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ABSTRACT

Novel biosensing approaches are essential to the improvement and advancement of health

and medicine. Many diseases have unique biomarkers that can be used to diagnose, guide

treatment, and monitor treatment progress for the disease. In addition, biosensing for in-

fectious diseases is essential for mitigating the impact of pandemics like the COVID-19 pan-

demic. To this end, lens-free holographic microscopy (LFHM) has emerged in recent years as

a novel biosensing platform for a variety of targets and diseases. In this dissertation, a novel

LFHM-based biosensor was developed to diagnose COVID-19 in response to the pandemic.

Additionally, deep learning algorithms were explored to improve the sensor’s performance

in real-world and point-of-care conditions. A variety of these deep learning approaches were

investigated and characterized, providing an in-depth resource for construction, fine-tuning,

and debugging of similar deep learning algorithms. Finally, a second novel LFHM device

was constructed that utilizes polarization and localized surface plasmon resonance of gold

nanorods to detect single rods. This device was characterized using a resolution test target

as a first step towards a biosensing study utilizing this novel device. This work provides a

strong foundation for the use of this LFHM-based biosensor in the field for clinical diagnostic

procedures, and represents an advancement in LFHM imaging.
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INTRODUCTION

Goals and Motivation

The goals of this dissertation are to: (1) apply a portable, lens-free holographic mi-

croscope (LFHM) and novel quantification workflow to address a pressing biosensing need

in biomedicine and (2) develop a novel LFHM-based biosensor to address limitations facing

LFHM biosensors and improve performance as a biosensor. As will be discussed in-depth

throughout this dissertation, LFHM is an emerging technology with the potential to have

significant impact on clinical and biomedical applications, including those involving micro-

scopic imaging and biosensing. The motivation behind this research is to utilize LFHM’s

benefits to these applications while resolving some of its limitations through the construction

of a biosensor and to provide a basis for eventual translation of this LFHM device into clini-

cal medicine and biomedical research. To this end, an LED-based LFHM biosensor is tested

and applied to sense severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus,

the virus responsible for the COVID-19 pandemic, and a novel laser diode-based LFHM

microscope was invented to improve upon this previous LFHM configuration and improve

its performance.
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Overview

In Chapter 1, the principles of biological sensing and imaging are explored. Here, modern

sensing approaches for biomolecules and for infectious diseases are described, in particular

their strengths and weaknesses. Microscopic imaging fundamentals are also explored here,

including basic components necessary for conventional microscopes to operate successfully.

Chapter 2 describes the fundamental optics, physics, and mathematics underpinning

LFHM imaging and image reconstruction. Additional methods commonly used with LFHM,

such as pixel super-resolution (PSR) and deep learning (DL) are also described here. Then,

examples of LFHM in a wide variety of clinical and biomedical applications are covered, with

special attention paid to the advantages and drawbacks of this method in each application.

The purpose of this is to provide a compelling basis for the use of LFHM in biomedicine, to

give examples of LFHM devices and where they commonly fall short, and to show that the

systems invented in this dissertation are novel and not replicated by any existing devices.

In Chapter 3, a brief characterization of the LFHM system used for the biosensor is

covered, followed by details on how it was altered to be optimized for point-of-care COVID-

19 diagnosis. Then, results from a biosensing study are shown, and a novel quantification

workflow involving a DL algorithm is described that gives evidence for this device’s successful

application to COVID-19 diagnosis.

Chapter 4 delves deeper into the optimization process for this DL approach. This

chapter answers lingering questions on what the alteration of hyperparameters and network

architecture does to affect training and network performance of a simple convolutional neu-

ral network (CNN). This chapter is meant to provide guidance in CNN construction and
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improvement for this and similar types of applications.

In the final experimental chapter, Chapter 5, a novel LFHM device is built to address

some of the limitations described in Chapter 3. The physical principles underpinning this

device are explained, and the components of the device and key metrics such as resolution

are tested and quantified. This device represents a novel contribution to the fields of LFHM

and biosensing.

Lastly, the final chapter provides a summary of the aims accomplished in this disserta-

tion and some proposed future directions for this work that would extend its impact.
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CHAPTER 1

Principles of Biological Sensing and Imaging

This chapter provides background on modern biosensing technologies and biological

imaging basics. These two fields are highly relevant to the LFHM devices invented and

tested in this dissertation.

1.1 Basics of Biosensing

Modern biosensors come in many shapes and forms but generally adhere to a few basic

principles. Primarily, biosensors must be ideally both sensitive to the target and specific.

Additional consideration must of course be paid to the target identity, being careful to select

a target that, in itself, is sensitive and specific for the disease process the biosensor is trying

to diagnose, however this chapter will be limited to a discussion of biosensors, rather than

the target identity, and the target will be assumed to be a good one for a given disease.

In this case, sensitivity refers to the false negative rate and limit of detection (LOD) of

a biosensor, with a higher sensitivity corresponding to a lower false negative rate and a

lower LOD, enabling detection of very low target concentrations [1]. Specificity refers to

the false positive rate, where high specificity indicates a low false positive rate. Producing a

biosensor that balances these two characteristics is quite difficult to accomplish, and extensive



18

testing is needed to confirm sensitivity and specificity. Often, increasing sensitivity reduces

specificity, while increasing specificity means decreasing sensitivity. This logically makes

sense, as setting a lower positive signal threshold for the biosensor can result in a lower

LOD, but would also result in more false positive results simply due to sample variation,

similar to the effect raising the p-value has in tests of statistical significance.

Biosensors or tests that provide both high sensitivity and specificity compared to other

tests for the same disease are termed a “gold standard” test. All new biosensors tend to

be compared to these “gold standard” tests and they are typically the ones sought out in

a clinical setting for definitive diagnosis. Examples of these can be found in Table 1.1,

which also includes information on their typical LOD ranges (which vary for each biosensor

depending on the specific target), costs, and other key information. Most biosensors can

only be used for the detection of a single molecule type, such as nucleic acids like DNA and

RNA in the case of polymerase chain reaction (PCR), so are only the gold standard for a

specific type of analyte. Others, like the lateral flow assay (LFA), are not a gold standard

at all but are commonly used in point-of-care (POC) settings due to their cost and size.

Another key aspect of biosensors relates to the signal they produce, in that they must

produce one in the presence of a target. Gold standard biosensor platforms tend to pro-

duce a signal that is quantitative rather than qualitative, such as PCR or enzyme-linked

immunosorbent assay (ELISA). These tend to be the “best” types of biosensors, but the

context in which they are used and the specific disease process can mean that the gold

standard methods may not always be best. For example, the presence of any bacteria in

the blood indicates sepsis, so a quantitative measure of this may not be needed to make

clinical decisions, and only high levels of human chorionic gonadotropin (hCG), which is
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Table 1.1: Gold standard and common biosensors. Provided below is a list of the biosensing
techniques and platforms discussed in this dissertation, including relevant information pertaining
to their operation and use cases.

