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ABSTRACT

Polarization carries information about the geometry, texture, and material of a light-matter

interaction beyond what is available through purely radiometric measurements. This in-

formation is contained in the Mueller matrix (MM) for a linear light-matter interaction.

Characterizing the completeMM requires a minimum of 16 linearly independent polariza-

tion measurements, though more measurements are commonly performed for improved

robustness to measurement noise. However, limiting the quantity of polarization mea-

surements can reduce complexity, cost, time, and thereby make polarization information

accessible to broader applications. This dissertation explores the utilization of a priori

knowledge of the subset of MMs that will be measured in a given application for the pur-

pose of designing effective partial polarimeters. This a priori information can come in the

form of an initial MM characterization of the exact scene to be measured again later or as

a more general representation of the polarized scattering response of a material.

The contributions of this doctoral research are enumerated below:

1. Optimization of polarization generator and analyzer states for maximizing contrast

in polariscopic images of birefringent targets which is demonstrated on in vivo hu-

man eyes,

2. Amethod for efficiently acquiring and representing empiricalMMdata as a function

of scattering geometry which requires 37% fewer goniometric measurements and

stores 3 times fewer MMs per wavelength than the state-of-the-art,

3. An original polarized scattering model which both decouples depolarization and

mixes first-surface with diffuse polarized reflection as a function of scattering ge-

ometry, with an average diattenuation orientation error of 10.9◦ andmagnitude error

of 8.3% when compared to measured data, and

4. A partial polarimetric method for estimating depolarization magnitude and extrapo-

lating MM, which resulted in an average error in depolarization magnitude of 7.6%
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and simulated polarimetric measurement error of 6.0% despite a 10× reduction in

number of measurements.

These contributions represent different efforts to reduce some of the complexities of po-

larimetric imaging. Through these simplifications, insights from polarimetric information

may be more easily accessed in a variety of applications.
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CHAPTER 1

Introduction

Like wavelength and brightness, polarization is a fundamental physical property of light.

The polarization of light is the preferential direction of oscillation of the electric field

vector. Therefore, the polarization carries directional information about the source and

subsequent light-matter interactions. Polarization measurements of light-matter interac-

tions can provide information about the geometry, shape, and texture of a material beyond

what is available from radiometry alone. A complete characterization of a polarized light-

matter interaction requires a full Mueller matrix (MM) measurement. However, when

MM imaging is prohibitively complex, expensive, or even unnecessary, partial polarime-

try (i.e., fewer than 16 measurements) can be used to extract useful polarimetric infor-

mation. If some amount of information is known a priori about the subset of MMs to be

measured, it becomes possible to compare different partial polarimeter designs. In this

dissertation, the substantial contributions from three peer-reviewed publications and one

prepared publication regarding polarimetric characterization and partial polarimetry are

presented. In Chapter 2, the foundational physics and mathematical formalisms utilized

in the work are discussed. The subsequent chapters demonstrate different applications of

Chapter 2.

In Chapter 3, a method for determining the optimal polarized illumination and analysis

states to maximize contrast in a spatially varying birefringent target is presented. Contrast

is defined as the difference in measured irradiance between two regions of interest. This

method is demonstrated by performing optimizations using initial MM imaging of in vivo

human eyes. The eyeMM image acquisition takes place over 15 seconds during which the

eye may be subject to random unconscious movements. These small movements are what

motivate the development of a partial polarimeter with snapshot operation. MM imaging

shows that the birefringent cornea exhibits spatially-varying patterns of retardance ex-

ceeding half of a wave with a fast-axis varying from linear, to circular, and intermediate
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elliptical states. Based on the retardance found during MM characterization, polariscopic

pairs of polarization state generator (PSG) and polarization state analyzer (PSA) states

are optimized for maximizing contrast. The closed-form solution for optimal contrast is

general for any two pure retarder MMs. For a pair of retarder MMs, there is a family of

PSG/PSA solutions that maximize contrast. This range of solutions creates an opportunity

to use a distance metric on the as a criterion to adjust polarimetric hardware architecture.

The optimization approach is demonstrated by performing both Mueller and polariscopic

imaging of an in vivo human eye at 947 nm using a dual-rotating-retarder (DRR) polarime-

ter. Polariscopic images are simulated from Mueller measurements of 19 other human

subjects to test the robustness of this optimal solution.

In Chapter 4, a original representation of empirical isotropic polarized bidirectional

distribution function (pBRDF) is introduced to improve the efficiency of parameterization

and acquisition so that extensive material libraries can become readily-available. Per-

forming Mueller measurements at many scattering geometries and wavebands requires

considerable acquisition time and storage resources. Isotropic pBRDFs are parameterized

by three angles from the coordinate system introduced by Rusinkiewicz. This work intro-

duces a cylindrical, rather than Cartesian, interpretation of the Rusinkiewicz angles to tab-

ulate scattering geometries. The advantages of discrete cylindrical pBRDF tabulation are

compactness and increased convexity. There is a factor of three reduction in the quantity

of pBRDF samples in the cylindrical compared to Cartesian tabulation. No information is

lost in the pBRDF cylindrical table because only non-physical and redundant geometries

are excluded. The convexity, which is desirable for interpolation, is increased from 67.3%

to 85.7%. The compact representation is then used to determine an efficient set of gonio-

metric camera positions at which to sample the pBRDF of a sphere. The percentage of

discrete geometries which are sampled at least once is used as a figure of merit to compare

goniometric sets. For the particular size of sphere and camera parameters of our polarime-

ter, there are diminishing returns on fill percentage after 92 goniometer positions, where

82% of the discrete geometries are sampled. This optimized pBRDF sampling and tabula-

tion was performed for a 3D printed sphere and the cylindrical coordinate representation

is used to visualize the pBRDF as a function of scattering geometry.
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In Chapter 5, analytic pBRDF models are discussed, including a original model which

combines specular and diffuse polarization scattering. First-surface Fresnel reflection, dif-

fuse partial polarization, and ideal depolarization are popular terms used in closed-form

pBRDF representations. The relative contributions of these terms are highly dependent on

material, albedo/wavelength, and scattering geometry. Complicating matters further, cur-

rent pBRDF representations incoherently combine MM for Fresnel and polarized diffuse

terms which couples into depolarization. In this work, a closed-form pBRDF representa-

tion is introduced where first-surface Fresnel reflection and diffuse polarization are coher-

ently combined using Jones calculus to avoid affecting depolarization. This new pBRDF

has only six physically meaningful parameters: the scalar-valued depolarization parame-

ter and average reflectancewhich are geometry-dependent and four geometry-independent

material constants. The model demonstrates performance to predict MM image measure-

ments of a sphere and a Stanford bunny at different geometries and wavebands. The

RMSD in diattenuation orientation for the modeled versus measured averaged over acqui-

sition geometry was 7.49◦ and 14.29◦ at 451 nm (low albedo) and 662 nm (high albedo),

respectively. The RMSD in diattenuation magnitude averaged over acquisition geometry

was 4.96% at 451 nm and 11.73% at 662 nm.

In Chapter 6, a method for linear estimation of depolarization magnitude from four

polarization measurements is presented. The linear estimator is based on an assumption

of a triple degenerate (TD) depolarization structure of the material and makes use of the

pBRDF models from the previous Chapter. A TD MM assumption reduces the degrees

of freedom from sixteen to eight: one for reflectance, six for non-depolarizing proper-

ties, and one for depolarization. When the non-depolarizing dominant process is known

or assumed, the degrees of freedom are further reduced to two. For a given material, if

the TD model is appropriate and the dominant non-depolarizing process is known, then

these two degrees of freedom can be estimated from as few as two polarimetric measure-

ments. Thus, the MM can be extrapolated from a reduced number of measurements. MM

extrapolations from single snapshot acquisitions with a Sony Triton 5.0MP Polarization

Camera are performed at 30 acquisition geometries and two wavelengths on an ensemble

of LEGO bricks treated to have varying surface roughness. Averaged over 30 geometries,
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the simulated polarimetric measurement error mean and mode are 11.06% and 1.03%, re-

spectively, despite a 10× reduction in the number of polarimetric measurements. For a

3D printing material, using the mixed polarization model to estimate depolarization mag-

nitude resulted in RMSD values of 11.11% at 451 nm and 4.24% at 662 nm.
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CHAPTER 2

Polarization and Polarimetry

2.1 Jones Calculus

Light is an electromagnetic wave which propagates through space and time. The direction

in which the electric field component preferentially oscillates is known as the polarization

of light. The electric field vector of a monochromatic plane wave,

E(r, t) = Re
{

E0 exp
[
i

(
2π

λ
k̂ · r − ωt− φ0

)]}
, (2.1)

has a well-defined complex polarization vector E0 = (E0,x, E0,y, E0,z), which is perpen-

dicular to the propagation vector k̂ = (kx, ky, kz). The plane which contains E (and is

perpendicular to k̂) is known as the transverse plane. The electric field varies as a func-
tion of position r = (x, y, z) and time t based on its angular frequency ω, wavelength λ,

and a constant phase offset φ0.

When rotated into a coordinate system where k̂ = (0, 0, 1), E0 is constrained to be in

the x-y plane. In this case, E0,z must be zero and the polarization vector can be reduced

to a 2× 1 Jones vector. The transformation of polarization state is described with a 2× 2

complex-valued matrix Jones matrix J,

E′
0 = JE0 =

jxx jxy

jyx jyy

E0,x

E0,y

 . (2.2)

The matrix for the rotation of a polarization element or rotation of the transverse plane is

simply the 2× 2 rotation matrix,

R(α) =

cos(α) − sin(α)
sin(α) cos(α)

 , (2.3)

where α is the angle of counter-clockwise rotation.
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The polarization-dependence of reflection at the first surface of a material is given by

the Fresnel reflection coefficients,

rs(n, θd) =
cos(θd)− n

√
1− sin2(θd)

n2

cos(θd) + n
√

1− sin2(θd)
n2

, rp(n, θd) =
n cos(θd)−

√
1− sin2(θd)

n2

n cos(θd) +
√
1− sin2(θd)

n2

, (2.4)

where θd is the angle of incidence onto the surface and n is the ratio of the effective

refractive index of the material to the index of the incident medium. The subscript s refers

to s-polarization, which is perpendicular to both the incident propagation vector k̂ and the
plane of incidence which is spanned by k̂ and the surface normal vector n̂. The subscript p
refers to p-polarization which is perpendicular to k̂ and ŝ. Further details regarding the s-
and p-polarization basis vectors are provided in Appendix A. For homogeneous, isotropic

dielectric surfaces, rs has a larger magnitude than rp, so first-surface reflections tend to

be s-polarized.

2.2 Mueller Calculus

2.2.1 Stokes Vectors

For polarization analysis of optical systems, Jones calculus (and its 3D extensions) are

used.2,15, 18, 109–111 However, in everyday environments which more often feature poly-

chromatic, incoherent, and/or partially polarized light, Jones calculus is insufficient. In-

stead, the polarization state of light is described by a 4 × 1 real-valued Stokes vector.

The elements of the Stokes vector have phenomenological definitions based on sums and

differences of polarimetric measurements P

S =


PH + PV

PH − PV

P45 − P135

PR − PL

 =


S0

S1

S2

S3

 = S0


1

s1

s2

s3

 . (2.5)

where S0 is the total flux, S1 is the difference in horizontally and vertically polarized

measurements, S2 is the difference in 45
◦ and 135◦ polarized measurements, and S3 is the
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Figure 2.1: The Poincaré sphere with fully polarization states shown on the surface. The

Poincaré sphere is a geometric representation of normalized Stokes vectors.

difference in right and left circularly polarized measurements. Polarimetric measurements

are elaborated on in Sect. 2.3.1. On the right-hand side of Eq. 2.5, S0 has been factored

out to produce a normalized Stokes vector. The triplet (s1, s2, s3) can be interpreted as a

Cartesian point in 3D. The set of (s1, s2, s3) for physically realizable normalized Stokes

vectors is called the Poincaré sphere, shown in Fig. 2.1. On the Poincaré sphere, circular

states exist at the poles and linear states exist along the equator. Elliptical states exist

between the equator and the poles. The degree of polarization, DoP , describes whether

a Stokes vector represents fully polarized, partially polarized, or unpolarized light and is

calculated

DoP =

√
S2
1 + S2

2 + S2
3

S0

. (2.6)

The DoP ranges from 0 to 1, where 0 corresponds to unpolarized light and 1 is fully

polarized light. Fully polarized states exist on the surface of the Poincaré sphere, partially

polarized states exist within the sphere, and unpolarized light is represented by the center

of the sphere. The orientation of linear polarization is described by the angle of linear

polarization, AoLP , and is calculated

AoLP =
1

2
arctan

(
S2

S1

)
. (2.7)

For elliptically polarized light, the AoLP corresponds to the orientation of the major axis

of the ellipse.
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2.2.2 Mueller Matrices

The linear transformation of a Stokes vector upon interaction with a medium is described

by a 4× 4 real-valued MM written as

M =


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

 =M00


1 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 . (2.8)

From the sixteen matrix elements, sixteen degrees of freedom that are associated with

physical quantities can be calculated: one for average throughput, three for diattenuation,

three for retardance, and nine for depolarization.14,17 In the right-hand side of Eq. 2.8,

the average reflectance M00 is factored out to normalize the MM. This is routinely per-

formed when the value ofM00 is much larger than the other matrix elements in order to

decouple polarimetric behavior from purely radiometric behavior for analysis. Polariza-

tion transformations via diattenuation, retardance, and/or depolarization are used to relate

polarimetric measurements to the physical properties of objects such as texture, albedo,

and geometry.47,67

Diattenuation describes the polarization-dependence of the reflectance and is calcu-

lated from elements in the top row of the MM. Diattenuation magnitude is calculated

as D =
√
M2

01 +M2
02 +M2

03/M00 and linear diattenuation orientation is calculated as

ψ = 1/2 arctan(M02/M01). When an optical element has D = 1, it is referred to as a

polarizer. The MM for a linear polarizer oriented at ψ is given by

MLP (ψ) =
1

2


1 cos(2ψ) sin(2ψ) 0

cos(2ψ) cos2(2ψ) sin(2ψ) cos(2ψ) 0

sin(2ψ) sin(2ψ) cos(2ψ) sin2(2ψ) 0

0 0 0 1

 (2.9)

Retardance describes the polarization-dependence of phase. Practically, this results in

a transformation of polarization without changing the total amount of light, S0, or DoP .
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The MM for a pure elliptical retarder is given by

MER(~δ) =


1 0 0 0

0
δ2H+

(
δ245+δ2R

)
C

δ2
δ45δHT

δ2
+ δRS

δ
δHδRT

δ2
− δ45S

δ

0 δ45δHT
δ2

− δRS
δ

δ245+
(
δ2R+δ2H

)
C

δ2
δRδ45T

δ2
+ δHS

δ

0 δHδRT
δ2

+ δ45S
δ

δRδ45T
δ2

− δHS
δ

δ2R+
(
δ245+δ2H

)
C

δ2

 =

1 ~0ᵀ

~0 V(~δ)

 , (2.10)

where ~δ = [δH , δ45, δR], δ = |~δ|, C = cos(δ), S = sin(δ), and T = 1− cos(δ). Retarder
vector elements δH , δ45, and δR are the components of retardance for each of the Stokes

basis states. In the right-hand side of Eq. 2.10, ~0 is a 3× 1 vector of zeros and the lower-

right 3× 3 elements of the MM are written as a unitary matrix V(~δ).

Depolarization is the randomization of polarization state with respect to position, an-

gle, time, and/or wavelength that is unresolvable to the particular detector in use.9 This

results in a decrease in theDoP calculated in Eq. 2.6. The ideal depolarizer, which reduces

the DoP of every polarization state to zero, has the MM

MID =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 . (2.11)

For partially depolarizing MMs, depolarization is coupled among the Mueller elements

so it is not easily extracted. Therefore, several MM decomposition techniques, such as

the Lu-Chipman decomposition, matrix roots, and integral decomposition, exist. There

are also several depolarization summary metrics, such as the depolarization index, av-

erage degree of polarization, and the coherency eigenvalues.16,31, 59, 68, 69, 73, 75 The MMs

studied in the work presented are all strongly depolarizing. As depolarization increases,

a first-order depolarization approximation becomes appropriate. Therefore, this disserta-

tion employs such an approximation to reduce the degrees of freedom for depolarization

from nine to one. This enables several partial polarimetric analyses. This approximation

is called the triple-degenerate assumption and is discussed in the following section.
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2.2.3 Triple-Degenerate Mueller Matrices

The eigenvectors of a MM do not strictly correspond to physical Stokes parameters. In-

stead, eigenanalysis is performed on the linearly-related coherency matrix.20–22,42, 46, 87, 88

The coherency matrix C is calculated from the MM by

C =
1

2

3∑
i,j=0

MijU
[
σi ⊗ σ∗

j

]
U† (2.12)

whereMij are the elements of M, σi and σj are the Pauli spin matrices,

σ0 =

1 0

0 1

 ,σ1 =

1 0

0 −1

 ,σ2 =

0 1

1 0

 ,σ3 =

0 −i
i 0

 , (2.13)

and the U matrix is given by

U =
1√
2


1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

 . (2.14)

The elements of each of the four eigenvectors of the coherency matrix, cn, can be used to
calculate a Jones matrix

Jn =

 cn,0 + cn,1 cn,2 − icn,3

cn,2 + icn,3 cn,0 − cn,1


= cn,0σ0 + cn,1σ1 + cn,2σ2 + cn,3σ3. (2.15)

These Jones matrices can then in turn be used to calculate their equivalent MMs

M̂n = U (Jn ⊗ J∗
n)U−1. (2.16)

A MM with an equivalent Jones matrix is referred to as a Mueller-Jones matrix (MJM),

and has no depolarization. MJMs are differentiated from depolarizing MMs with the hat

notation ·̂. The four MJMs calculated from the four eigenvectors form an orthonormal

basis set for the original depolarizing MM,

M =
3∑

n=0

ξnM̂n, (2.17)
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(a) Cloude decomposition (b) Equal Weights (c) TD Model

Figure 2.2: Visualization of expressing a MM with a TD model. In (a), a depolarizing

light-matter interaction is decomposed into a convex sum of four non-depolarizingMJMs.

The sum is a parallel decomposition, so it is depicted as a pie-chart with four wedges that

represent the four MJMs. The size of each wedge corresponds to the coherency eigenval-

ues that control the weights in the convex sum. In (b), it is assumed that ξ1 = ξ2 = ξ3 = ξ
(a triple-degeneracy) so m̂1, m̂2, and m̂3 have equally-sized wedges in the pie-chart. A

portion of m̂0 equal to ξ is separated from ξ0. In (c), the property of the Cloude decompo-
sition that an equal sum of the four MJMs results in the ideal depolarizer is used to write

the original sum as one MJM plus the ideal depolarizer.

where the weights in the sum, ξn, are the eigenvalues of the coherency matrix ordered

from largest to smallest. This is known as the Cloude spectral decomposition.20,22 When

the eigenvalues are normalized such that
∑3

n=0 ξn = 1 (equivalent to the normalization in

the right-hand side of Eq. 2.8), each eigenvalue ξn represents the fraction of light which

is transformed by the MJM M̂n as shown in Fig. 2.2a. The set of four MJMs in this

decomposition are orthonormal in the sense that 1
2
tr(J†

nJm) = δnm and 1
4

∑3
n=0 M̂n =

MID.

