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ABSTRACT

Quantum subsystem codes have been shown to improve error-correction performance, ease

the implementation of logical operations on codes, and make stabilizer measurements easier

by decomposing stabilizers into smaller-weight gauge operators. In this paper, we present two

algorithms that produce new subsystem codes from a “seed” CSS code. They replace some

stabilizers of a given CSS code with smaller-weight gauge operators that split the remaining

stabilizers, while being compatible with the logical Pauli operators of the code. The algo-

rithms recover the well-known Bacon-Shor code computationally as well as produce a new

[[9, 1, 2, 2]] rotated surface subsystem code with weight-3 gauges and weight-4 stabilizers. We

illustrate using a [[100, 25, 3]] subsystem hypergraph product (SHP) code that the algorithms

can produce more efficient gauge operators than the closed-form expressions of the SHP

construction. However, we observe that the stabilizers of the lifted product quantum LDPC

codes are more challenging to split into small-weight gauge operators. Hence, we introduce

the subsystem lifted product (SLP) code construction and develop a new [[775, 124, 20]] code

from Tanner’s classical quasi-cyclic LDPC code. The code has high-weight stabilizers but all

gauge operators that split stabilizers have weight 5, except one. In contrast, the LP stabi-

lizer code from Tanner’s code has parameters [[1054, 124, 20]]. This serves as a novel example

of new subsystem codes that outperform stabilizer versions of them. Finally, based on our

experiments, we share some general insights about non-locality’s effects on the performance

of splitting stabilizers into small-weight gauges.
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Chapter 1

Introduction

Quantum error correction is vital for quantum computers to achieve their full potential.

The technique requires identifying the location of errors on a quantum computer without

disturbing the delicate superposition states of the qubits involved in the computation. This

is done by measuring stabilizers, which are quantum parity checks on different subsets of

qubits, that help elucidate the locations of errors through an error syndrome. However, if

measuring the stabilizers involves a high number of qubits, then the entangling measurements

of the process pose the risk of creating additional errors.

Subsystem codes may help alleviate this issue Kribs et al. (2005); Bacon (2006). These

are codes with gauge operators or operators on virtual qubits that do not carry quantum

information. If designed well, then the eigenvalue of a high-weight stabilizer can be obtained

as a product of the eigenvalues of several lower-weight gauge operators that can be mea-

sured more easily. Generally, these gauge operators form a non-abelian group, meaning that

the order of measurement matters. The ordering can be chosen carefully during the pro-

cess of gauge fixing, where changes to the code can be made mid-computation to help ease

measuring stabilizers or even implementing logical operations Breuckmann (2011). Recent

work has even translated these gauge-fixing insights of subsystem codes into the ZX calcu-

lus Huang et al. (2023). There are several examples of subsystem codes in the literature. The

prototypical example of a subsystem code is the Bacon-Shor code Bacon (2006). Most con-

structions have topological or geometrically local properties, which makes finding the gauge

group an intuitive process Higgott and Breuckmann (2021). Closed-form expressions exist
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for constructing generalized Bravyi-Bacon-Shor or Subsystem Hypergraph Product (SHP)

Codes Li and Yoder (2020). There are also some computational methods for forming a set of

gauge generators out of a set of Pauli operators via Gram-Schmidt orthogonalization Wilde

(2009), and computational search methods for finding the optimal subsystem code from a

set of two-qubit measurement operators Crosswhite and Bacon (2011).

However, there does not exist an algorithm that allows one to input a stabilizer code and

derive a subsystem code directly from it, especially one that determines gauge operators that

compose to form stabilizers of the input code. In recent years, there has been tremendous

progress in constructing quantum low-density parity-check (QLDPC) stabilizer codes with

optimal code parameters. Such an algorithm can leverage these advances in stabilizer codes

and potentially decompose their stabilizers into smaller-weight local gauge checks. For ex-

ample, a good Lifted Product (LP) code can have stabilizer weights of 8 or even larger than

10, which involve long-range connections between qubits. Hence, the LDPC property alone

does not make these constructions practical.

In this work, we present two algorithms capable of deriving subsystem codes from a “seed”

CSS stabilizer code and present non-trivial examples of subsystem codes found by our algo-

rithms. The algorithms identify a [[9, 1, 2, 2]] rotated surface subsystem code whose stabilizer

weights are still 4 but gauge weights are 3, albeit with some non-locality. In contrast, the

subsystem surface code known in the literature Bravyi et al. (2013) uses more qubits and has

stabilizers of weight 6. Next, we demonstrate a modified SHP code that reduces the weight

of gauge operators needed to produce a stabilizer compared to the closed-form expressions

in Li and Yoder (2020). We observe that it is in general difficult to decompose stabilizers

of the LP construction into small-weight gauge operators. Hence, we introduce an extension

to the SHP construction that we call the Subsystem Lifted-Product (SLP) codes, which can

have superior parameters compared to the Lifted Product stabilizer code constructed from

the same base matrix. As an illustrative example, we produce a [[775, 124, 20]] SLP code

from Tanner’s classical quasi-cyclic LDPC code, whereas the corresponding LP code has
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parameters [[1054, 124, 20]]. The code has high-weight stabilizers but the gauge operators to

produce the stabilizer are weight-5, except one of high weight. It remains to be seen if the

high-weight nature of stabilizers or some of the gauges is intrinsic to the SLP construction.



Chapter 2

Background

2.1 Essentials of Quantum Mechanics

In quantum mechanics, the main objects of the theory are quantum states. In quan-

tum computing, the states we care about are referred to as qubits, or two level quantum

states. A qubit can be defined as a vector in C2, the two-dimensional complex vector space

Rengaswamy (2020):

|ψ⟩ := α |0⟩+ β |1⟩ , (2.1)

|0⟩ :=

1
0

 ,
|1⟩ :=

0
1

 ,
where α and β are complex numbers. Here ⟨ψ|ψ⟩ = 1, where ⟨ψ| := |ψ⟩†. This implies that

|α|2 + |β|2 = 1. Here ⟨ψ|ϕ⟩ is the inner product between two states, where ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗.

We can extend this notion of a single qubit to multi-qubit quantum states, by using the CN ,

N := 2n computational basis, {|v⟩ = |v1⟩ ⊗ |v2⟩ ⊗ ... |vN⟩ ∈ CN , vi ∈ {0, 1}}, where ⊗ is the

Kronecker product. Thus we can write an arbitrary N qubit quantum state as:

|ψ⟩ =
∑

v∈Zn
2
αn |v⟩ , αn ∈ C, ⟨ψ|ψ⟩ =

∑
v∈Zn

2
|αn|2 = 1 (2.2)

10
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If a state is not factorizable into a Kronecker product of two states, it is entangled Ren-

gaswamy (2020).