Type Molecules Typical
LOD

Cost Size Training

PCR DNA and
RNA only

102 − 103

copies per
mL [2]

∼$10,000
device, $7.50
per test [3]

Benchtop Moderate
training re-
quirement

ELISA Protein only 0.1 - 10 ng
per mL [4]

∼$10,000 de-
vice, $120 -
$500 per as-
say with 12
tests max-
imum per
assay [5]

Benchtop Extensive
training re-
quirement

SiMoA [6] Protien only 10 – 20 tar-
get analytes
per 100 µL

>$10,000 for
equipment,
individual
test are ex-
pensive

Benthtop More train-
ing than
ELISA re-
quired

LFA Protein,
DNA, RNA

102 − 103 ng
per mL (1 -
10 M) [7]

A few dollars
per test [8]

Portable, fits
in a pocket

No training
required

SPR Protein,
DNA, RNA

Single
molecule pos-
sible, 1 - 100
ng per mL
typical (1 -
100 nM) [9]

>$10,000 for
equipment,
>$50 per test
in some cases

Benchtop,
elaborate
setup and
large equip-
ment

Extensive
training re-
quirement

Agglutination Protein,
DNA, RNA,
Infectious

60 - 500 ng
per mL [10]

A few dollars
per test, only
sample prep
equipment
needed which
varies

Portable test,
non-portable
sample
preparation
equipment

Low training
requirement

LFHM Protein,
DNA, RNA,
Infectious

0.5 - 100 ng
per mL [11,
12]

∼$300 de-
vice, $0.05 -
$0.15 per test

Portable,
tabletop de-
vice

Low training
requirement

always present in the blood, are useful for diagnosing pregnancy, so quantitative readout is

also unnecessary for pregnancy tests. These signals can be in the form of a color change like

in ELISA and LFAs, or the production of light through luminescence like in PCR. Other
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methods include microparticle agglutination, which produces a visual change in the sample,

and even surface plasmon resonance shifts.

The final key principle that affects biosensor usability and translation into clinic is the

cost and form factor of the device. As a general rule, inexpensive and small biosensors are

ideal for use in POC and low-resource settings, whereas expensive and bulky biosensors are

best suited for major hospitals. This is why MRIs are not found in everyone’s home and

often aren’t available in low-resource communities, whereas a pregnancy test, which is a type

of LFA, can be purchased at every drugstore in every community. One is massive and costs

millions of dollars to produce, and the other is a few dollars and can fit in the palm of your

hand. These factors also relate to the operability of the device. If a device takes two trained

full-time technicians to operate and a trained physician to interpret the results while another

can be operated after reading three steps of instructions and can be read by anyone who

can see, they will be used optimally in very different environments and for very different

diseases. Again, Table 1.1 gives information of cost, size, and relative training requirements

for each of the listed biosensors.

1.2 Biosensor Impact

When discussing the potential impact biosensors can have, one needs to look no further

than the recent COVID-19 pandemic caused by the SARS-CoV-2 virus. COVID-19 chal-

lenged countries around the world as governments and health systems struggled to contain

the spread of the disease and to mitigate its impact. The worldwide response was remark-

able, with nations implementing policies to limit human-to-human spread, distribute and

manufacture hospital resources, and ensure that citizens’ basic needs were met. Of all the
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measures implemented to combat the COVID-19 pandemic, possibly the most impactful

early on was the rapid and early detection of SARS-CoV-2, which informed the need for

quarantine, treatment, and contact tracing of infected individuals [13].

The scarcity of available test kits, their accuracy and sensitivity, the delay in receiving

results, and the relative complexity of the tests themselves all stood as barriers to widespread

testing at the desired scale. The development of new, more sensitive, and specific diagnostic

technologies and their mass production has enabled better testing now than was available at

the beginning of the outbreak in 2020, which, in combination with the vaccine, significantly

slowed the spread of the virus and prevented transmission. Adequate rapid POC tests

would have alleviated the strain that the healthcare system faced early on and could have

saved many lives through rapid diagnosis of COVID-19, ensuring appropriate quarantine and

treatment measures could be implemented to prevent transmission and severe illness.

Other trends in healthcare also motivate interest in biosensing technologies. The move

towards personalized medicine is based on the idea that unique levels of hormone and

biomolecules, as well as genetic makeup, should motivate and guide treatment methods in

patients [14]. Powerful POC tools that are both sensitive and quantitative will be necessary

to make this type of precision medicine practical and available to patients in the future.

In the field of oncology, biomolecules are already used to aid in cancer diagnosis for

pancreatic cancer [15–18], and are even now being considered for the diagnosis of other

cancers too. These include gastric cancer and colon cancer, among others [19, 20]. Highly

sensitive biosensors with quantitative readouts will be essential for the widespread use of

biomarkers for cancer diagnosis.

Even in neurology, biomarkers for Lewy body disease, frontal temporal dementia, Parkin-
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son’s disease, Alzheimer’s disease, and progressive supranuclear palsy are becoming more

widely used [21, 22]. These diseases are particularly difficult to differentiate clinically, so

benefit greatly from biomolecule sensing. Development of effective quantitative and sen-

sitive biosensors for these biomarkers would have a great impact on this field, and enable

simple diagnosis of a great deal of other neurological diseases much more efficiently and

rapidly.

1.3 Common Biosensors

1.3.1 Polymerase chain reaction

The type of PCR discussed here is often referred to as real time quantitative PCR

(qPCR), with a variation on this being “reverse-transcriptase” qPCR (RT-qPCR). In qPCR,

DNA is first isolated from a sample, then mixed with enzymes, short DNA primers, reporter

molecules, and single nucleotides [23]. The mixture is then loaded into a qPCR device where

it is heated to denature the DNA, separating the two DNA strands. The temperature is

lowered to allow the short primer sequences to anneal to the separated DNA strands, and

enzymes use the nucleotides to synthesize new DNA, using the original strand as a template.

The process repeats, doubling the amount of DNA present with each cycle until the primers

are used up and the process saturates. To detect a signal, a fluorescent probe or DNA binding

dye is used as a reporter molecule so that signal increases proportionally to the amount of

synthesized DNA present. The fluorescent probe remains quenched until it binds to double-

stranded DNA or is unquenched by cleavage resulting from DNA synthesis, depending on the

type of qPCR performed. Regardless, fluorescent signal is produced as more double stranded
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DNA is synthesized. By keeping track of the signal and number of cycles needed to reach

saturation, the initial concentration of DNA can be determined. RT-qPCR functions in

exactly the same way, however a reverse transcriptase protein is used in the initial synthesis

step to transcribe a single strand of DNA from the target RNA before the DNA can be

amplified like in qPCR. Figure 1.1 shows details on how qPCR functions and the readout of

a dilution series.

Theoretically, this process means that qPCR can detect just a single target DNA or

RNA molecule in a 30 µL sample, or around 33 copies per mL. Practically, however, this

tends not to be the case, and the LOD of qPCR is typically on the order of 100s to 1000s

of copies per mL. SARS-CoV-2 RT-qPCR for example has a LOD of 102 − 103 copies per

mL [2].

qPCR is currently the gold standard for DNA and RNA biosensing, but it may not

be the ideal test in every circumstance. This is due to the medium-complexity sample

preparation procedures and the bulky and expensive devices needed to perform it [23, 24].

Trained technicians and laboratory spaces are needed to perform qPCR, which is not always

possible. Additionally, it typically takes days to get samples to a lab capable of performing

qPCR, prepare those samples, test them, and provide a readout to a patient. In a setting

like the COVID-19 pandemic, for example, this presented a serious barrier to widespread use

of this biosensor in low-resource and POC settings and may have contributed to the health

disparities that were observed during the pandemic. In this sense, despite high sensitivity

and specificity, qPCR has some drawbacks as well.

Some PCR-based techniques have been developed to address these limitations, par-

ticularly from a device portability and cost standpoint. Devices such as ID NOW™ and
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Figure 1.1: qPCR principles. (a) The process by which a single DNA strand is amplified and
detected through multiple qPCR cycles. (b) Reproduced from [23]. Depicts the fluorescence signal
achieved through qPCR amplification at different initial DNA loads.
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POCKIT™ are relatively new technologies that utilize insulated isothermal polymerase chain

reaction, or iiPCR, to qualitatively detect the presence of pathogen RNA [25]. In these de-

vices, the sample is heated from the bottom, creating a convection current where it cools as

it moves up in the chamber, effectively providing the heating and cooling cycles of traditional

PCR. While this has enabled rapid, point-of-care diagnostic PCR testing to become a reality,

it can only give a qualitative result (the presence or absence of the target molecule) and is

10-100 fold less sensitive than conventional qPCR [26]. As with all PCR-based biosensors

however, they are still incapable of sensing proteins or any other type of biomolecule.

