a blue-detuned beam with wavelength shorter than that of the atomic resonance serves as
a repulsive potential. Specific wavelengths are typically chosen based on what is commercially
available.

Previously, a blue-detuned repulsive beam has been focused to a tight spot and pushed across
a BEC above a critical velocity to nucleate a vortex dipole [14, 17]. In this chapter, I describe a
method to introduce a vortex dipole into a BEC using a stationary but time-varying obstacle. In
order to compensate for the beam being stationary, I use a combination of a red-detuned and a
blue-detuned beam.

The 87Rb BECs studied in the U of A BEC lab have an oblate cylindrically symmetric geom-
etry with 11:1 aspect ratio, an axial Thomas-Fermi radius of approximately 4.5 µm and a radial
Thomas-Fermi radius of approximately 50 µm. Two gaussian beams are vertically incident upon
the BEC. The first beam is a 660-nm beam with a e−2 beam radius of approximately 10 µm. The
second beam is a 850-nm beam, also with a e−2 beam radius of approximately 10 µm. Both beams
are linearly polarized and sufficiently far-detuned from the atomic resonance (780 nm) such that
the dominant atom-light interaction is the optical dipole interaction. For very large detunings,
ignoring both the hyperfine and fine structure splitting, the optical dipole potential for a given
beam is: [86]

Udipole =
3πc2

2ω3
0

Γ

∆
I(r). (4.2)

In the above formulation, I(r) represents the spatially dependent intensity, and Γ = 2π(6.07× 106

Hz) represents the natural linewidth for 87Rb [87] .
The net potential induced by the two beams is:

U(r) =
3πc2

2ω3
0

Γ

∆Red
IRed(r) +

3πc2

2ω3
0

Γ

∆Blue
IBlue(r). (4.3)

The individual intensities are not equal; their respective intensities are given by

IRed(r) = I0,Red exp
[
−2(r − r0,Red)2/σ2

]
(4.4)

and

IBlue(r) = I0,Blue exp
[
−2(r − r0,Blue)2/σ2

]
. (4.5)
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The peak amplitude of the beam intensities are chosen in this study so that the absolute dipole
potential amplitudes are equal:

U0 =

∣∣∣∣∣∣3πc2

2ω3
0

Γ

∆Blue
I0,Blue

∣∣∣∣∣∣ =

∣∣∣∣∣∣3πc2

2ω3
0

Γ

∆Red
I0,Red

∣∣∣∣∣∣ . (4.6)

For our parameters, ωRed ≈ 2.2 × 1015 s−1, ωBlue ≈ 2.86 × 1015 s−1, ω0 ≈ 2.42 × 1015 s−1, ∆Red ≈

−1.99 × 1014 s−1, and ∆Blue ≈ 4.39 × 1014 s−1. The blue (660-nm) light source will be chosen to
have an intensity higher than the red (850-nm) light source by a factor of ≈ 2.21:

I0,Blue =

∣∣∣∣∣∆Blue

∆Red

∣∣∣∣∣ I0,Red. (4.7)

Each of the two beams can be independently and arbitrarily placed. For the sake of the studies
in this dissertation, however, the beams are placed an equal distance d from the BEC center and
along a line that bisects the cross-section of the BEC: r0,Blue = −dx̂ and r0,Red = +dx̂. The net
potential induced by the combined beams is:

U = U0 exp
[
−2((x − d2) + y2)/σ2

]
− U0 exp

[
−2((x + d)2 + y2)/σ2

]
. (4.8)

Lastly, the potential is time dependent. Specifically, it is ramped on and off smoothly according
to:

T (t) =

 sin2
(
πt
TP

)
0 < t < TP

0 otherwise
, (4.9)

where TP represents the duration of the perturbation. Thus, the time-dependent potential is:

U(r, t) = U(r)T (t). (4.10)

The time dependence of the perturbation geometry is shown visually in figure 4.1. Numerical
renderings of the single-particle potential seen by the atoms are shown at five points in time
during the perturbation. The left column uses color to qualitatively illustrate the red and blue
beams ramping up and then down in intensity. The center column shows a vertical cross-section
of the potential through the center of the trap. The right column is a two-dimensional map of
the single-particle potential. In all three illustrations, the position coordinates are in units of the
natural oscillator length. Accordingly, the BEC will be slightly smaller than the window shown.

There are several parameters of interest in this numerical study. The peak potential U0, the
beam separation 2d, the perturbation time TP, the beam width σ. From an experimental perspec-
tive, the most difficult parameter to alter is σ, which requires swapping out an optical telescope.
The beam separation can be changed by adjusting folding mirrors, the perturbation time can be
changed on the fly by adjusting numbers in the timing control sequence, and similarly the beam
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Figure 4.1: Visual illustration of the time varying perturbation. The left column illustrates the
locations of the red and blue detuned beams. The central column depicts a horizontal cross-
section of the potential perturbation seen by the atoms due to the perturbation. The right column
depicts a two-dimensional view of the perturbation seen by the atoms. Lengths are scaled by the
harmonic oscillator length.

amplitude can be changed by adjusting numbers in the timing control sequence. This study will
focus on a single beam size (σ = 10µm), which corresponds to the beam sizes typically used
in 87Rb BEC experiments at the University of Arizona that involve optical stirring beams. The
10µm beam waist corresponds to approximately 25ξ, where ξ ∼ 0.28 µm is the healing length of
the BEC.
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4.3 Experimental configuration & constraints

The experimental setup is illustrated in figure 4.2. Two lasers are configured on separate opti-
cal breadboards. They are housed separately for two reasons: space constraints on the primary
experiment table and to minimize stray light near the imaging camera. Each laser is capable of
outputting about 150 mW. This is far more power than will be necessary. Both lasers are con-
trolled with laser diode current drivers. Both current drivers accept an input voltage to modulate
the diode current (20 mA/V). This input voltage will be controlled from the timing computer,
which uses a Viewpoint DIO 128 Digital output card with 10 µsec time step resolution through
a 16 bit 0-10V digital-to-analog converter in order to establish a time-dependent perturbing po-
tential. The current drivers are preset to a base current that is just above the lasing threshold for
each diode. This is done because over the course of the day the current will be ramped up and
down tens or hundreds of times. Repeatedly and rapidly ramping the current through the lasing
threshold can cause premature diode failure and should be avoided. Furthermore, the laser’s out-
put response is slow below the lasing threshold and nonlinear near the lasing threshold, whereas
the laser’s output power is approximately linear and relatively much more rapid above the lasing
threshold. It is therefore much easier to predict the time-dependent perturbing potential’s output
power as a function of time if operated strictly within the lasing regime.

Each laser can be brought to focus through an AOM. The AOMs are electronically controlled
by the timing computer and act as high speed shutters. In practice, the 850-nm beam uses an
AOM as a shutter and the 660-nm beam uses a mechanical shutter, however, it is preferred to use
AOMs for both shutters because of the much faster actuation. The AOMs have a rise time on the
order of 20 ns, which is much faster than the 6 ms open/close time of the mechanical shutters.

Both lasers are independently coupled into single-mode optical fibers (F1,F2) to bring the
light over to the optical table where the fiber is affixed to a fiber coupler/collimating package,
which outputs a collimated beam. Each beam is then directed through a polarizing beam splitter
cube. This serves two purposes: first to ensure the polarization of the light is known and secondly
to pick off some light from each beam to send to a photodiode that is used to actively monitor
laser power during the timing sequence.

The 850-nm laser is reflected by two steering mirrors (SM1 and SM2). These mirrors are
steered by piezo-electric actuators. The piezo-electric actuator on the first mirror controls one
axis and the piezo-electric actuator on the second mirror controls the other axis. These actuators
are controlled by a voltage driver which is in turn controlled by an analog voltage from the timing
computer. For the purpose of this specific experiment, the beams are held stationary; however,
these actuators permit the 850-nm beam to be actively steered independent of the 660-nm beam
during the timing sequence in time steps on the order of a ms.

The 660-nm laser is reflected by a flat mirror, M1, before being resized by a Newtonian
telescope that consists of two lenses L5 and L6. This Newtonian telescope is used to resize the
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660-nm beam such that when focused by the focusing objective, L9, both beams will focus down
to the same spot size.

The two beams are combined with a non-polarizing beam splitter cube. A non-polarizing
beamsplitter is preferred so that both beams have the same polarization. This is convenient be-
cause polarizing optics are used further down the optical path and it is desirable to have both
perturbing beams interact with the polarizing optics in the same way.

After the two beams are combined by the non-polarizing beam splitter cube, there is a sec-
ondary Newtonian telescope that consists of two achromatic lenses. The purpose of this telescope
is to increase the size of both beams such that the final focused beam size is smaller. The final
focusing objective could also be adjusted to serve this purpose, however, geometry and space
constraints require that the final focusing objective have no shorter than 90 mm focal length,
which sets a lower bound on the input beam size for the desired focused beam size.

After the second Newtonian telescope there are two additional steering mirrors, SM3 and
SM4, which again are outfitted with piezo-electric actuators and can be actively steered during
the experiment. The previous set of steering mirrors adjusts the relative position of the 850-nm
and the 660-nm beams to set the beam separation. This second set of steering mirrors, however,
steers both beams simultaneously and is therefore used to position the perturbation on the BEC.
This can be done actively during the experiment so that, for example, two vortex dipoles could
be sequentially imprinted in different areas of the same BEC.

Finally, the achromatic focusing objective L9 is used to focus both the 660-nm and the 850-
nm beams on to the BEC. As mentioned earlier, there is a geometric constraint that imposes a
lower bound on the available focal lengths due to a beamsplitter cube that is necessary to permit
a secondary light path to illuminate the BEC with collimated imaging light.

4.3.1 Choice of beam size

In general, the system has been designed with a final focused beam size in mind, a e−2 radius
of σr = 10µm. The choice of beam size is for consistency with prior experiments in our lab
that were conducted with a single 660-nm beam. Furthermore, much larger beam sizes are less
favorable because they will be comparable to the BEC size itself, which would cause boundary
effects to play a larger role in the observed dynamics and may also not produce dipoles as well.
Much smaller beam sizes are increasingly difficult to achieve. The diffraction-limited focusing
beam diameter is given by

d =
λ

2 × NA
, (4.11)

where NA = D/ f represents the numerical aperture of the focusing objective, D represents the
diameter of the focusing objective, and f represents the focal length of the focusing objective.
The same beam size is desired for both the 660-nm beam and the 850-nm beam, necessitating
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that common path optics be achromatic. Geometric constraints set a lower bound on the final
focusing objective to f (min)

obj ≈ 90 mm.
Each beam will have a unique Rayleigh range:

z(λ)
r =

πσ2
r

λ
. (4.12)

The focusing objective has a diameter of 25.4 mm, focal length 100 mm, and NA = 0.125.
This corresponds to a 4.15 µm diffraction-limited spot size for 850-nm. The 10 µm experimental
spot size is more than a factor of two above the theoretical minimum spot size in the current
configuration, however, when keeping in mind that we desire to have steerable beams over a
relatively wide field of view, it is increasingly difficult to maintain a small unaberrated spot size
over the steering range.

Due to the inverse relationship between Rayleigh range and wavelength, the 850-nm laser
will have a shorter Rayleigh range. Assuming a 10 µm e−2 spot radius, the 660-nm spot will
have a 475 µm Rayleigh range and the 850-nm spot will have a 370 µm Rayleigh range. With
knowledge of the Rayleigh ranges, the input beam radius is calculated according to:

σinput = σr

√
1 +

(
fobj

zr

)2

. (4.13)

Assuming a 100-mm focal length objective and a 10 µm e−2 spot size, the upstream optical con-
figuration must produce a 660-nm beam with 2.1 mm e−2 radius and a 850-nm beam with 2.7 mm
e−2 radius. The 850-nm beam must be a factor of 1.3 larger than the 660-nm beam. This ratio will
be constant regardless of desired final beam spot size. This will be convenient later if a different
spot size is desired because only the final Newtonian telescope will need to be adjusted in order
to achieve the new perturbation geometry.

In its current form, the final Newtonian telescope consists of two achromatic lenses with focal
lengths of 100 mm and 150 mm. Together, they form a magnification 1.5X telescope. Because
this telescope is achromatic, it will offer the same magnification to both the 850-nm and the 660-
nm beams. Prior to the 1.5X magnification, the 660-nm and 850-nm e−2 beam waists σ(λ)

1 must
be 1.4 mm and 1.8 mm respectively, again maintaining the 1.29 ratio in relative beam sizes.

In order to set the proper beam size ratio, it is only necessary to adjust one of the optical
paths and it should not matter which one. In the diagram shown in figure 4.2, the 660-nm beam
is adjusted.

The initial beam size coming out of the fiber will be a function of the fiber mode, which will be
approximately gaussian. The 660-nm laser and the 850-nm laser will each have different profiles
coming out of the fiber. In particular, the 660-nm laser will have a fiber mode with radius σ(660)

f

and the 850-nm laser will have a fiber mode with radius σ(850)
f . Furthermore, the 660-nm path
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will have a fiber coupler with focal length fc,660 and the 850-nm laser will have a fiber coupler
with focal length fc,850. The initial collimated beam waists can again be calculated by considering
the Rayleigh range of the respective fiber modes,

z(λ)
r, f =

πσ(λ)2
f

λ
. (4.14)

From the Rayleigh range of the fiber, the initial collimated beam size is calculated.