We now generalize our notion of quantum states from our previous section. The previous

states are known as pure states, which have a well defined coherence, or phase. This extra

information allows states with well defined phases to interfere with each other. For example,

let |ψ⟩ = 1√
2
|0⟩ + 1√

2
|1⟩ and |ϕ⟩ = 1√

2
|0⟩ − 1√

2
|1⟩. Thus |ψ⟩ + |ϕ⟩ = |0⟩. We can therefore

interpret the complex coefficients of our quantum states as complex amplitudes of a wave

function that allows for interference between states. However, we may not always know the

exact pure state of the system, and instead our knowledge may be limited to a statistical

mixture of multiple pure states {|ψi⟩ , i ∈ {1, N}}. We can represent this more general

quantum state as a density operator Rengaswamy (2020):

ρ =
∑
i

pi |ψi⟩ ⟨ψi| ∈ CN×N , (2.3)

where the {pi} are the probabilities of measuring each pure state {|ψi⟩}. Notice how these

are typical probabilities, and not complex amplitudes, so the sum of two density operators

will simply dilute the mixture of states, and not behave like a coherent superposition of

waves. Our density operator is obviously Hermitian, or ρ† = ρ. Furthermore, Tr(ρ) = 1,

which implies that the density operator preserves probability. However, Tr(ρ2) ≤ 1, which

is only an equality when ρ represents a pure state, i.e. when ρ = |ψ⟩ ⟨ψ|.

2.2 Time Evolution of Quantum States

In quantum mechanics, the time evolution of a pure state is given by the Schrödinger

Equation Sakurai and Napolitano (2020),

iℏ
∂

∂t
|ψ⟩ = Ĥ |ψ⟩ , (2.4)
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where Ĥ is the Hamiltonian operator, derived by promoting the classical Hamiltonian func-

tional density H :=
∑

i pi
∂
∂t
qi − L, to a Hermitian quantum operator, where pi, ∂

∂t
qi are the

classical canonical momenta and particle velocities respectively, and L is the Lagrangian

density, given by L := T −V . Solutions to (2.4) where Ĥ is time-independent have the form

|ψ(t)⟩ = e
−i
ℏ Ĥt |ψ⟩, where i :=

√
−1. If we define U(t) := e

−i
ℏ Ĥt, we see that U(t)U †(t) = I.

Thus, the time evolution of pure states is given by Unitary operators, or operators U such

that UU † = U †U = I. Since |det(U)| = 1, we can see these operators preserve the infor-

mation of the quantum system, and are akin to a change of basis over time Sakurai and

Napolitano (2020). Given a density operator formed as ρ = |ψ⟩ ⟨ψ| we see that ρ → UρU †.

For a general Unitary operator U(t) acting on an initial pure state |ψ⟩, we can approximate

U(t) as a discrete sequence of Unitary operators at discrete time steps. These operators in

the sequence can further be approximated by a set of unitaries called quantum gates, which

are elements of UN := {U ∈ CN×N : UU † = U †U = IN}, where UN is the unitary group

over N qubits and IN is the N -dimensional identity matrix Rengaswamy (2020). Hence,

a quantum computation can be seen as the discrete time evolution of an initial state to a

final state. For the purposes of this thesis, we will focus only on the following single-qubit

quantum gates known as the Pauli gates, given by the following Hermitian Unitary matrices:

I2 :=

1 0

0 1

 , X :=

0 1

1 0

 , Z :=

1 0

0 −1

 , Y := iXZ =

0 −i
i 0

 . (2.5)

2.3 Representing Pauli Operators as Binary Vectors

Given the vectors a = [a1, ..., an], b = [b1, ..., bn] ∈ Fn
2 , we define the Hermitian operator

E(a, b) := ia1b1Xa1Zb1 ⊗ ...⊗ ianbnXanZbn , (2.6)
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where X and Z are the standard Pauli operators. We can define the n-qubit Pauli group Pn

as

Pn := ⟨iαE(a, b) : a, b ∈ Fn
2 ;α ∈ {0, 1, 2, 3}⟩ . (2.7)

This is also known as the Heisenberg-Weyl Group HWN , N = 2n. The standard symplectic

inner product in F2n
2 is defined as Rengaswamy et al. (2020):

⟨[a, b], [a′, b′]⟩s := a′bT + b′aT (mod 2)

= [a, b] Ω [a′, b′]T (mod 2), (2.8)

where the matrix Ω =

 0 In

−In 0

 is the symplectic form in F2n
2 . We notice that two

operators E(a, b), E(a′, b′) commute if and only if ⟨[a, b], [a′, b′]⟩s = 0 (mod 2). Thus, we see

that a vector [a, b] ∈ F2n
2 is isomorphic to an operator E(a, b) via the map γ : Pn/ ⟨iαI2n⟩ −→

F2n
2 defined by

γ(E(a, b)) := [a, b]. (2.9)

Thus, without loss of generality, we can represent n-qubit Pauli operators as binary vectors.

The weight of an n-qubit Pauli operator is the number of qubits on which it applies a non-

identity Pauli operator, e.g., the operator X1⊗X2⊗ I3 can be described as [ 1 1 0, 0 0 0 ], and

its weight is 2.

2.4 Introduction to Quantum Error Correction

Unfortunately, quantum computers are not closed systems. They are in contact with an

environment which can cause errors in our computation. Not only does this environment

cause errors in our computation, but we typically have no knowledge of its configuration.