1.3.2 Enzyme-linked immunosorbent assay

ELISA is considered the gold standard biosensing platform for the detection of pro-

teins [27]. In this method, antibodies, rather than DNA primers and enzymes, are the

primary functional molecule. First, antibodies are used to coat the bottom of a well and

excess antibody still floating in the well is washed off. These antibodies function as a capture

molecule, binding the target protein and immobilizing it at the base of the well when the

sample is added into the well. Unbound protein is then removed when the sample is washed

away. A second antibody binding step is performed, where more antibodies are added to the

well, sandwiching the captured target. Another wash step, then the final antibody binding

step is performed. This time, the antibody binds to the second antibody and is conjugated

with an enzyme. After a fourth wash, a colorless dye is added to the well and the conjugated

enzymes convert the dye into a colored dye. Each enzyme can change the color of many dye

molecules, resulting in signal amplification which makes this test quite sensitive. The typical

LOD for conventional ELISA tends to be around 0.1 - 10 ng per mL [4]. The resulting
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color change in the well is then measured using a specialized spectrophotometer device that

provides a quantitative readout of protein concentration. Dye conversion only occurs when

the third antibody and therefore the protein is present, so this test is specific for any given

target protein. Figure 1.2 illustrates this process.

Figure 1.2: ELISA workflow consists of a capture phase, and a signaling phase. During target
capture, an analyte is immobilized within a well using an antibody. Signaling occurs when an
enzyme attached to the antibody shown in black bound in the final antibody binding phase activates
a dye.

There are two main disadvantages to ELISA. First, the extensive sample processing

steps required to perform a single assay. With the inclusion of no less than four wash

steps, four binding steps, and a dyeing step before a sample can be read, this is one of the

more complex assays performed in biosensing. A skilled technician can multiplex different

ELISA targets in a single well plate to improve efficiency, but each of the steps still must be

performed properly. Second, the antibodies and measurement device, a spectrophotometer,

used to perform ELISA are expensive, and the device itself is large and bulky. This means

that ELISA is not a practical biosensing platform to use in POC settings or low-resource
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settings. The requirement of a skilled technician also limits ELISA’s portability.

Similar to PCR, some variations on traditional ELISA have been developed to address

these disadvantages. A technique called plasmonic ELISA has been tested to eliminate

the need for a specialized device to quantify the color change [28, 29]. Gold nanoparticles

function as a reporter molecule, with their plasmonic scattering giving rise to a particular

color hue in a negative sample. Instead of activating a dye, the enzyme here alters the surface

charge of the nanoparticles, resulting in aggregation which changes the hue. The guiding

principle behind plasmonic ELISA’s effectiveness is that a hue change is easier to detect with

the human eye than a saturation change, which enables positive results to be read without a

specialized device. Sensitivity is affected in this case by how well tuned nanoparticle sizes and

concentration are so that they begin to aggregate at very low concentration. This, however,

means that this technique is not qualitative unless specialized imaging is again performed.

A relatively recent iteration of ELISA called SiMoA improves on the sensitivity of

ELISA, reducing the LOD to 10 – 20 target analytes per 100 µL of sample [6]. This tech-

nique utilizes an array of femtoliter-sized reaction chambers, each of which can contain only

a single 2.7 µm microbead. Beads are coated with a capture antibody and the bound com-

plexes are labelled with an enzyme, just as in conventional ELISA. The confinement of these

complexes to a very small volume enables even single complexes (one enzyme) to produce

enough signal to detect it. This technique uses a fluorescent fluorophore rather than a dye,

thus fluorescent signal is detected. SiMoA improves on ELISA in its sensitivity, however it

still requires a device to image the assay result, which limits the assay’s use as a POC test.
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1.3.3 Lateral flow assay

LFAs are the first biosensing platform discussed in this subsection that are not a gold

standard technique. Similar to ELISA, LFAs also rely on antibodies to perform protein

biosensing [8], while DNA primers can be used for DNA and RNA biosensing [30]. To perform

an LFA, a sample is simply loaded onto one end of a porous membrane. Capillary action pulls

the fluid sample from the loading pad through a conjugate pad which contains antibodies or

DNA conjugated to a reporter molecule or particle. If the target is present in the sample,

it will bind to antibodies or DNA in the conjugate pad as it passes through. The purpose

of the reporter is to be invisible to the naked eye unless they are grouped together densely.

Capillary action continues to pull the target-antibody/DNA-reporter complex through the

membrane until it reaches a region of the membrane called the test zone. Antibodies or

DNA are immobilized in this region that also bind the target. Should the target be present,

the antibodies or DNA here will sandwich the target, increasing the density of the reporter

molecule and creating a visible line that can be seen with the naked eye. Any remaining

antibodies or DNA from the conjugate pad unbound to the target protein continue to the

control zone of the membrane through capillary action, where they themselves are captured

by antibodies or DNA respectively, forming a second line visible to the naked eye. This

marks the conclusion of the test. A positive result occurs when both test and control lines

are present, while a negative result is when only the control line is present. These types of

tests are used in at-home pregnancy tests and now are common for COVID-19 tests as well.

Figure 1.3 depicts each of the components of the LFA.

While the LFA is not a gold standard biosensing platform, it is the pinnacle of portabil-
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Figure 1.3: LFA schematic. Liquid sample is loaded onto the sample pad where it flows left-to-
right driven by capillary action. Reporter molecules or particles are bound to the target molecules
in the sample in the conjugate pad, and then are immobilized in the test strip. Unbound reporter
is collected in the control strip. Visualization of both strips indicates a positive test.

ity. These tests can be manufactured very cheaply and are small and compact, fitting easily

in the palm of a hand. Its reliance on capillary action as the driving mechanism means that

these tests can be implemented in any environment and in any orientation, regardless of the

effects of gravity. This means it is one of the few sensing technologies that would be practical

for use in space as well. Finally, results can be obtained in around 10 minutes, making it the

most rapid technique of those discussed in this dissertation. The major drawback of LFAs,

however, is its sensitivity. LFAs have a LOD on the order of 102 − 103 ng per mL (1 - 10

M), several orders of magnitude higher than either ELISA or PCR [7]. Furthermore, LFAs

are not quantitative.

One of the drawbacks of LFAs are their low sensitivity. Restricting the flow path of

LFAs has shown the capability to reduce LOD for these assays down by up to 30x, from 150

ng per mL (3.5 M) for c-reactive protein down to 5 ng per mL [31]. Additionally, coupling

LFAs with a technique for RNA amplification similar to iiPCR, termed reverse transcription

loop-mediated isothermal amplification (RT-LAMP) enables an LFA to detect low levels of
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RNA, significantly improving zika virus biosensing sensitivity in the LFA [32].

1.4 Nanophotonic Biosensors

In this section, a new class of biosensors is discussed. This class of sensors has emerged

in the last decade or two as a compelling platform, particularly in terms of sensitivity. The

guiding principle behind these biosensors is nanophotonics and the interaction of nanoscale

particles, photonic structures, and thin metals with light. It is necessary, therefore, to briefly

discuss the optical principles underlying these techniques before discussing the individual

sensing platforms themselves and how they can be used to accomplish molecular biosensing.