A useful special case of the Cloude spectral decomposition is for a TD eigenspectrum

(ξ1 = ξ2 = ξ3 = ξ), where ξ = (1−ξ0)/3 as in Fig. 2.2b. In the TD case, the depolarizing

MM can be written as the convex sum of a MJM and an ideal depolarizer

M =
4M00

3

[(
ξ0 −

1

4

)
M̂0 + (1− ξ0)MID

]
, (2.18)
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where ξ0 is the largest eigenvalue, M̂0 is the dominant MJM, and MID is the ideal depo-

larizer from Eq. 2.11. The model in Eq. 2.18 is represented by the pie chart in Fig. 2.2c.

The TD model is also a special case of the integral decomposition of a MM.73

In a TD-MM model, the degrees of freedom are reduced from sixteen to eight: one

for throughput, one for depolarization ξ0, and six for the dominant MJM M̂0 which de-

scribes the diattenuation and retardance. The single degree of freedom for the magnitude

of depolarization is ξ0, which controls the relative weight between an ideal depolarizer

and a MJM in Eq. 2.18. The largest eigenvalue is bounded in the range 0.25 ≤ ξ0 ≤ 1.0,

where ξ0 = 0.25 means the MM is the ideal depolarizer and ξ0 = 1.0 means the MM is a

MJM. In a TD-MMmodel, the depolarization indexDI is monotonically related to ξ0 by

the equation DI = (4ξ0 − 1)/3. Diattenuation and retardance orientations match those

of M̂0 and are invariant to ξ0. The maximum diattenuation and retardance magnitudes in

a TD-MM match those of M̂0 when ξ0 = 1, but are reduced as ξ0 approaches 0.25 where

MID dominates the sum.

2.3 Polarization Imaging

2.3.1 Polarimetric Measurement Equation

For a sample described by M, the measured irradiance from the nth polarimetric measure-

ment is

Pn = a†nMgn = wnm, (2.19)

where wn = an ⊗ g†
n and m is the 16 × 1 vector of the MM elements. For each n of N

measurements, these states are used to calculate wn which are then used as the rows of

the polarimetric measurement matrix W. The measurement matrix, W, can be derived by

fitting calibrationmeasurements toMMmodels of the PSG and PSA or by using the eigen-

value calibration method which does not require a prior model.14,23 The psuedoinverse of

the measurement matrix, W+, is applied to the vector of N polarimetric measurements P
to reconstruct an estimate of the MM elements m̃ = W+P, where the tilde ·̃ is used to
indicate an estimated quantity. This calculation is performed at each pixel of the image

taken at each goniometer position.
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The pseudoinverse is chosen as the reconstruction algorithm because it provides the

minimum-norm least squares solution to Eq. 2.19. This matrix-vector product is per-

formed pixel-wise to form a MM image. The condition number, defined as the ratio of

the largest to the smallest singular value, of W is used as a metric for the performance of

a polarimeter.89,100,102

2.3.2 Partial and Complete Polarimetry

For a general MM, W must be rank sixteen to perform a complete reconstruction. This

dissertation work makes use of a DRR Mueller polarimeter, shown in Fig. 2.3, called

the RGB950.5,58 The RGB950 operates at four wavebands: 662±11 nm, 524±17 nm,
451±19 nm, and 947±20 nm. It is a DRR polarimeter as shown in Fig. 2.3a, where the

PSG consists of a light source, a fixed linear polarizer and a rotating linear retarder (see

Eqs. 2.9 and 2.10). The PSA consists of a rotating linear retarder followed by a fixed linear

polarizer and the detector. The RGB950 typically performs 40 polarimetric measurements

n with different PSG and PSA states, producing a measurement matrix, W40. For the eye

measurements in Chapter 3, this was reduced to 25 measurements. These measurement

matrices are overdetermined for MM polarimetry.

In this dissertation, partial polarimetry refers to a system which performs fewer than

16 linearly independent polarimetric measurements. This definition would include full

Stokes polarimetry, which involves only four linearly independent polarimetric measure-

ments. Partial polarimetry can be employed effectively when fewer than 16 degrees of

freedom are needed for a particular application.70,71, 82 Two partial polarimeters are used

in this work. The first is simply the RGB950 set to take fewer than 16 measurements.

Using the RGB950 in this way as a partial polarimeter has the benefit of self-consistency

when comparing MM image results to partial polarimetric results. The second partial po-

larimeter is a commercial-off-the-shelf (COTS) Sony Triton 5.0MP Polarization Camera

shown in Fig. 2.3e. The Sony polarization camera is a division-of-focal-plane (DoFP) po-

larimeter. This camera has an array of micropolarizers in front of the detector elements so

4 polarimetric measurements (three of which are linearly-independent) are taken simulta-

neously at the cost of spatial resolution. This results in a measurement matrix W4. The
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rank of this matrix is three, making it underdetermined for full Mueller polarimetry, but

potentially suitable for partial polarimetric experiments.
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(a) RGB950 polarimeter architecture

(b) Human eye measurement (c) Sphere pBRDF acquisition

(d) LEGO bricks MM measurement (e) LEGO bricks Stokes measurement

Figure 2.3: The polarimeter hardware used in the work presented in this dissertation. In

(a), a schematic of the DRR architecture of the RGB950 is shown. In (b-d), the RGB950

is shown performing measurements. In (e), the RGB950 camera is replaced with a Stokes

camera for partial polarimetry.
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CHAPTER 3

Polariscopic Measurement of Birefringent Samples

3.1 Polariscopic Imaging

The simplest sample-measuring partial polarimeter is a polariscope, where an object is

illuminated by a fixed PSG and imaged through another, generally differently oriented,

fixed PSA. polariscopic measurements are commonly used for analyzing birefringence in

crystals, stress induced by the photoelastic effect in transparent materials, and the concen-

tration of chiral molecules in liquids.14

Methods for numerical optimization of the PSG and PSA can be found in the liter-

ature.33,49 For example, an analytic solution for optimizing the contrast in polariscopic

measurements between an object and its background has been studied.104 Upadhyay et

al. analyzed the PSG and PSA for MMs with the same retarder fast-axis but varying

retardance magnitude and for MMs with the same diattenuation magnitude but varying

diattenuation orientation. They point out that optimal PSG states are those which have

maximal separation on the Poincaré sphere after the light-matter interaction. Specifically,

they found that for retarder MMs which vary in only in retardance magnitude, the set of

optimal PSG states exist along a great circle on the Poincaré sphere. The approach pre-

sented in this Chapter is consistent with their findings, but is generalized for application

to any pair of retarder MMs which vary in retardance magnitude, orientation, or both.

3.2 Human Eyes as Polarization Targets

Much rigorous polarimetric measurement has been performed on the retina of the human

eye, but the birefringence of the cornea offers an interesting and spatially-varying sam-

ple for polarimetric imaging.51,52, 101 Corneal birefringence resulting from the anisotropic

collagen fibril orientation has been well studied and observed using multiple modalities,
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including polarization-sensitive optical coherency tomography.11,27–29,63, 65, 78, 79, 81, 94 Of

particular relevance is in vivo spatially-resolved polarization imaging between variously-

oriented polarizers.90–93 These works, as well as MM imaging, have been performed in

visible wavebands.13 Much of the literature indicates that the cornea exhibits linear re-

tardance, with any circular retardance being relatively small if at all present.13 How-

ever, near-infrared MM imaging of 20 human subjects’ eyes performed as part of the

presented work demonstrates the presence of significant circular retardance, which has

not been reported before.96 These Mueller eye measurements from 20 human subjects

are used to demonstrate our approach for optimizing the contrast between two elliptical

non-depolarizing pure retarder MMs.

With respect to polariscopic imaging of corneal birefringence, the approach presented

in this Chapter may be useful for applications such as eye segmentation or eye tracking.

The spatially-varying birefringence in the cornea is turned into spatially-varying bright-

ness features, and maximizing the contrast could make such features easier to track.

3.3 Contrast Optimization

3.3.1 Mueller Analysis of Eye Measurements

The initial MM eye images were taken using the RGB950 as shown in Fig. 2.3b. The near-

infrared waveband, centered at 947 nm with a full-width half max of 20 nm, was used

in this work. The human subjects were illuminated with 0.0315 W/m2. The eyes were

measured in a reflective double-pass configuration where light transmitted through the

cornea, reflected off the iris, and transmitted back through the cornea a second time. Over

the course of 15 seconds, 25 polarimetric images with different PSG/PSA pairs were used

to reconstruct the MM image. Image registration was performed on the 25 images before

the MM reconstruction to mitigate the effects of unconscious random movements of the

eye. The reconstructed MM image from one of 20 human subjects is shown in Fig. 3.1a.

Remaining motion artifacts, on the order of several pixels, are to be expected but more

slowly-varying polarimetric patterns are also observed. The inability to measure an in

vivo human eye for an appreciable time duration motivates the investigation of snapshot
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polariscopic eye imaging.

(a) Full MM (b) TD approximation

(c) Dominant MJM (d) Pure retarder

Figure 3.1: Near-infrared MM measurements of an in vivo human eye, masked to the

region of the cornea where light is reflected back from the iris. In (a), the image is nor-

malized such that M00 = 1 to visualize the spatially-varying polarization properties. In
(b), the MM measurement is approximated as TD using Eq. 2.18 with (c) being the dom-

inant MJM M̂0. In (d), the dominant MJM is further approximated as an elliptical pure

retarder MJM, see Eq. 2.10.

The measured MM image in Fig. 3.1a has both depolarization and a small amount of

diattenuation, so a series of approximations are performed in order to apply the optimiza-
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tion. The TD approximation of the near-infrared eye MM image is shown in Fig. 3.1b

with the dominant MJM image shown in Fig. 3.1c. The appropriateness of a TD approx-

imation for these measurements is discussed in Sect. 3.5. To simplify the optimization

of PSG and PSA states, the eye MM is further approximated as having a dominant MJM,

M̂0, which is a pure retarder, see Fig 3.1d. The retarder MM is separated from the diat-

tenuation by taking the unitary part from the polar decomposition of the dominant MJM.

A general elliptical retarder MM, see Eq. 2.10, is characterized by its retardance vector

~δ = [δH , δ45, δR], where the magnitude of the vector is the retardance magnitude and the

direction of this vector is the fast-axis on the Poincaré sphere. Due to phase wrapping, the

retarder vector calculated from a MM is non-unique. For integers q, the retarder vector

~δq =
(
2πq + ‖~δ‖

)
~δ/‖~δ‖ will produce the same MM as ~δ. In this work, q is assigned

pixel-wise to produce smoothly-varying retardance vectors over the image. The specific

value of q does not affect the optimization of the PSG/PSA states.

Images of each retardance component are shown in Fig. 3.2 for a single human sub-

ject’s eye. The first two retarder vector components, shown in Fig. 3.2a-b, correspond

to the linear retardance. For the majority of the unmasked area, the δH term has greater

magnitude than the δ45 term. Therefore, the linear retardance is primarily horizontally

or vertically oriented (where δH is positive or negative, respectively). The circular com-

ponent, in Fig. 3.2c, shows significant circular retardance which has not been previously

reported. The change from positive to negative values in δR indicates a change in the

helicity of the fast-axis of retardance. The retardance magnitude in Fig. 3.2d, which is

the norm of the retardance vector, shows two minima on the left and right of the masked

region and a maximum at the bottom of the eye. A second maximum likely appears at the

top of the eye but is obscured by the eyelid in this image. Not all of the observed retar-

dance is the result of anisotropic structures within the eye. When light reverses direction,

as it does when reflected from the iris, 45◦ and 135◦ linear polarization appear to flip, as
well as the handedness of circular polarization. This is due to geometric phase, however

in theMM image, this appears as π radians of horizontal linear retardance. This geometric

phase is present in the MM image and in the retardance vector, however the retardance

from structural anisotropy is also present.



34

(a) δH (b) δ45 (c) δR

(d) Retardance magnitude (e) Retarder space

Figure 3.2: The horizontal, diagonal, and circular retardance computed from a measured

MM are shown in (a), (b), and (c), respectively. The total retardance magnitude is shown

in (d). ROIs are designated i-l. In (e), the retardance vectors within each ROI are plotted in
3D, where the concentric spherical surfaces denote π/2, π, and 3π/2 radians of retardance.
The point clouds represent the per-pixel retardance vectors and the arrows indicate the

average retardance vector for each ROI. Average values are listed in Tab. 3.1.

The circular retardance result highlights the importance of performing theMM charac-

terization as an initial step in the optimization described in the following section. Without

first performing the Mueller image characterization, the purely linear retardance assump-

tion found in the literature would have been used for the optimization. Trying to perform

the optimization of the polariscopic pairs based on an assumed MM without the circular

retardance would have resulted in non-optimal pairs. It should be noted that for this work,

the net MM of the double-pass through the cornea is the desired quantity for optimizing

the polariscopic pairs. The net MM describes the transformation of polarization which a
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Table 3.1: Components andmagnitudes of the average retarder vectors from the four ROIs

shown in Fig. 3.2 in units of radians. Retardance magnitudes are known up to the order

of retardance, where 2πq for integers q can be added to the magnitude without changing
the resulting MM.

Region δH δ45 δR ‖~δ‖
i 0.256385 0.423876 -3.04746 3.08746

j 2.66172 -0.126005 0.25092 2.67649

k 4.48508 -1.23254 0.0570402 4.6517

l -0.164669 1.38322 2.86614 3.18672

polariscope would image. In order to extract structural properties of the eye tissue, the ray

paths and other geometric considerations would need to be characterized.

To reduce the impacts of measurement noise on the PSG/PSA optimization, the re-

tarder vectors were averaged over each of the regions of interest (ROIs) shown as white

boxes in Fig. 3.2. The average retarder vectors appear in Tab. 3.1. The retarder vectors

were averaged rather than the MJMs because the addition of different MMs introduces

depolarization which is undesirable in this application. ROIs i and j were chosen for use

in the following optimization because they have different retardance orientations. The

optimization could still be performed for ROIs with similar retardance vectors, such as j

and k, but the maximum achievable contrast would be lower.

3.3.2 Optimal polariscopic Configurations

The contrast between polarimetric measurements of twoMMs is defined as the magnitude

of the measurement difference. This contrast ∆P is written

∆P = ||a†(Mi − Mj)g||, (3.1)

where Mi and Mj are unique, e.g. different pixels or regions of a MM image. The max-

imum achievable contrast between two polarization states increases as their distance on

the Poincaré sphere increases.104 Therefore, the optimal PSG states g are those for which,
si = Mig and sj = Mjg, are exitant Stokes vectors with the greatest angle possible be-
tween them on the Poincaré sphere. Assuming that Mi and Mj are pure retarders (see
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Sect. 3.5), maximizing this angle is equivalent to minimizing the inner product

~s†j~si = (Vj~g)† (Vi~g) = ~g†
(

V†
jVi~g

)
(3.2)

where the vector arrow notation indicates a 3× 1 vector quantity on the Poincaré sphere,

as opposed to a 4× 1 Stokes vector (i.e., g = S0[1, s1, s2, s3] = S0[1,~g]) and V are 3× 3

unitary matrices from Eq. 2.10. As shown in Eq. 3.2, the inner product is invariant to mul-

tiplying both~sj and~si by the unitary transform V†
j , resulting in an inner product between

the original PSG vector ~g and that PSG vector after transformation by the new matrix

V†
jVi. This relation is shown graphically on the Poincaré sphere in Fig. 3.3a and b, where

a retarder behaves as a rotation. The composition of two rotations is another rotation, so

V†
jVi can be analyzed as any other elliptical retarder matrix as shown in Fig. 3.3c.

Points which are further from the rotation axis are rotated a greater distance. Polar-

ization states on the surface of the Poincaré sphere which are 90◦ from the fast-axis of the

composite retarder are rotated the most and therefore are the optimal PSG states. If the

composite retarder V†
jVi has a retarder vector ~δji = [δH , δ45, δR], then the great circle on

the Poincaré sphere containing the optimal PSG states ~g is defined as points satisfying the
equation

~δ†
ji~g = δH cos(2θ) cos(η) + δ45 sin(2θ) cos(η) + δR sin(η) = 0, (3.3)

where θ and η are the coordinates on the Poincaré sphere corresponding to the major axis

orientation and ellipticity of polarization states.

For each ~g on this great circle, there are two antipodal analyzers which maximize

∆P as calculated in Eq. 3.1. These solutions can be found with the following geometric

construction on the Poincaré sphere, shown graphically in Fig. 3.4. For the two states

found by transforming the chosen PSG state with the different MMs ~si and ~sj , calculate
their unit bisector

~b =
~si +~sj
‖~si +~sj‖

(3.4)

shown in purple on Fig. 3.4, and a unit vector perpendicular to their span

~c =
~si ×~sj
‖~si ×~sj‖

(3.5)
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(a) Rotations applied separately (b) Composite rotation

(c) Equivalent single rotation

Figure 3.3: Geometric construction on the Poincaré sphere showing one optimal PSG state

for a pair of retarder MMs with retardance vectors ~δi, shown in green, and ~δj , shown in
purple. In (a), the PSG state~g shown in blue undergoes rotation about the two retarder fast
axes separately. This corresponds to what physically happens to polarization states in the

two different regions of the image. The resultant states are separated by an angle shown

with the dashed cyan line. In (b), the rotation about axis ~δj is applied with the opposite
handedness to the already-transformed state Vi~g. The angle between the initial state ~g
and the state after two rotations is the same as the angle in (a), see Eq. 3.2. In (c), the

composite rotation from (b) is represented by a single rotation about axis ~δji. Polarization
states on the great circle perpendicular to this axis have the greatest angle on the Poincaré

sphere after rotation, so they are the set of optimal PSG states, see Eq. 3.3.

shown in green. The PSA states which maximize the measurement difference between si
and sj are then found using the cross product of the bisector and normal of the span

~a = ±~b ×~c, (3.6)
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Figure 3.4: Geometric construction on the Poincaré sphere showing the optimal PSA states

for two polarization states~si and~sj . The purple plane is normal to the vector ~b which bi-

sects ~si and ~sj . The green plane is the span of ~si and ~sj , and is normal to ~c. The optimal
PSA states shown in red are found on the intersection of these two planes, and are calcu-

lated using Eq. 3.6.

and are shown in red on Fig. 3.4. A polariscopic configuration with−~awill have reversed
contrast from a configuration with ~a, i.e., bright regions in the image will become dark
and vice versa.

The set of optimal PSG and PSA states for comparing Mi and Mj found using

Eqs. 3.3-3.6 are shown in Fig. 3.5a. The set of PSA states associated with the differ-

ent PSG states trace out a different great circle. A polariscopic image taken using any

optimal g with an optimal a will have the same ∆P between the two MM pixels used in

the optimization. The family of optimal polariscopic pairs are therefore indistinguishable

for measurements comparing two pixels. However, the rest of the polariscopic image will

generally be different for states chosen from this family of polariscopic pairs.