σ(λ)
0 = σ(λ)

f

√
1 +

(
fc,λ

z(λ)
r

)2

. (4.15)

In the experimental diagram shown, the 850-nm beam size is not adjusted with a telescope and
therefore must be 1.8 mm at this point, which was a design constraint during the layout devel-
opment. On the other hand, the 660-nm beam need not be the correct size because a Newtonian

telescope with magnification M =
σ(660)

1

σ(660)
0

is used to bring the beam up or down to size.

4.3.2 Choice of beam intensities

The 660-nm and the 850-nm beams serve as repulsive and attractive perturbations respectively.
In the absence of the 850-nm beam, the 660-nm beam can serve as either a penetrable or an
impenetrable barrier. A penetrable barrier serves as a sort of bump in the potential experienced by
the atoms. This bump will in general reduce the local atom density, however, the local density will
not necessarily be reduced by an order of magnitude or more. On the other hand, an impenetrable
perturbation will forbid the presence of atoms in the locality of the perturbation. A useful metric
for comparison is the chemical potential, which, like the amplitude of the perturbation, has units
of energy. If the perturbation has an amplitude on the order of the chemical potential, an atom
with a significant probability density at the peak of the perturbation will have potential energy
on the order of the chemical potential. For an atom trap, this is a signifiant amount of excess
energy for an atom to have. Consider the possibility of the atom density moving off the unstable
equilibrium position that is the perturbation: this potential energy is then converted to kinetic
energy. The chemical potential, by definition, is the amount of energy needed for an atom to
enter or exit the trap. It therefore stands to reason that any atoms that have a significant probability
density in the immediate vicinity of the peak perturbation will also have enough energy to leave
the system.

The chemical potential thus serves as a useful scale by which to measure the perturbation
amplitude. The perturbation itself is the result of the optical dipole force, which is the dominant
effect of a far-detuned light source. What is meant by far-detuned is that the detuning from the
atomic resonance (∼780 nm) is much greater than the width of the atomic resonance (∼ 6 MHz)
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[87]. Both 850-nm and 660-nm light correspond to detuning at least six orders of magnitude
larger than the atomic resonance, which is sufficient to be considered far-detuned.

It is helpful to know what optical intensity and optical powers correspond to the chemical
potential for both the 660-nm and 850-nm beams and so I define reference intensities:

I(λ)
µ =

2ω3
0

3πc2

∆

Γ
µsys, (4.16)

where µsys represents the chemical potential of the BEC. Within the Thomas-Fermi approxima-
tion, the ground-state chemical potential is given by [12]

µsys

~ω̄
=

1
2

(
15Nas

r̄

)2/5

, (4.17)

where r̄ is the geometric mean harmonic oscillator length, ω̄ represents the geometric mean har-
monic oscillator frequency, N is the atom number, and g = 4π~2a/m where a is the s-wave
scattering length. Using this form for the chemical potential and assuming experimental trap fre-
quencies of 8 Hz and 90 Hz with an atom number of 1.7 million the reference beam intensities
are calculated to be I660

µ = 1.2 × 105 W/m2 and I850
µ = 6.52 × 104 W/m2. The corresponding

reference beam powers assuming a 10 µm beam waist are I660
µ = 22.5 µW and I850

µ = 13µW.

4.3.3 Choice of beam separation

The spatial dependence of the perturbation is characterized by two parameters: beam waist and
beam separation. The spatial dependence of the potential cross-section with beam separation 2x0

and beam radii σ, is given by

V ∝ e−(x−x0)2/σ2
− e−(x+x0)2/σ2

. (4.18)

The beam offset, x0, can be chosen to maximize the central gradient. The central gradient is
the derivative of the potential:

∂V
∂x

∣∣∣∣∣
x=0
∝

2(x0)
σ2 e−x2

0/σ
2
−

2(x0)2

σ2 e−x2
0/σ

2
. (4.19)

The on-axis gradient can be maximized with respect to the beam offset parameter x0:

d
dx0

[
∂V
∂x

∣∣∣∣∣
x=0

]
∝

8x0

σ2 e−x2
0/σ

2

(
1 −

x2
0

σ2

)
. (4.20)

The gradient is maximized when the beam offset, x0, is set to the beam radius, σ. This will serve
as a baseline beam offset; however, different offsets are examined numerically and the offset is
found to affect the vortex dipole nucleation thresholds.
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4.3.4 Choice of perturbation times

For the purpose of engineering arbitrary BEC wave functions, shorter time scales are more favor-
able. Any of the time scales discussed here are short enough to not be noticed by the equipment
operators: the experiment itself has an approximately four minute duration and so whether this
mechanism takes ten ms or ten seconds is insignificant. More importantly, however, it is desirable
to have the vortex dipole nucleation method be as fast as possible so that another dipole could
be placed elsewhere by the same mechanism without the system time evolving significantly. A
good metric for the system’s rate of time evolution is the radial trapping period, which is approx-
imately 125 ms and corresponds to the 8 Hz radial trapping frequency. Ideally, the perturbation
time will be much less than the radial trapping period. As will be seen later in the numerical
results, however, it is found that the most stable regimes are for perturbation times slightly longer
than the radial trapping period. This will still suffice, so long as the perturbation time is not much
greater than the radial trapping period. A second reason that short perturbations are desirable is
because of the limited BEC lifetime; however, the BEC lifetime is on the order of a minute and
is not a limiting factor at this point in time.

4.4 Overview of explored parameter space

As was mentioned earlier, there are four characteristic parameters for the perturbation mecha-
nism described in this chapter: beam width, beam separation, perturbation time, and perturbation
amplitude. Beam width and beam separation both are relevant length scales. Perturbation time is
a time scale, and perturbation amplitude is an energy scale.

The harmonic oscillator system has two characteristic length scales: the natural oscillator
length r0 and the healing length ξ. The healing length ξ is a function of the nonlinear parameter
that depends on atom number in addition to the species, and so the more general natural oscillator
length r0 =

√
~/mω is the preferred length scale. The system has one characteristic timescale:

the trap oscillator period T = 2π/ω and one characteristic energy scale: the chemical potential, µ.
These characteristic scales serve as a starting point for guessing ideal parameters. For example,
an initial trial guess could be a perturbation amplitude of µ, a perturbation time of TP = T , and
beam width on the order of the diffraction limit and a similar beam separation.

4.4.1 Time dependence

The initial trial configuration used is a beam width of σ ≈ 2.63r0, which corresponds to a 10µm
beam waist in the experimental apparatus. Initial beam separation is chosen to be d = 3σ ≈
7.89r0. The initial perturbation time is varied between TP = T/16 and TP = 2T . For each
choice of perturbation time, simulations are run with varying intensities in an attempt to map
out the threshold amplitude for vortex dipole nucleation as well as the upper threshold, above
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which additional vortices or solitons are introduced beyond simply a vortex dipole. As expected,
the threshold for vortex dipole nucleation varies significantly with the perturbation time. The
resulting dataset is shown in figure 4.3.

The threshold intensity for dipole nucleation appears to be approximately linear with pertur-
bation time. Below a perturbation time of TP ≈ T , or one period of the radial trap frequency, it
is difficult to generate a stable dipole without other excitations such as sound waves or additional
dipoles. For a perturbation lasting approximately one period of the radially trapping geometry
and longer, a window in parameter space opens up where dipoles are easily introduced without
many other excitations. This has been observed for all of the parameters explored and I hypothe-
size that it has to do with the system allowing time for the fluid to be pushed to one side and then
return. Vortex dipoles could be nucleated for shorter perturbation times; however, it appears to
be a different and less favorable mechanism at work that tends to also introduce large quantities
of sound waves.

4.4.2 Dependence on beam separation

The threshold intensities for vortex dipole nucleation were also checked against the spatial sep-
aration of the red and blue beams. Once again, there is a lower bound below which only sound
waves are generated and an upper bound above which vortex dipoles are nucleated with additional
sound waves, Jones-Roberts solitons, and/or vortices.

The numerical data for these thresholds are illustrated in figure 4.4. Of note, for wide enough
beam separation there is no stable regime to create a single vortex dipole with minimal other
excitations. This is not surprising and most likely because significant edge effects come into
play. For increasingly small beam separations, the intensity threshold increases exponentially.
This is again not surprising because for increasingly small separations the two beams increasingly
negate each other’s effect. For zero beam separation, the two beams would be overlapped and
there would be exactly zero shift in the local single-particle potential energy seen by the atoms.

The effect of underpowered, critically powered, and overpowered perturbation intensities are
shown in figure 4.5. For the case of underpowered, residual excitations are seen on the perimeter
of the BEC, however, no vortices are present. In the critically powered case, there are fewer sound
excitations than in the underpowered case, and additionally, there is a vortex dipole present. In
the overpowered case, there is a vortex dipole present but also sound waves are visible on the
perimeter in addition to two additional edge-vortices that can be seen at the 2 o’clock and 4
o’clock positions.
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Figure 4.3: Investigation of intensity and time dependence of perturbation on vortex dipole nu-
cleation. Below a threshold (blue region) only sound waves are formed. In some instances, these
sound waves take the form of Jones-Roberts solitons. At lower intensities these excitations damp
out, whereas at intensities closer to the vortex dipole nucleation threshold they decay into vortex
dipoles near the BEC perimeter. Sufficiently high intensities introduce extraneous excitations in
the form of sound waves, Jones-Roberts solitons, or vortices in addition to the desired vortex
dipole. This region in parameter space is shown here in red. The beam waist is σ = 2.63r0 where
r0 is the natural harmonic oscillator length and the beam separation is dsep = 3σ.
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Figure 4.4: Dependence on separation between repulsive and attractive perturbations on vortex
dipole nucleation threshold. The beam waist is σ = 2.63r0 where r0 is the natural harmonic
oscillator length. The perturbation time is TP = T .

4.4.3 Dependence on beam size

In this subsection, the dependence of threshold intensities on beam size is investigated. In order to
do a controlled study, the beam separations are scaled with beam size: d = 2σ. Furthermore, the
perturbation time is held constant at TP = 5T/4, which corresponds to one of the most promising
areas in parameter space explored earlier as depicted in figure 4.3. The beam size was varied
from r0 to 3.5r0 in steps of 0.5r0 where r0 is the natural oscillator length. In the corresponding
experiment, the actual beam size (10µm) corresponds to approximately 2.63r0.

The numerical findings are shown in figure 4.6. In this controlled numerical study, there was
no stable vortex dipole nucleation regime for beam waists σ/r0 < 1.5. Instead, weak perturba-
tions yielded only sound waves and stronger perturbations yielded a mix of vortices and sound
waves, but with no clear dipolar fluid flow.

As the beam waist is increased, an area of parameter space opens up where vortex dipoles
are nucleated without excessive acoustic excitations. The optimal beam waists appear to be
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Figure 4.5: The leftmost image depicts a simulated BEC with an underpowered perturbation.
Small acoustic wave ripples are visible, especially around the perimeter. In center, a simulated
BEC after an optimally powered perturbation is shown. Note the presence of a vortex dipole and
the absence of acoustic wave ripples around the perimeter. On the right, a simulated BEC after
an overpowered perturbation is shown. Note that in addition to a vortex dipole, acoustic waves
are seen, and in particular, additional vortices are seen on the perimeter; these are the result of an
acoustic wave that broke up into vortices in the low density cloud perimeter. The top row depicts
the local density profile and the lower image depicts the local phase.
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Figure 4.6: This figure illustrates the perturbation intensity thresholds for vortex dipole nucleation
as a function of perturbation beam waist. The beam offset is scaled with the beam waist as ∆x = σ
in this dataset. The perturbation time is held constant at TP = 5T/4.

between 2r0 and 3r0 in this configuration. Increasingly larger perturbation sizes come with a
lower threshold for vortex dipole nucleation and also a lower threshold for additional excitations.
This is not surprising because a larger perturbation with the same amplitude will have a larger
net energy exchange with the atoms due to the larger effective interaction area. Ultimately, large
enough beams close the gap between vortex dipole nucleation and more chaotic systems with
unwanted excitations. This is likely due to boundary effects. A further study of this mechanism
in a homogeneous medium would improve our understanding of the mechanisms at work here by
ruling out boundary conditions.

To further understand the dependence on beam separation, the numerical investigation of
intensity threshold as a function of perturbation time which was discussed briefly earlier in the
temporal dependence subsection is extended to identify the regions for vortex dipole nucleation
with three different beam separations: d = 2σ, d = 3σ, and d = 4σ, where σ = 2.63r0 is
the beam size which corresponds approximately to the experimental beam and r0 is the natural
oscillator length of the radial trapping geometry. This dataset is shown in figure 4.7. In all three
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Figure 4.7: The intensity threshold as a function of perturbation time is investigated for three
different beam separations: d = 2σ, d = 3σ, and d = 4σ. In each case, the lower threshold for
vortex dipole nucleation and the upper threshold before additional undesirable excitations (large
sound waves, vortices, and solitons) are shown. In all three cases the beam separations from
center are scaled with beam size: d = 2σ.

cases vortex dipoles are not nucleated for short perturbation times TP . 7/8T without excessive
unwanted excitations. The smaller beam separation consistently has higher intensity thresholds.
This is unsurprising because the smaller beam separations have smaller interaction areas and a
smaller net energy transfer to the atoms. The cases of d = 3σ and d = 2σ have about the
same threshold for vortex dipole nucleation; however, the threshold for undesirable excitations
is lower for the d = 4σ scenario, presumably because boundary effects are playing a larger role
in the dynamics. This finding suggests that larger beam separations simplify the vortex dipole
nucleation process; however, there is a diminishing return when pursuing larger beam separations
in a finite sized BEC due to boundary interactions.