Thus we must find a way to protect our computation from errors caused from an environment

of which we only know of its existence. We thus posit that our joint computer environment
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system can be described by the joint density operator ρ = ρc⊗ σ, where σ =
∑

α cα |ϵα⟩ ⟨ϵα|,

where {|ϵα⟩} forms an orthonormal basis for the Hilbert space of our environment, and ρc is

our state on the quantum computer. We model an error by a unitary operator acting on the

joint Hilbert space of the system ρ → Uρc ⊗ σU † = ρ′. However, all we known about the

environment is that it exists. Thus, we must see the action of this error on our computation

space when the environment is discarded, or marginalized. This can be done by tracing out,

or taking the partial trace of the density operator with respect to the Hilbert space of the

environment Nielsen and Chuang (2010), which is equivalent to subjecting the environment

to a series of Von-Neumann measurements, which we then discard. We can model these as

a set of projectors Pβ =
∑

βj |fβj⟩ ⟨fβj|,
∑

β Pβ = Iσ, where {|fβj⟩} forms an orthonormal

basis for the environment. Thus we get:

E(ρc)β := Trσ
(
PβUρc ⊗ σU †Pβ

)
= Trσ

(
PβUρc ⊗ σU †), (2.10)

where E(ρc)β is a linear operator called a quantum channel or super operator describing the

evolution of the state of the quantum computer with no knowledge of the environment. In

general, quantum channel evolution is not unitary. We can write (2.10) more explicitly as:

E(ρc)β =
∑

j,α

√
cα ⟨fβj|U |ϵα⟩ ρc ⟨ϵα|U † |fβj⟩

√
cα =

∑
j,αEβjαρcE

†
βjα, (2.11)

where Eβjα :=
√
cα ⟨fβj|U |ϵα⟩, which are known as Kraus operators. Thus we can decompose

the action of our channel in terms of Kraus operators. For this particular β we can see that∑
j,αE

†
βjαEβjα = Trσ

(
U †Uσ

)
= I. We can now course grain our representation and sum

over all β giving us:

E(ρc) :=
∑
β

E(ρc)β =
∑
β

EβρcE
†
β. (2.12)
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Thus for each β the probability for us to measure the outcome E(ρc)β is pβ = Tr (E(ρc)β),

with the post measurement state collapsing to:

ρβ =
E(ρc)β

Tr (E(ρc)β)
. (2.13)

In general,
∑

β E
†
βEβ ≤ 1, but we will restrict ourselves to the equality case. Finally, we

also restrict ourselves to the case where the Kraus operators in (2.12) are described by single

qubit Pauli operators. This implies that that the original unitary U on the joint state is

of the form U = Uc ⊗ Uσ, which in most cases is the most likely error Nielsen and Chuang

(2010).

Now that we have a mathematical way to describe error channels caused by the environment,

we may ask if it is possible to recover the pre-channel state of our computation. Before we

begin our computation, we first encode our state ρ onto a larger Hilbert space which we will

call the code space C, giving us Bacon:

ρenc = PCρPC. (2.14)

Now let us assume that there exists a recovery mapping R() =
∑

j Rj()R
†
j such that:

R (E (ρenc)) =
∑
k

Rk

(∑
k

EjρencE
†
j

)
R†

k = αρenc, α ∈ C. (2.15)

Inserting (2.14) into (2.15) we notice that we can choose some unitary change of basis matrix

that sends αPC → RjEkPC:

ukjαPC := RkEjPC, (2.16)

and taking the conjugate transpose of (2.16) u∗kjα∗PC = PCE
†
jR

†
k and setting j = i, we then

multiply this to the left of (2.16).

u∗kiukj|α|2PC = PCE
†
iR

†
kRkEjPC. (2.17)
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If we sum (2.17) over all k, since (2.15) is a trace preserving map, we get:

PCE
†
iEjPC =

∑
k

u∗kiukj|α|2PC := CijPC, (2.18)

where Cij is obviously Hermitian. After relabeling and looking at a set of particular states

in the code space C, we show that (2.18) implies that:

⟨ϕi|E†
kEl |ϕj⟩ = Cklδij. (2.19)

We can interpret (2.19) as saying that we can correct errors that preserve the inner product

of the codespace, i.e., errors that do not map a code-word to one that it is orthogonal to, and

preserve the value of the nonzero inner-products up to a normalization constant. Finally,

we point out that since we have assumed that our set of errors {Ek} are single-qubit Pauli

errors, we can also correct errors that are linear combinations of our {Ek}. Thus we can

correct a continuum of errors by only designing a code that corrects this discrete set of errors.

This is referred to as the digitzation of quantum noise Bacon.

2.5 Quantum Stabilizer Codes

A stabilizer group S ∈ Pn is an abelian subgroup of the Pauli group that does not contain

−I. The corresponding stabilizer code is defined by:

Q :=
{
|ψ⟩ ∈ C2n : S |ψ⟩ = |ψ⟩ ∀ S ∈ S

}
. (2.20)

A stabilizer code with n physical qubits and m independent stabilizer generators can encode

k = n−m logical qubits. The logical Pauli operators of the code come from the normalizer

of S in Pn, which is also its centralizer, defined as

N (S) := {U ∈ Pn : [U, S] = 0 ∀ S ∈ S} , (2.21)
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where [U, S] := US − SU is the commutator of U and S. Here, notice that S ⊂ N (S).

Finally, the minimum distance, d, of the code is given by the minimum weight of any Pauli

operator in N (S) \ S, or the lowest weight of any logical operator. Thus, we denote the

parameters of a quantum stabilizer code as [[n, k, d]]. Finally, a CSS code is a stabilizer

code whose stabilizer S = ⟨γ−1(HX), γ
−1(HZ)⟩, HXH

T
Z = 0, where HX , HZ are classical

binary parity check matrices, and the map γ−1 is applied to each row of HX , HZ . From

(2.19), we can show that stabilizer codes can correct all errors {E†
kEl} such that Nielsen and

Chuang (2010):

Ecorrectable := {E†
kEl : E

†
kEl /∈ N (S) \ S ∨ E†

kEl ∈ S}. (2.22)

2.6 Ancilla Qubits

To determine where an error has occurred during a computation, we must measure its

location without disturbing the state of the computer. Typically we employ ancilla qubits

to do this, or extra qubits which are not part of the code’s set of physical qubits. If we

entangle our physical qubits with the ancilla qubits, we may measure the ancilla qubits and

measure the outcome of our stabilizer measurements without disturbing the code space. To

illustrate this, we use a 3-qubit bit-flip code as an example. This code can only correct

one bit-flip error among the three physical qubits. We therefore encode our state |ψ⟩ =

α |0⟩ + β |1⟩ → α |000⟩ + β |111⟩. The stabilizers for the 3-qubit code are as follows Nielsen

and Chuang (2010): Given a state |xyz⟩, x, y, z ∈ F2, the action of S1 on |xyz⟩ is:

Stabilizers of the 3-qubit bit-flip code
Stabilizer Identifier Stabilizer Operator

S1 Z1Z2

S2 Z2Z3

Table 2.1: Here are the non-trivial stabilizer operators of the three-qubit bit-flip code. Note that
the identity operator I is implicitly included in the stabilizer group.
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Z1Z2 |xyz⟩ = (−1)x⊕y |xyz⟩ , (2.23)

and similarly for S2, where x ⊕ y is addition mod 2 or equivalently the XOR operation

between x and y. This means that when x and y are the same, we get a +1 eigenvalue and