3.4 Polariscopic Measurements

For regions i and j, the compound retarder from Eq. 3.2 has ~δji =

[−0.080,−3.108, 0.292]. Optimal polarimetric pairs from Eq. 3.3 given ~δji are

compared to the states constrained by the RGB950 hardware is shown in Fig. 3.5.
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The PSG optics of the RGB950 consist of a fixed linear polarizer which defines the

orientation of horizontal polarization and a rotating linear retarder, and the PSA consists

of a rotating retarder and fixed polarizer as shown in Fig. 2.3a.58 The rotating retarders

have variable orientation, but fixed retardance magnitude for a given wavelength, so

the states available for the PSG and PSA are constrained. The set of polarization states

available from rotating the retarders trace out figure-eights on the surface of the Poincaré

sphere, see Fig. 3.5b. The great circle of optimal PSG states intersects the figure-eight

of available PSG states for all of the pairs of birefringent regions considered. However,

the figure-eight of PSA states constrained by the rotating retarder polarimeter will not

necessarily intersect the optimal PSA associated with the selected PSG state.

The spherical distance from the PSG great circle to the PSG figure-eight and the

smaller of the spherical distances from the two associated PSA states to the PSA figure-

eight are used to select the polarimeter configurations. The root sum of squares of these

distances was used as a figure of merit for how close an available polariscopic pair was to

optimal. This was performed numerically by discretizing the great circles into 360 equal

segments and discretizing the figure-eights into 0.25◦ step rotations of the retarders. The

root sum of squares distance from each (arbitrarily parameterized) point on the great cir-

cles to the figure-eights is shown in Fig. 3.5c. The three minima at positions 62, 184, and

307 (denoted I, II, and III) were selected for further analysis.

The modulation pattern was calculated by applying the chosen polariscopic pairs

(e.g. states g and a) to the pure retarder approximation of M̂0 at each pixel according

to Eq. 2.19. The expected modulation patterns for the three selected optimal pairs are

shown in Fig. 3.6a. Region i and region j (see Fig. 3.2) appear as dark and bright, respec-

tively, in the modulation patterns computed for all three polariscopic pairs. However, the

pattern over the rest of the image varies slightly between the three pairs, with I and III hav-

ing a more rounded central bright region and II having a more distinct “plus sign” bright

region. The polariscopic images shown in Fig. 3.6b are stills taken from real-time video

captures. The rounded bright region expected in the center of images performed with po-

lariscopic pairs I and III, and the bright “plus sign” in the image with pair II are visually

apparent. The pattern in measurement III is less obvious, but this is consistent with pair
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(a) Optimal Pairs (b) Constrained Pairs

(c) Selected Pairs I, II, and III

Figure 3.5: On the Poincaré sphere, the set of optimal PSG states are shown in (a) as a blue

great circle perpendicular to the ~δji axis shown with a blue arrow. The red great circle in
(a) shows the set of optimal PSA states. The states constrained by the RGB950 hardware

are shown in (b), with the set of PSG states shown on the blue figure-eight and the set of

PSA states shown on the red figure-eight. In (c) there are three pairs: I, II, and III, where

the optimal and hardware-constrained states are closest, in terms of a root sum of squared

distance. In (a) and (b), the I, II, and III polariscopic pairs are shown with a circle, square,

and triangle, respectively.
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(a) Modulation computed from MM images for three different polariscopic pairs

(b) Polariscopic measurements performed at three different polariscopic pairs

Figure 3.6: Simulated spatial modulation patterns (a) using three optimal polariscopic

pairs and measurements (b) with the nearest available pairs in the RGB950. The simu-

lated results are calculated using Eq. 2.19 and the pure retarder component from the TD

approximation of the MM images. The spatially-varying patterns shown in simulation (a)

are apparent in the measured results (b), though the presence of depolarization reduced

the magnitude of the modulation. For this reason, the dynamic range of the measured po-

lariscopic images was clipped to emphasize the modulation. The measurements in (b) are

stills taken from real-time videos which can be found in the supplementary material for

Reference.38

III being further from optimal as compared to I and II. Pixel-wise quantitative comparison

is not performed here due to the challenges of low repeatability in the positioning of the

human subjects’ eyes. It should be noted that the three different polariscopic pairs shown
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in Fig. 3.6 are optimal for the same pair of regions (i and j) and therefore are expected

to only have minor differences in the modulation pattern over the rest of cornea. polar-

iscopic pairs optimized for different ROIs would produce different modulation patterns.

For example, when i and j are used in the optimization, i and l have similar responses. If

the contrast between i and l were optimized, these ROIs would necessarily have different

responses.

The presence of depolarization reduced the magnitude of modulation for the polar-

iscopic images in Fig. 3.6b. The depolarization index (which ranges from 0 for the ideal

depolarizer to 1 for aMJM) had an average value of 0.157 over the unmasked region of the

MMmeasurement. The reduced modulation due to depolarization means that the dark re-

gions of the pattern are not completely black in the measurement. Therefore, the dynamic

range of the images in Fig. 3.6b was clipped in post-processing to make the polarimetric

modulation pattern more visually apparent. This gives the appearance of overexposure in

the sclera (white of the eye) to the right of the cornea and on the skin of the lower eye-

lid. The bright spot to the right of the pupil is glare reflected from the first surface of the

eye. During MM acquisition, this spot is overexposed so the reconstructed MM value is

inaccurate. Additionally, the light from the spot did not transmit into the eye and through

the cornea, so the polarimetric response would not be well-represented by the birefringent

model used for the cornea.

Over the unmasked region of the MJM image, the diattenuation magnitude had an

average value of 25.5% which is fairly significant though the polarimetric behavior is

dominated by retardance. The differences between the dominant MJM as calculated from

the original MM and the pure retarder can be seen Fig. 3.1c and Fig. 3.1d.

The modulation patterns for polariscopic pair II were calculated for 19 other human

subjects based on their eyeMM images from the dataset of 20MMmeasurements.96 These

patterns are shown in Fig. 3.7. The bright central “plus sign” appears for all individuals

suggesting that the solution optimized for one human subject is robust to many more,

though parts of the pattern may be obscured by the eyelid or pupil.
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Figure 3.7: Modulation patterns for polariscopic pair II simulated from the MM images

of 20 different individuals’ eyes measured for this work. Configuration II was optimized

for the first image (top-left), but qualitatively similar modulation patterns appear for all

20 eyes found in Dataset 1.96

3.5 Discussion

This Chapter presented a closed-form solution for maximizing the contrast between two

retarder MMs in a polariscope imaging design. The method is general for any pair of ellip-

tical retarders, and can be easily extended to depolarizingMMs that are well-approximated

using a TDmodel. The wide range of observed retardance orientations, from purely linear

to purely circular, observed across an individual’s eye suggests that polariscopic imaging

can be optimized to effectively identify different regions. To demonstrate the method,
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the family of optimal PSG and PSA states was computed for two ROIs in the MM image

of an in vivo human cornea. From this family of solutions, three polariscopic pairs were

selected that were as close as possible to states available in an existing polarimeter.

The expected modulation pattern of these three optimal polariscopic pairs was com-

pared to measurements using existing polarimeter hardware. The PSG and PSA for con-

figuration II are both approximately horizontal linear polarization, which is a measure-

ment performed by Sobzcak et al.90 The modulation pattern observed in our simulation

and measurement of configuration II is similar to the patterns reported in their work. The

consistency between their measurements and our simulation based onMMs with elliptical

retardance suggests that the significant ellipticity of the birefringence human cornea has

been overlooked in other works. Notably, elliptical retardance can be created from stack-

ing linear retarders with unaligned fast axes. The stroma is organized in about 200–500

fibrous lamellae and preferential orientation of collagen fibrils is known to be spatially-

varying.76 In the center of the cornea the lamellae orientations are expected to be one of

two perpendicular directions which would not produce circular retardance. This is consis-

tent with the MM measurements in the center of the cornea that appear in the literature.13

Further from the center as the cornea curves to meet the sclera at the limbus, a greater

degree of misalignment in the lamellae is expected which could produce elliptical and

circular net birefringence.65 Further analysis is required to support or refute a hypothesis

that the elliptical and circular retardance we observed in MM human eye measurements

are the result of fibril orientation.

Sources of disagreement between the polariscopic images, see Fig. 3.6a, and the mod-

ulation pattern computed from MM image, see Fig. 3.6b, are:

• The assumption of a TD eigenspectrum,

• The assumption of a pure retarder M̂0,

• The assumptions of uniformity of ξ0 andM00,

• Motion artifacts in theMMmeasurement because it is reconstructed from 25 images

acquired over 15 seconds,
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• Blurring in individual polarimetric images due to the exposure time,

• Challenges with repeatability in the subject’s eye position between measurements,

and

• Measurement noise

These sources of disagreement are elaborated on below.

In a TDMM, the three smallest eigenvalues of the coherency matrix are degenerate.55

If all four eigenvalues are normalized to sum to unity, then taking the smaller three eigen-

values [ξ1, ξ2, ξ3] as 3D rectilinear coordinates forms the natural depolarization space.75

In this space, the Euclidean distance from [ξ1, ξ2, ξ3] to the TD point 1−ξ0
3

[1, 1, 1] is

∆ξTD =

√√√√6

[(
ξ1 −

1− ξ0
3

)2

+

(
ξ2 −

1− ξ0
3

)2

+

(
ξ3 −

1− ξ0
3

)2
]
, (3.7)

where the factor of
√
6 is included to normalize the TD distance to range from 0 to 1, with

0 being exactly TD and 1 being as far from TD as possible. Figure 3.8a shows∆ξTD cal-

culated over the MM image of the cornea and Fig. 3.8d shows the same data summarized

in a histogram. ∆ξTD, which has a mean value of 0.151 and a standard deviation of 0.029,

is assumed to be low enough for the MM image to be accurately approximated as TD.

For any combination of PSG/PSA, the polarimetric measurement of the ideal depolar-

izer is constant aMIDg = 1
2
. Modulation in a polarimetric measurement of a TD MM is

therefore only the result of aM̂0g, withM00 and ξ0 determining the overall brightness and

the constant offset, respectively. The average reflectanceM00 and depolarization parame-

ter ξ0 are shown as images in Fig. 3.8 b and c, respectively, and summarized as histograms

in Fig. 3.8d. The standard deviation of ξ0 is 0.023 and the standard deviation of M00 is

0.042, so these parameters are assumed to be uniform such that their influence on a polari-

metric measurement P is the same over the cornea. Therefore, M00 and ξ0 are assumed

to be uniform such that their influence on a polarimetric measurement P is the same for

any two pixels.

The optimization is affected by measurement noise to the extent that the initial MM

characterization is affected. For this reason, the optimization was performed based on
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(a) ∆ξTD image (b) ξ0 image (c)M00 image

(d) Histogram of polarization parameters

Figure 3.8: Images (a-c) and histograms (d) of quantities derived from the MM image

of an in vivo human cornea. ∆ξTD, calculated according to Eq. 3.7, (a) describes how

close the coherency matrix eigenspectrum is to being TD. ∆ξTD is assumed to be low

enough for the MM image to be approximated as TD. The mean and standard deviation of

the TD distance are 0.151 and 0.029, respectively. ξ0 (b) is the parameter which controls
the amount of depolarization in a TD MM. The mean and standard deviation of ξ0 are
0.355 and 0.023, respectively. M00 (c) is the overall reflectance, here normalized by the

brightest pixel in the image. The mean and standard deviation ofM00 are 0.485 and 0.042,

respectively. ξ0 andM00 are assumed to be uniform over the cornea such that they do not

contribute to differences in polarimetric measurement across the image.

retardance vectors averaged over ROIs. These optimized measurements are invariant to

calibration errors in the retardance magnitude or rotational offset of the waveplates be-

cause the same instrument was used to perform the initial MM characterization as the

subsequent polariscopic images. Even if the reported optimal states do not accurately de-
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scribe the real PSG and PSA states, the contrast would still be maximized. However, if we

perform the optimization based on MM data with calibration issues and then performed

the polariscopic images from a different polarimeter, the calibration issues would manifest

as reduced contrast.

It is worth noting that while our method maximizes the contrast between two retarder

MMs, the method does not guarantee that the two chosen MMs will be the brightest or

darkest in the polarimetric image of an object with spatially varying birefringence. For

example, if two MMs are chosen which have similar retardance orientations and magni-

tudes, the maximum achievable contrast between those two MMs may be lower than the

maximum contrast imaged for another pair of regions. Furthermore, the choice of ROIs

in the image also affects the specific spatial modulation patterns created by polariscopic

imaging. This is an additional design variable as some patterns may be preferable depend-

ing on the application.

The use of an existing dual-rotating-retarder polarimeter constrained the polariscopic

pairs that could be measured. If a polarimeter is designed for polariscopic eye imaging,

then the PSG and PSA states can be optimized for this task. Consequently, this polar-

iscopic demonstration does not achieve an upper contrast limit. Increased modulation and

different spatial distributions are potentially possible if a near-infrared polariscopic imag-

ing system is designed for in vivo human eyes. DoFP polarization cameras, which acquire

images through four different linear polarizers simultaneously at the cost of spatial reso-

lution, have been used in the literature to improve polarimetric measurement speed.35,56

Simultaneous image capture for the different PSA states is of particular interest for mea-

surements of eyes. However, this would be a fundamentally different optimization prob-

lem than is explored in this work.
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CHAPTER 4

pBRDF Acquisition and Representation

4.1 Empirical Polarized Scattering Models

pBRDF material representations are utilized in many computer vision and physics-based

rendering applications.44,48, 66 For the forward problem of polarized image rendering, the

pBRDF for each material in a scene is required to determine how polarization is trans-

formed at each light-matter interaction. For the inverse problems, the pBRDF is used to

relate polarized measurements to scene attributes. Analytic pBRDFs eliminate the need

to store and interpolate MMs.7,30, 39, 45 However, empirical models are more realistic and

can aid the development and validation of analytic models.25

An empirical pBRDF consists of measured MMs that are tabulated to characterize the

ray direction dependency with a discrete number of scattering geometries. Sufficiently

many geometries must be sampled for the empirical pBRDF to accurately represent vari-

ations in the polarimetric scattering from the material. The requirement on accuracy is

application-dependent. Due to the sheer number of geometries typically needed, image-

based techniques are employed to capture multiple geometries simultaneously.8,26, 60, 62

For example, a sphere has rapidly but smoothly varying geometry over an image so a

large number of unique geometries can be sampled at a time. This imaging is then per-

formed using a goniometric camera stage to sample the full range of possible scattering

geometries. Despite this, not all geometries are sampled in a given sequence of goniomet-

ric positions. The unmeasured geometries may be interpolated from the measuredMMs in

a step known as inpainting.8 The term inpainting is used to differentiate this preliminary

interpolation step from interpolation that is performed during a ray trace. During render-

ing a given simulated ray direction is likely to be interstitial to tabulated geometries, thus

requiring interpolation to evaluate the MM. In practice, the tolerance on inpainting and

interpolation depend on both the application and optical properties of the material. MM
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interpolation is not only computationally expensive but also can introduce artifacts such

as spurious depolarization or non-physical MM solutions.72

The database from the Korea Advanced Institute of Science and Technology (KAIST)

contains 25 samples and is the only publicly-available set of measured pBRDFs for in-

door materials known to the author.8 The acquisition protocol for pBRDFs in the KAIST

database is reported to make use of 147 goniometer positions at five wavelengths which

requires 2.5 days of imaging per material. The KAIST pBRDF database, as well as

many scalar BRDF databases (such as the database from Mitsubishi Electronics Research

Laboratory (MERL) which contains 100 materials61), parameterize scattering geometries

in terms of a coordinate system devised by Rusinkiewicz.84 For isotropic surfaces, the

pBRDF depends on only three of the four Rusinkiewicz angles. The three remaining

Rusinkiewicz angles are interpreted as linear dimensions in a Cartesian space. MM

(KAIST) or scalar reflectance (MERL) measurements are then associated with discrete

points on the Cartesian grid. This grid includes redundant triplets of Rusinkiewicz angles

(i.e., corresponding to the same physical scattering geometry) as well as triplets which

correspond to transmission geometries rather than reflection. Data are associated with

discrete points over a of volume 15.503rad3, but the reflection region only has a volume

of 9.567rad3. It is important to note that here, isotropic materials are isotropic in both

effective refractive index as well as in surface texture. An example of an indoor mate-

rial which has isotropic index but anisotropic surface texture would be brushed stainless

steel. Such a material would require parameterization by four angles to indicate azimuthal

orientation relative to the direction of anisotropy.

In this work, we interpret the three Rusinkiewicz angles for isotropic pBRDFs as the

radial, azimuthal, and axial coordinates in a cylindrical space. This eliminates redundant

coordinates and makes the subspace corresponding to reflection geometries more com-

pact. The details of this representation are described in Sect. 4.2. In Sect. 4.3, we then

demonstrate the use of the fill fraction of this subspace as a figure of merit to compare

different sequences of goniometer positions to efficiently acquire an empirical pBRDF.

In Sect. 4.4, the efficient goniometer protocol is performed on a sphere of a selective laser

sintering 3D printing material at two visible wavelengths using the RGB950. The MM
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data in the pBRDF are then visualized as cross-sections of the cylindrical representation.

4.2 Ray Geometry Parameterization

Polarized and scalar BRDFs are functions of illumination and observation ray directions

ω̂ωωi and ω̂ωωo, respectively, as shown in Fig. 4.1. These two directions can be parameterized in

spherical coordinates by four angles with respect to the object’s surface normal n̂ as zenith.
In this parameterization, θi and θo are the zenith angles. Reflection geometries, defined as

having external scattering, are constrained to have zenith angles less than π/2. Isotropic

surfaces are defined by pBRDF invariance to rotations of the material about its surface

normal. This assumption reduces dependence to three angles since the pBRDF is only a

function of the difference of azimuth angles, φi and φo in Fig. 4.1. A further insightful

parameterization of the ray directions is provided by Rusinkiewicz.84 Many BRDFs and

pBRDFs make use of microfacet theory, where light scattering occurs at sub-resolution

surfaces which satisfy the law of reflection.10,12, 34, 40, 55, 80, 105 Rusinkiewicz parameterized

BRDFs using spherical coordinates relative to the microfacet’s surface normal which bi-

sects ω̂ωωi and ω̂ωωo, denoted ĥ in Fig. 4.1. The angle of incidence onto the microfacet is θd.

The angle between the microfacet and the object’s surface normal, is denoted θh. This

is the angle between n̂ and ĥ in Fig. 4.1, and can be interpreted as the degree to which

a scattering geometry deviates from obeying the law of reflection with respect to n̂. The
range of both θd and θh is 0 to π/2. The third Rusinkiewicz angle is an azimuthal angle

denoted φd which is the angle between two planes: the scattering plane (spanned by ω̂ωωi

and ω̂ωωo) and the plane spanned by n̂ and ĥ. The value of φd can range between −π and

π. When π is added to φd, the scattering plane is unchanged but ω̂ωωi and ω̂ωωo are swapped

such that the light travels in the reversed direction. For a MM representing a light-matter

interaction M, the MM for the reversed light path is calculated OMᵀO−1, where O is a

diagonal matrix with diagonal elements (1, 1,−1, 1).32,85, 86 This reciprocity would sug-

gest that the range of φd containing unique information is 0 to π. However measured data

can be subject experimental conditions which break reciprocity.7,19, 53 We therefore do the

same as the KAIST pBRDF database and use the full range of −π to π for φd.
8
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Figure 4.1: Scattering geometry showing paramterization with both spherical coordinates

about the surface normal n̂ and Rusinkiewicz coordinates. The spherical triangles with

vertices {n̂, ω̂ωωo, ĥ} (red), and {n̂, ĥ, ω̂ωωi} (green) are used to determine the conditions for
whether a scattering geometry parameterized with Rusinkiewicz coordinates is a reflection

geometry.