75

4.5 Analysis

In the previous section the parameter space for vortex dipole nucleation was explored with spe-
cific regard to beam size, beam separation, and perturbation time. In this section, the dynamics
of a single vortex dipole nucleation event via this perturbation method are investigated in greater
detail.

Figure 4.8 shows a sequence of three snapshots taken at different times during one numerical
wave propagation that ultimately results in the nucleation of a vortex dipole. In the first snapshot
(top row) the perturbation is being ramped on. In the second snap shot (middle row), the pertur-
bation is being ramped off. In the third and final snap shot (bottom row), the perturbation has
been ramped off completely. For each snapshot, four images are shown. The leftmost column
illustrates the probability density of the wave function. The second column illustrates the phase.
The third column illustrates momentum vectors, which is the velocity vector multiplied by the
local density profile in the leftmost column. The momentum illustration shows only a subregion
in the vicinity of where the vortex dipole nucleates. The subregion shown is ensquared by red in
the leftmost column. The far right column illustrates the single particle potential as seen by the
atoms.

In the first snapshot, as the perturbations are both ramped on, there are two phenomena taking
place. The repulsive barrier on the left is pushing atoms radially outward from its center position.
Second of all, the attractive well created by the 850-nm beam on the right pulls the atoms in. The
attractive nature of this well pulls the wave function past and around the repulsive barrier. In some
ways, the wave function in the immediate vicinity of the repulsive barrier is similar to what would
be seen by an atom wave moving past a stationary barrier or a moving barrier slicing through the
atom wave. Both of these scenarios are known methods for nucleating a vortex dipole [14].

In the second frame (middle row) the potential barrier on the left and the potential well on the
right are ramping down. As a result, superfluid flow in the vicinity of the attractive well reverses
direction and is now directed leftward; however, the fluid immediately to the left of the repulsive
barrier, which was previously shielded from the attractive well by the repulsive barrier, is now
flowing toward the right to fill in the vacuum where the repulsive barrier was. This position
dependence of velocity direction results in a rotation of the vector field.

In the third frame (bottom row) the fluid flow breaks down into a vortex dipole. Of particular
note is the highly localized nature of the fluid flow; the viewing windows is zoomed in by a
factor of eight in order to identify the flow pattern and the uniform highly dipolar bulk fluid flow
in general.

In order to form a vortex dipole, the integrated phase gradient over some finite region must
exceed π in order to establish a 2π phase winding around a quantized vortex and so this spatial
phase change can be used as a metric to analyze what is physically happening in the case of a crit-
ically powered, underpowered and overpowered perturbation. To illustrate this further, I examine
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Figure 4.8: A more detailed description of this figure is in section 4.5. The left column shows
column density, second from left shows phase, third from left shows local momentum vectors,
and fourth column shows a cross-section of the phase from left to right. Top row is shown as the
perturbation is ramping up, middle row is during perturbation ramp down, and the bottom row is
after the perturbation is completely ramped off.

snapshots in fine time steps (1/20 of the natural harmonic oscillator period) of the dynamics in the
critically powered, underpowered, and overpowered perturbations in figures 4.9-4.12, 4.13-4.16,
and 4.17-4.20 respectively.

4.5.1 The critically powered case

Figures 4.9, 4.10, 4.11 and 4.12 illustrate 16 time steps surrounding the imprinting of a vortex
dipole using this perturbation process for the critically powered case with peak amplitude V = 2µ,
beam waist σ = 2.63r0 where r0 is the natural oscillator length, beam separation 2d = 3σ and
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perturbation time equal to the natural oscillation period of the harmonic oscillator. The beginning
of a vortex dipole is visible in the phase diagram starting in frame 6 (row 2 of figure 4.10) as two
localized phase discontinuities. Dipolar fluid flow can be seen beginning in frame 12 (row 4 of
figure 4.11 and furthermore a phase variation develops that exceeds π but for the majority of the
time does not exceed 2π except for very briefly in frame 8 (row 4 of figure 4.10) and again in
frame 11 (row 3 of figure 4.11).

The first of these two instances of high phase gradient (frame 8, which is row 4 of figure 4.10)
corresponds to a relatively steep phase gradient but also a change in the phase derivative sign: the
phase derivative (left to right) sign changed from negative in frame 7 to positive in frame 8 and
goes negative again in frame 9. Frame 8 corresponds to t = 0.55T and because the perturbation
time is exactly one period of the natural oscillator frequency in this case, this frame corresponds
to the first frame when the perturbation is being ramped down rather than up and so it is not
surprising that the phase gradient and thus fluid velocity would change direction at this point in
time.

From frame 11 to frame 12 the sign of the phase derivative changes again from negative to
positive and this time remains positive as the fluid begins to sustain dipolar fluid flow. This in-
stance corresponds to t = 0.70T , which is also significant. The perturbation maximum amplitude
in this case is 2µ and is modulated with respect to time such that V(t) = 2µ sin2(t/2TP); as the
perturbation ramps down it will drop below the chemical potential at t ≈ 0.79. In the time frame
corresponding to frames 11-13 (figure 4.11 rows 3-4, figure 4.12 row 1), the cross-sectional area
of the repulsive barrier that exceeds the chemical potential of the system in amplitude is de-
creasing rapidly and as such the cross-sectional area of the repulsive barrier that is effectively
impenetrable barrier (V > µ) is also rapidly decreasing. It is no surprise then that the fluid flow
comes crashing in rapidly. It is at this point in time that dipolar fluid flow becomes clearly visible
and shortly thereafter in frames 15-16 (figure 4.12 rows 3-4) an energetically stable vortex dipole
is clearly visible in the density profile.

4.5.2 The underpowered case

Figures 4.13, 4.14, 4.15, and 4.16 illustrate the same 16 time steps as above but for an underpow-
ered perturbation with peak amplitude V = 1.5µ where no vortex dipole is nucleated, beam waist
σ = 2.63r0 where r0 is the natural oscillator length, beam separation 3σ and perturbation time
equal to the natural oscillation period of the harmonic oscillator. In time step 6 of the critically
powered case (figure 4.10 row 2) two distinct phase discontinuities are first visible. By contrast,
in frame 6 of the underpowered case (figure 4.14 row 2) no such phase discontinuities are evident.
By inspection of the momentum diagram in frame 10 of the critically powered case (figure 4.11
row 2) the rightmost fluid flow direction has already reversed and is in general moving to the left;
however, the repulsive barrier is still strong enough to force the returning fluid flow around the
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barrier resulting in a dipolar fluid flow. Again by contrast, in frames 10-12 of the under powered
case (figure 4.15 rows 2-4) the return fluid flow from the right is able to overcome the repul-
sive barrier, which is not as high as in the critically powered case and so dipolar fluid flow is
almost (particularly in figure 4.15 row 4) but not quite established, hence this series of time steps
illustrates an underpowered perturbation.

4.5.3 The overpowered case

Figures 4.17, 4.18, 4.19, and 4.20 illustrate the same time steps for an overpowered perturbation
resulting in multiple vortex dipoles and additional sound waves. The peak amplitude V = 3µ,
beam waist σ = 2.63r0 where r0 is the natural oscillator length, beam separation 3σ and perturba-
tion time equal to the natural oscillation period of the harmonic oscillator. This example serves to
illustrate that in addition to dipolar fluid flow, stray vortex dipoles and unwanted sound waves are
also introduced when the vortex dipole imprinting mechanism is overpowered. This is the result
of far more energy being imparted on the system than is necessary for a single vortex dipole to be
nucleated and in the presence of little or no damping the excess energy must go somewhere. The
unwanted excitations in the system are consistently visible by inspecting the phase diagrams but
they are also evident as density fluctuations in the second half of the time frames, most notably
frames 15-16 (figure 4.20 rows 3-4).
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4.6 Single repulsive beam: experimental results

In the previous sections, a numerical study was investigated for a hybrid attractive-repulsive sta-
tionary barrier. Prior to beginning this numerical study, a preliminary experimental investigation
was done using a stationary repulsive barrier with a time varying amplitude. The study was car-
ried out similarly to the method described above, with the primary difference being that there
is only a repulsive barrier and it is centrally located. This method was briefly investigated sev-
eral years ago in our lab and is currently being revisited to investigate the physical phenomenon
observed earlier [88].

This method, unlike the hybrid perturbation, is not observed in numerical GPE simulations
to generate a vortex dipole. Furthermore, the physical reasons as to why this method readily
generates vortex dipoles it not yet well understood. It is thought that it could be related to trap
noise, decoherence, and the thermal atomic background [88]. As it stands, the experimental
results described in this section represent a deviation between GPE analysis and the fundamental
physics observed in the experiment.

The repulsive blue detuned barrier is ramped sinusoidally on and off once. The e−2 beam
radius is approximately 15 µm in this study. The beam is always located centrally down the axis
of the BEC.

The study is conducted by ramping the beam on and off over a perturbation time ∆t. Various
peak amplitudes are chosen and the number of resulting vortex cores are counted. The reason
for counting vortex cores rather than vortex dipoles is that the circulation of individual cores is
not known upon inspection; only their locations. This is repeated for various aspect ratio oblate
BECs ranging in aspect ratios from 3 to 7.5, but in all cases the radial Thomas-Fermi radius is
about 40 µm.

Figure 4.21 depicts the experimental results for a perturbation of 21 ms, which represents a
perturbation time that is approximately 1/6 of the radial trapping period. Of interest in this case
is that for all trapping geometries, there appears to exist an optimal perturbation amplitude for
the creation of vortex cores that is approximately 2µ/3. Perturbations either above or below this
amplitude generate fewer vortex cores regardless of BEC aspect ratio.

Figure 4.22 depicts the experimental results for a perturbation of 62.5 ms, which represents
a perturbation that is approximately 1/2 of the radial trapping period. Unlike the case for very
short perturbations, in this scenario the average number of quantized vortices nucleated scales
linearly with the perturbation amplitude. For higher aspect ratio BECs, the rate of vortex core
nucleation is higher, suggesting that higher aspect ratio BECs are more sensitive to this type of
perturbation.

Figure 4.23 depicts the experimental results for a perturbation of 125 ms, which represents a
perturbation that is approximately one full period of the radial trapping geometry. Similar to the
62.5 ms perturbation, the average number of quantized vortices nucleated scales linearly with the
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Figure 4.21: Average number of vortex cores observed after a 21 ms perturbation plotted against
perturbation amplitude for various aspect ratio BECs.

perturbation amplitude. However, unlike the case for the 62.5 ms perturbation, the dependence
in this case on BEC aspect ratio is less pronounced. Additionally, the overall number of vortices
nucleated is approximately double that it was for the 62.5 ms perturbation.

This method of using a purely repulsive stationary time-dependent barrier to nucleate vortex
dipoles proves to be highly repeatable. There is surely interesting underlying physics behind
this mechanism that deserves a thorough experimental and theoretical investigation. The results
are not seen in damped GPE numerical simulations and therefore likely due to mechanisms that
are not modeled by the damped GPE. Examples of mechanisms not accounted for in the DGPE
include finite temperature dynamics and the existence of multiple degenerate modes. Numerical
simulations more robust than the DGPE can and are done by research groups dedicated to numer-
ical and theoretical analysis and use for example the Stochastic Projected GPE (SPGPE) [89,90].
Specifically, the Kelvin-Helmholtz instability [91, 92] is one candidate mechanism for vortex
dipole nucleation; Kelvin-Helmholtz instability classically predicts a transition to turbulent flow
at the interface of two fluids of different densities with a relative velocity. In the case of a quan-
tum superfluid, this could correspond to the counterflow between the degenerate BEC ground
state and the thermal reservoir; that is, the non-BEC atoms that account for the finite tempera-
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Figure 4.22: Average number of vortex cores observed after a 62.5 ms perturbation plotted against
perturbation amplitude for various aspect ratio BECs. A 62.5 ms perturbation represents a half
period of the radial harmonic oscillator

ture of the system. It is possible, though uncertain at this point, that SPGPE simulations of this
perturbation could corroborate this observation of vortex dipole nucleation.

While this method serves as an interesting physical phenomenon to study, it is will not be a
useful technique for architecting an arbitrary waveform until it is more fully understood, thus mo-
tivating the hybrid red-blue vortex-imprinting mechanism investigated numerically in this chap-
ter.