1.4.1 Surface plasmon resonance

For a majority of nanophotonic biosensors, the principle of surface plasmon resonance

(SPR) lies at the core of the technique. When light at optical frequencies interacts with a

metal, particularly a thin metal, several things occur. One is that photons are reflected off of

the metal due to electrons in the metal’s free-electron gas oscillating 180° out of phase with

the incident electromagnetic field, a result of the metal’s negative relative permittivity [33].

Another is that an evanescent field is produced that will penetrate through the surface

on the other side of a sufficiently thin metal. Finally, at specific resonant frequencies and

incidence angles, there can be strong coupling from the incident beam into surface charge

density oscillations that are bound to the surface (evanescent in the direction perpendicular

to the surface), but can travel laterally along the metal. These oscillations are called surface

plasmon polaritons (SPPs) and can give rise to strongly enhanced evanescent fields confined

to the metal surface. Classically, SPPs are particular solutions of Maxwell’s equations that
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appear at certain boundaries, for example at the interface of a metal and dielectric like gold

and glass, and at specific incident k-vectors.

For SPPs to exist at a given photon energy (freespace wavelength), the lateral component

of the wavevector, kx must be larger than the wavevector of light in free space at that same

energy. A visualization of the plasmon dispersion curve would find it to the right of the

free-space dispersion curve (Fig. 1.4). To achieve this, utilization of materials like glass

whose refractive index is dissimilar to the refractive index of free space is useful since it

increases the wavevector component of the exciting light. The combination of the appropriate

interface conditions, incidence angle, polarization (p-polarized only), and wavelength results

in excitation of surface plasmons.

Figure 1.4: Excitation of SPPs. A close-up sketch of the surface plasmon dispersion relation with
the light-lines in air and in glass. Glass shifts the dispersion curve to the right, enabling more easily
excited surface plasmons. Reproduced from [33].

One example system that satisfies these constraints is the Kretschmann configuration

(Fig. 1.5). In this configuration, a glass prism base is coated with a thin metal film. If the
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film is too thick, the surface plasmons cannot be excited due to absorption by the metal and

reflection at the glass-metal interface. At angles just beyond the critical angle where total

internal reflection occurs within the glass, and with an appropriately thin coating of gold or

silver, the SPR condition is achieved and surface plasmons can be excited. As a result, the

measured reflectivity drops significantly. The thickness of the metal plays a major role on

this resonant condition, and small changes to surface thickness are detectable through SPR

resonance peak shifts at a different incidence angle.

Metallic nanoparticles or photonic structures composed of metal can exhibit localized

SPR (LSPR). For these applications, spatial constraints imposed by the size and shape

of the structure restrict the freedom of movement of surface charges and start to play a

significant role in the formation of surface plasmons, in addition to the index of the medium

and wavelength that were seen with a thin metal sheet. The main difference is that the

polarizability of the structure, which results from the structure’s shape and size, plays a

dominating role in the excitation of surface plasmons. LSPR resonance can be observed

in the scattered or the transmitted spectrum, where the resonance peak will be located at

the wavelength with the highest scattering cross-section or the wavelength with the lowest

transmission.

1.4.2 Simple SPR biosensor

One SPR biosensor is based on the aforementioned Kretschmann configuration. Using

the same setup, the metal is functionalized with a capture molecule, typically an antibody

for protein sensing [34]. The resonance peak is then measured for the system and recorded.

Upon the introduction of a sample containing the target analyte, the analyte will bind to the



33

Figure 1.5: (a) Kretschmann configuration of thinly plated metal on a glass prism. Light un-
dergoes total internal reflection in the prism, enabling surface plasmon excitation an propagation
along the metal surface. (b) Reflectivity as a function of incidence angle for this configuration.
Resonance peak location shifts as metal thickness changes. Reproduced from [33].

antibody on the surface of the thin metal sheet. The interaction with this now thicker film

on top of the metal with the evanescent field of the surface plasmon results in a resonance

peak shift, which can be recorded and used to determine the concentration of the analyte

present in the sample (Fig. 1.6). The earliest implementation of this sensor achieved a LOD

of less than 2 µg per mL.
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Figure 1.6: Nanophotonic biosensors. SPR peak conditions are a function of metal surface
properties, which enables all nanophotonic biosensors discussed here to function. Binding of a
target analyte affects these properties, leading to a detectable shift in the SPR peak and sensing
of the target.

1.4.3 Nanohole arrays

Another SPR biosensor type leverages the LSPR effect. Arrays of nanoholes in a gold-

dielectric layered sheet support spectrally isolated LSPR [35]. The exact spectral wavelength

of this peak is quite sensitive to binding of target analyte, resulting in a shift of the LSPR

peak (Fig. 1.6). This configuration enabled the detection of binding events at sub-1 ng

per mL levels, producting a highly sensitive biosensor. Other work creating an grid of

separate nanohole arrays, each functionalized for a different molecule, forms the basis for a

biobarcode assay, which can detect and differentiate a variety of biomolecules through their

unique signature at different locations on the biobarcode [36].

1.4.4 Nanorod biosensors

Biosensors that use metallic nanorods also operate based on their ability to support

LSPR (Fig. 1.6). Using arrays of nanorods functionalized with antibodies has been shown to

achieve a LOD on the order of 1 nM (150 ng per mL) [37]. The molecule used for biosensing

is particularly large (IgG), so the molarity value is slightly misleading. Since LSPR relies
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on physical size changes to impact the resonance peak, larger molecules will require fewer

binding events to cause a size change, so weight per volume measurements are a slightly better

comparison to the other biosensing methods discussed here. A single-nanorod biosensor has

even achieved single-molecule sensing, a feat which no other biosensing method discussed

here is capable of [38].

1.5 Agglutination Assay

An agglutination assay is a fairly simple biosensing test. Micro- or nanoscale particles are

functionalized with a capture molecule, either antibodies or DNA, such that they bind to the

target analyte [10]. Typically, these assays are used for POC sensing applications, however

they can require target amplification or purification to retrieve a signal. Basic food-safety

applications of agglutination assays involve first culturing a target food pathogen before

introducing dyed microparticles. Agglutination occures if the target bacteria is present,

resulting in a bead clumps precipitating out of suspension that can be seen with the naked

eye. In other biosensing applications, agglutination can be imaged with a microscope so can

be coupled with LFHM. Examples of this are discussed in Chapter 2.

1.6 Lens-Free Holographic Biosensors

This is the final class of biosensors that will be discussed in this chapter. In an effort

to limit redundancy, only a brief introduction to the guiding principles of these devices from

a biosensing perspective will be given here, and a more in-depth description and analysis of

LFHM-based devices will be provided in Chapter 2. In essence, biosensors employing LFHM

technology are often paired with some sort of micro or nanoparticle reporter particle which
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acts as a proxy for imaging the protein or infectious target itself. While LFHM systems can

achieve an impressive resolution and field-of-view, these particles can greatly improve the

throughput and specificity of these devices. Micro or nanoparticles are often coated with an

antibody for protein detection, but can be coated with DNA to sense DNA and RNA as well

with impressive sensitivity and specificity. In some cases, these particles form the basis for

an agglutination assay. The wide range of procedures employed in these assays, along with

their particular advantages and disadvantages are again detailed in Chapter 2. Suffice it to

say here that LFHM biosensors are emerging as a novel class of biosensors with unique and

robust characteristics.

1.7 Fundamentals of Biological Microscopic Imaging

Biological microscopic imaging has taken on a variety of forms but all methods rely on

the presence of some basic imaging components. In this section, each of these necessary

components is explored in the context of a conventional benchtop brightfield microscope like

the one depicted in Figure 1.7 before examples of significant biological imaging methods are

described.