A given Rusinkiewicz triplet (θd, φd, θh) may not correspond to a physical ray geom-

etry of external reflection. The condition for ray direction zenith angles (θi and θo) both

being less than π/2 must still be satisfied. In Fig. 4.1, spherical triangles with vertices

{n̂, ω̂ωωo, ĥ} and {n̂, ĥ, ω̂ωωi} are used with the spherical law of cosines to derive the relation

between Rusinkiewicz angles and the zenith angles θi and θo,

cos(θi) = cos(θh) cos(θd)− sin(θh) sin(θd) cos(φd), (4.1)

and

cos(θo) = cos(θh) cos(θd) + sin(θh) sin(θd) cos(φd). (4.2)

For a ray geometry to satisfy external reflection, the cosine of zenith angles for both the

incoming and outgoing rays must be between zero and one.

4.2.1 Cartesian Coordinate Representation

In the 3D space of points (θd, φd, θh), setting Eqs. 4.1 and 4.2 equal to zero defines two

surfaces which together enclose the region of reflection geometries. Figure 4.2a shows

this region of reflection geometries when (θd, φd, θh) are interpreted as Cartesian coor-

dinates. Existing empirical databases use a Cartesian interpretation when tabulating the
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measured pBRDFs. Each dimension is discretized to produce a 3D rectangular grid of

points representing the scattering geometry, then measured MM data is associated with

the points on this grid. The base of the region, where θh = 0, is the plane of scattering

geometries where ĥ and n̂ are collinear. In other words, Rusinkiewicz angles on the base

of the pBRDF region are those which satisfy the law of reflection and are referred to as

specular geometries. The vertical planes where φd = 0 and φd = ±π represent geometries
where the surface normal n̂ is within the scattering plane spanned of ω̂ωωi and ω̂ωωo. For this

reason, these geometries are referred to as in-plane scattering.

The Cartesian interpretation is convenient for its simplicity but has several drawbacks.

It is not obvious from Fig. 4.2a that φd is 2π-periodic, which is to say that the in-plane

scattering geometries at φd = π are equivalent to the geometries at φd = −π. Addi-

tionally, when θd = 0, the vectors ω̂ωωi, ω̂ωωo, and ĥ are all collinear so they do not span a

plane and the scattering geometry is invariant to φd. This fact is not accounted for in the

Cartesian representation, resulting in degenerate triplets of Rusinkiewicz angles. In the

tabulated pBRDFs in the KAIST database, data is saved for every triplet of Rusinkiewicz

angles where θd is on the interval [0, π/2], φd is on the interval [−π, π], and θh is on the
interval [0, π/2], forming a rectangular parallelepiped which encloses the reflection re-

gion. The reflection region has a volume of 9.567rad3 and only occupies 61.7% of the

rectangular parallelepiped, so 38.3% of the saved data is unused. Convexity is desirable

for both inpainting and interpolation since the line connecting any two samples remains

within the set. A convex hull is the smallest convex shape which encloses a given region.

The percent of the convex hull which is occupied by the enclosed region serves as a figure

of merit for convexity, with 100% meaning the region itself is convex. The convex hull

which encloses the reflection region in Cartesian coordinates has a volume of 14.217rad3

meaning that only 67.3% of the convex hull is filled.

4.2.2 Cylindrical Coordinate Representation

This work introduces the interpretation of Rusinkiewicz triplets as cylindrical coordinates

where θd is the radial distance, φd is the azimuth angle, and θh is the height. The region

of reflection geometries for the cylindrical coordinate interpretation is shown in Fig. 4.2b.
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(a) Cartesian coordinates (b) Cylindrical coordinates

Figure 4.2: Enclosed region of Rusinkiewicz triplets for reflection geometries interpreted

as (a) Cartesian coordinates and (b) cylindrical coordinates. Equations 4.1 and 4.2 define

the bounding surface shown in orange. The reflection region has a different shape in

Cartesian versus cylindrical coordinates. The volume and convexity of these regions are

compared in Tab. 4.1

The cylindrical coordinate parameterization offers several benefits over the Cartesian pa-

rameterization. Using φd as the azimuth angle in cylindrical coordinates captures its 2π-

periodic behavior, and in fact the in-plane scattering geometries all exist on a single planar

cross section. The θd = 0 plane in Cartesian coordinates collapses to a line in cylindrical

coordinates, eliminating the degeneracies with respect to φd. At the top of the region,

where θh = π/2, the enclosing surfaces converge to a the line where φd = ±π/2. Here,
the scattering plane is perpendicular to n̂, so any perturbation in φd results in either ω̂ωωi or

ω̂ωωo violating the condition for external reflection.

Is it notable that the cylindrical coordinate system reduces the volume of the Cartesian

representation even before non-reflected geometries are omitted. The enclosing cylinder’s

volume 12.176rad3, which is 79% of the volume of the enclosing enclosing parallelepiped

for Cartesian coordinates. Further reductions are possible by omitting non-reflection ge-

ometries since the reflection region is a subset of the enclosing volume. For cylindri-

cal coordinates the reduced volume is 5.686rad3. The volume of the reflection region

in cylindrical coordinates is only 37% of the volume of the enclosing parallelepiped in

Cartesian coordinates used in the state-of-the-art. Rejecting non-reflection geometries is

not a process unique to the cylindrical representation, however in Cartesian coordinates
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this process results in a reduction only to 62% as many samples. For uniform sampling,

this means that either fewer MM measurements are required in cylindrical coordinates to

achieve comparable sampling density as Cartesian or that the same number of MM mea-

surements can be taken to produce finer sampling. In this way, the cylindrical representa-

tion of the pBRDF is more efficient. The region in cylindrical coordinates also becomes

closer to convex, occupying 85.7% of its convex hull. The properties of the Cartesian and

cylindrical coordinate representations are summarized in Tab. 4.1.

Table 4.1: Comparison of the Cartesian and cylindrical coordinate representations of re-

flection geometries in Rusinkiewicz angle space. MM data is associated with discrete

points within Rusinkiewicz angle space. The cylindrical representation decreases the vol-

ume and increases the convexity of the region which must be populated with MM data.

Cartesian Cylindrical

Volume of basic enclosing solid 15.503 12.176

Volume of reflection region 9.567 5.686

Volume of convex hull 14.2168 6.6325

Number of bins with area 1◦ × 1◦ in the θd-φd plane 32,851 25,653

Total bins including transmission geometries 2,989,441 2,334,423

Total reflection bins for linear θh sampling 1,838,964 1,086,904

One of the trade-offs of using the cylindrical representation is the increased complex-

ity in discretization. For the sake of comparison, we chose to discretize the cylindrical

representation such that each bin occupies the same volume as in the Cartesian represen-

tation (equivalent to 1◦ cubed). In cylindrical coordinates, the volume of a bin with a

fixed azimuthal interval and a fixed radial interval increases with radial position. In order

to maintain a fixed volume even as the radial coordinate, θd, increases, the azimuthal and

radial intervals change. This results in an irregularly spaced set of discrete Rusinkiewicz

triplets. Discretization strategies with variable bin volume but fixed azimuthal and radial

spacing are also possible. We also exclude Rusinkiewicz triplets which are outside the

reflection region. This could also be done with the Cartesian representation to improve

tabulation efficiency, so it is not a unique advantage of the cylindrical representation. This

omission of non-reflection geometries is likely not done for the KAIST database because

simplicity is one of the main benefits of the Cartesian representation. Discretization of the
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cylinder which would enclose the reflection region shown in Fig. 4.2b would result in 2.3

million bins, of which only 1.1 million would contain tabulated MM data.

Our cylindrical discretization makes use of 107 bins of θd (the radial coordinate) in-

dexed with integers i between 0 and 106. The first bin, where i = 0, is centered at θd = 0

where φd is undefined, so the bin is a circle of radius
√
1◦/π such that it has an area of

1◦ × 1◦. For thei 6= 0 cases, the bins are segments of cylindrical shells where the azimuth

coordinate φd is discretized into an integer number of bins of width given by

∆φi
d =

90◦

7 + i
. (4.3)

The denominator offset of seven is chosen to split the 2π range into 32 segments for∆φ1
d.

Given an azimuth bin width ∆φi
d, the i

th radial bin width for 1 ≤ i ≤ 106 is

∆θid = −θi−1
d +

√
2A

∆φi
d

+ (θi−1
d )2 (4.4)

where A is the area in the θd-φd plane and is assigned the value 1◦ × 1◦. The original

number of 107 θd bins was chosen so that the i = 106 radial position, as determined by

Eqs. 4.3 and 4.4 falls on θd = π/2. The height coordinate is linearly discretized with bin

size given by ∆θh = 1◦. To form bins in the θd-φd plane which have constant area, ∆θ
i
d

depends on both the size of the azimuthal bin ∆φi
d as well as the previous radial position

θi−1
d . As θd increases, ∆φd gets smaller.

When tabulating the pBRDF, care should be taken such that data are reported with an

unambiguous definition for horizontal and vertical. This is because a MMmaps input po-

larization to output polarization and these states are defined in reference to some implicit

basis of horizontal and vertical in the plane perpendicular to the propagation direction

(referred to as the transverse plane). For a microfacet Fresnel reflection model, the con-

ventional definitions of horizontal and vertical come from the eigenpolarizations.14 These

eigenpolarizations are found using the scattering plane spanned by ω̂ωωi and ω̂ωωo. For a mea-

sured MM, the implicit definitions of horizontal and vertical come from gn and an of the
polarimeter. Naively applying MMs taken from a measurement to any particular applica-

tion without reconciling the transverse plane basis can result in inaccurate results. Further

details regarding the transverse plane bases are provided in Appendix A.
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Figure 4.3: Cross sections of a simulated pBRDF for Fresnel reflection based on micro-

facet theory displayed as MM images for the planes where (a) φd = 0 and π, (b) φd = π/4
and 5π/4, (c) φd = π/2 and 3π/2, (d) θh = 0, (e) θh = π/6, and (f) θh = π/3.
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Figure 4.3 shows the normalized pBRDF simulated for Fresnel reflection based on

microfacet theory on various cross sections of the reflection region in cylindrical coor-

dinates. The Fresnel coefficients were calculated using θd as the angle of incidence for

an interface between air and a medium with refractive index n = 1.5. Figures 4.3a-c are

cross sections of the pBRDF on vertical planes for different values of φd. The cross sec-

tion shown in Fig. 4.3a, where φd = 0 and π, is the in-plane scattering geometries. Here,

the surface normal n̂ is within the scattering plane spanned by ω̂ωωi and ω̂ωωo. Along this cross

section, the pBRDF support region is a triangle. As the cross sectional plane rotates to

other values of φd, the support region increases size as in Fig. 4.3b until φd = π/2 and

3π/2 in Fig. 4.3c. In Fig. 4.3c, the support becomes rectangular. Figure 4.3d-f are hori-

zontal slices for different constant values of θh. Figure 4.3d is the plane where θh = 0, and

the support is a full circle. As θh increases in Figs. 4.3e and f, the support in the φd = 0

and π directions decreases.

In Fig. 4.3a and Fig. 4.3d, Brewster’s angle in θd can clearly be seen where the diatten-

uation magnitude reaches unity and the sign on the lower two diagonal Mueller elements

shifts from negative to positive. These two planes have the most familiar interpretation.

The interpretation of other pBRDF cross sections is made more complicated by the trans-

verse plane rotations into the local basis. However, features from one planar cross section

can be identified in others, such as the ring of high diattenuation near Brewster’s angle

in θd from Fig. 4.3d showing up at the base of each cross section in Figs. 4.3a-c. The

features shown in Fig. 4.3c can also be seen along the vertical line through each of the

cross sections in Figs. 4.3d-f.

In all of the cross sections, MMs which have the same θh and θd coordinates but φd

related by ±π obey the reciprocal relation described in Sect. 4.2. In the cross sections in
Figs. 4.3a-c, such geometries are mirrored left-to-right about the center vertical axis. In

Figs. 4.3d-f, these reciprocal geometries are mirrored through the origin.
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4.3 Evaluation of Acquisition Protocols

An efficient pBRDF acquisition captures MM data at as many unique scattering geome-

tries as possible with as few angular steps of the goniometer as possible. The discretized

scattering geometries sampled at each goniometer position can be calculated before image

acquisition in order to compare different protocols for a given object shape. The camera

and goniometer parameters for the RGB950 were used for the pre-acquisition evaluation

and optimization of scattering geometries and subsequent measurement demonstration.58

Parameters for the simulated image acquisition are listed in Tab. 4.2.

Table 4.2: Rusinkiewicz triplets in Fig. 4.4 depend on the imaging polarimeter and object.

Instrument Focal length Pixel pitch Source distance Camera distance

19.61 mm 11.00 microns 90.00 cm 16.48 cm

Object Sphere radius Cylinder radius Cylinder length Plane edge length

2.54 cm 2.54 cm 12.70 cm 10.16 cm

Figure 4.4 shows the sampling of scattering geometries for various object shapes when

the camera and light source are separated byΩ = 55◦. The central three columns show θh,

θd, and φd as they are sampled in the image plane of the camera. The rightmost column

shows how those sampled populate the reflection region. The sphere, plane, and cylinder

were used because they have simple analytic solutions for intersecting their surfaces with

rays. It is clear from Fig. 4.4a that the sphere image has the most unique Rusinkiewicz

angles. This conclusion is consistent with the literature and is the justification for using

spherical targets in image-based scalar and polarized BRDF acquisition.8,61 Additionally,

the rotational symmetry of the sphere removes the need to carefully orient the sample

(positioning relative to the rotation axis of the goniometer is still necessary). It can be

challenging to find perfect spheres of many materials of interest however, such as paper.

In the case of such materials, it may be necessary to use another target shape at the cost

of requiring more goniometer measurements.

Figure 4.4b shows the Rusinkiewicz angles captured in an image of a planar sample.

Despite filling a greater part of the field of view as compared to the sphere, significantly
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(a) Sphere

(b) Plane

(c) Vertical cylinder

(d) Horizontal cylinder

Figure 4.4: At goniometer position Ω = 55◦, the per-pixel Rusinkiewicz triplets for (a)
sphere, (b) flat square, (c) vertical cylinder, and (d) horizontal cylinder target shapes. The

diagrams showing the capture setup (left column) show the correct orientation of each ob-

ject but are not to scale. The central three columns show θh, θd, and φd as they are sampled

in the image plane. The discrete geometries with at least one sample are shown populat-

ing the reflection region (right column). The sphere provides the most unique geometries

within a single image while the plane provides the fewest. The cylinders provide an in-

termediate number of unique geometries. Parameters for the simulated capture setups are

listed in Tab. 4.2.
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fewer unique scattering geometries are sampled due to the slow variation in θh. Fully

populating the reflection region would require performing multiple measurements at the

same goniometer position but with the plane’s surface normal at different orientations.

Figures 4.4c and 4.4d show the Rusinkiewicz angles imaged for a cylinder with two dif-

ferent orientations. An image of the cylinder populates more points in the reflection region

than the plane, but not as many as the sphere. A single image of a cylinder has greater

variation in θh than the plane but multiple cylinder orientations at each goniometer posi-

tion are still required to fully populate the reflection region. A cylindrical target may be a

useful alternative to a plane for materials which cannot be made into spheres.

The particular shapes for which Rusinkiewicz angle images were calculated are those

which have simple analytic equations for intersecting rays with their surfaces. Polariza-

tion imaging with structured light can simultaneously retrieve polarization data as well as

shape information, which can facilitate the pBRDFmeasurements from objects with more

general shapes.57

For the pBRDF presented in this work, we use a red 3D printed sphere as the ma-

terial sample. The sphere was 3D printed using selective laser sintering. Variations in

surface texture and deviations from being perfectly spherical are potential sources of er-

ror discussed in the measurement results. To compare different goniometer sequences,

goniometer positions Ω from 20◦ to 160◦ are evenly spaced and the percent of discretized

geometries in the reflection region which have at least one MMmeasurement is calculate.

The RGB950 camera cannot get closer than Ω = 20◦ from the source, so about 3.6% of

the volume is inaccessible. For RGB950 measurements of the 2 inch diameter sphere, the

largest possible goniometer angle is Ω = 160◦ where the view of the sphere is almost

completely in shadow.

Figure 4.5 shows the percentage of the total discretized geometries which have at least

one measured MM for different number of goniometer positions. Fill factor increases

roughly linearly at a rate of 0.95% per additional geometry until around 90 where the

rate transitions to 0.035% per additional geometry. Based on the diminishing returns, we

selected 92 measurements as the number of evenly-spaced goniometer positions.

It is worth reiterating that this result is based on the size of the sphere, the distances
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Figure 4.5: Fraction of discretized geometries filled for a given number of sphere mea-

surements at evenly spaced goniometric steps from Ω = 20◦ to 160◦. The slope starts
out at 0.95% per additional goniometer position, then becomes 0.035% per additional go-

niometer position after 92 positions.

from the camera and source to the sphere, and the effective focal length of the camera, re-

ported in Tab. 4.2. Another polarimeter setup could potentially achieve a higher fill frac-

tion in the same number or fewer goniometer positions. For example, moving the source

closer to the object is expected to increase the range of θd appearing within a given image.

Changing the distance from the object to the camera (as well as the magnification to prop-

erly fill the image) would also affect the sampled Rusinkiewicz angles. In these cases,

the same method of calculating the point of diminishing returns could be applied to deter-

mine an efficient goniometric measurement protocol. The method could also be applied

to a non-uniform discretization of the reflection region. Such non-uniform discretizations

are advantageous for efficiently sampling pBRDFs which have rapidly varying scattering

behavior near certain geometries (e.g. specular reflection) but slowly varying behavior

for other geometries.8,26, 61 However, for non-uniform discretizations, uneven goniometer

spacing may be required to efficiently sample the denser regions.

4.4 Measurement Demonstration

The pBRDF acquisition protocol described in the previous section was performed for a red

3D printed sphere. Data were taken at two of the RGB950’s visible wavebands: 451±19
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nm and 662±11 nm.58 These data are available in Dataset 2.41

Figures 4.6 and 4.7 show measured normalized MM data at 662 nm and 451 nm, re-

spectively, on the same cross sections of the reflection region in Fig. 4.3. TheseMMswere

rotated from the polarimeter transverse plane basis into the local basis using Eq. A.15.

Unmeasured geometries were inpainted using trilinear interpolation for simplicity. In fu-

ture work, customized techniques to inpaint/interpolate natively in cylindrical coordinates

could be developed. At 662 nm, the majority of the Mueller elements have very low val-

ues due to strong depolarization. This is an expected result for a red object under red

illumination per Umov’s effect, where depolarization trends positively with albedo.103 In

all of the cross sections, larger Mueller element magnitudes appear toward the edges of

the space. At 451 nm, Umov’s effect predicts less depolarization for the red object which

is evident from the larger Mueller element values. The pBRDF behaves much more like

Fresnel reflection from microfacets as shown in Fig. 4.3. In the θh = 0 plane in Fig. 4.7d,

the peak in diattenuation and the sign flip in the lower two diagonal elements again show

a Brewster’s angle effect with respect to θd.