-1 otherwise. To encode this information onto an ancilla qubit, we define a new operation

the 2 qubit CNOT gate: We can represent the CNOT gate in circuit and matrix notation as

CNOT Gate
Control and Target Input Control and Target Output

|0⟩c |0⟩t |0⟩c |0⟩t
|0⟩c |1⟩t |0⟩c |1⟩t
|1⟩c |0⟩t |1⟩c |1⟩t
|1⟩c |1⟩t |1⟩c |0⟩t

Table 2.2: This table describes the action of the CNOT gate on a pair of qubits, where one acts
as a control qubit and the other as a target.

follows Nielsen and Chuang (2010):

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


= • (2.24)

thus we can use the CNOT gate to encode the stabilizer information onto the ancillae as

follows: thus each pair of CNOTs acting on the last two qubits encodes the stabilizer oper-

ations. We can now show that measuring the ancilla qubits can detect a single bit flip error

on our code. Letting |ψ⟩enc →
√
1− |p|2 (α |000⟩+ β |111⟩) + p (α |100⟩+ β |011⟩) := |ϵ⟩,

we now append to ancilla qubits |00⟩ to our new state. Thus, following the circuit of our

encoding scheme, we get that:

|ϵ⟩ |00⟩ →
√

1− |p|2 (α |000⟩+ β |111⟩) |00⟩+ p (α |100⟩+ β |011⟩) |10⟩ (2.25)
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|ψ⟩ • • •

|0⟩ • •

|0⟩ •

|0⟩

|0⟩

Figure 2.1: Ancilla Circuit for the 3-qubit Code

thus we can measure the error syndrome without disturbing the computation. This gener-

alizes to all other single-bit flip errors in the code. Using ancillas, therefore, we can extract

the information the stabilizers gave without disturbing the system.

2.7 Subsystem Codes

A subsystem code is a quantum error-correcting code that splits the code space C = A⊗B

into the logical subspace, A, and a gauge subspace, B, that does not carry any logical

information Kribs et al. (2005). The Hilbert space of a subsystem code can be written as

H = C ⊕ C⊥ = A ⊗ B ⊕ C⊥. The gauge subspace is supported on r gauge qubits such

that, given n physical qubits and m independent stabilizers, the number of logical qubits is

k = n−m− r. Thus, a subsystem code with these parameters and code distance d can be

written as an [[n, k, r, d]] subsystem code. A subsystem code is defined by its gauge group

G := ⟨iI,S, X ′
1, Z

′
1, . . . , X

′
r, Z

′
r⟩ ⊂ Pn, (2.26)

where X ′
i, Z

′
i are the Pauli operators for the i-th gauge qubit, and S is the stabilizer group

of the code.
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We can use G to define the stabilizers of the code:

S := Z(G) = C(G) ∩ G, (2.27)

where Z(G) is the center of G, and C(G) is the centralizer of G in Pn. We define the bare

logical operators Lb as:

Lb := C(G) \ G = C(G) \ S. (2.28)

These are generated by k pairs of anti-commuting Pauli operators such that [G,Lb] = 0.

These operators only act non-trivially on the subspace A. We also have the dressed logical

operators L, Lb ⊂ L, where:

L = C(S) \ ⟨iI⟩ . (2.29)

In other words, the set of dressed logical operators is the set of bare logical operators mul-

tiplied by an operator from G \ ⟨iI⟩.

Figure 2.2: A diagram describing the relation of the Gauge group G to the other important subsets
of Pn for a subsystem code.

Finally, we can define the code distance d such that

d := min
P∈L
|P |, (2.30)

i.e., the minimum weight of a dressed logical operator.



Chapter 3

Binary Description of Subsystem Codes

3.1 Stabilizer Code Construction via Binary Matrices

We can describe a stabilizer code as a 2n × 2n matrix U which has the following form

Aaronson and Gottesman (2004); Dehaene and De Moor (2003); Rengaswamy et al. (2020):

U =



LX

S

LZ

S ′


, (3.1)

where its rows ⟨u1, . . . ,u2n⟩ span F2n
2 . We are overloading notation to represent both the

group as well as a binary matrix whose rows represent the generators of the group. Here, LX

and LZ are the binary matrices that represent the generators of the logical Pauli operators.

The sub-matrix S ′, otherwise known as the “destabilizer” Aaronson and Gottesman (2004),

is added so that U has full rank. For a stabilizer code, we choose S ′ such that:

UΩUT = Ω (mod 2). (3.2)

This means that each row vector in S ′ is chosen so that it anti-commutes with only one

stabilizer generator inside S. In other words, U is a binary symplectic matrix Dehaene and

De Moor (2003).
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Theorem 1. Let U be a binary matrix constructed as in (3.1). If U satisfies (3.2), then U

describes a valid stabilizer code.

Proof: The L.H.S. of (3.2) is our definition of the symplectic inner product in (2.8)

extended to a matrix. Since Ω has a single non-zero element per row, each row of U anti-

commutes with exactly one other row, which is n rows below (or above) it. Such pairs of

rows are called symplectic pairs. Since an [[n, k, d]] stabilizer code has n − k stabilizers, the

symplectic pairs of rows in LX must be in the rows of LZ . This means that the codes’

logical operators commute with the operators represented as binary vectors in S, S ′. Thus,

satisfying (3.2) verifies all necessary conditions for U to represent a valid stabilizer code.

3.2 Subsystem Code Construction via Binary Matrices

To construct a subsystem code using the methods of the previous section, we can take

a binary matrix U constructed as in (3.1), and choose 2r rows of it to become our gauge

generators, and LX , LZ become our bare logical operators.

It should be noted that, generally, one can replace these 2r rows with other rows and still

have a valid subsystem code, as long as U remains symplectic. Also, one is free to choose

logical operators to become gauge operators.

Theorem 2. Let U be a 2n×2n binary matrix that has the construction of (3.1) except that

2r of its rows have possibly been altered. We call this altered matrix U ′. Then U ′ represents

a valid subsystem code if:

U ′ΩU ′T = Ω (mod 2). (3.3)

Proof: Since only the 2r rows that have been altered are those promoted to gauge

operators, the rest of the rows of the matrix on the R.H.S. of (3.3) are identical to the rows

in the same positions in (3.1). This means that the bare logical operators only anti-commute

with their respective symplectic pairs and commute with the operators that generate the

gauge group. Furthermore, this also means that since the leftover stabilizers in S only anti-
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commute with the leftover operators in S ′, the operators of S indeed form Z(G). Finally,

as long as the previous conditions are met, then (3.3) guarantees that U ′ represents a valid

subsystem code.