1.7.1 Source

In all microscopes, regardless of imaging methodology, there must be some form of

a light source. In conventional microscopy this source is in the form of an incandescent

bulb. This source is a broadband white light source, typically centered slightly more in

the red spectrum. Other common sources are laser sources, which are narrowband and

precisely tuned and tend to be coherent, and light-emitting diodes or LEDs which have
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Figure 1.7: Brightfield microscope. This is the Olympus BX53 microscope. It acts as a bright-
field, darkfield, and fluorescence imaging microscope. Of note are its large size which makes this
microscope non-portable, and its cost which is $6,300.

a small bandwidth centered on a particular frequency but are not coherent. The source

illuminates the sample, generating either transmitted, scattered, or emitted light that then

passes through the rest of the imaging system and results in a final image. Figure 1.8 depicts

each of the components discussed in this section in the context of conventional brightfield

microscopy.

1.7.2 Source field conditioning

After the source produces light, there are often additional components between the

source and sample that condition the light to produce a good image. In conventional mi-

croscopy this is a condenser, which focusses the light into a collimated beam before reaching

the sample. Also present within the condenser is an aperture which affects the area of the
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Figure 1.8: Brightfield microscope schematic. This schematic of a basic brightfield microscope
can shows each component necessary to produce an image of the sample focussed at the plane of
the image sensor. Each type of component is labelled and insertion or removal of different specific
components enables this setup to perform other types of imaging.

sample that is illuminated. Alignment of a conventional microscope involves positioning of

the condenser such that the beam is centered around objective lenses placed after the sam-

ple. Other source conditioning methods involve spectral filtering such that only a narrow

wavelength of light reaches the sample, field shaping so that the light is focused down to a
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small region of the sample, polarization such that light is given a specific polarization state,

and spatial field filtering so only specific spatial regions of the emitted field reach the sensor.

Each of these conditioning methods is useful and necessary for a specific kind of microscopic

imaging.

1.7.3 Sample

As the light passes through the system, it eventually reaches the sample. Samples can

be prepared in a wide variety of ways or not at all, and nearly anything can serve as the

sample depending on the application. Common sample processing in biological microscopy

include sectioning tissue into slices 1 – 20 µm thick, chemical staining which uses chemicals

and dyes to stain specific parts of cells and tissues different color based on their chemical

makeup, immunolabelling which relies on antibodies to target specific proteins of interest

and can either be brightfield of fluorescence-based, or nothing at all. The identity of the

sample and the processing it underwent are crucial and oftentimes unique to each different

imaging method.

1.7.4 Field shaping

After light interacts with the sample, it then must be collected and prepared for image

formation. This is most often accomplished by an objective lens placed close to the sample.

The role of the lens is to collect light and shape the field as it passes through it. A number

of glass elements inside the lens enables it to bend light by retarding its phase at various

points along the light’s path, eventually enabling the light to be focused and produce an

image on the other side of the objective. The unique composition of each lens determines
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its magnification, numerical aperture, and aberrations. Mechanisms in the stage holding the

sample of the microscope allow the sample or objective to be positioned appropriately so

that focusing is achieved in the correct place to enable imaging to occur.

1.7.5 Sample field conditioning

Beyond the field shaping element of a microscope, there can be additional field condi-

tioning elements. These can be the same elements that are present between the source and

sample, but can also be different. The most common is a spectral filter, especially relevant

for fluorescence imaging, but additional polarization filters or even spatial filters like ring

and pinhole filters can be placed here as well. Again, which conditioning element is used

will depend on the type of imaging being performed. In conventional brightfield microscopy,

often nothing is required here.

1.7.6 Sensor

The sensor is the final component of any microscope imaging system. The sensor can

either be a human eye, which is a sensor that relies on cells in the retina to detect light and the

brain to process it, or an image sensor which relies on an array of semiconductors to detect

light and a computer to process an image from it. Two common image sensors are CCD and

CMOS sensors, with color CMOS sensors found in nearly all modern microscopes. Figure 1.8

depicts each of the components discussed in this section in the context of conventional

brightfield microscopy.
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1.8 Common Microscopy Techniques

1.8.1 Fluorescence microscopy

Fluorescence microscopy is very common in biomedical imaging and is often used to

visualized several different subpopulations of cells in a single image through immunolabelling.

Its source is often a laser that passes through the objective before interacting with the

sample [39]. Emitted fluorescence returning through the objective passes through a filter on

the way to the sensor, filtering out the excitation wavelength.

1.8.2 Polarization microscopy

Polarization microscopy is useful for the diagnosis of gout and diseases that involve

crystal-like aggregation of protein like amyloidosis. It relies on the insertion of 2 polarization

filters in each of the field conditioning steps that are used to detect birefringence of the

sample [40].

1.8.3 Phase microscopy

Phase microscopy is highly useful when dealing with samples that need to be visualized

but kept alive, like cells in culture. No sample processing is required, so the sample can

be kept intact. An annular filter is added before the condenser of a normal brightfield

microscope in the source field conditioning region, followed by a phase plate ring that enables

the visualization of phase retardance in the sample [41].
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1.8.4 Other microscopy techniques

These are by no means the only microscopic imaging techniques available, but the ones

listed above are particularly relevant for LFHM applications, as LFHM has been used to

replicate images created by each of these techniques. Dark field imaging for visualizing

scattered fields only, confocal microscopy for achieving imaging of a very tight plane of

focus only, and other more advanced techniques enable the visualization of a wide variety of

samples and at sub-cellular resolutions.
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CHAPTER 2

Lens-Free Holographic Microscopy1

Many clinical procedures and biomedical research workflows rely on microscopy, includ-

ing diagnosis of cancer, genetic disorders, autoimmune diseases, infections, and quantification

of cell culture. Despite its widespread use, traditional image acquisition and review by trained

microscopists is often lengthy and expensive, limited to large hospitals or laboratories, pre-

cluding use in point-of-care settings. In contrast, lensless or lensfree holographic microscopy

(LFHM) is inexpensive and widely deployable because it can achieve performance comparable

to expensive and bulky objective-based benchtop microscopes while relying on components

that cost only a few hundred dollars or less. Lab-on-a-chip integration is practical and

enables LFHM to be combined with single-cell isolation, sample mixing, and in-incubator

imaging. Additionally, many manual tasks in conventional microscopy are instead computa-

tional in LFHM, including image focusing, stitching, and classification. Furthermore, LFHM

offers a field of view hundreds of times greater than that of conventional microscopy with-

out sacrificing resolution. Here, the basic LFHM principles as well as recent advances in

artificial intelligence integration and enhanced resolution are summarized. A discussion in

detail how LFHM has been applied to the above clinical and biomedical applications is also

1This chapter is currently under review by Laser & Photonics Reviews
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provided. Finally, emerging clinical applications, high-impact areas for future research, and

some current challenges facing widespread adoption are identified.

2.1 Introduction

Many clinical diagnostic procedures and biomedical research workflows rely on micro-

scopic images of specimens. For instance, hematology and cytometry rely on images of

individual cells and can be used to diagnose infections and diseases including malaria and

cancer, as well as genetic disorders like hereditary anemias [42, 43]. Cancer researchers and

pharmacological scientists rely on cell culture imaging to determine cell growth and via-

bility [44]. Pathologists use stained and sectioned tissues to diagnose a variety of cancers,

genetic disorders, and autoimmune diseases [45]. The use of microscopy is truly ubiquitous

in clinical medicine and biomedical research and underpins our current understanding of the

human body and medical treatments. Despite its widespread use, traditional image acquisi-

tion and review by trained microscopists is often lengthy and expensive, and limited to large

hospitals or laboratories, precluding use in point-of-care or low-resource settings [46]. On

the other hand, lensless or lensfree holographic microscopy (LFHM) is an inexpensive and

widely deployable technology because it can achieve performance comparable to expensive

and bulky objective-based benchtop microscopes while relying on components that cost only

a few hundred dollars or less [47]. Due to the size and simplicity of the hardware, lab-on-

a-chip integration is practical and enables LFHM to be combined with single-cell isolation,

sample mixing, and in-incubator imaging. Additionally, many tasks that are performed

manually in conventional microscopy are instead computational in LFHM, including image

focusing, image stitching, and feature identification and classification. Furthermore, LFHM
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offers a field of view (FOV) hundreds of times greater than that of conventional microscopy

without sacrificing resolution, a combination quantified as space-bandwidth product.