For geometries where θd is around 10
◦ or less, there are noMM samples. These are ge-

ometries near retroreflection, which are not measurable in the RGB950 due to the RGB950

hardware preventing Ω from going less than 20◦. In the pBRDF, this region is populated

only with inpainted data. For the 662 nm pBRDF in Fig. 4.6, this is less of a severe limita-

tion because theMMelements are both lower in magnitude due to depolarization andmore

slowly varying. This is a more severe limitation for the 451 nm pBRDF in Fig. 4.7, where

higher frequency variations such as in the center of them11 andm22 elements in Fig. 4.3c

are not captured. In the m11 and m22 elements of Fig. 4.7a, the inpainting artifacts pro-

duce regions with the incorrect sign. This result highlights the fact that the measurement

protocol designed in the previous section, which prioritized fill factor, is most appropriate

when the pBRDF is either slowly varying or when there is no prior knowledge about the

frequency content of the pBRDF.

The empirical pBRDFs at both wavelengths show unexpected variations for higher

values of θh. These are evident to visual inspection on Fig. 4.7c near the top of each

Mueller element where the sign changes rapidly. These errors may be due to the fact
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Figure 4.6: Cross sections of the measured 662 nm pBRDF displayed as MM images for

the planes where (a) φd = 0◦/180◦, (b) φd = 45◦/225◦, (c) φd = 90◦/270◦, (d) θh = 0◦,
(e) θh = 30◦, and (f) θh = 60◦. The region of the pBRDF where θd < 10◦ is inpainted due
to the polarimeter being unable to measure geometries at or near retroreflection.
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Figure 4.7: Cross sections of the measured 451 nm pBRDF displayed as MM images for

the planes where (a) φd = 0◦/180◦, (b) φd = 45◦/225◦, (c) φd = 90◦/270◦, (d) θh = 0◦,
(e) θh = 30◦, and (f) θh = 60◦. The region of the pBRDF where θd < 10◦ is inpainted due
to the polarimeter being unable to measure geometries at or near retroreflection.
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that the large values of θh exist near the edges of the illuminated part of the sphere, see

Fig. 4.4a. The association of calculated Rusinkiewicz angles to measured image data is

most sensitive to errors in object shape and positioning near these edges. These regions

also have the fewest MM samples during the goniometer position sequence based on how

little of the image they subtend. Pixels may be misregistered due to the object not being

perfectly spherical or positioned at the center of goniometric rotation. These errors are

most severe for geometries which are sampled at the edges of the sphere in the image. In

the most extreme case, data may be collected from pixels which do not see the object at all.

The quantity of erroneous MM samples may compounded during inpainting. The severity

of these artifacts on data quality could be assessed with respect to physics-based render-

ing but there is currently no rendering engine which can accept as input the pBRDF in

cylindrical coordinates. It is also worth noting that these errors are those which cause the

most deviation from the pBRDF exhibiting the reciprocal behavior described in Sect. 4.2.

In principle, some of the erroneous data points could be replaced with data from the recip-

rocal positions in the pBRDF but prior knowledge would be required to determine which

data points need correction.

4.5 Conclusions

In this work we presented a new approach to tabulation of empirical pBRDFs of isotropic

surfaces. In principle, this approach would offer benefits to scalar-valued BRDFs as well.

The tabulation is used to compare and select the sampling of scattering geometries. Ac-

quiring an empirical pBRDF involves MM measurements at many scattering geometries

and wavebands. The significant time and storage resources required to measure and tab-

ulate this data motivates the development of efficient representation and acquisition pro-

tocols.

The conventional approach for tabulating the MM measurements is to interpret the

three Rusinkiewicz angles which parameterize the pBRDF as forming a Cartesian space,

see Fig. 4.2a. MM data samples are associated with discrete points on the Cartesian space,

however this representation contains redundant points which correspond to the same phys-
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ical scattering geometry as well as points which do not correspond to external reflection.

Rather than interpret the three Rusinkiewicz angles as Cartesian coordinates, we inter-

pret them as cylindrical coordinates, see Fig. 4.2b. This has the benefit of increasing the

compactness and convexity of the region of reflection geometries. When changing from

Cartesian to cylindrical coordinates, the volume of the reflection region is reduced by

40%, see Tab. 4.1. This reduction in volume is most efficiently leveraged by omitting

non-reflection geometries. Going from the enclosing parallelepiped (the state-of-the-art)

to the enclosing cylinder reduces the volume by 21% and staying in Cartesian coordinates

but excluding non-reflection geometries reduces the volume by 38%. Going from the en-

closing parallelepiped to cylindrical coordinates with non-reflection geometries reduces

the volume by 63%. It is also worth noting that, by enforcing reciprocity the pBRDF be-

comes π-periodic in φd and the reflection region can be made even smaller in cylindrical

coordinates by taking the azimuth angle to be 2φd.

While multiple approaches for non-uniform BRDF and pBRDF techniques appear

in the literature, uniform pBRDF sampling is performed to facilitate comparison to the

KAIST database of indoor materials.8,26, 61 To determine an efficient uniform sampling

protocol, we used the percentage of discrete geometries which were sampled at least once

during a set of goniometric MM measurements. The choice to use the number of evenly

spaced goniometric positions where the fill percentage began to have diminishing returns

was application-agnostic and only served to maximize unique geometries while minimiz-

ing measurement time. Practically, the requirement on sampling density depends on the

optical properties of the material and the robustness of the polarimeter to noise. For a

slowly-varying pBRDF, fewer geometries may be sampled with an acceptable loss of ac-

curacy during inpainting. For a rapidly varying pBRDF, more goniometric positions may

be required than the presented method suggests. Finer sampling of scattering geometries

will improve the accuracy of the inpainted result if the measurement noise is appreciable.



67

CHAPTER 5

pBRDF Models

5.1 Analytic Polarized Scattering Models

Scattering by optical components is generally minimized by design, but everyday mate-

rials such as fabric or opaque plastics tend to have strongly diffuse scattering properties.

Depolarization, which is closely related to scattering, is therefore a useful property to

consider when studying such materials.

Both BRDF and pBRDF models frequently contain a specular component that de-

scribes light scattered from the surface of a material and a diffuse component attributed to

light scattered from within the material.107 The polarization of the specular component,

more accurately called the first-surface reflection component, is commonly modeled as

Fresnel reflection from hypothetical sub-resolution microfacets.48,64, 80, 97 Early work on

polarized light scattering assumed that the diffuse component becomes completely de-

polarized such that diffuse contributions to reflection can be eliminated by using a polar-

izer.106 Although first-surface reflection tends to produce greater polarimetric modulation,

it is generally incorrect to assume that diffuse reflection is completely depolarizing (i.e.,

the degree of polarization, see Eq. 2.6, for any input state becomes zero).4 Instead, the dif-

fuse termmay be partially polarizing. Many shape-from-polarization approaches consider

both first-surface and diffuse polarized light scattering but use either a purely specular or

purely diffuse pBRDF for a given material.4,24, 43 Data-driven models have had success

with a decomposition into diffuse and specular terms as input into neural networks.6,108

More rigorous pBRDF models characterize polarimetric light scattering in terms of

a combination of first-surface and diffuse polarized components. The pBRDF model in-

troduced by Baek et al. consists of a first-surface microfacet term and a polarized dif-

fuse term.7 The diffuse term describes Fresnel transmission into, depolarizing scattering

within, and Fresnel transmission out of the material. In such a model, depolarization arises
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from both the diffuse reflection term and the opposing polarizance orientations between

the first-surface microfacet and diffuse terms. Kondo et al. extended this model by in-

cluding an ideal depolarizer as an independent third term.45

The objective of this Chapter is to introduce a TD-MMmodel that efficiently describes

measurements of spherical objects in a DRR Mueller polarimeter. The model is demon-

strated performance to predict MM at different geometries and wavebands. In the sub-

sequent Chapter, the accuracy of this model is assessed as performance in the task of

estimating ξ0 from an assumed form of M̂0 and partial polarimetric measurements.

5.2 Dominant Mueller-Jones Models

5.2.1 First-Surface Reflection Component

The first-surface reflection, frequently referred to as specular reflection, is commonly

modeled as Fresnel reflection from a hypothetical sub-resolution feature called a micro-

facet (the term first-surface reflection will be used going forward so that specular may be

reserved to describe scattering configurations where θh = 0◦).80 The microfacet is ori-

ented such that it satisfies the Law of Reflection for a given pair of input and output ray

directions.

This model is conceptually simple, however, implementation is complicated by the

need to consider rotations in the plane transverse to the direction of propagation. The

orientations of s- and p-polarizations in space vary based on the scattering geometry, and

the orientations of horizontal and vertical for both the input and output coordinate systems

are implicit parameters of the Jones matrix (JM) or MM. The JM for Fresnel reflection

from a microfacet F is

Fnλ
(ω̂ωωi, ω̂ωωo) =

x̂PSA

ŷSA

 ŝo
p̂o

ᵀ rs(nλ, θd) 0

0 rp(nλ, θd)

 ŝi
p̂i

x̂PSG

ŷPSG

ᵀ

. (5.1)

Definitions for all of the vectors appearing in this equation can be found in Appendix A.

The leftmost and rightmost pairs of matrices each combine to orthogonal matrices which

represent rotations in the plane of the electric field. These are left in terms of vectors to
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(a) First surface reflection MJM (b) Diffuse polarization MJM

Figure 5.1: MM images of (a) the first-surface reflection model in Eq. 5.1 and (b) the

diffuse model in Eq. 5.2 evaluated over a sphere in the same scattering configuration as

in Fig. 5.2. The left side of the sphere is obscured by shadow. The first-surface reflection

component is modeled as Fresnel reflection from microfacets, so the polarized scattering

behavior does not depend directly on the surface normal. For this reason, the diattenuation

and polarizance orientations do not follow the surface of the sphere. The non-zero values

present in the m12 and m21 elements of (a) and (b) represent changes in the polarization

state due to geometric effects rather than retardance.

emphasize the change in coordinate basis, but are commonly represented with conven-

tional rotation matrices.7,14, 45, 54 The Fresnel coefficients rs and rp, see Eq. 2.4, depend

on the refractive index ratio nλ and the angle of incidence onto the microfacet θd.
80 The

values used for nλ are presented in Tab. 5.1.

Equation 5.1 is invariant to the surface normal since Fresnel reflection is only defined

for a normal vector that is halfway between the illumination and view vectors (i.e., a

microfacet). Instead, the Fresnel term only depends on the incident and scattered ray

directions ω̂ωωi and ω̂ωωo. The diattenuation magnitude depends only on θd, which is half

of the angle between ω̂ωωi and ω̂ωωo. The angle θd varies slowly over the sphere, as shown

in the example geometry in Fig. 5.2, so the diattenuation magnitude also varies slowly.

Variation in the diattenuation orientation is caused by variation in the orientation of s-
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and p-polarizations relative to the input and output coordinate systems. Both the s- and p-

directions and the input and output coordinate systems vary over the field of view. These

coordinate transforms lead to coupling between linear polarization states which can be

observed faintly in the center 2 × 2 elements of the MM image in Fig. 5.3a. This should

not be confused with true circular retardance, as it results from geometric effects rather

than a relative phase difference between polarization states. When the microfacet surface

normal ĥ and the macroscopic surface normal n̂ are coplanar (and therefore also coplanar

with ω̂ωωi and ω̂ωωo), there is no coupling between linear states caused by geometric effects.

This can be noted in theMM image of a purely Fresnel reflection M̂0 is shown in Fig. 5.1a,

where there is a dark band through the center of them12 andm21 elements. The geometries

in this region are referred to as “in-plane” scattering.

It is more correct to think of Js(ω̂ωωi, ω̂ωωo) as a first-surface reflection model rather than

a microfacet model. This is because the distribution of microfacet normals and adjacency

effects are not explicitly included in Js(ω̂ωωi, ω̂ωωo). Conventional microfacet models use dis-

tributions on the orientations of the microfacets to model surface roughness.3,10, 12, 105 Ad-

jacency effects, specifically shadowing and masking, and the microfacet distribution can

be interpreted as dictating the likelihood of an incident ray undergoing first-surface re-

flection toward the detector.34 This likelihood corresponds to the relative contribution of

first-surface reflection to other terms in the pBRDF model. In this work, the adjacency

effects, microfacet distribution, and other properties due to texture are absorbed into other

parameters in the model. Depolarization due to texture is captured by the dominant eigen-

value ξ0(ω̂ωωi, ω̂ωωo) from Eq. 2.18. The first-surface-to-diffuse weighting function captures

texture-dependent non-depolarizing properties, and is discussed in Sect. 5.2.3.

5.2.2 Diffuse Reflection Component

The diffuse reflection component is modeled as

S(ω̂ωωi, ω̂ωωo, n̂) =

1 0

0 −1

R(φd)

1 0

0 0

R(−φd), (5.2)
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where the rightmost three JMs represent a polarizer with unit diattenuation and a trans-

mission axis oriented at φd. This matrix has a diattenuation orientation in the plane

spanned by the surface normal n̂ and ω̂ωωo, a pattern which is centered about the point on the

sphere where θh = 0◦, as shown in Fig. 5.2a. When left multiplied by the reflection ma-

trix, the 45◦ and 135◦ polarization states are reversed. This pattern being centered about

θh = 0◦ is consistent with the m̂0 images observed from DRR measurements of spheres

(see Fig. 5.3c); however, it does mark a departure from many other diffuse polarization

models. In models such as the one proposed by Atkinson and Hancock, the orientation of

the diffuse term is centered about the central camera axis.4

5.2.3 Mixed Dominant Mueller-Jones Matrix Model

Previous work demonstrated extrapolating MM images using a purely Fresnel reflection

model for the dominant MJM, but this work was performed on flat objects which have

a smaller range of scattering geometries.36,40 The objects and scattering geometries de-

scribed in this work require models for M̂0 that introduce a polarized diffuse reflection

term. This term is characterized by a diattenuation orientation that depends on the surface

normal. However, the dominant MJM necessarily must be non-depolarizing, and simply

summing different MMs, in general, introduces depolarization.

To create a mixed polarization model without introducing depolarization, the individ-

ual first-surface and diffuse components are combined as Jones matrices as in

J(ω̂ωωi, ω̂ωωo, n̂|nλ, aλ, bλ) = Fnλ
+ aλsinbλ(θh)S(n̂). (5.3)

Here, the functional dependencies of J are separated into the scattering geometry and ma-
terial parameters, with the separation notated by the vertical bar |. There are four material-
dependent parameters which are constant for all scattering geometries: the real and imag-

inary components of the refractive index nλ, and two parameters aλ and bλ, which control

how the weight of the diffuse polarization term depends on scattering geometry. The four

material parameters efficiently reduce the original six degrees of freedom for the diatten-

uation and retardance of the MJM. Both matrices on the right-hand-side depend on ω̂ωωi and
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Table 5.1: Material constants determined ad hoc to match the models to the observedMM

measurements. These parameters are constant with respect to scattering geometry.

Material constants 451 nm 662 nm

nλ + iκλ 1.20 + 0.25i 1.30 + 0.08i
aλ 0.03 0.17

bλ 2.5 2.0

ω̂ωωo, but this has been dropped for brevity.

The surface normal of the material n̂ (see Fig. 4.1) affects the diffuse but not Fresnel

term. F(ω̂ωωi, ω̂ωωo, nλ) is the first-surface reflection component modeled as Fresnel reflection

based on refractive index ratio nλ at wavelength λ, S(ω̂ωωi, ω̂ωωo, n̂) is the diffuse polarization
term and is defined with unit throughput, so its relative weight as a function of scattering

geometry is given by the sine function. J is converted to a MJM, normalized, and then

used as M̂0 for a TD-MM model as in Eq. 2.18.

The values for thematerial properties are found in Tab. 5.1. These values, as well as the

choice to use a sine function for the geometric dependence of the weight, were determined

ad hoc to match the measurements. The weight function is modeled as only depending

on θh because θh is a measure of deviation from a specular scattering configuration. The

sine function was chosen for the weight functions based on the observation that Fresnel

reflection-like behavior dominates for near-specular scattering geometries (where θh is

small) and diffuse polarization behavior tends to become dominant away from specular

geometries. The coefficients and powers in these equations were empirically chosen to

match the diattenuation trends observed in measurements. The functional dependencies

of parameters in the mixed model are summarized in Tab. 5.2.

5.3 Dominant MJMMeasurement-Model Comparison

The measured and modeled M̂0 are compared by their diattenuation magnitudes D and

orientations ψ. Diattenuation is represented in the top row of a MM. In Fig. 5.5 ψ and in

Fig. 5.6D are compared atΩ = 35◦ based on the Rusinkiewicz coordinates from the DRR

measurements rather than with the look-up table method used in Sect. 6.4.2 because the
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Table 5.2: Dependencies of parameters which appear in the TDmixed polarization model.

Parameter Dependencies

ξ0 ω̂ωωi, ω̂ωωo, n̂, λ
M00 ω̂ωωi, ω̂ωωo, n̂, λ
F ω̂ωωi, ω̂ωωo, nλ, κλ
S ω̂ωωi, ω̂ωωo, n̂

m̂0 S, F, ω̂ωωi, ω̂ωωo, n̂, aλ, bλ, nλ, κλ
mID n/a

0° 45° 90°

(a) Sphere θh (b) Sphere θd (c) Sphere φd

(d) Bunny θh (e) Bunny θd (f) Bunny φd

Figure 5.2: Rusinkiewicz coordinates θh, θd, and φd are shown in (a-c), respectively, for

a spherical object where Ω = 35◦ and in (d-f), respectively, a Stanford bunny. The

Rusinkiewicz definitions are shown in Fig. 4.1. The regions in (a) and (d) where θh is
small correspond to near-specular geometries where Fresnel reflection dominates.

models can be evaluated at arbitrary scattering geometries. These images were masked

based on an intensity threshold, so the left side of the sphere is obscured in shadow. For
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(a) Measured 451 nm (b) Modeled 451 nm

(c) Measured 662 nm (d) Modeled 662 nm

Figure 5.3: Comparisons of dominant MJM from DRR measurements at Ω = 35◦ and
from the models (see Eq. 5.3) for a red sphere. At 451 nm (top) the low albedo creates

lower diffuse scattering compared to 662 nm (bottom). Properties of the capture system

are not included in the MJM images from the models, specifically the finite spatial and

polarimetric resolutions. The raw measurements can be found in Dataset 3.37

higher values of Ω, more of the sphere is in shadow. Regions which are not in direct

illumination are not expected to obey the simplified model presented in this work. In

Fig. 5.5a and c, ψ is primarily vertical due to the low albedo case of 451 nm illumination
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(a) Measured 451 nm (b) Modeled 451 nm

(c) Measured 662 nm (d) Modeled 662 nm

Figure 5.4: Comparisons of dominant MJM from DRR measurements at Ω = 35◦ and
from themodels (see Eq. 5.3) for a red bunny of the samematerial as the sphere. At 451 nm

(top) the low albedo creates lower diffuse scattering compared to 662 nm (bottom). The

model bunny MJM images are based on the geometry captured for the MM extrapolation

from Stokes data experiment detailed in Chapter 6. There is therefore some inherent visual

disagreement due to pose errors.

being dominated by Frensel reflection. In Fig. 5.5b and d, ψ is vertical in the center where

Fresnel reflection dominates the near-specular geometries but the diffuse term dominates
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away from specular, which is consistent with high albedo behavior.