Appendix 4.1 proves our algorithm’s ability to find all suitable representations for the

gauge generators.



Chapter 4

GNarsil Algorithms to Find Gauge Operators

Here we will use gauge generators to describe the non-stabilizer generators of the gauge

group. In practice, a subsystem code’s utility comes from measuring the product of a set of

lower-weight gauge operators that yields the same information as measuring a higher-weight

stabilizer Higgott and Breuckmann (2021). Using the binary matrix constructions of the

previous section, we can find low-weight gauge operators for CSS codes whose composition

produces the code’s stabilizers up to a remaining gauge operator that is not a gauge generator.

Let us call this remaining gauge operator the residual operator for that stabilizer. We refer

to the minimum (Pauli) weight over all residual operators as the residual weight. For a

gauge decomposition to be useful, the residual weight must be less than the weight of the

decomposed stabilizer. To achieve this, we propose two algorithms Novak and Rengaswamy

(2024). The first algorithm finds the set of r gauge generators that decompose stabilizers

with the least residual weight and then adds back stabilizers so that n = k − r −m is still

satisfied. We describe the first GNarsil algorithm, which “cuts” stabilizers into gauges, in

Algorithm 1.

We also note that by bypassing the anti-commutation conditions, gauge operators that are

not necessarily gauge generators may be found such that they decompose a stabilizer with

lower residual weight. We also provide a second GNarsil algorithm for this case in Algorithm

2.
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Algorithm 1 GNarsil 1: Gauge Generators to Split Stabilizers

1: Input: U =


LX
S
LZ
S ′

, {i1, i2, . . . , ir} ⊆ {k+ 1, k+ 2, . . . , n} : indices of rows of U to be replaced

with X-type gauge generators, desired Pauli weight w for gauge generators
2: Initialization:

GX ← ∅, GZ ← ∅
validXGauges← ∅, validZGauges← ∅
maxSize← max. number of gauge candidates to consider;
SXtargets ← indices of rows of U that are X-stabilizers;
SZtargets ← indices of rows of U that are Z-stabilizers;
gaugesPerStab← # of gauge generators per stabilizer;
Xops ← weight-w (row) vectors in {0, 1}n appended with

0 at the end to make length 2n (for X-gauges);
Zops ← weight-w (row) vectors in {0, 1}n appended with

0 at the front to make length 2n (for Z-gauges);
V ← U(1 : (n+ k)) (i.e., remove S ′ from U)
{Find X, Z gauge generators}
i in 1:size(Xops)
size(validXGauges) ≥ maxSize

3: break
Xops(i)ΩV T = 0 (mod 2) and

4: rank

([
V

Xops(i)

])
> rank(V ) and

5: rank

([
validXGauges

Xops(i)

])
> rank (validXGauges)

6: validXGauges← validXGauges ∪Xops(i)
validXGauges == ∅

7: w ← w + 1
8: Regenerate Xops and Zops w ≥ n
9: stop {Algorithm Fails}

10: go to Line 3
11: XgChoices← NCHOOSEK(validXGauges , gaugesPerStab)

{List of all combinations of gaugesPerStab elements in
12: validXGauges}

i in SXtargets j in 1:size(XgChoices)
13: resultantGauge ← U(i) + XgChoices(j) (mod 2)
14: residualWeight(j) ← HammingWeight(resultantGauge)
15: minIndex ← argmin(residualWeight)
16: GX ← GX ∪XgChoices(minIndex)

size(GX) ≥ r
17: Drop all rows from r + 1 (if they exist)
18: break
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19: Clear the rows {i1, i2, . . . , ir} and {n+ i1, n+ i2, . . . , n+ ir} from U to add gauge generators
20: U([i1, i2, . . . , ir])← GX
21: Repeat from Line 3 for Zops by appropriately replacing variables; add Zops(i) to validZGauges

only if HammingWeight
(
Zops(i)ΩGTX

)
= 1

{Zops(i) anti-commutes with exactly one X-gauge}
22: U([n+ i1, n+ i2, . . . , n+ ir])← GZ
23: Replace unused destabilizers in S ′ such that U is symplectic
24: Return: U , codeDistance(U)

4.1 Proof of Algorithm’s ability to find all possible representations of a subsys-

tem code using Binary Symplectic Matrices

Theorem 3. Given an [[n, k, d]] CSS code with logical operators Xi,Zi for each logical qubit,

the GNarsil algorithms can find all representations for the 2r gauge generators of the de-

rived [[n, k, r, d]] subsystem code, where 2n− 2r of the rows of the matrix U representing the

code (3.1) are fixed.

Proof: Let r be the number of gauge qubits chosen from the input code. The input code

is described by a 2n × 2n matrix U , a symplectic matrix that describes the code’s logical

operators and stabilizers. The row vectors {u1, . . . ,u2n} of U then span the space U = F2n
2 .

We choose 2r vectors {ui : i ∈ I}, I = {i1, i2, . . . , ir, n+ i1, n+ i2, . . . , n+ ir}, from U which

correspond to a submatrix U r of U . These vectors from I form a symplectic basis for a

22r-dimensional subspace Ur ⊆ U . Since the subspace is symplectic, we see that any vector

ui, i ∈ I, has a symplectic product ⟨ui,uj⟩s = 0 (mod 2) with any vector uj, j /∈ I.

We now replace the vectors from U r with vectors ũ ∈ Ur such that ⟨ũi, ũi+r⟩s = 1 (mod

2). To see which pairs of vectors in Ur form valid symplectic pairs we arrange all of the

symplectic products of vectors in Ur into a matrix P =
∑

ij⟨u′
i,u

′
j⟩s |i⟩ ⟨j| (mod 2), where

u′
i,u

′
j ∈ Ur. We use P to count the number of possible representations generated of

symplectic pairs of Ur. The number of representations is defined as the number of unique

matrices V built from U by replacing the vectors {ui : i ∈ I} with vectors ũ such that

V ΩV T = Ω, where Ω =
[

0 In
In 0

]
.
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Algorithm 2 GNarsil 2: Gauge Operators to Split Stabilizers

1: Input: U =


LX
S
LZ
S ′

, {i1, i2, . . . , ir} ⊆ {k + 1, k + 2, . . . , n} : indices of rows of U that will be

removed to add gauge operators
2: Initialization:

GX ← ∅, GZ ← ∅
validXGauges← ∅, validZGauges← ∅
maxSize← max. number of gauge candidates to consider;
SXtargets ← indices of rows of U that are X-stabilizers;
SZtargets ← indices of rows of U that are Z-stabilizers;
gaugesPerStab← # of gauge operators per stabilizer;
numXGauges← gaugesPerStab×# of X stabilizers;
numZGauges← gaugesPerStab×# of Z stabilizers;
Xops ← weight-w vectors in {0, 1}n appended with 0 at

the end to make length 2n (for X-gauges);
Zops ← weight-w vectors in {0, 1}n appended with 0 at

the beginning to make length 2n (for Z-gauges);
V ← U(1 : (n+ k)) (i.e., remove S ′ from U)
{Find X, Z gauge operators}
i in 1:size(Xops)
size(validXGauges) ≥ maxSize

3: break
Xops(i)ΩV T = 0 (mod 2) and

4: Xops(i) /∈ LX
5: validXGauges← validXGauges ∪Xops(i)

validXGauges == ∅
6: w ← w + 1 w ≥ n
7: stop {Algorithm Fails}
8: go to Line 3
9: XgChoices← NCHOOSEK(validXGauges , gaugesPerStab)

{List of all combinations of gaugesPerStab elements in
10: validXGauges}

i in SXtargets j in 1:size(XgChoices)
11: resultantGauge ← U(i) + XgChoices(j) (mod 2)
12: residualWeight(j) ← HammingWeight(resultantGauge)
13: minIndex ← argmin(residualWeight)
14: GX ← GX ∪XgChoices(minIndex)
15: Remove rows {i1, i2, . . . , ir} and {n+ i1, n+ i2, . . . , n+ ir} from U ; replace with numXGauges

and numZGauges empty rows, respectively
16: U([i1, i2, . . . , inumXGauges])← GX
17: Repeat from Line 3 for Zops by appropriately replacing variables; add Zops(i) to validZGauges

only if HammingWeight
(
Zops(i)ΩGTX

)
≥ 1

{Zops(i) may anti-commute with more than one X-gauge}
18: U([n+ i1, n+ i2, . . . , n+ inumZGauges])← GZ
19: Return: U , codeDistance(U)
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This condition is equivalent to all constraints needed to be satisfied by a valid subsystem

code. The number of representations for a given r can be found by examining P . For

instance, in the case of r = 2 we see that:

P =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0


. (4.1)

By examining P , we first see that there are 22r − 1 = 15 non-zero vectors of Ur that can be

chosen as the first vector. Each of these vectors has 22r−1 = 8 available symplectic partners.

For finding the third vector to add to V , out of 2r needed vectors, we look for possible

candidates by searching for the columns of P where the first two vectors’ rows are 0, i.e., the

third vector is symplectically orthogonal to the first two vectors added to V . We find 4 such

columns but note that one is the column corresponding to the trivial zero vector. Therefore,

we have 22r−2 − 1 = 3 possible nontrivial choices for the third vector. Finally, we search

for the compatible symplectic pairs of the third vector, which gives us 22r−3 = 2. Thus, our

total number of subsystem codes for r = 2 is 720.

However, this number includes the multiplicity of codes due to the possible permutations of

the 2r rows that still allow V to satisfy V ΩV T = Ω. By looking at all possible permutations

of the rows such that we preserve the symplectic pairs between the row vectors, we find

that the multiplicity is 8 for r = 2. Thus, the total number of unique representations for

r = 2 is 90. We can extrapolate this procedure to arbitrary r and find that the number of

representations for a given r ≥ 2 is

1

M

 ∏
l∈{0,1,2,...,r−1}

22r−2l − 1

 ∏
m∈{1,3,5,...,2r−1}

22r−m

 , (4.2)
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where M is the multiplicity of the 2r rows. We conclude that these form all possible

representations of the subsystem code as the gauge generators must necessarily come from

Ur.



Chapter 5

Examples Found by Our Algorithms

5.1 [[9, 1, 4, 3]] Bacon-Shor Code

Figure 5.1: The Bacon-Shor code and its weight-2 gauge operators.
Algorithm (1) was able to find the [[9, 1, 4, 3]] Bacon-Shor code from the [[9, 1, 3]] Shor

(stabilizer) code. This required first replacing two of the weight-2 Z-stabilizers with linearly

independent weight-6 Z-stabilizers from the span of the weight-2 Z-stabilizers before running

the algorithm. Finding this prototypical subsystem code example with our algorithm points

to its validity. We note here that although six gauge operators are shown in Fig. 5.1, not

all are linearly independent. The last two are the product of the linearly independent gauge

operators and stabilizers. The specific pre-processing of the stabilizers above is a key step

that can naturally be generalized to other CSS concatenated codes. Specifically, the inner

code stabilizers can be multiplied to produce large-weight stabilizers, thereby allowing us to

make low-weight gauges from the original (inner code) stabilizers.
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5.2 [[9, 1, 2, 2]] Rotated Surface Subsystem Code

In this example, we present a novel subsystem version of the [[9, 1, 3]] rotated surface code

found by Algorithm (1). The code has weight-4 stabilizer generators and weight-3 gauge

operators, as shown in Fig. 5.2. We summarize the set of gauge operators, both generators

and dependent ones, in Table 5.1. Using the dependent gauges and gauge generators GX1,

GZ1, we can measure all of the weight 4 stabilizers shown above at the cost of the dependent

gauge operators being not fully local and a small loss of distance. The well-known subsystem

version of the surface code in the literature Higgott and Breuckmann (2021); Bravyi et al.

(2013) has weight-6 stabilizers instead of the usual weight-4 and requires significantly more

qubits, e.g., for lattice size L = 3 the code uses 3L2 + 4L + 1 = 40 qubits. It is not

unreasonable to consider the code in Fig. 5.2, but it will be interesting to explore whether

there is an intermediate subsystem surface code between these two solutions that still has

distance 3.