To date, several reviews of LFHM techniques have been written. Reviews on LFHM have

provided excellent overviews of technological advances in LFHM, including basic LFHM the-

ory and reconstruction methodologies [47–49], novel resolution enhancement techniques [50,

51], and more advanced image processing and backpropagation algorithms [52, 53], but these

reviews have missed some key recent developments. Primarily, no review published to date

has made its focus to enumerate biomedical applications of LFHM in adequate depth so as

to fully convey the current state of LFHM prevalence and impact on any given biomedical

application. Reviews that have addressed biomedically relevant applications have done so

sparingly and often at the end of a technical section, where applications are given as examples

rather than as the driving factor behind particular technological advances best suited for the

particular application. Furthermore, advances in LFHM directed at biomedical applications

that have occurred in the last five years are largely absent. Due to the rapidly evolving

nature of the field, many high-impact LFHM advances have indeed occurred in the last five

years and often their development has been driven by the need to address a specific imaging

problem presented by a clinical and biomedical application, including pathology, cellular

cytometry, infectious disease, biosensing, live cell and cell culture analysis, pharmacological

testing, and basic biological science.

Here, a brief summary of basic principles shared across many LFHM systems as well as

some recent technological advances such as artificial intelligence integration and enhanced

resolution techniques, and detailed discussion of the ways in which these systems have been

applied to the areas mentioned above is provided. In each section, LFHM systems are dis-
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cussed that have been developed for use in a specific clinical medicine or biomedical research

application, and a commentary is provided on the aspects of LFHM that make it advanta-

geous or disadvantageous for each application as well as design principles that are necessary

or are shared by most LFHM systems for success in each application. In providing this

additional information, I hope to aid in the identification of effective strategies for targeted

technological advancement of LFHM and LFHM translation in these fields. Finally, emerg-

ing areas or applications of LFHM in clinical diagnostic medicine and biomedical research,

interesting advances in LFHM technology that have not yet seen use in clinical or biomedi-

cal applications to date or that remain not fully explored, and the current challenges in the

widespread adoption of LFHM in clinical and biomedical fields are identified.

2.2 Compelling and versatile aspects of lensless holographic microscopy

2.2.1 Typical LFHM system design

Holography was coined to reflect that Gabor’s work [54] captured both the amplitude

and phase field information. The design Gabor used is often called in-line holography since

both the reference wave (light passing through the transparent sample unperturbed) and the

object wave (light scattered by objects that are being imaged) have the same optical axis.

A typical LFHM system is illustrated in Figure 2.1. Key components includes a light

source, which can be a laser diode (LD) [55], a light-emitting diode (LED) [56], or an array of

LDs or LEDs [57]; a charge-coupled device (CCD) or complementary metal–oxide–semiconductor

(CMOS) image sensor to capture holographic images digitally; spectral filters and/or pin-

holes/conical optical fiber ends to meet optical coherence requirements specific to each design;
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Figure 2.1: Basic in-line LFHM schematic based on Gabor’s initial in-line design with a light
source, a sample (depicted here as red blood cells in a microfluidic channel, but this varies depending
on the application), and an image sensor, a configuration shared across nearly all LFHM devices [54].

and holders or microfluidic chips for sample delivery [11, 58–60].

The distance between the sample plane at zs and the light source is denoted as z1, which

typically ranges from 5–30 cm. Therefore light at zs can be approximated as plane waves,

since the light source is approximately a point source. The separation between the image

sensor plane zi and zs is denoted as z2 = |zs − zi|, typically on the order of 10 µm to 1 mm.

Since z2 ≪ z1, the FOV in a LFHM system is equal to the active area of the image sensor,

rather than limited by a lens field number. Commercially available modern CCD or CMOS
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image sensors have active areas ranging from a few square millimeters to > 100 mm2.

Unlike in lens-based microscopy, where FOV is scarified to improve optical resolution,

in LFHM, resolution is mainly limited by image sensor pixel size and the optical coherence.

In order to record a hologram digitally at the image sensor with strong fringe contrast,

a LFHM system must meet the coherence requirements, which are stated in Section 3.1

from [47]. Bandpass filters and pinholes are commonly utilized to improve temporal and

spatial coherence respectively. In LFHM systems with pixel size limited optical resolution,

pixel super-resolution techniques [57] can be used to computationally meld multiple partially

redundant sample images with subpixel shifts, achieving optical resolution finer than the

image sensor pixel size. In lens-based microscopes, numerical aperture (NA) is commonly

used to characterize optical resolution:

R ≈ λ

2 NA
=

λ

2n sin θmax

, (2.1)

where λ is wavelength, n represents refractive index, and, in the case of LFHM, θmax denotes

the greatest angle where the reference and object waves meets temporal and spatial coherence

requirements to exhibit interference effects at the image sensor plane zi [47].

2.2.2 LFHM reconstruction

As illustrated in Figure 2.1, a hologram I(x, y, zi) is recorded digitally at the image

sensor since sensors can only record intensity information. Our goal is to computationally

reconstruct the object wave EO(x, y, zs) at the sample plane with both amplitude and phase

information.
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The recorded intensity image can be expressed as:

I(x, y, zi) = |E(x, y, zi)|2

= |ER(x, y, zi) + EO(x, y, zi)|2

= |ER(x, y, zi)|2 + E∗
R(x, y, zi)EO(x, y, zi)

+ ER(x, y, zi)E
∗
O(x, y, zi) + |EO(x, y, zi)|2

= B2
R + BRe

−ikz2Pz2

{
EO(x, y, zs)

}
+ BRe

ikz2
[
Pz2

{
EO(x, y, zs)

}]∗
+ |Pz2

{
EO(x, y, zs)

}
|2

(2.2)

where ∗ is the complex conjugate operator, k = 2πn
λ

is the wavenumber, BR is a constant,

the reference wave ER(x, y, zi) = BRe
ikz2 is a plane wave, and Pz is an operator denoting

the forward propagation of light over a distance z, where E(x, y, z) ≡ Pz

{
E(x, y, 0)

}
can be

calculated using the angular spectrum method [61] as:

E(x, y, z) = F−1
{
F
{
E(x, y, 0)

}
H(ξ, η, z)

}
, (2.3)

with the transfer function in terms of spatial frequencies ξ and η defined as,

H(ξ, η, z) =


0, for ξ2 + η2 ≥ n2

λ2

e2πiz
√

n2

λ2
−ξ2−η2 , otherwise.