4.7 Concluding remarks

To summarize the study, a method was explored numerically for nucleating vortex dipoles. An
area in parameter space specifically with respect to beam size, beam separation, beam power,
and perturbation time was mapped out. Within the parameter space, a critical regime for vortex
dipole nucleation was identified. Outside of the critical regime either vortex dipoles are not
nucleated or unwanted excitations in addition to vortex dipoles are nucleated. An optimal area
in parameter space is identified where parameter drift would be least likely to drift into a less
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Figure 4.23: Average number of vortex cores observed after a 125 ms perturbation plotted against
perturbation amplitude for various aspect ratio BECs. A 125 ms perturbation represents a full
period of the radial harmonic oscillator

favorable zone. Lastly, an experimental apparatus is prototyped for executing this experimentally.
Experimental parameters for the University of Arizona BEC lab are identified and proposed based
on the numerical investigation.

As was mentioned in the beginning of this chapter, several methods already exist for creating
vortices or vortex dipoles in a BEC. The key advantage of this method is that it imprints a vortex
dipole locally to the perturbation; thus, the perturbation does not need to modify the bulk BEC
dynamics as is the case for swiping a repulsive perturbation through the BEC. This new method
will be useful for architecting arbitrary vortex distributions in a BEC. A simpler method for
introducing a vortex dipole will simplify basic studies of fundamental turbulence such as vortex-
antivortex annihilation, which is one of the most basic vortex studies and is not well understood
phenomenologically. A simple method for repeatedly generating the same system’s initial con-
ditions will make the study of these questions simpler, particularly when used in conjunction
with recent abilities developed for the in situ detection of vortices in Bose-Einstein condensates
discussed earlier in this dissertation.

The device that was discussed and prototyped will also enable additional experiments in the
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field of turbulence and vortex physics. In particular, a time-modulated repulsive barrier is known
to nucleate vortex dipoles in highly oblate BECs. This system can be used — and was used
briefly — to investigate the physics of this vortex dipole nucleation method. The introduction
of a steerable red-detuned beam will enable the investigation into whether a time-modulated sta-
tionary red-detuned beam will also nucleate vortex dipoles. The red-detuned beam itself can be
used to replicate a wide range of previous experiments that used a repulsive barrier to nucleate
vortex dipoles, but, instead use an attractive perturbation. For example, does an attractive po-
tential moving through a BEC nucleate vortex dipoles as effectively as a repulsive barrier [14]?
Does spiraling a red-detuned beam towards the center of the BEC also nucleate vortices of same-
sign [81]? With the combination many steerable repulsive and attractive perturbations, could an
arbitrary wave function be architected? An upcoming project in the BEC lab will use a digital
micromirror device to generate many attractive and repulsive steerable beams across the extent
of the BEC. The study described in this chapter serves as one step towards the long sought af-
ter goal of architecting arbitrary waveforms for the sake of studying two-dimensional quantum
turbulence.
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CHAPTER 5

Second harmonic generation with perfect and imperfect optical vortices

5.1 Introduction

The phenomenon of second harmonic generation has been previously demonstrated to convert
two collinear photons of the same orbital angular momenta (OAM), `, and energy ~ω to a single
photon with twice the energy 2~ω and twice the OAM 2` in agreement with both conservation of
energy and conservation of OAM [93]. It has been further demonstrated both theoretically and
experimentally that for two non-collinear input OAM beams interacting at an angle 2θ in a non-
linear medium, a second harmonic beam is generated with a reduced conversion efficiency [94,
95]. In this chapter, I expand on this idea to demonstrate theoretically that not only does a nonzero
tilt angle reduce the conversion efficiency of the output OAM beam, but that the output second
harmonic beam will consist of a spectrum of OAM and the most probable output OAM is not
necessarily intuitive.

In my analysis I consider a configuration similar to that reference [94] case (i): two input
beams at frequency ω and interacting in a non-linear medium with an interaction angle θ il-
lustrated in figure 5.1. The first input beam is taken to be a Laguerre-Gaussian beam with no
azimuthal phase factor and therefore no OAM. The second input beam I consider is a thin ring
shaped beam, termed a perfect optical vortex, which is distinct from a Laguerre-Gaussian beam
but was chosen because it is experimentally more interesting, was used in the previous study on
which I expand, and is easy to generate [94–96]. The optical OAM beams described in this work
are experimentally achievable by use of spatial phase modulators, which directly imprint a phase
winding on the beam [97]. The ring beam has integer OAM ` , 0. Generating ring beams with

Input LG Beam E0

Output SHG LG BeamInput Ring Beam E1

Output SHG OAM Beam

Non-Collinear Output Beam E22θ

Figure 5.1: The diagram shows an example of how the system is configured. There are two input
beams: a Laguerre-Gaussian beam with ` = 0 and a Ring beam with a chosen orbital angular
momentum `. There are three output beams resulting from SHG processes, but it is only the
non-collinear output beam E2 that is of interest in this study.
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OAM as high as 40 should be experimentally feasible. For the sake of these simulations, type I
SHG in a uniaxial crystal, BBO, is assumed. The input waves are ordinary waves and the second
harmonic beam is an extraordinary wave. For simplicity, I make the undepleted pump beam and
paraxial approximations.

Extremizing the ring size, orbital angular momentum, and interaction angle all come at a
cost. As the ring size is decreased, experimental observations become increasingly difficult and
diffraction effects become more significant in propagation. Increasing the orbital angular mo-
mentum to ` � 40 could poses experimental challenges due to the discrete spatial resolution of
the spatial light modulator, for example. Increasing the interaction angle reduces the accuracy of
propagation approximations.

5.2 Background and analytic theory

An introduction to second harmonic generation is discussed in reference [98], from which I base
my analysis. For the scenario described here, an input electric field in a nonlinear medium con-
sists of two fundamental pump fields E0 and E1. Additionally, one non-collinear second harmonic
field of interest, denoted E2, is considered. The net fundamental field in the slowly varying enve-
lope approximation can be written as

Ẽ(r, t) = Ẽ0(r, t) + Ẽ1(r, t), (5.1)

where the tildes indicate that the rapidly varying field is being considered. From here forward,
the slowly varying amplitudes corresponding to each field are denoted without a tilde. Each of
the slowly varying fundamental fields amplitudes E0 and E1 in addition to the second harmonic
field E2 can be represented as

E j(r) = E j(r)e−ik jz, (5.2)

where k j represents the ordinary or extraordinary wave number corresponding to the respective
field. The slowly varying envelopes of the fundamental components then propagate according to

∂E j

∂z
=

i
2ko
∇2
⊥E j j = 0, 1, (5.3)

where ko represents the wave number for ordinary fields propagating in the crystal.
The second harmonic beam, E2, is an extraordinary field driven by two source fields (E0 and

E1) and the corresponding driven wave equation is given by:

∂E2

∂z
=

i
2ke
∇2
⊥E2 + iηE0(r)E1(r)ei∆k(0)z (5.4)
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where ke represents the extraordinary second harmonic wave number, η = 32πdeffω
2/kec2, deff

is the nonlinear constant, and ∆k(0) = (2ko − ke) is the plane wave vector mismatch projected
onto the z-axis. One input beam is taken to be a ring beam with orbital angular momentum `

propagating at angle θ with radius R and width W, and the second beam is taken to be a first order
gaussian beam propagating at angle −θ. The respective electric fields are given by

E0(r) = A`(ρ)ei
(
ko−

1
2ko

`2

R2 cos φ
)
zei`φe−ikoθx (5.5)

and

E1(r) = AG(ρ)eikoze+ikoθx, (5.6)

where ρ represents the radial distance from the optical axis, φ represents the azimuthal angle
about the optical axis, A` represents the slowly varying envelope amplitude of the ring beam,
AG represents the slowly varying envelope amplitude of the Laguerre-Gaussian beam, and R
represents the radius of the ring beam. The superposition of the two fields contains several terms,
one of which serves as the non-collinear source term for the output beam of interest. The other
terms act as sources for the output OAM and output LG beams shown in figure 5.1.

The non-collinear output beam of interest is sourced by the product of the two beams:

E0(r)E1(r) = AG(ρ)A`(ρ) exp
[
i`φ −

iz
2ko

`2

R2 +
iz`θ
R

cos φ
]
. (5.7)

This result is decomposed into the quantized angular momenta components by the Jacobi-Anger
expansion,

E0(r)E1(r) = AG(ρ)A`(ρ)
∞∑

n=−∞

in exp
[
i(` + n)φ −

iz
2ko

`2

R2

]
Jn

(
z`θ
R

)
, (5.8)

where Jn represents the nth bessel function of the first kind. The generated second harmonic
evolves according to

∂E2

∂z
=

i
2ke
∇2
⊥E2 + iηE0(r)E1(r)ei∆k(0)z, (5.9)

where the far right source term is the product of the ring and Laguerre-Gaussian input beams. By
substituting the Jacobi-Anger expression, this is written as:

∂E2

∂z
=

i
2ke
∇2
⊥E2 + iηAG(ρ)A`(ρ)

∞∑
n=−∞

in exp
[
i(` + n)φ −

iz
2ko

`2

R2

]
Jn

(
z`θ
R

)
ei∆k(0)z. (5.10)
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We make the following change in variables: E2(r) = E2(ρ, z)ei`φ. The propagation equation can
then be written in the form:

∂E2

∂z
=

i
2ke


∂2

∂ρ2 +
1
ρ

∂

∂ρ︸        ︷︷        ︸
Terms negligible

−
`2

ρ2

E2 + iηAG(ρ)A`(ρ)
∞∑

n=−∞

in exp
[
inφ −

iz
2ko

`2

R2

]
Jn

(
z`θ
R

)
ei∆k(0)z,

(5.11)

where the two radial derivative terms are negligible in the case of a thick ring OAM beam with
radius R � λ. The medium is much thinner than the Rayleigh range of the propagating fields. If
we assume the thickness of the ring beam and to be W = R/10, for example, where R = 500µm
is the ring radius, then the Rayleigh range can be approximated as

zR =
πw2

0

λ
≈
πW2

λ
� L, (5.12)

where L = 500µm is the length of the crystal. The importance of the Rayleigh range being much
larger than the interaction length is so that diffraction effects have negligible influence on the
nonlinear interaction in the analytical model.

The form is simplified by assuming the intensity of field to be constant radially across the
width of the ring, and then evaluating the SHG at the peak of the ring ρ = R,

∂E2

∂z
= −

i
2ke

`2

R2E2 + iηAG(R)A`(R)
∞∑

n=−∞

in exp
[
inφ −

iz
2ko

`2

R2

]
Jn

(
z`θ
R

)
ei∆k(0)z. (5.13)

We make the change of variables E2(ρ = R, z) = A2(z)e−
iz

2ke
`2

R2 to express the the form in terms of
the slowly varying envelopes:

∂A2(z)
∂z

= iηA`(R)AG(R)
∞∑

n=−∞

in exp[inφ] exp
[
i∆k(0)z +

(
1
ke
−

1
ko

)
i`2z
2R2

]
Jn

(
z`θ
R

)
. (5.14)

By defining the k-vector mismatch,

∆k(`) = ∆k(0) +
1
2

(
1
ke
−

1
ko

)
`2

R2 , (5.15)

the propagation equation can be expressed as

∂A2(z)
∂z

= iηA`(R)AG(R)
∞∑

n=−∞

in exp[inφ] exp [i∆k(`)z] Jn

(
z`θ
R

)
. (5.16)
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Examination of equation 5.16 shows that A2(z) consists of terms with a spectrum of quantized
orbital angular momentum and so the second harmonic field can be written as a superposition of
mutually orthogonal OAM terms

E2(r) =

∞∑
n=−∞

A(n)
2 (z)ei(n+`)φe−

iz
2ke

(`+n)2

R2 . (5.17)

The angular momenta components propagate according to the differential equation:

dA(n)
2

dz
= in+1ηAGA`ei∆k(n,`)Jn

(
z`θ
R

)
(5.18)

with boundary condition: A(n)
2 (0) = 0. Each of the individual angular momenta components can

then be computed individually by numerical integration as

A(n)
2 = in+1ηAGA`

∫ L

0
dz ei∆k(n,`)Jn

(
z`θ
R

)
, (5.19)

which serves as the basis for this chapter.
Previous work in reference [94] investigated both theoretically and experimentally the case

of very small angles where all terms other than n = 0 could be ignored. The driven equation for
the second harmonic in this special case is

dA2

dz
= iηA0(R)A`(R)e−

iz
4ko

`2
R J0

(
z`θ
R

)
, (5.20)

which can be evaluated in two different regimes. The second harmonic power P2(`), can be evalu-
ated at the peak of the ring as P2(`) = 2πRW |E2(R, z)|2 for the limit in which the exponential term
is assumed to dominate (θ → 0) and that in which the Bessel term dominates. Their respective
forms vary as

P2(`) ∝ sinc2
(
`2

16π
λ1L
noR2

)
(5.21)

and

P2(`) ∝
(
1 −

`2

`2
c

)
. (5.22)

Both of these regimes have been observed experimentally [94].
I build upon this work by numerically investigating the output power spectrum of orbital

angular momenta, P(n)
2 = |A(n)

2 |
2, for the more general case where the nonzero terms cannot all be

ignored. In particular, I seek a regime in which neither equation 5.21 nor equation 5.22 adequately
represents the output fields.
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5.3 Analysis

The results of the previous section indicate that there is a spread of quantized angular momenta
in the output beam. The average angular momentum output turns out to be equal to the input
orbital angular momentum, 〈`〉 = `in. The idea of an OAM output spectrum, however, is a
very interesting possibility because it suggests that the OAM is statistically conserved but not
necessarily conserved on a photon by photon basis.