Figure 5.2: The rotated surface subsystem code found by Algorithm 1. The two red (resp. green)
operators are the X-gauges (resp. Z-gauges), all weight-3 (also see Table 5.1). The product of
the pair of red gauge operators, X1X2X3 and X3X4X5, gives SX1, and the product of the pair of
green operators gives SZ1. Stabilizers SX2, SZ2 can be obtained by multiplying GX1, GZ1 by the
respective stabilizers to find the respective dependent gauges. GX2, GZ2 are not shown here.
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5.3 [[100, 25, 3]] Subsystem Hypergraph Product (SHP) Code

Using Algorithm (2), we present a [[100, 25, 3]] SHP code built from a [10, 5] linear code Ryan

et al. (2004) with parity-check matrix

H =



1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1


. (5.1)

List of [[9, 1, 2, 2]] subsystem code gauge operators
Gauge Identifier Gauge Operator

GX1 X3X4X5

GX2 X3X4X7

GX1d X1X2X3

GX2d X5X6X7

GZ1 Z1Z4Z7

GZ2 Z4Z5Z8

GZ1d Z0Z3Z7

GZ2d Z1Z5Z8

Table 5.1: Gauge operators of the [[9, 1, 2, 2]] rotated surface subsystem code. GX1, GX2, GZ1, GZ2

are the independent gauge generators. The letter ‘d’ in subscripts indicates dependent gauge opera-
tors that are products of the gauge generators and stabilizers. The stabilizers are shown in Fig. 5.2.
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We construct the SHP code with the following definitions Li and Yoder (2020):

GX := (H ⊗ In) ,

GZ := (In ⊗H) ,

LX := (In ⊗G) , (5.2)

LZ := (G⊗ In) ,

SX := (H ⊗G) ,

SZ := (G⊗H) ,

where G is the generator matrix of the code defined by the parity check matrix H , i.e,

GHT = 0. Thus, in general, the SHP construction in this form gives an [[n2, k2, d]] code with

n, k, d being the respective values for the classical code defined by the parity check matrix

H . Here, the key observation is that although the stabilizers for this code are weight-12,

our algorithm finds a decomposition that only requires weight-4 operators with a residual

weight of 0 (resp. 5) for the X-stabilizers (resp. Z-stabilizers). This is in contrast to

the gauge operators found from the closed-form expression in (5.2), which are all weight-

4, requiring residual weights of 6 and 16 for X- and Z-stabilizers respectively. Thus, not

only does our algorithm find more gauge operators than the closed-form expression, it also

finds gauge operators that decompose the given stabilizers more efficiently than the closed-

form operators. This decomposition makes this high-rate code far easier to implement. We

also note that high-weight stabilizers are common for the SHP construction, as shown by

the [[49, 16, 3]] SHP code Li and Yoder (2020) built from the [7, 4, 3] Hamming code with

stabilizer weights 12 and 16, respectively. The parity check matrix for the [7, 4, 3] Hamming

code is given below.

H =


1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

 . (5.3)
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Hence, our algorithm is likely useful to determine more efficient implementations of SHP

codes in general.



Chapter 6

Subsystem Lifted-Product (SLP) Codes

As a natural extension of hypergraph product codes, lifted-product (LP) CSS codes Pan-

teleev and Kalachev (2021) are constructed from the hypergraph product of base parity-check

matrices A and A∗, which is then lifted over the ring R = Fq(G), where G is some group.

The resulting parity-check matrices are as follows:

HX = [A⊗ I, I ⊗A] ,

HZ = [I ⊗A∗,A∗ ⊗ I] . (6.1)

where A∗ is the conjugate transpose of A. This construction is typically to obtain good

quantum LDPC codes, but its sparsity ends up producing non-local stabilizer operators.

When LDPC codes are input into (6.1), and the resulting HX ,HZ are used as input for

Algorithm 2, the algorithm is able to find several gauge operators for these codes. However,

none of them are useful since the residual weight will greatly exceed the weight of the

stabilizers themselves. This fact seems to stem from the sparse nature of the stabilizers:

in order to commute with them, the gauge operators must also be sparse, which in turn

requires a larger amount of residual weight to cover the spread of the stabilizers. The precise

understanding of this situation for LP codes is an interesting future direction.

The SLP Construction: To find a lifted code with a better gauge decomposition, one

is tempted to use the SHP construction in (5.2) as a natural extension of LP codes. We will

refer to this as the SLP construction. By employing the base parity check-matrix A along
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with its (base) generator matrix GA into (5.2) and then lifting the construction by a circulant

of size L, we obtain an [[Ln2, Lk2, D]] subsystem code, where n, k are the respective values

defined by the base parity-check matrix A. Here, AG∗
A = 0, which implies that GXS∗

Z = 0.

This lifting procedure yields codes with potentially larger distances than a typical SHP code.

We can demonstrate the lifting procedure by lifting the following matrix by L = 2 circulant

matrices:

1 x

x 1

→


1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1


(6.2)

6.1 Comparing the SHP and SLP Constructions

For the most direct comparison, we choose a binary base matrix:

A =

0 1 1

1 1 0

 , (6.3)

where the generator matrix of (6.3) is given by:

GA =

[
1 1 1

]
. (6.4)

Placing into (5.2), this yields a [[9, 1, 3]] SHP code, which is simply the Bacon-Shor code. For

the SLP construction, we interpret (6.3) as the matrix of powers of monomials corresponding

to L = 2 circulant matrices. Thus, we define our new base matrix as:

B =

1 x x

x x 1

 . (6.5)
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Clearly, Eqn. (6.4) interpreted in the same fashion is no longer a valid solution, so we must

use another generator matrix. It can be shown that the following matrix is a valid generator

matrix for the base matrix B:

GB =


1 + x 1 + x 0

1 + x 0 1 + x

x 0 1

 . (6.6)

This yields a [[18, 2, 2]] SLP code. The SLP code here has the same rate as the SHP code

but with more physical qubits and a small loss in distance. However, we will see other cases

where the distance fairs favorably compared to an LP code with the same base matrix.

6.2 Finding the Generator Matrix of a Base Parity Check Matrix A

Again, taking (6.5) as our parity check matrix, we wish to find a systematic way to find

(6.6). At first, Gaussian Elimination seems like the obvious answer, but after a set of row

operations, we end up with the matrix:

1 x x

0 1 + x 0

 , (6.7)

However, the polynomial 1 + x is not invertible over the ring we use to lift the matrix. This

means our systematic approach via Gaussian elimination must end here, and the result must

be intuited. With larger base matrices and higher-order lifts, this becomes a much taller task

than in this case. However, Smarandache et al. (2022) proposes a systematic way to find code

words for the generator matrix given a quasi-cyclic parity check base matrix of polynomials

as we see for the SLP construction. Thus, given an m × n quasi-cyclic polynomial parity

check matrix A, we define an subset M ∈ {1, · · · , n} of cardinality m. Then we define a
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vector c(x) = [c1(x), c2(x), · · · , cn(x)], where:

ci(x) :=


det∗ (A)M\i = ∆M\i, i ∈M

0, else

(6.8)

then c (x) is a code word of the code generated by GA. Since we have a method for finding

code words of our generator matrix polynomial form, we naively may try to build a matrix

GA by simply putting n− k rows of code words into it in base matrix form. However, this

matrix is not guaranteed to have the correct rank once it is lifted to binary. Looking at our

previous example in (6.2), we see that although the base matrix has full rank, only two of

the four rows in binary are linearly dependent. This is because we are lifting using circular

permutation matrices of the identity; thus, it stands to reason that some rows may eventually

be duplicated. Thus, we must add extra rows to GA to compensate for this discrepancy. We

notice that for some circulant lift size L = N , we can always show that:

N−1∑
i=0

xi+j =
N−1∑
i=0

xi, j ∈ {1, · · · , N − 1} (6.9)

Thus, since the matrix given by
∑N−1

i=0 xi is the all ones matrix, its row has rank one in binary.