-90° 0° 90° 0° 45° 90°

(a) Measured ψ 451 nm (b) Modeled ψ̃ 451 nm (c) ψ deviation 451 nm

(d) Measured ψ 662 nm (e) Modeled ψ̃ 662 nm (f) ψ deviation 662 nm

Figure 5.5: Diattenuation orientation ψ images of the m̂0 at Ω = 35◦ calculated from
DRR MM polarimeter data at (a) 451 nm and at (d) 662 nm, and of the m̂0 models (b)

451 nm and at (e) 662 nm. The angle between the measured and modeled diattenuation

orientations is shown in (c) and (f) for 451 nm and 662 nm respectively. The diattenu-

ation orientation in (a) is primarily vertically oriented which is consistent with Fresnel

reflection-dominated scattering as expected from a low albedo case. The orientation in

(d) processes smoothly around the edge of the sphere which is consistent with diffuse po-

larization. This procession is radially oriented but with the 45◦/135◦ components flipped

due to the measurement being a reflection configuration. The center of the pattern shows

vertically oriented diattenuation which suggests that Fresnel reflection dominates in that

region. Agreement between the measurements and extrapolations is summarized accord-

ing to Eq. 5.4 in Fig. 5.7a.

The agreement in ψ and D are summarized numerically in Fig. 5.7 according to their

root-mean-squared-deviation (RMSD) values over the sphere at each acquisition geometry
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(a) Measured D 451 nm (b) Modeled D̃ 451 nm (c) D deviation 451 nm

(d) Measured D 662 nm (e) Modeled D̃ 662 nm (f) D deviation 662 nm

Figure 5.6: Diattenuation magnitudeD images for the red sphere at Ω = 35◦. The ground
truth from the DRR polarimeter measurements in (a) and the model in (b) at 451 nm are

the low albedo case. The ground truth from the DRR measurements in (d) and the model

in (e) at 662 nm are the high albedo case. The signed difference between measured and

modeledD is shown in (c) and (f) for 451 nm and 662 nm, respectively. The agreement is

summarized with respect to Ω in Fig. 5.7b. The two minima in (c) and (d), referred to as

“neutral points,” indicate the presence of at least two polarimetric processes which have

comparable diattenuation magnitude and opposing orientations. These are hypothesized

to be the first-surface and diffuse reflections.

Ω as in

ε(ψ̃, ψ) =

√√√√ 1

K

K∑
n=1

||(ψ̃k − ψk)||2

=

√√√√ 1

K

K∑
n=1

[
1

2
arccos

(
d̃k · dk

)]2
,

(5.4)
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and

ε(|D̃|, |D|) =

√√√√ 1

K

K∑
n=1

∣∣∣∣∣∣|D̃|k − |D|k
∣∣∣∣∣∣2 (5.5)

where K is the total number pixels, and k is the pixel index. The dot product of the

normalized linear diattenuation parameters, d = [D1, D2]/D, is used to avoid angular

phase wrapping effects caused by the fact that ψ = 0◦ and ψ = 180◦ describe the same

orientation.

In Fig. 5.7a, the error in diattenuation orientation trends downward with Ω. The MJM

term is dominated by first-surface reflection which has a simpler, easier to model orienta-

tion (primarily vertical). This is especially true for 451 nm, where first-surface reflection

is overall more dominant due to its low albedo. The error for 451 nm hovers around 2◦ for

large Ω. The more complicated diattenuation orientation pattern for diffuse reflection is

matched less well as shown in the generally larger error for 662 nm. In Fig. 5.7b, the error

in diattenuation magnitude is strictly lower for 451 nm than for 662 nm for all Ω. This

is likely due to the simpler first-surface model dominating at 451 nm whereas the more

complex diffuse model has a stronger contribution at 662 nm.

5.3.1 Sources of Disagreement

There are several potential sources of disagreement between the measurement and model

as evaluated in the previous section. The first potential source is with respect to the model

itself. The mixed polarized scattering model describes the dominant MJM in a TD model

so there is no depolarization. However, if the measured MMs deviate significantly from

TD, then the more complicated depolarization structure may be reflected in the MJMs

in the Cloude decomposition described in Sect. 2.2.3. The terms in a general Cloude

decomposition do not necessarily correspond to specific physical phenomenon.

Other potential sources of disagreement are related to the evaluation of the pBRDF

model to generate the MM images. The response for each pixel is considered to behave

as a single ray from the source which scatters from a perfect geometric sphere directly to

the camera. In other words, the modeled MM images represent a point-wise evaluation of

the pBRDF. In reality, the measurement by a single pixel is the sum of any inhomogene-
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(a) Diattenuation orientation error (b) Diattenuation magnitude error

(c) Average diattenuation magnitude

Figure 5.7: Error (a) in the diattenuation orientation ψ̃ according to Eq. 5.4 and (b) in the

diattenuation magnitude D̃ according to Eq. 5.5 of the m̂0 models at 451 nm (blue squares)

and 662 nm (red triangles). In (c), the diattenuation magnitude averaged over the image at

each Ω for the measurements (solid markers) and models (open markers). The orientation

error for 451 nm hovers around 2◦ for large Ω. The more complicated orientation pattern
for diffuse reflection, which is more prominent at 662 nm, is matched less well as shown in

the generally larger error for this high albedo case. The error in diattenuation magnitude is

strictly lower for 451 nm than for 662 nm for all Ω. Again, this is likely due to the simpler
first-surface model dominating at 451 nm whereas the more complex diffuse model has a

stronger contribution at 662 nm. The errors shown in (a) and (b) are calculated per-pixel

and then summarized with the RMSD whereas the magnitudes shown in (c) are averaged

over the whole image.

ity over the instantaneous field-of-view of light that originated from an extended source.

Some of the disagreement observable between the measured and modeled MM images in

Fig. 5.4 may be explained by the rapid variation in geometry. Disagreement in the bunny

MM images is also the result of pose issues exacerbated by the complex geometry.
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The measured data are also affected by other real polarimeter properties such as mea-

surement noise, finite bit depth, and polarimetric precision. In Fig. 5.5e, two singularities

appear in the diattenuation orientation. At these exact points, the diattenuation magnitude

shown in Fig. 5.6 are identically equal to 0, which is impossible to measure using a real

optical system.

5.4 Conclusion

In contrast to precision optical components, depolarization is the dominant polarimetric

property of everyday materials. The TD-MM pBRDF model lends itself to efficient de-

scriptions for such depolarization-dominant materials. This work presents a closed-form

Mueller-matrix valued pBRDF that is efficiently represented by a reduced parameter set:

four wavelength-dependent material constants that define the polarization properties and a

parameter for depolarization that depends on both geometry and wavelength. The material

constants determine how the six degrees of freedom for diattenuation and retardance vary

with geometry. This reduced parameterization assumes a TD coherency eigenspectrum

and specifies two distinct non-depolarizing MJMs for first-surface and diffuse polarized

light scattering. A microfacet Fresnel MJM is a popular polarized-light scattering model

that is simple enough to describe first-surface scattering in many cases. However, polar-

ization from diffuse scattering becomes non-negligible when a wider range of scattering

geometries are considered.

In this work, the TD-MM pBRDFmodel is demonstrated over a large range of scatter-

ing geometries by combining polarized first-surface and diffuse contributions into a single

MJM model. The first-surface MJM is Fresnel reflection based on microfacet theory, but

purely radiometric effects such as shadowing and masking are ignored. The polarimetric

properties of microfacet Fresnel reflections are invariant to the surface normal. However,

the diffuse MJM is a diattenuator with orientation that strongly depends on the surface

normal in a pattern centered where θh = 0◦ (i.e. specular reflection). This orientation

is parallel to the plane of incidence with the caveat that 45◦ and 135◦ are flipped due to

reflection. The magnitude of the diffuse contribution is determined by material constants.
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The four material constants depend chiefly on the spectrally-dependent albedo of the

material. The depolarization parameter depends on both the albedo and scattering ge-

ometry. The error in the TD assumption is inversely proportional to depolarization. For

example, the red object used in this work is higher albedo at 662 nm compared to 451 nm,

and the TD assumption is more appropriate for the high albedo case, as shown in Fig. 6.8.

Multi-angle MM measurements at two illumination wavelengths (for both high and

low albedo conditions) of a red 3D printed material are compared to the original pBRDF

model. The RMSD in diattenuation orientation for themodeled versusmeasured dominant

MJM (see Fig. 5.7a) averaged over acquisition geometry was 7.49◦ and 14.29◦ at 451

nm (low albedo) and 662 nm (high albedo), respectively. The RMSD in diattenuation

magnitude (see Fig. 5.7b) averaged over acquisition geometry was 4.96% at 451 nm and

11.73% at 662 nm. In the following Chapter, the MJM term of the original pBRDF model

is evaluated at assumed values of the material constants, see Tab. 5.1, and the geometry-

dependent depolarization parameter and the average reflectance are estimated from only

linear Stokes images.

The TD-MM pBRDF model is intended to generalize to materials other than the red

3D printing material used for demonstration purposes in this work. By combining first-

surface and diffuse polarized reflection in amounts that are material-dependent the model

is designed to capture the most relevant features of polarized light scattering. To apply the

model in Eq. 5.3 to a given material, the albedo-dependent material constants nλ, aλ, and

bλ must be determined. One method to estimate these values is MM imaging at a range

of scattering geometries and least-squares fitting to the dominant process. This has the

advantage of also providing a ground truth of the eigenspectrum to gauge the appropriate-

ness of the TD assumption. Another approach, based on the a priori TD assumption, is

to maximize the linear correlation coefficient between polarized measurements and mea-

surements simulated from the MJM model defined by the material constants.
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CHAPTER 6

Depolarization Measurement and Mueller Matrix Extrapolation

The objective of this work is to use prior knowledge about a material to extrapolate its

MM from a small quantity of measurements. This is achieved by relating polarimetric

measurements to the two degrees of a freedom of a TD MM model when the dominant

process is known, rather than to relate measurements to the MM directly. The primary

contribution of this work is a linear estimator for a MM’s dominant coherency eigenvalue

which requires as few as two polarimetric measurements. This is the first method known

to the author for extrapolating depolarizing MMs with rank four coherency matrices from

fewer than 16 measurements. A single illumination polarization state and a commercial

DoFP linear Stokes camera is used for the partial polarimetric measurement, meaning

that four measurements can be performed in a single snapshot acquisition. Experimental

results using measurements taken in a snapshot configuration with a Sony Triton 5.0MP

Polarization Camera are presented and compared to the RGB950.

6.1 Motivation

A handful of approaches for extrapolating MMs exist in the literature. In 2013 Swami

et al. showed that, for a non-depolarizing MM, symmetry arguments can be applied to

the linear partial MM to obtain the full 4×4 matrix.95 In 2019, Ossikovski and Arteaga

showed symmetry arguments for obtaining a full 4×4 MM from 12 elements where a

row or column is missing1 or from nine elements where a row and column are missing.74

In the 12-element case, it is possible to recover a depolarizing MM but only if it obeys

certain symmetry constraints and has only two non-zero coherency eigenvalues. All of

these methods for extrapolating MMs from partial polarimetric data rely on strong prior

information, as does the work presented here. In this Chapter, the enabling prior informa-

tion is the knowledge or assumption of a pBRDF model for the dominant MJM in a TD
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approximation.

6.2 Depolarization Measurement Method

A noise-free model for flux measurementsP of a TDMM can be written as a linear system

P = Φᵀβ. (6.1)

HereΦ is a matrix with rows that are the measurement matrix W applied to the dominant

process m̂0 and ideal depolarizer mID from the TD model as in

Φ =

 Pᵀ
0

Pᵀ
ID

 =

 [Wm̂0]
ᵀ

[WmID]
ᵀ

 , (6.2)

and the elements of β are the weights in the TD model as in

β =

 β0

βID

 =
4M00

3

ξ0 − 1
4

1− ξ0

 . (6.3)

It is worth reiterating that a benefit of the TD model is that the relative weights are con-

trolled by a single depolarization parameter ξ0, rather than varying independently. An

estimate of the coefficients β̃ can be recovered with the Moore-Penrose pseudoinverse of

Φᵀ as in

β̃ = [Φᵀ]+ P =
(

Wm̂0 WmID

)+

P, (6.4)

where P here is a vector of noisy flux measurements. Solving the system in Eq. 6.3 for

the model parameters, estimates for ξ̃0 and M̃00 are

ξ̃0 =
1
4
+ β̃0/β̃ID

1 + β̃0/β̃ID
, M̃00 =

3β̃0

4ξ̃0 − 1
(6.5)

where β̃0 and β̃ID are the elements of β̃. ξ̃0 is the parameter of interest because it deter-

mines the fractional contributions of the dominant coherent process and the ideal depo-

larizer. This fractional contribution adjusts the depolarization of the MM which changes

with scattering geometry, albedo, and surface texture.50
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Figure 6.1: A tower of blue plastic LEGO bricks that have each been sanded with different

grits of sandpaper. This represents a group of objects with similar properties and albedos

for a given wavelength but with different surface textures. The roughness averages (Ra)

in microns for each brick are top: 0.49, 0.56, 3.35, middle: 3.55, 2.62, 0.35, bottom: 1.68,

1.26, 6.32.

6.3 Roughened Plastic Bricks with the First-Surface Model

The samples measured in this work are a collection of blue LEGO bricks shown in Fig. 6.1.

These are the same LEGOs used by Li and Kupinski and are a collection of individual ob-

jects with the same material properties and albedo but with varying texture.55 The surface

roughness of each brick was measured using a white light interferometer. The roughness

averages (Ra) in microns for each brick are top: 0.49, 0.56, 3.35, middle: 3.55, 2.62, 0.35,

bottom: 1.68, 1.26, 6.32. Since the bricks are blue, the different wavelengths represent

different albedo cases: 662 nm illumination is low albedo and 451 nm illumination is high

albedo. Umov’s effect states that the amount of depolarization is expected to trend pos-

itively with albedo, so these albedo cases also represent cases with different amounts of

depolarization.103

Figure 6.2 shows a comparison of MM images calculated using traditional Mueller

polarimetry with 40 polarimetric measurements versus partial polarimetric extrapolations

using 4 polarimetric measurements. Depolarization can be qualitatively observed by com-

paring the magnitude of M00 to other matrix elements: regions of the image where all

matrix elements have a smaller magnitude than M00 have larger depolarization. Depo-
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Table 6.1: 30 acquisition geometries specified on-axis where φi and φo are 0
◦. For each

angle between the sample surface normal and source, θi, measurements are performed
for six angles between the surface normal and the camera, θo. The scattering geometries
across the field of view of an image will have θi, φi, θo, and φo that deviate from these

on-axis values. Some acquisition geometries are omitted from analysis because exposure

issues with the linear Stokes camera produced non-physical MM extrapolations.

θi θo,1 θo,2 θo,3 θo,4 θo,5 θo,6

-10◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

-25◦ 15◦ 25◦ 35◦ 45◦ 55◦ 65◦

-40◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦

-55◦ 25◦ 35◦ 45◦ 55◦ 65◦ 75◦

-70◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

larization is expected to be stronger for the high albedo case of blue bricks under blue

illumination, and this can be seen by the relatively lower magnitudes across the field of

view in both the reconstruction and extrapolation. Likewise, the expectation of lower de-

polarization is met for the low albedo case of the blue bricks under red illumination. The

trend of increased depolarization with surface roughness is also captured by the extrapo-

lation.

Figure 6.3 shows the estimated values of ξ̃0 for the smoothest and roughest textured

bricks. Larger values correspond to a larger estimated contribution of the dominant pro-

cess, or equivalently lower depolarization. For both brick textures, estimates of ξ̃0 are

larger in the low albedo case of 662 nm illumination than in the high albedo case of 451

nm illumination. This is in agreement with expectations from Umov’s effect where depo-

larization trends positively with albedo. Furthermore, for both wavelengths, estimates of

ξ̃0 are larger for the smooth brick and smaller for the rough brick. This trend matches the

expectation of a rougher texture resulting in higher depolarization.
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Figure 6.2: Comparison of the MM image results at 451 nm of (a) full reconstruction

with 40 polarimetric measurements to (b) MM image results of partial polarimetric ex-

trapolation and at 662 nm of (c) full reconstruction and (d) extrapolation for the geometry

θi = −25◦, θo = 25◦.
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(d) Roughest brick, 662 nm

Figure 6.3: The estimate ξ̃0 calculated as in Eq. 6.5 for two different brick textures at both
wavelengths. Geometries at which the dynamic range of the linear Stokes camera caused

non-physical MM extrapolations are omitted.

6.3.1 Error in Dominant Eigenvalue Estimate

Figure 6.4 shows the difference between the true value of ξ0 from the complete MM re-

construction and the estimated ξ̃0 from the linear Stokes measurements. Positive-valued

differences correspond to an overestimation of the dominant non-depolarizing process or

equivalently an underestimation of the amount of depolarization.

Extrapolations at 451 nm tended to overestimate ξ̃0 at more geometries than at 662

nm. 662 nm is the low-albedo case, where Umov’s effect indicates that depolarization is

lower, so it is possible that the method is most successful for low-depolarization cases.
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Figure 6.4: The estimate ξ̃0 calculated as in Eq. 6.5 minus the true ξ0 versus acquisition
geometry. When the difference is positive valued, the contribution of the dominant non-

depolarizing term is overestimated. Geometries at which the dynamic range of the linear

Stokes camera caused non-physical MM extrapolations are omitted.

6.3.2 Simulated Flux Vectors

To compare the MMs, the measurement matrix of the RGB950 W40 is applied to a 2× 2

pixel average of the normalized extrapolated MM and the full reconstructed MM to simu-

late the flux measurements that the RGB950 would take. Additionally, the measurement

noise is indicated by the standard deviation error bar on each flux measurement. The

resulting flux vectors are shown in Fig. 6.5. Also shown in Fig. 6.5 is the nearest TD

approximation of the reconstructed MM. This is calculated by setting the three smallest

coherency eigenvalues to 1−ξ0
3
. This TD approximation has the exact correct dominant

process m̂0 and represents the best possible extrapolation based on a TDmodel. Flux vec-

tors where the TD approximation and extrapolation show a similar deviation from the full

reconstruction could indicate that the TD assumption is not valid. However, the movie
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(a) Smoothest brick, 451 nm
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(b) Roughest brick, 451 nm
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(c) Smoothest brick, 662 nm
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(d) Roughest brick, 662 nm

Figure 6.5: Flux vectors at 451 nm of (a) the smoothest brick and (b) the roughest brick

and at 662 nm of (c) smoothest brick and (d) the roughest brick at θi = −25◦, θo = 25◦.
Flux vectors are calculated by averaging the normalizedMM on a 2×2 pixel ROI then ap-
plying W40 to simulate what the RGB950 would measure. The error bars are±1 standard
deviation in the ROI. The flux vectors shown here are for the full MM reconstructions

(blue), the nearest TD approximation of the reconstruction (orange), and the extrapolated

MMs (green).

of flux vectors over acquisition geometry does not show consistent disagreement between

the reconstruction and the TD approximation, where the extrapolation also deviates. The

measurements at 662 nm (the low albedo case) exhibit larger error bars for both the smooth

and rough brick as compared to measurements at 451 nm (high albedo). This matches ex-

pectations since, despite larger polarization modulation for low albedo per Umov’s effect,

the overall amount of light is lower.103 The largest realizations of measurement noise oc-

cur for the rough brick at scattering geometries near those with non-physical results but
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(b) TD truncation of true MM

Figure 6.6: Histograms of flux error, as defined in Eq. 6.6, of (a) the extrapolated MMs

based on assuming the dominant process is Fresnel reflection and (b) the nearest TD trun-

cations of the true MMs relative to the true MMs. Each histogram contains the data over

all textures, all geometries, and both wavelengths. The narrower distribution in (b) as

compared to (a) indicates that the assumption of a TD eigenspectrum is not the largest

source of error. The mean of (a) is 11.06% and the mode is 1.03%. The mean of (b) is

3.61% and the mode is 0.54%.

are not yet themselves non-physical. However, for all other measurements the disagree-

ment between the extrapolations and the full reconstruction is larger than the error bars.