I numerically evaluate the output parameter An
2, for a given experimental setup to find the

output angular momentum spectrum for a given interaction length L, beam radius R, input angle
θ, and input angular momentum `.

The experimental setup of reference [94] uses a BBO crystal of length L = 500µm, with an
input angle θ on the order of several degrees, a beam radius of R = 500µm, and input angular
momenta ranging from 1 - 20. In order to relate my study to what can readily be tested, I restrict
my search to parameters close to this regime. In my computations I assume a crystal length
L = 500µm, an interaction angle of 10 degrees, and a beam radius of 250µm. I investigate input
angular momenta ranging from ` = 0 to ` = 40. These parameters are only slightly more extreme
than those of the original theoretical study and experiment, however this deviation revealed a
different operating regime when analyzed numerically.

First, I examine the case with a half angle of 5 degrees (full angle 10◦) with ring radius 500
microns and input angular momentum ` = 10, the resulting orbital angular momentum spectrum
is shown in figure 5.3-a. The findings of this example case are not an extreme case: the input
beam angular momentum is ` = 10. It is interesting that there appears to be a spread in angular
momenta: about 4.5% of the output power in each of the ` = 9 and ` = 11 modes. This suggests
that the angular momentum of a second harmonic photon can increase or decrease relative to the
input orbital angular momenta.

I next consider the case where the input orbital angular momentum is ` = 20, all other param-
eters remain the same. See figure 5.3-c. This case demonstrates an unremarkable but possibly
expected change from the ` = 10 case. The output peak is now centered at orbital angular mo-
mentum 20 and the spectrum has broadened slightly. There is clearly a finite, but small, amount
of power at ` + n = 22, 18. This plot depicts approximately the most extreme case of the experi-
mental study.

I next examine the effect of reducing the ring radius by a factor of 2 to R = 250µm. I
furthermore increase the interaction angle by a factor of 2 to 10 degrees and evaluate the output
angular momentum spectrum for an input angular momentum of ` = 15. The output angular
momentum spectrum is seen in figure 5.4-b.

This case is now in the regime where more interesting features are revealed. The most obvious
being the bimodal spectrum in orbital angular momenta. Note that for this case the input angular
momentum is ` = 15. Similarly, the average output angular momentum is ` + n = 15. Curiously,
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Figure 5.2: Top left is the intensity profile |E0|
2 of a ring beam of radius R = 500µm with

` = 15. Top right is the intensity profile |E1|
2 of a Laguerre-Gaussian beam. Bottom left is

the intensity profile of the multiplicative field |E0E1|
2. Bottom right is the phase profile of the

beam corresponding to the bottom left profile. The azimuthal nodes are due to the orbital angular
momentum ` = 15.

the most probable output angular momentum states are ` + n = 17 and ` + n = 13, each being
approximately 4 times more likely than ` = 〈`〉 = 15.

This particular case was achieved by reducing the ring beam radius by a factor of two and
doubling the interaction angle by a factor of two. The input angular momentum is still within the
bounds of the original experimental apparatus. My investigation involved the three independent
variables: input angular momentum, beam radius, and interaction angle. I have found that this
interesting bimodal behavior may arise when modifying any one of these parameters: increasing
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Figure 5.3: For a fixed ring beam radius (R = 500µm) and a fixed interaction angle θ = 5◦, the
output orbital angular momentum power spectrum is shown for input angular momenta ` = 10
(left), ` = 15 (center), and ` = 20 (right). For a fixed interaction angle and beam radius, as the
input orbital angular momentum increases, the output orbital angular momentum power spectrum
spreads out.

the input orbital angular momentum, increasing the interaction angle, or decreasing the ring ra-
dius. For the first example that I have shown, I adjust all three parameters in order to keep the
overall configuration as close as possible to the current experimental setup in order to make the
possibility of experimental testing most realistic.

By holding the beam radius at R = 500µm and the interaction angle at θ = 5◦, a similar
spectrum is achieved when the input orbital angular momentum is ` = 60. It may be difficult to
experimentally achieve repeatable beams with ` = 60. See figure 5.4-b.

By holding the beam radius at R = 500µm and the input orbital angular momentum at ` = 15,
again the result can be achieved by increasing the interaction angle to θ = 21◦. At such high
interaction angles, the propagation approximations made may be less reliable. See figure 5.4-c.

Lastly, the result is achieved by holding the input angle constant at θ = 5◦ and the input orbital
angular momentum at ` = 15 while reducing the ring radius to 120µm. At such small beam radii,
diffraction effects may dominate and wash out the desired results. See figure 5.4-d.

There are three distinct ways to enter into this regime. Minor adjustments to each of these
three experimental parameters make it possible to reach this regime while maintaining an overall
parameter choice that should be experimentally achievable.

By further extremizing the parameters, the output OAM spectrum continues to broaden and
the number of peaks oscillate. For example, for the parameters R = 150µm and θ = 10◦, notable
features exist when the input OAM is ` = 9, 14, 20, 26, 31, and 37. See figure 5.5.

5.4 Beam propagation method

More could be learned about this phenomenon by a study via Beam Propagation Method. The
feasibility of such a study was investigated and a realistic parameter set would require a pro-
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Figure 5.4: There are various ways to achieve the interesting bimodal spectrum. From the left,
the first case (a) is that of R = 500µm, ` = 15, and θ = 5◦. This is the nominal case – lacking
of interesting features for the purposes of this paper. The second case (b) is that of R = 500µm,
` = 60, and θ = 5◦. The third case (c) is that of R = 500µm, ` = 15, and θ = 21◦. The final case
(d) is that of R = 120µm, ` = 15, and θ = 5◦.
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Figure 5.5: Top row from left to right: case of ` = 9, ` = 14, ` = 20. Bottom row: cases of
` = 26, ` = 31, and ` = 37. All cases were calculated with R = 150µm and θ = 10◦.

hibitively large transverse resolution that cannot be computed with the resources available at the
time of this study; however, it is possible to demonstrate the principle for a configuration outside
of experimentally realizable parameters. A basic beam propagation was developed with param-
eters λ1 = 785nm, R = 120µm, input angular momentum ` = 40, and input angle θ = 10◦.
Figure 5.6 shows the intensity profile of the SHG beam at the beginning of the crystal (a) and
at the end of the crystal (b). In the latter image, the intensity profile has clearly developed an
asymmetry. This is due to the interference of a range of orbital angular momentum states.

A next step in the beam propagation approach would be to develop an algorithm that decom-
poses the propagated fields into the constituent orbital angular momentum states in an attempt to
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replicate plots similar to that of figures 5.3 and 5.4. This has not yet been done.
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Figure 5.6: A basic beam propagation was developed with parameters λ1 = 785nm, R = 250µm,
input angular momentum ` = 1, and input angle θ = 10◦. The left image shows the input
beam profile. The field is the second harmonic beam generated by the product of the Laguerre-
Gaussian beam and the Ring beam with ` = 40. The right image shows the resulting beam
after propagating with the source term through the crystal medium. The asymmetry is a result of
interference between a the broad pectrum of OAM states.

5.5 Proposed experiment

The hypothesized output orbital angular momentum spread could be tested with an experimental
setup similar to the existing one, which is shown in figure 5.7. Such an experimental setup would
need to be modified to permit a smaller ring radius on the order of 250µm as well as accept larger
input angles as large as 10 degrees. Additionally, a mechanism to separate out different orbital
angular momentum states from the output beam is necessary in order to differentiate between
the different OAM states and thus measure the OAM spectrum. The OAM content of an optical
beam can be measured experimentally using a multipinhole plate [99–101], biprism beamsplitters
[102], Mach-Zehnder interferometers [103, 104], or a single pinhole with computer generated
holograms [105].

5.6 Conclusion

To conclude, the orbital angular momentum properties of a second harmonic beam resulting from
two non-collinear input beams with orbital angular momentum have been investigated. This
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Figure 5.7: Experimental setup and figure taken from reference [94]. Diagram and description
reproduced under the Creative Commons 3.0 license [106]: Input pulses are split by a beamsplit-
ter (S), the reflected component, with Gaussian profile (L = 0), passes a tunable delay stage while
the second traverses a fixed optical path in which the pulse’s phase and amplitude are corrected
(by a series of half-wave plates (HWP) and a spatial light modulator (SLM)) to impart OAM onto
the beam (L). A spatial filter (an aperture (SF) in the Fourier plane of a 1:1 telescope (T)) removes
higher order OAM modes and the beams (L = 0 and L) are loosely focussed (F) and overlapped
non-collinearly onto a BBO crystal. The non-collinear output is measured with a photodetector.

investigation suggests that under certain conditions, interesting properties have surfaced with
regard to the OAM power spectrum and also the possibility of pseudo non-conservation of or-
bital angular momentum on an individual photon basis – although a net conservation of orbital
angular momentum when considering a statistically large number of photons. The single shot
non-conservation of orbital angular momentum most likely does conserve angular momentum,
where the gained or lost angular momentum is exchanged with the medium. It would be interest-
ing to develop a more detailed beam propagation method and experiment to verify these peculiar
results.
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CHAPTER 6

Dichroism for orbital angular momentum using parametric amplification

6.1 Introduction

The term dichroism has two common meanings in optics. The original meaning refers to a ma-
terial with optical properties that depend on the wavelength of light. For example, a dichroic
beamsplitter will reflect one range of wavelengths while transmitting another. A more recent
form of dichroism filters not by wavelength but instead by the polarization state of light. A polar-
izing beamsplitter is the most common example, which transmits one linear polarization of light
while reflecting the orthogonal linear polarization of light. This is known as linear dichroism. In
addition to filtering based on linear polarization, a material can also filter based on circular polar-
ization state of light, applying a gain to one circular polarization σ+ while attenuating the other
orthogonal circular polarization state, σ−. The polarization state of light refers to the direction
(linear) or the rotation (circular/elliptical) of the electric field vector. In the quantum view, the σ+

and σ− polarization states represent two orthogonal spin angular momentum states in the light
field. Thus, circular dichroism can also be thought of as a dichroism based on the spin angular
momentum (SAM) state of a light field.

SAM is one of two types of angular momentum possessed by light, the other being orbital
angular momentum (OAM). The spin angular momentum of light can sustain two orthogonal
states, σ+ and σ− or horizontal and vertical polarization, whereas the orbital angular momentum
of a light beam can possess an infinite number of mutually orthogonal states identified by the
quantum number m which can take on any integer value. The advantage of OAM, as opposed to
SAM, is that an in principle an infinite number of orthogonal channels can co-propagate at the
same wavelength.

The purpose of this chapter is to provide background information and summarize the re-
sults of “Dichroism for orbital angular momentum using parametric amplification” [107]. The
complete manuscript is reprinted in appendix A. The manuscript theoretically and numerically
investigates parametric amplification as a means to produce dichroism based on the orbital angu-
lar momentum (OAM) of an incident signal field. The parametric interaction is demonstrated to
provide differential gain between signal states of differing OAM with the peak gain occurring at
half the pump field OAM. Parametric interactions involving fundamental and second-harmonic
fields carrying OAM have previously been explored both experimentally and theoretically but
mainly in the context of the conservation of OAM [108–110] as opposed to creating dichroism
for OAM.
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The manuscript in Appendix A describes the geometry and governing equations for our sys-
tem, presents a simplified analytic theory of parametric amplification and dichroism for OAM
for pump and signal beams that are perfect optical vortices, and lastly presents numerical results
generated using beam propagation methods for the case of signal and pump fields that are im-
perfect optical vortices and also signal fields that are Laguerre-Gaussian beams. Specifically, we
demonstrate that parametric amplification can be used to create gain for a band of OAM states of
an incident signal beam.

6.2 Summary of numerical and analytical results

The basic system layout is illustrated in figure 6.1. The signal beam, an ordinary wave with
slowly varying envelope A1 at fundamental frequency ω with orbital angular momentum winding
m1, and the pump beam, an extraordinary wave with slowly varying envelope A2 at the second
harmonic frequency 2ω with orbital angular momentum winding m2, are collinear.

In the nonlinear medium, the coupled fundamental and extraordinary waves propagate ac-
cording to

∂A1

∂z
=

i
2k1
∇2
⊥A1 + iηA2A∗1 (6.1)

and

∂A2

∂z
=

i
4k1
∇2
⊥A2 + iηA2

1, (6.2)

where ∇2
⊥ is the transverse Laplacian describing beam diffraction, η = 2ω1deff/n1c, deff is the

nonlinear coefficient, k1 is the z-component of the fundamental wave vector, and n1 is the index
seen by the fundamental beam. The first term in each equation is due to diffractive effects and the
second term in each equation accounts for the parametric process.

Figure 6.1: Illustration of the optical layout for dichroism for OAM. The signal beam, A1 at the
fundamental frequencyω, and the pump beam, A2 at second harmonic frequencyω2, pass through
a nonlinear medium.



109

The difference in orbital angular momentum between the signal and pump beam is character-
ized by ∆ = (m1−m2/2). The parametric amplification causes the signal beam to experience gain
or attenuation that is a function of the orbital angular momentum difference G(∆).