(2.4)

When the object wave is weak compared to the reference wave, which is generally valid

except for dense or thick samples, |Pz2

{
EO(x, y, zs)

}
|2 in Equation 2.2 can be neglected. To
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Figure 2.2: Twin image example. a) PSR holographic reconstruction with cardinal neighbor
regularization. The ring shape features around 5-µm microspheres are from the twin-image term.
b) PSR holographic reconstruction with sparse reconstruction regularization, where twin-image
term is suppressed. Figure reproduced with permission from [57].

reconstruct an object image from the captured hologram, one can then back-propagate the

recorded intensity image I(x, y, zi) over a distance of z2 to the sample plane:

P−z2

{
I(x, y, zi)

}
= B2

Re
−ikz2

+ BRe
−ikz2EO(x, y, zs)

+ BRe
ikz2P−z2

{[
Pz2

{
EO(x, y, zs)

}]∗}
≡ Erec(x, y, zs).

(2.5)

Since P−z

{
Pz

{
E
}}

= E, therefore Equation 2.5 can be simplified as:

Erec(x, y, zs) = B2
Re

−ikz2 + BRe
−ikz2EO(x, y, zs)

+ BRe
ikz2P−2z2

{
E∗

O(x, y, zs)
}
.

(2.6)
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By back-propagating the recorded hologram, the reconstructed field Erec(x, y, zs) is obtained

that contains our goal EO(x, y, zs) along with a twin-image term. The twin-image term in

Equation 2.6 can be thought of as the diffraction pattern from a “twin object” located also

at a distance z2 away from the image sensor, but on the opposite side of the sample. Various

approaches towards eliminating artifacts from twin-image term are discussed in Section 2.2.4.

Equation 2.6 provides a way to compute EO(x, y, zs) from a recorded hologram I(x, y, zi).

In practice, fast Fourier transforms (FFTs) and inverse FFTs are used to efficiently imple-

ment Equation 2.3. Typically, reconstructions can be completed in ∼1 s with a typical con-

sumer laptop [47]. In addition, graphics processing units (GPUs) can be used to significantly

reduce computation time since FFTs can be implemented more efficiently on GPUs [62].

Over the years, the cost of computation has continued to decline rapidly [63], which benefits

LFHM both in performance and accessibility.

2.2.3 Pixel super-resolution

Pixel super-resolution (PSR) techniques have been frequently deployed to improve op-

tical resolution beyond image sensor pixel size and to also improve the signal-to-noise ratio

(SNR) of reconstructed images [57, 64, 65]. Multiple frames of the same scene with slight

shifts between the frames are captured, providing a denser sampling of the electric field than

image sensor pixel size.

In PSR, an LED array can be used as the light source, where each LED is turned

on and off sequentially, illuminating the sample from slightly different angles. Multiple

images of the same scene are captured, providing partially redundant information about the

scene. Though PSR assumes a static scene, it was successfully used to image microspheres
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undergoing Brownian motion in solution [11].

Computationally, the process of synthesizing a high-resolution (HR) hologram from

multiple low-resolution (LR) partially redundant holograms is an optimization problem.

Denoting the HR hologram estimate as Î, then:

Î =
arg min

I

C(I), (2.7)

where C(I) is the cost function:

C(I) = e{HR,LR}+ κCreg. (2.8)

e{HR,LR} denotes the error term between the HR hologram estimate and measured LR

holograms. Since this optimization is an ill-posed problem, typically a regularization term

Creg is added to stabilize the PSR algorithm, with κ being the regularization weight. Various

regularization methods are compared and a guide on choosing proper regularization methods

is provided in [57].

Cardinal neighbor regularization and sparse reconstruction regularization methods are

pertinent to most applications, as most samples are naturally smooth and/or sparse. Cardi-

nal neighbor regularization penalizes nearest neighbor fluctuations in the HR hologram, while

sparse reconstruction regularization promotes sparsity in the sample plane. PSR holographic

reconstruction of 5-µm microspheres using cardinal neighbor and sparse reconstruction reg-

ularization methods are shown in Figure 2.2(a) and (b) respectively.

The best demonstrated resolution in LFHM systems used a synthetic aperture recon-
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struction approach to achieve a smallest resolvable feature size of approximately λ/2.8, or

250 nm, equivalent to the resolution of a 1.4 NA objective lens [66]. Future improvements

to resolution may be possible by more accurately considering the light-matter interaction at

the nanoscale [67].

2.2.4 Approaching the twin-image term

Equation 2.6 states that the reconstructed field contains both the object term and

the twin-image term. In off-axis holographic microscopy [68], the twin-image is spatially

separated from the diffraction from the object and can be digitally removed with relative

simplicity; however, for an in-line setup such as that shown in Figure 2.1, the twin image

overlaps with the object image that one wishes to recover, making twin-image elimination

more challenging.

In these in-line geometries, the twin-image term can be numerically suppressed using

iterative algorithms [56]. If the hologram is naively reconstructed to the sample plane at

z = zs = zi− z2, as shown in Figure 2.2, then the twin image is apparent in the ring-shaped

features around the 5-µm microspheres. If instead, the hologram was reconstructed to the

z = zi + z2 plane, then the twin-image term would become in focus while the object term in

Equation 2.6 would spreads out in a wider ring around the object. By spatially filtering out

the in focus twin-image terms, and then propagating the spatially-filtered field a distance of

2z2 back to the original object plane, the twin-image term can be greatly suppressed without

significantly corrupting the object term. This process can be improved further with multiple

propagations back and forth between the object and twin image planes, enforcing the spatial

filter at the twin image plane each time. For this approach to be successful, the objects must
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be relatively sparse such that the twin image from one object does not significantly overlap

with the image of another nearby object.

Another approach to suppress the twin-image term for sparse samples is shown in Fig-

ure 2.2(b), where PSR with sparse reconstruction regularization demonstrates ability to

suppress the twin-image term [57]. Compared to the iterative filtering algorithm, the sparse

reconstruction regularization method is more computationally intensive. However, for larger

objects, the iterative filtering algorithm could corrupt the object term, resulting in poorer

performance compared to the sparse reconstruction regularization method.

When the sample is not sparse, twin image artifacts can be removed by phase recovery

techniques that rely on multiple raw frames, either with different z2 distances [69] where

two holograms captured at two different distances are used to iteratively retrieve phase

information, or with different wavelengths [70], where wavelength scanning enables pixel

super-resolution along with phase recovery.

2.2.5 Sample delivery in LFHM

As shown in Fig 2.1, samples are placed in between the image sensor and light source.

Microscope slides can be used to prepare dried samples [71, 72]. Simple microfluidic chips

are utilized for sample delivery for imaging samples in solution [11], on-chip cytometry [58],

tracking of micro-swimmers [59], and automated cell counting [60].

2.2.6 Deep learning and machine learning approaches

In recent years, deep learning and machine learning algorithms have been coupled with

LFHM techniques with increasing frequency and in an increasing number of ways. Nearly
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Figure 2.3: U-Net architecture. a) U-net architecture commonly used in LFHM image processing
applications. Blue “conv” arrows denote convolutional layers, which perform a convolution oper-
ation using 3 × 3 kernels or filters followed by a ReLU or rectified linear unit activation layer.
Red “max pool” arrows denote a max pooling operation which reduces data size. Green “up-conv”
arrows denote “up-convolutions” where the data is up-sampled using a sparse transposed kernel
matrix. Copy and drop arrows indicate skip connections where information from the contracting
or down-sampling side of the network is preserved and passed to the expansive or up-sampling side
via concatenation after a center crop. This is necessary for effective network training. b) Image
segmentation results of original U-Net architecture. Differential interference contrast (DIC) images
of HeLa cells (left) and ground truth segmentation (left center) with U-Net produced segmentation
mask (right center and pixel-wise loss (right). Figure reproduced with permission from [73].

all of these approaches use a type of network called a convolutional neural network or CNN

to perform image processing. This type of network performs convolution operations across

input images. Like all neural networks, as data passes through it, the network self optimizes

to reproduce a training dataset assembled by a human operator. CNNs have been used in
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LFHM for focus prediction [74] and image classification [75, 76], among other uses.