This means that errors in the extrapolation are more likely the result of discrepancies in

the assumed dominant process.

To compare MMs with a single-valued metric, the flux error ε is defined as

ε =

∑40
j |pj − p̃j|∑40

j pj
, (6.6)

where pj are the elements of the flux vector simulated by applying the RGB950 mea-

surement matrix W40 to the ground truth MM (i.e. the full reconstruction) and p̃j are the

elements of the flux vector simulated by applying W40 to the MM being tested. This can

be interpreted as adding up all the discrepancies and normalizing by the total expected

flux. A flux error ε = 0 would mean that the two MMs yield the same RGB950 mea-

surements. This physical interpretation is the motivation for choosing the Eq. 6.6 as the

figure of merit instead of a sum of squared differences between two MMs. Furthermore,

small disagreements in multiple off-diagonal MM elements could yield a small squared

difference in MM elements, but be an appreciable retardance difference.
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Figure 6.6 shows histograms of flux errors calculated from the same flux vectors as in

Fig. 6.5 but also includes the other textures. Figure 6.6a is the histogram of flux errors be-

tween the full reconstruction MMs and the MMs extrapolated from linear Stokes images

using an assumed Fresnel reflection dominant process. The sources of error are measure-

ment noise, the assumed dominant process, and the assumption of a TD eigenspectrum.

The mean is 11.65% and the mode is 1.03%. Figure 6.6b is the histogram of flux errors

between the full reconstruction MMs and those same MMs truncated to have a TD eigen-

spectrum. The process of TD truncation, explained above, preserves the exact dominant

process and is not a new noise-realization, so the only source of error is the difference in

eigenspectrum. The mean is 3.61% and the mode is 0.54%. The narrower distribution in

Fig. 6.6b as compared to Fig. 6.6a indicates that the assumption of a TD eigenspectrum is

not the largest source of error.

For both bricks and both wavelengths, Fig. 6.7 shows that the larger flux errors tend to

occur for the larger incident and scattering angles. The maximum flux error is 0.42 which

occurs for the rough brick under 662 nm illumination at θi = −60◦, θo = 65◦, despite the

maximum error in ξ0 occurring for the smooth brick at 451 nm at θi = −40◦, θo = 60◦.

Tab. 6.2 reports the flux error ε averaged over acquisition geometry for each brick and

at both wavelengths. Both the overall minimum and maximum flux errors occur for 662

nm illumination on the 0.56 micron and 3.35 micron Ra bricks, respectively. Since these

extrema do not correspond to the smoothest or roughest textures, it is likely that texture is

not the dominant contributing factor to the error. Averaging over texture, the high-albedo

case has an error of 10.50% and the low-albedo case has an error of 11.65%.

Table 6.2: The flux error ε, as defined in Eq. 6.6 averaged over acquisition geometry for
each brick. Acquisition geometries that produced non-physical MM extrapolations due to

the dynamic range of the linear Stokes camera are omitted.

Brick Ra [microns] 0.35 0.49 0.56 1.26 1.68 2.62 3.35 3.55 6.32

ε at 451 nm [%] 11.50 11.40 8.96 8.33 7.79 11.06 13.28 12.28 9.93

ε at 662 nm [%] 10.42 8.42 7.23 12.82 8.75 12.95 15.55 15.16 14.89
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(d) Roughest brick, 662 nm

Figure 6.7: Flux vector error ε, as defined in Eq. 6.6, of the LEGO brick MMs extrap-

olated from linear Stokes images and MMs reconstructed by the RGB950 plotted versus

acquisition geometry for (a,c) the smoothest brick and (b,e) the roughest brick. (a) and

(b) are the high albedo case and (c) and (d) are the low albedo case. Each flux vector was

calculated by averaging the normalized MM on a 2 × 2 pixel region then applying W40

to simulate what the RGB950 would measure. Each point corresponds to an acquisition

geometry according to Tab. 6.1. Geometries at which the dynamic range of the linear

Stokes camera caused non-physical MM extrapolations are omitted.

6.4 3D Printed Objects with the Mixed Model

6.4.1 Coherency Eigenspectrum

To demonstrate the appropriateness of a TD assumption for the red 3D printing material

used in this work, Fig. 6.8 shows the deviation of the coherency eigenspectrum from TD

of a printed Stanford bunny at two wavelengths. Since the eigenvalues are normalized to

sum to unity, the difference of a given eigenvalue from ξ can be thought of as the fraction

of light that is not described by a TD model. The low albedo case of 451 nm illumination
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deviates from TD for as much as 9% of the light while the high albedo case of 662 nm

illumination only deviates as much as 3%. For both wavelengths, the deviation from TD

is larger in regions of high curvature. This could be due to increased likelihood of multiple

ray bounces resulting in more complex polarized light scattering behavior. Furthermore,

in regions where an object’s geometry varies rapidly within a pixel’s instantaneous field-

of-view, errors such as the point-wise evaluation of the pBRDF described in Sect. 5.3.1

will result in greater deviate from the true polarized scattering behavior. In regions with

high deviation from a TD eigenspectrum, tasks such as estimation of ξ0 will be less accu-

rate even when M̂0 is perfectly known.

6.4.2 Estimation of Dominant Eigenvalue from Stokes for a Sphere

To measure polarized behavior at many scattering geometries in fewer acquisitions, the

measured object was a red 3D printed sphere of 1-inch diameter. The sphere was posi-

tioned at the center of rotation of a goniometric arm which was used to perform polari-

metric measurements at fifteen angles between the camera and the light source denoted

with Ω. Polarimetric measurements were performed at 662 nm and 451 nm. These two

wavelengths represent high and low albedo cases, respectively, for the red sphere. Per

Umov’s effect, these correspond to an expectation of high depolarization (low ξ0) and

low depolarization (high ξ0), respectively.

The RGB950 and linear Stokes camera were both used with 8mmm focal length lenses

but have different detector sizes and resolutions. Additionally, the alignment for position-

ing the two cameras to have the same view proved challenging. A pixel-to-pixel compar-

ison between RGB950 and Stokes camera images would therefore mean comparing po-

larimetric behavior at different scattering geometries. Instead, the estimated ξ̃0 from the

linear Stokes camera is compared to the values from the RGB950 by tabulating a lookup

table of ξ0 values with respect to scattering geometry for each polarimeter. These LUTs

are binned according , θh, θd, and φd with 91, 91, and 361 bins assigned respectively in

a Cartesian representation as described in Chapter 4. The cylindrical representation had

not yet been developed at the time of this work. The lookup table is then evaluated at the

scattering geometries of a virtual sphere matching the linear Stokes camera measurement
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(a) ξ1 − ξ 451 nm (b) ξ2 − ξ 451 nm (c) ξ3 − ξ 451 nm

-0.03 0 -0.03

(d) ξ1 − ξ 662 nm (e) ξ2 − ξ 662 nm (f) ξ3 − ξ 662 nm

Figure 6.8: Deviation of each of the smaller three coherency eigenvalues ξ1, ξ2, and ξ3
from ξ = (1− ξ0)/3 for a red 3D printed bunny. Values shown in (a-c) are at 451 nm and

values shown in (b-f) are at 662 nm. Each row shares a colorbar. When ξ1, ξ2, and ξ3 are
all equal to ξ, then the coherency eigenspectrum is TD and the depolarizing MM can be

exactly described as a sum of a dominant MJM and an ideal depolarizer (see Fig. 2.2). The

eigenspectrum for the red 3D printed bunny under 451 nm illumination (low albedo, low

depolarization per Umov’s effect) has larger deviation from TD than 662 nm (high albedo,

high depolarization). This trend with wavelength suggests that even if the dominant MJM

model m̂0 is accurate, the error in assuming the MM fits Eq. 2.18 would be greater at 451

nm than 662 nm. In particular, regions of high curvature deviate more from TD as shown

on the left side of the bunny’s hind leg.

to compare the true and estimated ξ0 at identical points.

The estimations of ξ̃0 from the linear Stokes camera over the sphere at Ω = 35◦ are

shown in Fig. 6.9a and d, the ground truth values measured in the RGB950 are shown
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(a) True ξ0 451 nm (b) Estimated ξ̃0 451 nm (c) ξ0 deviation 451 nm

(d) True ξ0 662 nm (e) Estimated ξ̃0 662 nm (f) ξ0 deviation 662 nm

Figure 6.9: Results for the estimation of ξ̃0 for angle between the camera and light source
Ω = 35◦. The ground truth values from the DRR polarimeter in (a) and the estimated

values from the linear Stokes camera in (b) at 451 nm are compared in (c) by taking their

difference. The ground truth values from the DRR polarimeter in (d) and the estimated

values from the linear Stokes camera in (e) at 662 nm are compared in (f) by taking their

difference. 662 nm is high albedo for the red sphere, so depolarization is high and ξ0 is
low. 451 nm is low albedo, so ξ0 is larger. In (c) and (f), positive values indicate an

overestimation of the contribution of m̂0 while negative values indicate an overestimation

of the contribution of mID. Because the eigenvalues are normalized to sum to unity, the

errors shown in (c) and (f) can be thought of as related to the fraction of the light that is

attributed to the wrong MM component.

in Fig. 6.9b and e, and the difference between estimate and ground truth are shown in

Fig. 6.9c and f. The white region in the center consists of specific Rusinkiewicz coor-

dinates that the instruments do not have in common. 662 nm is high albedo for the red
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Figure 6.10: RMSD in ξ̃0 estimate from Stokes imaging as compared to ground truth

from DRR MM imaging according to Eq. 6.7 at 451 nm (blue squares) and 662 nm (red

triangles) at the fifteen acquisition geometriesΩ. RMSD values at 451 nm, the low albedo

case, are strictly greater than those for 662 nm. This is potentially explained by thematerial

being less depolarizing according to Umov’s effect than at 662 nm and therefore more

sensitive to disagreement between the ground truth and modeled m̂0. Additionally, the

eigenspectrum at 451 nm is further from TD than for 662 nm, so a TD model may be less

appropriate. The lower throughput due to the low albedo could exacerbate the effects of

noise and degrade the estimation due to the smaller dynamic range of the linear Stokes

camera.

sphere, so the expectation according to Umov’s effect is that depolarization is high and

ξ0 is low. Conversely, 451 nm is low albedo so ξ0 is expected to be larger. Both of these

trends are observed in the ground truth measurements as well as in the estimations. In

Fig. 6.9c and f, positive values indicate an overestimation of the contribution of m̂0 while

negative values indicate an overestimation of the contribution ofmID. Because the eigen-

values are normalized to sum to unity, the errors shown in Fig. 6.9c and f can be thought

of as related to the fraction of the light that is attributed to the wrong MM component.

The error averaged over the image of the sphere is summarized quantitatively by the

RMSD

ε(ξ̃0, ξ0) =

√√√√ 1

K

K∑
k=1

||ξ̃0,k − ξ0,k||2, (6.7)

whereK is the total number pixels, and k is the pixel index. Figure 6.10 shows the trend of
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ε(ξ̃0, ξ0) as a function of the angle between the camera and light sourceΩ. The error at 451

nm is larger than at 662 nm for everyΩ. According to Umov’s effect, the depolarization at

451 nm for a red object should be lower, suggesting that the estimation is more sensitive to

disagreement between the ground truth and model M̂0. Additionally, the relatively lower

overall reflectance at 451 nm also makes the linear Stokes camera measurements more

susceptible to noise.

Despite the MJM model diattenuation properties matching the measurement better at

451 nm than at 662 nm, using the MJM models to estimate ξ0 resulted in RMSD values

(see Fig. 6.10) averaged over acquisition geometry of 11.11% at 451 nm and 4.24% at

662 nm. This performance difference can be understood by noting that the depolarization

magnitude at 662 nm is higher and therefore the estimation is less sensitive to MJMmodel

accuracy.

6.4.3 Mueller Extrapolation from Stokes for a Stanford Bunny

To extend the demonstration of the efficient TD-MM model to non-spherical objects, the

MM image of a Stanford bunny was extrapolated from linear Stokes camera measure-

ments. This Stanford bunny was printed from the samematerial as the sphere in Chapter 5,

so the same pBRDF models were used.

Linear Stokes measurements are performed using the COTS camera and one polarized

illumination state from the RGB950 light source as in Sect. 6.4.2. The M̂0 models are

evaluated at the Rusinkiewicz angles calculated from the .stl file used to 3D print the

Stanford bunny. The M̂0model and Stokes data are used to estimate ξ̃0 following Sect. 6.2.

MM extrapolation is performed by plugging the estimated ξ̃0 back into Eq. 2.18.

Figure 6.11 shows a visual comparison of the Stanford bunny between various polar-

izers using the DRR measurements (left) and extrapolated MM image from linear Stokes

data (right). Each pair of images is on the same color scale. Crossed linear, aligned lin-

ear, and crossed circular measurements are simulated. The MM images are normalized,

so variation in the throughput of the second polarizer is due to the diattenuation, depolar-

ization, and geometric transformation of the incident polarizer. The overall appearance

between the results from DRR measurement and Stokes extrapolation are in agreement,
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particularly with respect to wavelength. At 451 nm, shown in Fig. 6.11a-c, the smaller

amount of depolarization expected for a low albedo material appears as greater polarimet-

ric modulation as compared to 662 nm, shown in Fig. 6.11d-f. The overall geometry trends

match as well shown by the regions of the bunny which appear brighter or darker are in

the results from DRR measurement correspond to brighter or darker regions in the results

extrapolation from Stokes data. Notably, the region with the most significant difference

is the left side of the bunny’s leg. This is the region where the TD assumption is weakest

due to a higher angle of scattering, as shown in Fig. 6.8. Additionally, this region of high

curvature is where misregistration between the modeled geometry shown in Fig. 5.2b, d,

and f and the geometry measured with the Stokes camera would cause large deviation in

the modeled and measured M̂0, reducing the quality of the extrapolation. There is un-

avoidable disagreement between the DRR simulations and the linear Stokes images due

to even slight differences in viewing geometry, resolution, and camera properties of the

two polarimeters. An example of such disagreement due to different camera systems can

clearly be seen on the left ear which has a significantly different shadow between DRR

and Stokes results.

6.5 Conclusions and Discussion

For materials described by the simple triple-degenerate polarized light scattering model,

this work proposes a new and simplified way to measure the Mueller matrix. While typ-

ical Mueller polarimetry requires 16 or more polarimetric measurements to reconstruct a

MM, the TDMMmodel allows for extrapolation from as few as 2 measurements when the

dominant process is known a priori. Existing methods for extrapolating full MMs from

partial polarimetry require non-depolarizing MMs74,95 or, at most, a rank-two coherency

matrix.1 This work is the only method known to the authors for extrapolating full-rank de-

polarizing MMs. Additionally, this method is compatible with existing DoFP polarimeter

technology and therefore can be made into a snapshot polarimeter.

To demonstrate the method with respect to surface texture, extrapolations at differ-

ent geometries of LEGO bricks with varying roughness are performed with a commer-
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cial linear Stokes camera and compared to the full MM polarimeter reconstructions. The

depolarization, which varies with surface roughness, is apparent even on visual inspec-

tion of the diagonal elements of the extrapolated MMs. Over varying texture, geometry,

and albedo, the partial polarimetric extrapolations achieve flux error mean and mode of

11.06% and 1.03%, respectively, despite a 10× reduction in the number of polarimetric

measurements.

To demonstrate the generalization of the TD-MM model to more complicated geom-

etry, MM images of a 3D printed Stanford bunny were extrapolated from linear Stokes

images. To compare extrapolated MM images to ground truth from DRR polarimetry,

Fig. 6.11 shows simulatedmeasurements of the bunny between various polarizers. Overall

agreement is good, with regions of high and low transmitted intensity in the extrapolated

results corresponding to those of the DRR results. The largest deviations occur on the left

side of the hind leg where Fig. 6.8 shows the TD eigenspectrum assumption is weakest

as well as being the region where registration between the geometry modeled (shown in

Fig. 5.2 (b,d,f)) and the actual measured geometry is most sensitive.

The quantitative results for the sphere and the visual assessment performed on the

Stanford bunny highlight an important point: the accuracy of a polarimetric model does

not need to exceed the accuracy of the polarimeter in use. For example, the polarimetric

accuracy of a model required to approach photorealism in a polarization-aware physics-

based rendering is lower than the accuracy required in silicon wafer metrology. In the

former application, a COTS Stokes polarimeter might be used to characterize a material

based on an efficient, reduced parameterization with sufficient accuracy. Facilitating the

characterization of many materials according to a simple model in a reduced length of

time may present a significant benefit over the cost of more rigorous characterization.
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(a) Crossed linear polarizers

451 nm

(b) Aligned linear polarizers

451 nm

(c) Crossed circular polarizers

451 nm

(d) Crossed linear polarizers

662 nm

(e) Aligned linear polarizers

662 nm

(f) Crossed circular polarizers

662 nm

Figure 6.11: Each image pair in (a-f) is arranged so that the simulated measurements are

on the left the normalized MM image of the Stanford bunny from the DRR polarimeter

and (right) the normalized extrapolated MM image from linear Stokes data at 451 nm. In

(a) vertically polarized illumination and a horizontal analyzer, in (b) vertically polarized

illumination and a vertical polarizer, and (c) between left circular polarization illumina-

tion and a right circular polarizer denoted between each image pair. In (d-f) the same

experiments is repeated at 662 nm. The MM images were normalized, so variation in

the intensity transmitted through the second polarizer is due to diattenuation, depolariza-

tion, and geometric transformation of the illumination polarization. If the estimate of ξ0
were too close to 0.25 (i.e. extrapolating to the ideal depolarizer), then there would be no

variation and all three polarizer conditions would look flat. Overall, there is good visual

agreement, with regions of high and low intensity in the DRR results tending to corre-

spond to high and low intensity in the Stokes camera extrapolated results. It is interesting

to note that, despite the MJM models having only residual circular polarization proper-

ties from the complex refractive indices, the crossed circular polarizer images show some

agreement. This is because of the variation in the depolarization due to the ξ0 estimate.
There is inherent disagreement between the measurement simulated from DRR data and

from the linear Stokes data due to the slightly different viewing geometry, resolution, and

camera properties between the two polarimeters. Qualitatively, the agreement between

DRR and Stokes results is lowest on the side of the leg. This is the region where the TD

assumption is weakest, as shown in Fig. 6.8. Additionally, this region of high curvature is

where misregistration between the modeled geometry shown in Fig. 5.2b, d, and f and the

geometry measured with the Stokes camera would cause large deviation in the modeled

and measured m̂0, reducing the quality of the extrapolation.
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CHAPTER 7

Conclusion

Mueller characterization provides a complete description of how polarization is trans-

formed upon a linear light-matter interaction. However, full Mueller polarimeters are

generally complex and may require trade-offs in spatial or temporal resolution which are

not ideal for certain applications. In these cases, partial polarimeters can be useful tools

to capture application-relevant polarization information. Effective partial polarimetry is

enabled by leveraging a priori knowledge about the subset of MMs which could be mea-

sured in a given application. This dissertation has discussed techniques for using that data

for specific partial polarimetric measurements as well as a method for efficiently acquir-

ing and storing MM data. As polarimetric sensing technologies become more mature and

widely accessible, there will be an abundance of new potential applications for polariza-

tion imaging. Full MM polarimetry may be required to realize some applications, others

may only require partial polarimetric information.