A representative gain profile is shown in figure 6.2 for the case of a signal power of 52.8 kW,
pump powers with peak intensities 4.4 and 8.8 GW/cm2, pump OAM winding number m2 = 11.
This is with a optical vortex beam radius of 35 µm and medium length of 500 µm. The spiral
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Figure 6.2: Signal gain versus the OAM difference ∆ an LBO crystal with pump beam OAM
m2 = 11, and a pump intensity of Ip = 8.8 GW/cm2 (solid line) and Ip = 4.4 GW/cm2 (dashed
line), the signal power being held constant at Psig = 0.2P2(0) = 52.8 kW. The discrete data points
are connected by a solid line as a visual aid. The optical vortex radius is 35 µm and the medium
length is 500 µm.

bandwidth of the gain profile is defined to be the width of the gain profile in terms of ∆ and is
analytically approximated to be

δ∆ = 2

√
πk1R2

L
, (6.3)

where k1 represents the fundamental wave vector, R represents the radius of the optical vortex
beam, and L represents the length of the nonlinear medium. The peak gain occurs for a signal
OAM equal to half that of the pump field, and the peak signal gain increases with the pump
power. The overall analytical gain bandwidth is in good agreement with the numerical profile
shown in figure 6.2. The peak gain is found to be

Gpeak = cosh2
( √

βIpL
)
, (6.4)
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where β = (2ω2
1d2

eff
/ε0n3c3), deff is the nonlinear coefficient, ω1 is the fundamental frequency,

and Ip is the peak pump intensity. This type of dichroic parametric amplification could be used
to provide significant gain to a band of the probe OAM which could be used to bias the OAM
content of an incident signal beam or the oscillating OAM states in an active system such as a
laser. This dichroism could also be used to vary the gain for a specific probe OAM dependent
on the sign of the OAM of the pump, and this could be used for all-optical switching of the
probe or multiplexing of OAM states in a communication line, which I will discuss briefly in the
following section.

6.3 Applications and potential technologies

One interesting potential application of OAM dichroism is in the field of communications. The
ability of an optical fiber to sustain multiple orthogonal spatial modes, such as the OAM states,
could multiply the optical fiber data transmission capacity by the number of distinguishable or-
thogonal OAM states carried by the optical fiber. Space division multiplexing is being explored
as one avenue to increase data communications rates [111]. Hollow core fibers have been devel-
oped and would be suitable for transmitting OAM beams because of the reduced roughness: the
light is traveling in air rather than in a fabricated glass material, thus allowing for more spatial
modes to be resolved [112]. Reference [113] has demonstrated the fabrication of optical fibers
capable of sustaining multiple OAM modes as well as techniques for coupling free space OAM
beams into and out of these fibers. The discrepancy between optical data transmission rates and
traffic demand is expected to create a capacity shortage in the near term [114], and as opposed
to a technological limit, for single spatial mode optical transmission this is due to a fundamental
physical limit for information transmission [115]. Reference [116] describes spatial domain mul-
tiplexing, such as OAM multiplexing, as the “last degree of freedom available” to further data
capacity limits.

Thus, in the field of communications, the concept of OAM dichroism could be used to opti-
cally multiplex a signal containing a range of orthogonal OAM states. An example of how this
could be accomplished is illustrated in figure 6.3. The example illustrates the multiplexing of
three OAM states, however, the same principle could be applied to an arbitrarily large number of
OAM states.
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Figure 6.3: A theoretical OAM multiplexer is illustrated. The system receives a signal from a
multimode fiber that contains a range of signals each carried by a different OAM state. Beamsplit-
ters are used to split the input signal into multiple channels. Each separate channel is amplified
by a pump signal with a specified orbital angular momentum so as to select out a single OAM
state for each output by amplifying the OAM of interest and attenuating the others.
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CHAPTER 7

Conclusions

This dissertation has described four different studies of the manipulation, modeling, and measure-
ment of nonlinear wave phenomena for both optical and atomic media: (1) minimally destructive
in situ detection of vortex cores, (2) methods for imprinting vortex dipoles into BECs, (3) a the-
oretical investigation of a method for generating a spectrum of orbital angular momentum states
in an optical beam, and (4) the theoretical development of a method for narrowing the spectrum
of orbital angular momentum states in an optical beam termed dichroism for OAM. This final
chapter serves to contextualize the key results of each study.

The minimally destructive methods for in situ detection of vortex cores serve as a proof of
principle; however, the method and apparatus are not yet suitable for scientific studies of 2D
vortex dynamics in our highly oblate traps. In particular, detection was only observed repeatedly
for vortex lattices in less oblate BEC geometries, whereas the turbulent systems that we are
interested in studying contain irregularly spaced vortices and other features in a highly oblate
BEC geometry. In the analysis segment of the in situ vortex detection chapter, it is discussed
that perhaps the reason for vortices being observed in some cases only when regularly spaced is
due to the perception of the human visual system to confidently identify a regular structure. The
vortex SNR was identified as ranging in example images from 1.5 for dark-filed imaging, to 2.2
for absorption imaging, and 3.1 for Faraday imaging.

While Faraday and dark field imaging demonstrated high signal levels, these two methods
both had highly nonuniform signal levels likely due to the dependence on the column density
of the BEC, which varies significantly over the BEC’s spatial extent in a harmonic confining
potential. For this reason, absorption imaging may be the best going forward in future studies in
harmonic confining potentials. On the other hand, if studies are pursued in a flat-bottom potential
or another trapping geometry that has more spatially uniform bulk BEC density profiles, Faraday
or dark-field imaging may prove more optimal.

For each of the imaging methods investigated, I hypothesize that one of the major detractors
to the SNR is the low NA of the imaging system, which serves to spatially average out the vortex
signal. The NA could be increased by a factor of two in future iterations, which would reduce
the area over which the vortex signal is averaged out over by a factor of four if an appropriate
magnification is chosen to match the diffraction limited spot size to the detector’s pixel pitch.
Limitations of physics dictate a maximum possible NA; however, the spatial averaging of the
signal could also be further reduced by choosing a system with weaker trapping frequencies
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such that the BEC healing length is larger. Future work towards in situ detection of vortices is
underway in a new lab optimized specifically for studying quantum turbulence.

The mechanism for vortex dipole imprinting through the use of a stationary red-detuned beam
and a blue-detuned beam was investigated both numerically and theoretically. Critical regions
for optimal vortex dipole nucleation were identified and a physical mechanism for implementing
vortex dipole imprinting was prototyped. When the prototyped mechanism is fully implemented
we anticipate that it will serve as a more effective means to introduce vortex dipoles in the BECs
than any previous methods.

In addition to functioning as a method to imprint vortex dipoles, the introduction of a steer-
able red-detuned beam will also enable a range of experiments regarding the superfluid flow
around dynamic narrow attractive potential wells. Preliminary investigations into another future
technology for rapidly architecting arbitrary configurations of vortices are also underway and will
involve the use of a digital micromirror device (DMD). With the DMD, in principle it will be pos-
sible to independently control many blue-detuned and red-detuned beams with time-dependent
positions and amplitudes. With this technological capability and the knowledge of vortex dipole
imprinting investigated in this dissertation, it will hopefully be possible to repeatedly implement
a wide variety of vortex configurations initial conditions for future studies of quantum turbulence.

Two chapters of this dissertation were spent investigating orbital angular momentum spectra
of optical beams. Specifically, the first method uses second harmonic generation of two tilted
beams, one with zero orbital angular momentum and the other with nonzero orbital angular mo-
mentum. The resulting noncollinear beam is found to be in a superposition of OAM states. On
the other hand, the second investigation does the opposite: using parametric amplification a pump
beam at the second harmonic frequency with OAM applies a differential gain to a signal beam
which could in principle contain a spectrum of OAM states. The differential gain is shown analyt-
ically and numerically to have a gain bandwidth termed the spiral bandwidth. The two methods
that were theoretically investigated are complementary in that one is designed to broaden an
OAM spectrum whereas the other is designed to narrow the OAM spectrum.

To conclude, the various studies described in this body of work represent steps in the un-
derstanding of nonlinear wave phenomena. The BEC aspect of this research has advanced the
area of vortex detection and secondly the area of engineering arbitrary BEC wave functions. The
combination of these new capabilities moves the state-of-the-art of quantized vortex research to-
ward the goal of experimentally investigating fundamental questions regarding two-dimensional
quantum turbulence such as those posed by Onsager [117]. The nonlinear optics aspect of this
research can draw analogs to the BEC research in that the dynamics of both systems are funda-
mentally related; however, the utility of the nonlinear optics research is perhaps more relevant
to our understanding of the capabilities of OAM-carrying optical beams with the most obvious
applications being in the field of telecommunications and these theoretical investigations set the
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stage for experimental realization of new capabilities for sculpting the OAM spectra of optical
sources.
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I. INTRODUCTION

One usage of the term dichroism in optics is to describe
the differential loss of monochromatic light in one of two
orthogonal polarization states with respect to some reference
axis. This definition encompasses the case of both linear and
circular dichroism and also gain and/or loss if one allows for
negative absorption. For example, circular dichroism refers to
the case in which right-handed circular (RHC) and left-handed
circular (LHC) polarizations experience different propagation
losses in the dichroic medium. As is well known, the RHC and
LHC polarized states represent two orthogonal spin angular
momentum (SAM) states for the light field. Then another way
to express circular dichroism is that it is a dichroism based on
the SAM state of the incident light field, or simply dichroism
for SAM.

The goal of this paper is to propose and theoretically
investigate parametric amplification as a means to produce
dichroism based on the orbital angular momentum (OAM)
of an incident signal field. The parametric interaction is
shown to provide differential gain between signal states of
differing OAM, the peak gain occurring at half the pump
field OAM. Parametric interactions involving fundamental and
second-harmonic fields carrying OAM have previously been
explored both experimentally and theoretically, but mainly in
the context of the conservation of OAM [1–3] as opposed to
creating dichroism for OAM. A recent paper discussed circular
dichroism that has its origin in the OAM of a beam incident on
a nonchiral structure [4], whereas here we elucidate a means
to produce dichroism that acts on the incident beam OAM
directly.

The remainder of this paper is organized as follows. Section
II describes the geometry and governing equations for our
system and Sec. III presents a simplified analytic theory of
parametric amplification and dichroism for OAM for pump
and signal beams that are perfect optical vortices. In Sec. IV
numerical results are presented for the case of signal and
pump fields that are imperfect optical vortices and also signal
fields that are Laguerre-Gaussian beams. Specifically, we
demonstrate that parametric amplification can be used to create
gain for a band of OAM states of an incident signal beam with
absorption outside this band. A summary and conclusions are
given in Sec. V.

*Corresponding author: ewan@optics.arizona.edu

II. BASIC GEOMETRY AND EQUATIONS

Our basic model involves propagation in the transparency
region of a uniaxial nonlinear optical crystal. More specifically,
we consider propagation along a principal axis to avoid the
effects of beam walkoff and assume type-I phase-matching
conditions. In our model of parametric amplification a signal
field at the fundamental frequency ω1 is incident on the
crystal along with a pump field at the second-harmonic
(SH) frequency ω2 = 2ω1. In this case the parametric in-
teraction will generate an idler field at the fundamental
frequency ω3 = ω2 − ω1 = ω1. For the type-I phase match-
ing assumed, the signal field and idler fields are ordinary
waves of refractive index n1 and the pump is an extraor-
dinary wave with refractive index n2. Then, choosing the
z axis as the propagation direction, denoting the complex
slowly varying field amplitudes of the fundamental and SH
fields as A1(x,y,z) and A2(x,y,z), and following the derivation
and notation of Ref. [5], we obtain the paraxial wave equations
for the fundamental (j = 1) and pump (j = 2) fields

∂A1

∂z
= i

2k1
∇2

⊥A1 + 2iω2
1deff

k1c2
A2A

∗
1e

−i�kz,

(1)
∂A2

∂z
= i

2k2
∇2

⊥A2 + iω2
2deff

k2c2
A2

1e
i�kz,

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian describing
beam diffraction, deff is the effective nonlinear coefficient,
kj = njωj/c gives the z component of the wave vector for the
two fields, and �k = 2k1 − k2 is the wave-vector mismatch.
We note that in this formulation the fundamental field
incorporates both the signal and idler fields. Throughout this
paper we assume the case of noncritical phase matching in a
lithium triborate (LBO) crystal and a fundamental wavelength
of λ1 = 1.064 μm for which n1 = n2 = n = 1.6, �k = 0,
and deff = 0.83 pm/V. Then introducing the parameter η =
2ω1deff/n1c, the propagation equations may be written as

∂A1

∂z
= i

2k1
∇2

⊥A1 + iηA2A
∗
1,

(2)
∂A2

∂z
= i

4k1
∇2

⊥A2 + iηA2
1.