We can, therefore add permutations of the length n vector a(x) =
[∑N−1

i=0 xi, · · · , 0, · · · ,
∑N−1

i=0 xi
]

to our matrix GA to achieve the correct rank. Finally, for one special case were the matrix

A contains a
∑N−1

i=0 xi as one of its elements, you may also replace one of the a(x)’s for a

vector b(x) =
[
1, · · · , 0, · · · ,

∑N−1
i=0 xi

]
, where the 1 is located in the column of the

∑N−1
i=0 xi

in A. This reduces the number of rows needed to get to a full rank generator matrix, as the

rank of the row b(x) in binary will be L. We now look at a few non-trivial examples of the

SLP construction and their performance.
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6.3 [[27, 12, 2]] SLP code

Given L = 3, the [[27, 12, 2]] SLP code can be constructed by the following base matrix:

A =

[
1 + x+ x2 1 + x x

]
, (6.10)

along with the base generator matrix of the code:

GA =


x2 x 1

x x2 x

1 0 1 + x+ x2

 . (6.11)

After inserting these into (5.2) and lifting the construction, we find that the Pauli weight

of the code’s stabilizers is 18, and the Pauli weight of the gauge operators is 6. We also find

that the gauge operators in the closed-form construction decompose the stabilizers with a

residual weight of 9, given three weight-6 gauge operators as input. However, our algorithm is

able to decompose the stabilizers with residual weights of 4, 6, 8 for the X- and Z-stabilizers,

an improvement over the closed-form gauge operator decomposition. Finally, we also note

that the rate of the SLP construction is 4
9
, which is greater than the rate of the [[39, 12, 2]]

LP code constructed from the same base matrix, 4
13

. Note that this is also while preserving

the distance of the code.

6.4 [[775, 124, 20]] SLP code

For our final example, we give the SLP code constructed by Tanner’s (3, 5) QC-LDPC

code with L = 31. Here, we use the following base matrix Raveendran et al. (2022):

B =


x x2 x4 x8 x16

x5 x10 x20 x9 x18

x25 x19 x7 x14 x28

 . (6.12)
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As shown by Smarandache, and then Chimal-Dzul, Lieb, and Rosenthal Smarandache et al.

(2022), Chimal-Dzul et al. (2022), a generator matrix for (6.12) can be constructed using

the matrix:

GB =



u11 u12 u13 u14 0

u21 u22 u23 0 u25

f f 0 0 0

f 0 f 0 0

f 0 0 f 0

f 0 0 0 f


,

u11 = x28 + x25 + x18 + x16 + x5 + x,

u12 = x23 + x22 + x20 + x17 + x7 + x4,

u13 = x29 + x25 + x21 + x12 + x5 + x,

u14 = u25 = x28 + x18 + x16 + x14 + x9 + x8,

u21 = x27 + x24 + x19 + x11 + x10 + x2,

u22 = x30 + x28 + x26 + x18 + x16 + x6,

u23 = x20 + x14 + x9 + x8 + x7 + x4,

f =
x31 − 1

x− 1
= x30 + · · ·+ x+ 1. (6.13)

We find that the code has stabilizer weights of 120, 310, and 465 and gauge operator

weights of 5. Due to the large number of physical qubits, this code is beyond the practical

scale that our algorithm can handle. Our algorithm is suited for small- to medium-sized

codes due to its exponential memory complexity, but this decomposition by GNarsil may be

achievable with a sufficiently large amount of memory. Our SLP example demonstrates that

the SLP construction can be quite advantageous if a generator matrix can be found for a

certain base matrix. For the same base matrix (6.12), an LP(B,B∗) construction yields a

[[1054, 124, 20]] code, which trails the SLP version both in rate. If a circulant form generator
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matrix is found for a base matrix, then the resulting SLP code will have a higher rate than

its LP counterpart with the same code dimension. No relationship between the distance of

the two constructions has been formalized, but it seems that the SLP code will at least have

the same distance as its LP counterpart. This makes the SLP construction for a given base

matrix a very attractive construction whenever possible.



Chapter 7

Conclusion

We have introduced a new set of algorithms, which we call GNarsil, for deriving subsystem

codes from an input “seed” stabilizer code. We have demonstrated that these algorithms not

only recover well-known examples of subsystem codes but also find interesting new ones, such

as a novel version of the rotated surface subsystem code and a new SHP code that is more

efficient than the closed-form construction in Li and Yoder (2020). We also reported that we

could not find useful gauge decompositions of LP codes due to the highly non-local structure

of the stabilizers. However, by using our new SLP construction, we can construct codes with

excellent parameters that also have promising stabilizer decomposition properties, which our

algorithms can improve. As noted, this also depends on finding a generator matrix for the

base matrix in circulant form, which is not always guaranteed to exist.

We foresee these algorithms becoming useful tools for finding subsystem versions of sta-

bilizer codes that may prove easier to implement due to the stabilizers’ decomposition into

smaller-weight gauge operators. However, it is clear that this problem remains complex, as

the solution spaces for useful gauge generators are sparse, making it likely that our algo-

rithms are optimal for this case, even though they are exponentially complex in memory.

Thus, our algorithms work best for small- to medium-sized codes. Improving our algorithms’

performance will most likely require specializing them for certain code constructions. This

would allow us to exploit code symmetries to find optimal gauge operators.

We also foresee that the measure of residual weight can be useful for understanding the

properties of good subsystem codes and the symmetries that they may possess. Finally, we

42
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wish to extend this work into looking at the relationship between fault-tolerant operations

on a stabilizer code and its derived subsystem code(s) by extending tools such as the LCS

algorithm Rengaswamy et al. (2020). This can potentially be approached by observing how

new gauge operators found by our algorithm change the structure of logical gates for our

code from the seed stabilizer code. Insights into this relationship may be useful for the

development of logical operations on Floquet codes Hastings and Haah (2021), at least the

ones with parent subsystem codes Davydova et al. (2023).
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