For example, some of the partial polarimetric experiments presented in this disserta-

tion made use of a COTS linear Stokes camera. These cameras have only become widely

available in recent years, and they have already found use in fields such as biomedical

imaging and computer vision. More unique polarimetric information could be acquired

without any increase in data acquisition time by using a full Stokes polarimeter. Such tech-

nologies are currently in development and will certainly enable new partial polarimetric

applications.77,83, 98, 99 These technologies would be particularly useful for partial polari-

metric experiments involving targets with birefringence such as human corneas or metallic

objects. These targets can potentially have a significant and useful circular polarization

signal which strictly linear polarization measurements are insensitive to. However, cir-

cularly polarized measurements likely would not have improved the depolarization mag-

nitude estimates of the rough LEGO bricks. An assessment of which partial polarimetric

technologies and strategies are most useful for a particular application depend on an un-
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derstanding of the polarization phenomena at play.

The contributions in this dissertation provide a framework for acquiring MM charac-

terizations and for performing several partial polarimetric experiments based on insights

from such characterizations. It is the author’s hope that the polarization sensing tech-

nologies which make polarimetry broadly accessible will continue to develop in tandem

with MM-informed partial polarimetric design. The remainder of this conclusion chapter

summarizes the findings of this dissertation.

In Chapter 3, the human eye is used as a target with spatially-varying birefringence to

demonstrate the optimization of a polarimeter which performs only one polarimetric mea-

surement. The cornea in the eye is known to consist of anisotropic structures called col-

lagen fibrils. The orientation of these fibrils changes over the spatial extent of the cornea,

resulting in birefringence which varies in magnitude and orientation. Eyes are subject

to random, unconscious movements which makes time-modulated Mueller polarimetry

poorly suited for efficient measurement. In this work, an initial MM image is performed

over the course of 15 seconds. From this MM image, two regions are selected based on

their retardance orientation to maximize their contrast. A geometric construction is then

performed on the to determine the illumination and analyzer polarization states which

produce a polarimetric image with maximum contrast between the two regions. Three of

these pairs are selected based on what measurements can be performed in the RGB950

polarimeter and are shown to capture the desired polarimetric information with snapshot

acquisition. The specific application of the optimization method for corneal birefringence

may find use in eye tracking, but the generality of the optimization means it may also be

used for any spatially-varying birefringent targets.

In Chapter 4, a original representation for empirically acquired isotropic pBRDFs is

discussed. The dependence of an isotropic pBRDF on scattering geometry is typically

parameterized with three Rusinkiewicz angles. When tabulating measured data into an

empirical pBRDF, these angles are interpreted as forming a 3D Cartesian grid, where one

MM is associated with each point on the grid. By interpreting the three angles as cylindri-

cal coordinates, the tabulation is made more compact and more convex. Compactness is

increased by excluding non-reflection geometries and redundant geometries. Convexity is



103

desirable for ease of interpolation. An empirical pBRDF is acquired by takingMM images

at some sequence of goniometer positions. A given set of goniometer positions generally

does not capture MM data for every discrete triplet of Rusinkiewicz angles. The percent-

age of triplets with at least one MM data point is used as a figure of merit for comparing

goniometer sequences. An efficient goniometer sequence is determined and executed for

a given set of object and camera parameters. Efficient acquisition and representation of

pBRDFs has implications for fields such as computer vision. More material characteriza-

tions can be obtained and stored with the same amount of resources, which increases the

diversity of objects that can be used in a rendering.

In Chapter 5, pBRDFmodels for two different materials are discussed. The first model

is for first-surface reflection based on microfacet theory. The second model is a original

model introduced in this work which combines first-surface and diffuse reflection in a

MJMmodel in order to decouple depolarization. The mixed model combines first-surface

and diffuse reflection as a function of geometry based on four material constants. The

model is compared toDRRpolarimetermeasurements in terms of diattenuation orientation

and magnitude.

In Chapter 6, models for the dominant MJMs of two different objects are used to esti-

mate depolarization magnitude from partial polarimetry. Using a TD assumption for the

depolarization structure of the MM image, a linear estimator is created which can recover

the depolarization magnitude from as few as two polarimetric measurements. This de-

polarization magnitude parameter and the dominant MJM model can then be combined

to extrapolate the full-rank depolarizing MM. This is demonstrated using a commercial

linear Stokes camera with a single polarized illumination state. The depolarization param-

eter is estimated for plastic LEGO bricks with variable surface roughness using a purely

first-surface Fresnel reflectionmodel. The original reflectionmodel which combines first-

surface reflection and diffuse reflection from Chapter 5 is used to estimate the depolar-

ization parameter from a 3D printed red sphere and extrapolate the MM image for the

Stanford bunny.
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APPENDIX A

Calculation of Scattering Geometry and Transverse Plane Bases

Many of the Chapters in this dissertation relied on the calculation of scattering geometry

and related quantities at each pixel within an image. The geometric derivations of these

equations are not a novel contribution of this dissertation, but are collected here so that

others may use this as a resource when performing similar or related work. Included in this

Appendix are equations to define the observation vectors for a given a goniometric mea-

surement configuration, equations to find the points where these vectors intersect objects

of various shapes and the surface normals at those points, and equations for determining

the transverse plane bases for polarization states based on the measurement and scattering

geometry.

A.1 Observation, Illumination, and Normal Vectors

Except in the special case of a telecentric camera lens, the observation vectors vary in di-

rection over the image plane. For each pixel indexed (u, v), the corresponding observation

vector is given

ωωωo(u, v) =

[(
−u+ Nu

2

)
µ,

(
−v + Nv

2

)
µ, feff

]ᵀ
, (A.1)

where Nu and Nv are the number of pixels in the u and v dimensions respectively, µ is

the pixel pitch, and feff is the effective focal length of the camera in the same units as µ.

Equation A.1 is then normalized to be a unit vector ω̂ωωo. The set of observation vectors for

a given camera is invariant to the shape of the object, so ω̂ωωo is used as the starting point for

other calculations. The point where the observation ray intersects the object is calculated

robj = rcam − l ω̂ωωo, (A.2)
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where l is the depth along the observation vector from rcam, the position of the camera
entrance pupil. It is assumed that rcam is known. The illumination vector is then found

ω̂ωωi =
rsrc − robj

‖rsrc − robj‖
, (A.3)

where rsrc is the position of the light source which is also assumed to be known. The
following subsections provide the equations needed to calculate the depth l along the ob-

servation vector to the point of intersecting with the object as well as the equations for the

surface normals n̂ for different shapes.

A.1.1 Sphere

For a spherical object centered at the origin, a dummy variable ∆ is calculated

∆ = (−ω̂ωωo · rcam)2 −
(
rcam · rcam − ρ2

)
, (A.4)

where ρ is the radius of the sphere. When∆ is non-negative, the ray intersects the sphere.

It is assumed that the ray hits the first surface of the sphere. The distance l from the camera

to the sphere is given by

l = ω̂ωωo · rcam −
√
∆. (A.5)

The point of intersection is found by plugging l into Eq. A.2. The surface normal of the

sphere is simply the vector of the intersection point normalized to a unit vector as in

n̂ =
robj
‖robj‖

. (A.6)

A.1.2 Plane

For a plane, the object must be specified in terms of its surface normal, so n̂ is assumed

to be known. The distance from the camera to the planar surface centered at the origin is

l =
rcam · n̂
ω̂ωωo · n̂ . (A.7)

The point of intersection is found by plugging l into Eq. A.2.
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A.1.3 Cylinder

For a cylindrical object centered at the origin of length Lcyl and axis oriented at âcyl, a
dummy variable ∆ is calculated

∆ = (−ω̂ωωo × âcyl) · (−ω̂ωωo × âcyl)ρ2 − (âcyl · âcyl)(−rcam · (−ω̂ωωo × âcyl)), (A.8)

where ρ is the radius of the cylinder. When ∆ is non-negative, the ray intersects the

cylinder. It is assumed that the ray hits the first surface of the cylinder. The distance l

from the camera to the cylinder is given by

l =
(−ω̂ωωo × âcyl) · (−rcam × âcyl)−

√
∆

(−ω̂ωωo × âcyl) · (−ω̂ωωo × âcyl)
. (A.9)

Equation A.2 is used to find the intersection point. If −Lcyl/2 ≤ robj · âcyl ≤ Lcyl/2,

then the ray intersects the curved surface of the cylinder. If the ray intersects the curved

surface, then the surface normal is calculated

n̂ =
robj − âcyl(âcyl · robj)

‖robj − âcyl(âcyl · robj)‖
. (A.10)

A.2 Rusinkiewicz Coordinate System

Once ω̂ωωi, ω̂ωωo, and n̂ are found per the previous section, the Rusinkiewiciz angles, see

Fig. 4.1, can be calculated. The halfway vector, ĥ, is the bisector of ω̂ωωi and ω̂ωωo

ĥ =
ω̂o + ω̂i

‖ω̂o + ω̂i‖
. (A.11)

Different conventions exist for the direction of ω̂ωωi (i.e., pointing toward the source or in

the direction of photon-travel), however the equations provided here are consistent. The

halfway angle and difference angle, θh and θd, respectively, are simply calculated

θh = arccos(ĥ · n̂) (A.12)

and

θd = arccos(ĥ · ω̂0). (A.13)
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The angle between the plane spanned by n̂ and ĥ and the plane spanned by ω̂ωωo and ĥ is

given by

φd = arccos
[(

ĥ × n̂
)
·
(

ĥ × ω̂ωωo

)]
sgn

[((
ĥ × n̂

)
×

(
ĥ × ω̂ωωo

))
· ĥ

]
, (A.14)

where the signum function is used to give φd the correct handedness.

A.3 Transverse Plane Bases

In this work, there are three transverse plane bases which are used to define the orienta-

tion of polarization states: the polarimeter basis, the local basis, and the microfacet basis.

These bases determine what polarization state in 3D is meant by “horizontal” and “verti-

cal” polarization. Measured MMs and Stokes vectors are in a basis which is determined

by the PSG and PSA which produced them. Tabulated and analytic pBRDFs need to be

in the local basis so that the data can be generalized to other geometries and measurement

configurations. The microfacet basis is used to define directions for s- and p-polarization

when evaluating the Fresnel reflection coefficients from Eq. 2.4

The change of basis of a MM is equivalent to applying rotation matrices of the form

R(α) =


1 0 0 0

0 cos(2α) − sin(2α) 0

0 sin(2α) cos(2α) 0

0 0 0 1

 , (A.15)

where α is the angle of rotation. A MM in one basis a is rotated to another basis b by

Mb = R(αo)MaR(αi), where αi and is the angle from the input basis of b to the input

basis of a, and αo is the angle from the output basis of a to the output basis of b.

A.3.1 Polarimeter Basis

The polarimeter basis vectors are defined using a double-pole coordinate system. A set of

reference polarization basis vectors are defined for the on-axis rays and parallel transport

is used to determine the basis vectors for other ray directions. With the object centered
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at the origin, the illumination and observation axis directions, âi and âo, respectively, are
calculated

âi = − rsrc
‖rsrc‖

and âo =
rcam
‖rcam‖

. (A.16)

A 3×3 rotation matrix is used to perform the parallel transport. The rotation matrix R3

for an angle φ about the axis r̂ = (rx, ry, rz) is calculated

R3(̂r, φ) =


r2x(1− cosφ) + cosφ rxry(1− cosφ)− rz sinφ rxrz(1− cosφ) + ry sinφ

ryrx(1− cosφ) + rz sinφ r2y(1− cosφ) + cosφ ryrz(1− cosφ)− rx sinφ
rzrx(1− cosφ)− ry sinφ rzry(1− cosφ) + rx sinφ r2z(1− cosφ) + cosφ.

 (A.17)

The rotation axis and angle, r̂i and φi, respectively, for transforming the PSG reference

basis are calculated

r̂i =
âi × ω̂i

‖âi × ω̂i‖
and φi = arccos(ω̂i · âi). (A.18)

Similarly, the rotation axis and angle, r̂o and φo, respectively, for transforming the PSA

reference basis are calculated

r̂o =
âo × ω̂o

‖âo × ω̂o‖
and φo = arccos(ω̂o · âo). (A.19)

Both ω̂ωωi and ω̂ωωo vary per-pixel in an image, therefore r̂i, φi, r̂o and φo all vary per-pixel as

well.

The reference polarization basis vectors for the PSG and PSA must be perpendicular

to âi and âo, respectively. If the source and camera rotate about the origin in the x-z plane,
then a convenient choice the vertical polarization reference vectors for the PSG and PSA

is simply ŷ = (0, 1, 0). The vertical polarization basis vector for the PSG and PSA, ŷPSG

and ŷPSA respectively, at each pixel are then calculated

ŷPSG = R3(̂ri, θi)ŷ and ŷPSA = R3(̂ro, θo)ŷ. (A.20)

For each ray, the horizontal basis vectors are found

x̂PSG = ŷPSG × ω̂ωωi and x̂PSA = ŷPSA × ω̂ωωo. (A.21)
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A.3.2 Local and Microfacet Bases

The local and microfacet bases are similar as they are both defined relative to planes of

incidence and exitance. The polarization basis vectors are those in the transverse plane

which are parallel and perpendicular to the planes of incidence or exitance. The polariza-

tion basis vectors are in the transverse plane and either perpendicular to the incident/exitant

plane (s-polarization) or parallel to the incident/exitant plane (p-polarization).

For the local basis, the incident and exitant planes contain the surface normal n̂. The
vectors ω̂ωωi, ω̂ωωo, and n̂ are generally non-coplanar so the incident and exitant planes must be
treated separately. The s-polarization directions, which are used as horizontal polarization

by convention, are calculated

ŝi =
ω̂ωωi × n̂
‖ω̂ωωi × n̂‖ and ŝo =

n̂ × ω̂ωωo

‖n̂ × ω̂ωωo‖
. (A.22)

The p-polarization basis vectors are mutually perpendicular with the ray direction and

s-direction, so they are calculated

p̂i = ω̂ωωi × ŝi and p̂o = ω̂ωωo × ŝo. (A.23)

Themicrofacet basis is calculated similarly to the local basis using Eqs. A.22 andA.23,

with the exception that in Eq. A.22, the surface normal n̂ is replaced with the halfway

vector ĥ, which serves as the surface normal for the hypothetical microfacet. The vectors
ω̂ωωi, ω̂ωωo, and ĥ are all coplanar, so ŝi and ŝo are parallel.
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APPENDIX B

Linear Correlation Coefficient Optimization of Mixed Polarized Reflection Model

As shown in Chapter 3, the polarimetric measurement of the ideal depolarizer is constant

aMIDg = 1
2
, regardless of the PSG and PSA states. Any variations in polarimetric mea-

surement P of a TD-MM are due to the dominant MJM term. Therefore, the individual

polarimetric measurements Pn of a TD-MM, (i.e., the elements of the flux vector from

Chapter 6) are linearly related to the polarimetric measurements Pn,0 of the MJM. Using

the notation of Eqs. 6.2 and 6.3, this is written

P = β0P0 +
βID
2

(B.1)

The slope and offset of the linear relation, β0 and βID/2, respectively, depend on ξ0 and

M00, which in turn each depend on scattering geometry. However the material constants

nλ, aλ, and bλ are assumed to be geometry-independent. Therefore, nλ, aλ, and bλ could

be globally tuned to optimize the linear fit of P to P0 across the pixel-dependent scatter-

ing geometry simultaneously. This method is appealing because the linearity of P versus

P0 can be assessed with fewer than 16 polarimetric measurements. In other words, the

material parameters in the mixed polarization model can be estimated using partial po-

larimetry. Being able to determine the MJM model, ξ̃0, and M̃00 from the same set of

partial polarimetric measurements would enable the extrapolation of a MM as described

in Chapter 6 with less assumed prior knowledge.

A preliminary demonstration of this method was performed on the MM images in

Dataset 3.37 The material constants which maximized the linear correlation coefficient are

shown in Tab. B.1. These optimized constants produced correlation coefficients of 0.8693

and 0.7677 for measurements performed at 451 nm and 662 nm, respectively. These

correlation coefficients are larger than those for the ad hocmaterial constants, which were

0.8390 and 0.7328 for 451 nm and 662 nm, respectively. This means that the optimization
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Table B.1: Material constants optimized to match the models to the observed MM mea-

surements. These parameters are constant with respect to scattering geometry.

Material constants 451 nm 662 nm

nλ + iκλ 1.92367− i0.112273 0.393544− i1.07656
aλ 0.201423 1.28083
bλ 6.99784 5.38966

found solutions which improved agreement between measurements and the model, as far

as this particular figure of merit.

Figures B.1 and B.2 show a comparison of ground truth MJM images for a red sphere

determined by analyzing DRR measurements versus the mixed polarization model using

ac hoc and optimized material constants at Ω = 65◦ and Ω = 20◦, respectively. At

Ω = 65◦, the ad hoc model has significant erroneous values in them32 andm23 elements

which the optimized model does not. For any polarimetric measurements which involve

elliptical PSG/PSA states, this may cause meaningful errors. Conversely, the optimized

model at 662 nm introduces greater deviation in the m31, m13, m32, and m23 elements

which were not present in the ad hocmodel. For the range of scattering geometries present

in the image of a sphere at Ω = 65◦, the optimized model agrees with the measurement at

451 nm more than 662 nm.

At Ω = 20◦, the sign and magnitude errors at 662 nm in the m31, m13, m32, and m23

elements persist. There is also large disagreement in diattenuation magnitude near the

center of the sphere where θh is small, meaning that the large value of bλ is suppressing

the diffuse polarization term too much. The agreement between measurement and the

optimized model at 451 nm is still better than at 662 nm, but the diattenuation magnitude

increases rapidly at the edges of the sphere. This is again the result of the larger value

of bλ suppressing the diffuse term where θh is small, but rapidly increasing the weight on

diffuse when θh is large.

The variability in agreement between the measured MJM and the optimized model

MJM suggests that, while the optimized material parameters maximize the linearity of

P to P0 over all geometries, better agreement may be achieved by not considering the
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(a) Measured 451 nm (b) Ad hoc model 451 nm (c) Optimized model 451 nm

(d) Measured 662 nm (e) Ad hoc model 662 nm (f) Optimized model 662 nm

Figure B.1: MJM images of the red sphere at (a-c) 451 nm and (d-f) 662 nm at Ω = 65◦.
The different MJMs are (a,d) the dominantMJM fromDRRmeasurements and the models

(see Eq. 5.3) using (b,e) the ad hoc material constants in Tab. 5.1 and (c,f) the optimized

material constants in Tab. B.1.

material parameters to be constant. The degree to which the material parameters may be

considered constant depends on the accuracy requirement for any given application.
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(a) Measured 451 nm (b) Ad hoc model 451 nm (c) Optimized model 451 nm

(d) Measured 662 nm (e) Ad hoc model 662 nm (f) Optimized model 662 nm

Figure B.2: MJM images of the red sphere at (a-c) 451 nm and (d-f) 662 nm at Ω = 20◦.
The different MJMs are (a,d) the dominantMJM fromDRRmeasurements and the models

(see Eq. 5.3) using (b,e) the ad hoc material constants in Tab. 5.1 and (c,f) the optimized

material constants in Tab. B.1.
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