These propagation equations for parametric amplification are
to be solved for input fields that have cylindrically symmetric
intensity profiles and carry OAM specified by the winding

1050-2947/2014/90(5)/053828(7) 053828-1 ©2014 American Physical Society
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numbers m1 for the signal and m2 for the pump

Aj (x,y,z = 0) = αjUj (ρ,z = 0)eimj φ, j = 1,2, (3)

where (ρ,φ) are the transverse coordinates in cylindrical
coordinates and the complex coefficients αj are used to control
the input powers of the fundamental and second-harmonic
fields along with the relative phase θ between the input
fundamental and SH fields. Here Uj (x,y,z) ≡ Uj (ρ,z) are
normalized cylindrically symmetric field profiles obeying∫ ∞

−∞
dx

∫ ∞

−∞
dy|Uj (x,y,z)|2 =

∫ ∞

0
2πρdρ|Uj (ρ,z)|2 = 1,

(4)
which describe the input fields at z = 0 and their linear
propagation to the output at z = L. The output powers in the
fundamental and SH fields can be expressed as

Pj (L) = 2ε0nc

∫ ∞

−∞
dx

∫ ∞

−∞
dy|Aj (x,y,L)|2, j = 1,2,

(5)
and we note that P1(L) represents the total fundamental output
power, signal plus idler. We furthermore define the output
signal power

Ps(L)

= 2ε0nc

∣∣∣∣
∫ ∞

−∞
dx

∫ ∞

−∞
dyU ∗

1 (x,y,L)e−im1φA1(x,y,L)

∣∣∣∣
2

, (6)

which represents the power contained in the fundamen-
tal field projected onto the normalized input signal mode
U1(x,y,L)eim1φ evaluated at the output. In particular, Ps(L)
provides a measure of the output power associated with the
input signal winding number m1. In the following we shall
examine the net gain for the fundamental field

G = P1(L)

Psig
, (7)

Psig = P1(0) being the input signal power, and the signal gain

Gs = Ps(L)

Psig
. (8)

In general, P1(z) > Ps(z) and G > Gs since the nonlinear
interaction will generate an idler field at the fundamental
frequency from the pump and signal fields. We shall always
choose the input pump power somewhat larger than the signal
power to avoid excessive pump depletion.

III. SIMPLIFIED ANALYTIC THEORY

To set the stage for our numerical simulations we first
present a simplified analytic theory of parametric amplification
with OAM and associated dichroism. In particular, we consider
the case that both the signal and pump beams are perfect optical
vortices (POVs) [6,7]. A perfect optical vortex of winding
number m has a narrow ring intensity profile with an azimuthal
phase twist of 2πm in the transverse plane of the field. The key
to using POVs is that the ring radius R should be independent
of winding number and the same for all interacting fields.
This choice maximizes the spatial overlap of the interacting
fields and allows for a treatment that removes issues related

to the radial profile of the fields while retaining the azimuthal
variation.

A. Perfect optical vortices

We first present a representation of a monochromatic
POV with frequency ω = 2πc/λ and winding number m

propagating in a medium of refractive index n. The POV
has a ring-shaped intensity profile of radius R and width W ,
R � W � λ, along with a helical phase front of winding
number m. (In the ideal case the ring width W would be zero
[6].) We assume that the width W of the POV is sufficiently
narrow compared to the ring radius that we may evaluate the
properties of the beam around the peak of the ring. Then, for
a POV with azimuthal variation eimφ propagating along the z

axis, the corresponding spiraling wave vector may be written
as [8]

�K = Kx �ex + Ky �ey + Kz�ez

= m

R
cos(φ)�ex + m

R
sin(φ)�ey + Kz�ez, (9)

with R � λ the ring radius. By demanding that K = k =
2πn/λ we obtain for a forward propagating field

Kz =
√

k2 − m2

R2
≈ k − 1

2k

m2

R2
, (10)

so we get the expected reduction in the z component of the
wave vector due to the skewing associated with the helical
phase front of the POV [9].

Based on the above results, the slowly varying electric field
envelope for a POV evaluated around the peak of the ring may
be written as

A(ρ = R,φ,z) = a(z)eimφe−(iz/2k)(m2/R2). (11)

Then approximating the field of the POV as constant over its
cross section, the power may be evaluated as

P (z) = 2ε0nc2πRW |a(z)|2. (12)

The utility of this solution rests on the Rayleigh range zR =
kW 2/2 being larger than the medium length L so that the ring
width will vary little under propagation through the medium.

In the next subsection we consider a superposition of
POVs at the fundamental frequency but with different winding
numbers to capture both the signal and idler fields.

B. Parametric amplification

For this development we assume that the pump field (j = 2)
is much stronger than the signal field (j = 1). Then the
parametric amplification process, which produces one signal
and one idler photon from one pump photon, generates an
idler field (j = 3) that has winding number m3 = m2 − m1.
Assuming that all fields are described by POVs, we then
write the slowly varying electric fields for the fundamental
and second harmonic fields, with ρ = R, as

A1(φ,z) = a1(z)eim1φe−(iz/2k1)(m2
1/R

2)

+a3(z)eim3φe−(iz/2k1)(m2
3/R

2),

A2(φ,z) = a2e
im2φe−(iz/2k2)(m2

2/R
2), (13)
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with a2 independent of z in the undepleted pump beam
approximation and a3(0) = 0 with no idler present at the input.
Here we have set k3 = k1 since the signal and idler have the
same frequency, and type-I phase matching is employed so
the signal and idler experience the same refractive index. In
the Appendix we show that using the fields in Eqs. (13)
along with the propagation equations (2) yields the linearized
signal-idler equations

da1

dz
= i(ηa2)a∗

3e
iκz,

da3

dz
= i(ηa2)a∗

1e
iκz, (14)

where the OAM-dependent wave-vector mismatch for the
process is

κ = (m1 − m2/2)2

k1R2
(15)

and we note that phase matching κ = 0 requires m1 = m2/2.
These equations may be solved for the fields at the output of
the crystal of length L [5],

a1(L) = a1(0)

(
cosh(gL) − iκ

2g
sinh(gL)

)
eiκL/2,

(16)

a3(L) = a∗
1 (0)

(
iηa2

g

)
sinh(gL)eiκL/2,

where g =
√

η2|a2|2 − κ2/4 is the growth rate if the argument
of the square root is positive. The field intensities are given by
Ij (z) = 2ε0nc|aj (z)|2 in terms of which the growth rate may
be written as

g =
√

βIp − κ2/4, (17)

with Ip = I2(0) is the pump intensity at the peak of the ring and
β = 2ω2

1d
2
eff/ε0n

3c3. Using Eq. (12), the input signal power
is Psig = 2ε0nc2πRW |a1(0)|2, the output fundamental power
is P1(L) = 2ε0nc2πRW [|a1(L)|2 + |a3(L)|2], and the output
signal power is Ps(L) = 2ε0nc2πRW |a1(L)|2. Then the net
gain for the fundamental field may be expressed as

G = P1(L)

Psig
=

∣∣∣∣cosh(gL) − iκ

2g
sinh(gL)

∣∣∣∣
2

+
∣∣∣∣ηa2

g
sinh(gL)

∣∣∣∣
2

(18)

and the signal gain becomes

Gs = Ps(L)

Psig
=

∣∣∣∣cosh(gL) − iκ

2g
sinh(gL)

∣∣∣∣
2

. (19)

Note that under phase matching κ = 0 the peak signal gain is

Gpeak = cosh2(
√

βIpL), (20)

which increases with pump intensity.
In summary, the simplified analytic solution demonstrates

that phase matching for the parametric amplification process
depends on the combination of the winding numbers of the
signal and pump beams

� = m1 − m2

2
, (21)

whereas the peak signal gain varies with the input intensity.
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FIG. 1. (Color online) Signal gain Gs (solid line) and net gain
(dashed line) versus the OAM difference m1 − m2/2 for a LBO
crystal of length L = 2 mm, pump intensity I2 = 2 GW/cm2, and
ring radius R = 35 μm. The discrete data points are connected by a
solid line as a visual aid.

C. Dichroism for OAM

Figure 1 shows an illustrative example of the signal gain
Gs (solid line) and net gain G (dashed line) versus the OAM
difference � = m1 − m2/2 for a LBO crystal of length L = 2
mm, pump intensity Ip = 2 GW/cm2, and a ring radius R =
35 μm. We have chosen the example of a LBO crystal as it
allows for the assumed noncritical phase matching and has a
damage threshold that exceeds the intensities used for pulses
shorter than a nanosecond. Figure 1 reveals that significant
gain occurs for a limited range of OAM values centered on
� = 0, that is, around m1 = m2/2. The fact that the peak of
the net gain defined in Eq. (7), which includes both the signal
and idler, exceeds the peak of the signal gain defined in Eq. (8)
reflects the fact that a significant idler intensity is generated
in this example, but we note that gain appears over a similar
range in both cases. The full width for the parametric gain
profile may be estimated by requiring κL = π at the edges for
the phase mismatch to diminish the gain, which yields

δ� = 2

√
πk1R2

L
. (22)

This full width scales as δ� ∝ R/
√

λ1L, which is analogous
to the spiral bandwidth used in spontaneous parametric down-
conversion if we replace the Gaussian waist of the pump beam
with the ring radius [10–12]. For this reason we refer to δ�

as the spiral bandwidth. For the chosen parameters this yields
a spiral bandwidth of δ� = 9 in reasonable agreement with
Fig. 1. Note also that the spiral bandwidth is independent of
the winding numbers of the incident fields.

The parametric amplification therefore provides differential
gain between different OAM states of the signal beam and
in this sense acts as a dichroic element based on the signal
OAM with the peak gain centered at m1 = m2/2 and spiral
bandwidth given by Eq. (22). Furthermore, if we choose
|m2| > δ�, then for m2 > 0 we can create the situation such
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that only OAM states with m1 > 0 experience significant gain
and vice versa for m2 < 0.

This concludes our discussion of the simplified analytic
theory. Next we turn to numerical simulations using more
realistic and practical beam profiles that will expose more
general features of parametric amplification and associated
dichroism for OAM.

IV. NUMERICAL SIMULATIONS

In this section we present numerical simulations of para-
metric amplification for more realistic types of input beams.
The simulations are based on Eqs. (2) with initial conditions
corresponding to signal and pump beams carrying OAM as in
Eqs. (3). A standard beam propagation method is employed
for the nonlinear propagation [13].

A. Imperfect optical vortices

Here we consider input beams that have a ring structure
plus helical phase fronts, but they are not ideal POVs, so we
term them imperfect optical vortices (IOVs). In particular, with
reference to Eqs. (3), we write the radial profiles of the input
fields as

Uj (ρ,z = 0) = Nj ρ
mr e−ρ2/w2

0 , j = 1,2, (23)

where Nj are normalization constants, w0 is a Gaussian
beam waist, and mr is a positive integer. Equations (23)
describe annular beams of ring radius R = w0

√
mr/2 and

for our numerics we choose w0 = 15 μm, in which case
the ring radius is R = 35 μm for mr = 11. We note that
these initial conditions do not coincide with the familiar
Laguerre-Gaussian modes of free space unless |m1,2| = mr ,
so these IOVs will generally change their functional form
under linear propagation. For our parameters the fundamental
Rayleigh range is zR � 1 mm, whereas the medium length is
L = 2 mm, so the IOVs experience non-negligible diffraction
over the medium length.

Figure 2 shows illustrative examples of parametric amplifi-
cation using IOVs with parameters mr = 11 and w0 = 15 μm
giving R = 35 μm, an input pump power of P2(0) = 264 kW,
and a signal power of Psig = 0.2P2(0) = 52.8 kW, these
parameters yielding an intensity of Ip = 8.8 GW/cm2 around
the peak of the pump beam. The signal gain Gs given in Eq. (8)
is plotted as a function of the OAM difference � = m1 − m2/2
for the cases with m2 = 0 (dotted line) and m2 = 11 (solid
line).

The results in Fig. 2(a) display qualitative similarities and
differences with the simplified analytic theory in Fig. 1 that
we now discuss. First, except for � = 0, the results for the
two different pump winding numbers m2 = 0,11 agree very
well, this being expected from the simplified theory. However,
for the case of zero winding number for both the pump and
probe m1 = m2 = � = 0 (dashed line), the signal gain shows
an absorption dip. This arises since under this condition there
is a resonant interaction between the injected fundamental field
and the SH field that preserves the winding number of each
field and depends on the relative phase θ between the signal
and SH. For the case shown θ = π/4 this yields absorption,
whereas for θ = −π/4 signal gain occurs [3]. In contrast, the
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FIG. 2. (Color online) (a) Signal gain Gs versus the OAM differ-
ence � = m1 − m2/2 for m2 = 0 (dotted line) and m2 = 11 (solid
line) and (b) same as (a) but for the net gain G. The parameters
used are for LBO and mr = 11, w0 = 15 μm, giving R = 35 μm, an
input pump power of P2(0) = 264 kW, and a signal power of Psig =
0.2P2(0) = 52.8 kW, giving a peak intensity Ip = 8.8 GW/cm2. The
discrete data points are connected by a solid line as a visual aid.

case with m2 = 11 shows no such absorption at � = 0. This
is because the resonant interaction between the fundamental
and SH fields at � = 0 requires m1 = m2/2, which cannot be
satisfied for integer m1 if m2 is odd, but the absorption dip
does appear at � = 0 if m2 is even. So excluding the dip at
� = 0, the results for m2 = 0,11 agree well. Note also that in
Fig. 2(a) the signal gain turns to absorption for larger values
of |�|. This background absorption arises from conversion
of the fundamental field with OAM m1 to SH with OAM
2m1 (generally distinct from the input SH with OAM m2.)
The magnitude of this background absorption increases as
the input signal power is increased. Furthermore, the width
of the central peak in Fig. 2(a) is around 9, which is close
to the spiral bandwidth δ� = 9 obtained from Eq. (22), the
parameters being the same as in Fig. 1.

Figure 2(b) is the same as Fig. 2(a) but for the net gain given
by the total fundamental output power divided by the input
signal power. Figures 2(a) and 2(b) show the same features, but
the net gains are larger than the signal gains due to the inclusion
of the idler power in the net gain. The reason for this figure
is to demonstrate that the common features appear in both
gains and it is simpler to measure the net gain experimentally
than to isolate the signal gain. Both gain measurements would
demonstrate that the differential gain or loss between different
signal OAM states depends on the OAM difference � = m1 −
m2/2.

Further features of the signal gain Gs are illustrated in
Fig. 3. This figure shows the signal gain versus the OAM differ-
ence � = m1 − m2/2 for the same parameters as in Fig. 2(a)
with m2 = 11 and pump intensities of Ip = 8.8 GW/cm2

(solid line) and Ip = 4.4 GW/cm2 (dashed line), the signal
power being held constant at Psig = 52.8 kW. As expected
on the basis of Eq. (20), the peak signal gain increases with
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FIG. 3. (Color online) Signal gain Gs versus the OAM difference
� = m1 − m2/2 for the same parameters as in Fig. 2(a) with m2 = 11
and a pump intensity of Ip = 8.8 GW/cm2 (solid line) and Ip =
4.4 GW/cm2 (dashed line), the signal power being held constant at
Psig = 0.2P2(0) = 52.8 kW. The discrete data points are connected
by a solid line as a visual aid.

pump intensity and given a peak signal gain of Gpeak = 1.5
for the higher pump intensity, Eq. (20) predicts Gpeak = 1.23
for the lower pump intensity, in reasonable agreement with the
numerics [recall that the simple theory does not account for
the background absorption due to second-harmonic generation
(SHG) that is present in the numerics]. In contrast, we see that
the background absorption is the same in both cases. This
follows since the background absorption arises from SHG
of the fundamental field of winding number m1 to create a
SH field with winding number 2m1, distinct from the pump
SH field with winding number m2 = 11, and this depends
dominantly on the signal properties alone, not the pump
properties.

Figure 4 shows illustrative examples of the fundamental
(top row) and SH (bottom row) output transverse intensity
profiles for two different values of the pump power P2(0) =
2.64 and 264 kW, with Psig = 0.2P2(0), all other parameters
being the same as in Fig. 2. The winding numbers of the
fundamental and SH fields were chosen as m1 = 8 and
m2 = 11 so that � = 2.5, and the generated idler will have
winding number m3 = m2 − m1 = 3. For Figs. 4(a) and 4(c)
the pump power is P2(0) = 264 kW and the fundamental
intensity profile in Fig. 4(a) shows a five-lobe structure that
arises from azimuthal beating between the signal and idler
fields with azimuthal periodicity 2π/|m1 − m3| = 2π/5. The
pronounced lobes reflect the fact that a strong idler is generated
in this case (as also evidenced by the difference between
the net gain and signal gain in Fig. 2 for � = 2.5). The
five-lobe structure is also evident, but to a lesser degree, in the
corresponding intensity profile for the SH shown in Fig. 4(c).
Figures 4(b) and 4(d) show the same thing for a pump power
P2(0) = 2.64 kW, the key difference being that a weaker idler
is generated and the five-lobe structure is less well pronounced.
For even lower pump powers the intensity profiles tend closer
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FIG. 4. (Color online) Examples of the (a) and (b) fundamental
and (c) and (d) SH output transverse intensity profiles for two different
values of the pump power: (a) and (c) P2(0) = 264 kW and (b) and
(d) P2(0) = 2.64 kW, with Psig = 0.2P2(0), all other parameters being
the same as in Fig. 2. The winding numbers of the fundamental and
SH fields were chosen as m1 = 8 and m2 = 11 so that � = 2.5 and
the generated idler will have winding number m3 = m2 − m1 = 5.

to rings. In summary, many of the features present in the
simplified analytic model are also present using signal and
pump beams that are IOVs. The simplified theory did not
include the SHG process, so it did not account for the resonant
SHG that occurs for m1 = m2/2 or the background absorption
of the signal due to generation of a SH field at m2 = 2m1.
The simplified model did capture the spiral bandwidth of
the parametric amplification process. It then follows that the
dichroism for OAM displayed by the simple model may also
be realized using IOVs. A key distinction is that whereas the
simplified analytic theory only shows differential gain between
signal OAM states, the full theory with IOVs shows gain for
a band of OAM states and loss outside that band and in this
sense the full theory is richer.

B. Laguerre-Gaussian signal

For our second example we consider the case that the
pump beam is an IOV as in Eq. (23) but the signal beam
is a Laguerre-Gaussian (LG) beam. For input beams other
than POVs or IOVs the spatial overlap of the signal and pump
beams introduces features beyond the simplified theory and
we use the LG beams as an illustrative example due to their
relative ease of generation in the laboratory. In particular we
consider LG signal modes with radial mode index p = 0 and
winding number m1,

U1(ρ,z = 0) = Nj ρ
|m1|e−ρ2/w2

0 , (24)

the pump IOV and signal LG beam being based on the same
Gaussian spot size w0. For m1 = 0 this is a Gaussian beam
peaked on axis, whereas for m1 = 0 this is a ring beam
with radius R1 = w0

√|m1|/2, so the ring radius varies with
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FIG. 5. (Color online) Plot of the signal gain Gs (solid line) and
net gain G (dashed line) as functions of the signal beam winding
number m1 for a pump winding number (a) m2 = 11 and (b) m2 = 0.
The parameter values are mr = 11 and w0 = 15μm, giving R =
35μm, an input pump power of P2(0) = 264 kW, and a signal power
of Psig = 0.2P2(0) = 52.8 kW. The discrete data points are connected
by a solid line as a visual aid.

winding number in contrast to the IOVs. For a pump beam that
is an IOV as in Eq. (23) the ring sizes of the LG signal and
pump beam will coincide when mr = |m1|.

Figure 5 shows illustrative examples of parametric ampli-
fication using LG signal beams with parameters mr = 11 and
w0 = 15 μm giving R = 35 μm, an input pump power of
P2(0) = 264 kW, and a signal power of Psig = 0.2P2(0) =
52.8 kW, these parameters yielding an intensity of Ip =
8.8 GW/cm2 around the peak of the pump beam. In Fig. 5(a)
the signal gain Gs (solid line) and net gain G (dashed line) are
shown as a function of the signal beam winding number m1

for a pump winding number m2 = 11. This figure shows that
parametric gain occurs over a band of winding numbers with
peak gain centered around m1 � 7, with absorption outside
of this gain band. The gain peak is shifted with respect
to the phase-matching condition m1 = m2/2 = 5.5, but this
is not surprising since the overlap between the interacting
fields, which enters into the strength of the parametric wave
interaction, varies with m1. Although the gain profile is
asymmetric, the results in Fig. 5(a) largely conform to the
findings based on the using IOVs. This example demonstrates
that by judicious choice of signal mode structure we can create
the dichroism for OAM we elucidated using POVs.

The big difference for LG beams occurs when the winding
number of the pump is changed and is illustrated for m2 = 0
in Fig. 5(b), which shows the signal gain Gs (solid line)
and net gain G (dashed line) as a function of the signal
beam winding number m1. In contrast to the case of IOVs
where changing m2 would simply shift the gain profile along
the m1 axis (see Fig. 2), the gain profiles in Fig. 5(b) are
distinctly different from those in Fig. 5(a). In particular, for
the chosen example the signal field experiences absorption
for all values of m1 (we chose the relative phase θ = π/4

so that there is absorption at m1 = 0). This arises since the
phase-matching condition for peak gain now occurs at m1 = 0,
but there is little overlap between the signal and SH fields
at that point and therefore little concomitant parametric gain
to overcome losses due to second-harmonic generation. The
main observation is that for more general signal and pump
beam profiles the gain profile depends on the signal and probe
winding numbers independently and not just through the OAM
difference � = m1 − m2/2.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated parametric amplification
as a means to produce dichroism based on the orbital angular
momentum of an incident signal field. Specifically, we have
demonstrated that parametric amplification can be used to
create gain for a band of OAM states of an incident signal
beam with absorption outside this band. The spiral bandwidth
of the gain was shown to depend on beam parameters and the
medium length, whereas the peak gain occurs for a signal OAM
equal to half that of the pump field and the peak signal gain
increases with the pump power. This illustrates that parametric
amplification can be used to provide significant gain to a
particular sign of the probe OAM, which could in turn be used,
for example, to sculpt the OAM content of an incident signal
beam or bias the oscillating OAM states in an active system
such as a laser. In a similar manner this dichroism could be
used to vary the gain for a specific probe OAM dependent on
the sign of the OAM of the pump and this could be used for
all-optical switching of the probe.

To conclude, we remark that the results in Fig. 5 bear some
resemblance to those predicted by Zel’dovich in the early
1970s [14]. More specifically, the Zel’dovich effect involves
light scattering from an absorbing cylinder. If the cylinder is
not rotating then a probe field incident radially onto it will
suffer some absorption. Zel’dovich showed that if the cylinder
is rotating then the probe can experience gain over a range of
probe winding numbers, the required energy coming from the
energy that needs to be added to sustain the rotation [14,15].
The Zel’dovich effect is therefore another system that can
display dichroism for OAM. Another, closely related effect is
Penrose superradiance, i.e., amplified scattering waves with
angular momentum falling into a rotating black hole [16]. To
elucidate the analogy for the parametric amplification system,
the role of the cylinder is played by the second-harmonic
pump and the role of the probe is played by the signal.
In this analogy the probe experiences the refractive-index
perturbation induced in the medium by the pump field via
the second-order nonlinearity: This perturbation is rotating if
m2 = 0. More technically, parametric gain around the pump
beam ring creates an ergoregion in which energy can be
exchanged between fields of differing OAM as dictated by
phase matching. Then the results in Fig. 5(b) show that if
the cylinder (SH pump) is nonrotating, m2 = 0, the probe is
absorbed for all incident winding numbers, as expected for
waves impinging on an absorbing, nonrotating cylinder or
on a nonrotating black hole. In contrast, when the cylinder
(pump beam) is rotating, gain becomes possible. Parametric
amplification therefore provides a nonlinear analog system
for the Zel’dovich effect. It is worth noting the similarities and
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differences of the two systems: In the Zel’dovich effect, loss
and gain are described by the same linear loss coefficient
that changes sign depending only on the relative rotation
frequencies of the cylinder and probe beam. In the nonlinear
parametric amplification system, loss is represented by SHG
that funnels energy from the probe into a SH signal that
has different OAM with respect to the pump. Gain, on
the other hand, is observed when the correct spatial phase
relations are imposed between the pump and probe. Orbital
angular momentum dichroism due to parametric amplification
therefore depends on the phase properties of the probe (as
in the Zel’dovich effect) and also of the pump. Notwithstanding
this difference, the two processes are intriguingly similar, in
that both display dichroism for OAM.
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APPENDIX: LINEARIZED SIGNAL-IDLER EQUATIONS

The utility of the POV solution introduced in Sec. III A
rests on the Rayleigh range zR = kW 2/2 being larger than the
medium length L so that the ring width W will vary little under
propagation through the medium. Within this approximation,
the transverse Laplacian in cylindrical coordinates becomes
∇2

⊥ → 1
R2

∂2

∂φ2 , thereby neglecting radial expansion of the
ring. Then treating the POV field in the vicinity of the ring

radius R as approximately constant over the cross section,
Aj (ρ = R,φ,z) ≈ Aj (φ,z), the field equations (2) may be
written along the top of the ring as

∂A1

∂z
− i

2k1R2

∂2A1

∂φ2
− iηA2A

∗
1 = 0, (A1)

∂A2

∂z
− i

4k1R2

∂2A2

∂φ2
= 0, (A2)

where we have used the undepleted pump beam approximation
in Eq. (A2) and ignored the nonlinearity. Next the POV
solutions in Eqs. (13) given by

A1(φ,z) = a1(z)eim1φe−(iz/2k1)(m2
1/R

2)

+a3(z)eim3φe−(iz/2k1)(m2
3/R

2), (A3)

A2(φ,z) = a2e
im2φe−(iz/2k2)(m2

2/R
2) (A4)

are used to express the propagating fields and note that, given
k2 = 2k1, Eq. (A4) automatically satisfies (A2) with a2 a
constant. Substituting Eqs. (A3) and (A4) into Eq. (A1) and
using m3 = m2 − m1 yields

eim1φe−(iz/2k1)(m2
1/R

2)[da1/dz − i(ηa2)a∗
3e

iκz]

+eim3φe−(iz/2k1)(m2
3/R

2)

[
da3

dz
− i(ηa2)a∗

1e
iκz

]
= 0, (A5)

with κ given by Eq. (15). Then setting terms with the same
exponential azimuthal variation individually to zero, assuming
m1 = m3, yields the linearized signal-idler equations (14).
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