One particularly useful network architecture, depicted in Figure 2.3, is the U-net, which

enables the network to output images from either an input image or a set of input images [73,

77]. This has been used for PSR reconstructions of holograms [78], phase reconstructions

of holograms [79], virtual staining [80], and more. The advantage of using this approach

is that it significantly reduces the computational cost and processing time compared with

conventional approaches, and it can be more robust when used for a variety of sample types.

Simple, non-CNN networks and machine learning have also been used with LFHM,

generally preceeded by some form of image processing to produce a one-dimensional vector

of input data containing object image characteristics, similar to principal component analysis.

This has been applied to LFHM for cell imaging [81] and for nanoparticle agglutination [12].

Complete image processing pipelines have been developed using a combination of neural

networks to perform phase unwrapping, reconstruction, and cell metric estimation for cell

analysis, showing that deep learning approaches can be applied at each step of an LFHM

imaging workflow with great success [82]. Many more examples of deep learning in LFHM

have been demonstrated and will be discussed in the context of the relevant clinical or

biomedical application to provide a better sense of the problems these approaches solve and

their impact.

2.2.7 Advantages of LFHM

LFHM has various advantages over lens-based systems. First, the elimination of ob-

jective lenses in LFHM decouples resolution from FOV, resulting in large space-bandwidth

product. This enables LFHM to offer equivalent resolution over hundreds or even thousands
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times larger FOVs compared to benchtop microscopes [57, 64]. Second, LFHM consists

of low-cost components that are often either commercial off-the-shelf or fabricated at low

cost by 3D printing and laser cutting [11, 12]. Therefore a typical LFHM can be built

with a few hundred dollars in lab settings. LFHMs can be even more cost-effective when

manufactured at high volume. Third, unlike typical benchtop microscopes which are bulky

and heavy, LFHM can be compact and lightweight, making it a suitable solution for field

applications [83, 84].

With these advantages, LFHM systems have many applications in clinical applications,

especially point-of-care and low-resource settings. As a whole, the above advantages empower

LFHM as a great platform for various applications.

2.3 Clinical applications of lensless holographic microscopy

LFHM has been successfully applied to many clinical applications in recent years. The

unique characteristics of LFHM enable this technology to be deployed in more locations,

including at the point-of-care, at a lower cost than conventional microscopy. LFHM also

offers additional functionality, and in some ways improves on conventional microscopy. In

this section, recent applications of LFHM to clinical medicine are explored.

2.3.1 Pathological analysis of tissues and fluids

For clinical medicine, perhaps no field is more reliant on microscopy than pathology. In

recent years, LFHM-based devices and techniques have been successfully applied to the imag-

ing of pathological samples for disease diagnosis, including stained and unstained sectioned

tissue, thick tissue sections or bulk tissue, cell aspirates, synovial fluid, and cerebrospinal
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fluid, as described below.

Figure 2.4: 3D reconstruction of organoids. a) Visualization of 3D refractive index reconstructions
of salivary gland tumor organoids from a LFHM system. b) Volume calculations from 71 analyzed
organoids. c) 3D visualization of single organoid and (d-e) longitudinal sections of this organoid.
f) Cross sections of organoids at various z heights, and (g) corresponding bright-field microscope
images. Figure reproduced with permission from [85].

Color imaging in pathology is key for sectioned and stained tissue analysis, and there

are numerous recent examples of color LFHM. Systems incorporating a single-wavelength

partially coherent source (similar to what is shown in Fig. 2.1) and pseudocoloration post-

processing are able to generate color images of stained tissue [86]. Recently, multiple wave-

length LFHM systems that operate in red, green, and blue domains have shown promise in

the reconstruction of color images from stained tissue. Additional wavelengths can be used

to reduce color error, but three are sufficient to produce accurate images of stained pathology

slides since human eyes also rely on three types of color sensors [87]. Novel computational
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denoising algorithms have helped to significantly improve reconstructed image quality and

color accuracy of bone marrow smear samples with this type of LFHM configuration [88].

Deep learning methods have also been developed to produce color pathological images from

LFHM systems. One method combined a three-wavelength LFHM configuration with deep

learning to reduce phase artifacts and balance and combine color into a final image [89]. In

one study, pseudocolored images were generated with deep learning from phase reconstruc-

tions of LFHM holograms that closely mimic a number of stains including H&E stain, Jones’

stain, and Masson’s trichrome for unstained skin, kidney, and liver tissue respectively [80].

Another deep learning coloration method used simple greyscale images from a single green

550 nm wavelength to generate color images of H&E stained samples [90].

Several algorithmic approaches have been developed to aid in data volume reduction and

LFHM image processing and hologram reconstruction. For example, a phase retrieval algo-

rithm that enables reconstructions with only two z-height holograms has been demonstrated

for stained and unstained samples [91]. This simplifies the data acquisition process usually re-

quired for other multi-height phase retrieval methods. Image quality and resolution of kidney

and intestine pathological slides can be improved significantly by background noise removal,

image registration of multi-height and sample scanning holograms, and twin image elimi-

nation through multi-height phase retrieval and a quasi-3D reconstruction technique [92].

Novel PSR algorithms have been shown to reduce data volume and even achieve 780 nm

resolution in intestine pathological slides [93]. Other computational approaches perform

autofocusing for amplitude and phase reconstructions of holograms, either by algorithmic

approaches [94] or deep learning approaches [79, 95] which have enabled fast autofocusing for

Papanicolaou smear, stained lung tissue, and breast tissue. These deep learning approaches
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can also produce phase images from holograms since they used phase information from a

multi-height phase recovery approach to train the deep learning algorithm, similar to dedi-

cated phase recovery neural networks [96]. A novel deep learning network termed a Fourier

Imager Network incorporates Fourier transforms and has been shown to reconstruct phase

and amplitude holograms with superior generalization for pathological tissue reconstructions

of tissue outside of the training dataset of lung tissue (prostate, salivary gland, and pap smear

samples) [97]. Finally, deep learning has shown the capability to produce superresolution

images from low-resolution hologram reconstructions to improve pap smear and lung tissue

section image resolution without extensive computational costs [98]. Faster data processing

times enabled by algorithms such as these can enable immediate diagnostic results. When

paired with the POC-nature of lensfree imaging hardware, fast computational processing can

lead to significantly better patient outcomes in time-sensitive situations, such as for sepsis

diagnosis, during surgery, or for screening in a rural clinic, where patient followup visits are

burdensome due to long travel distances.

One of the most compelling applications of LFHM in this field is in the 3D imaging of

bulk tissue, without the need for staining or sectioning. Since the 3D information of a sample

is preserved by LFHM holograms, LFHM can fully reconstruct 3D samples and provides

a significant improvement on conventional microscopy, enabling the imaging of tumors or

tissue without the distortions or time and labor cost created by sectioning and staining.

Figure 2.4 shows a 3D reconstruction of a salivary gland tumor organoid made possible by

LFHM [85]. This technique collects 61 holograms using on-axis and off-axis LED sources

such that the light field propagates at a variety of axial and rotational angles towards the

sample. Using a modified 3D form of the angular spectrum method described in section 2.2.2
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and the Fourier diffraction theorem, researchers were able to reconstruct the 3D refractive

index of the object in a method not dissimilar from tomography. While this does not enable

imaging of microstructures or individual cells and cell assemblies, it nevertheless shows that

3D information can be obtained from unprocessed bulk tissue, which would be helpful for

clinicians wishing to understand tumor morphology to differentiate various tumor types and

staging in different cancers, even during surgery. A similar technique used to image prostatic

RWPE1 organoids achieved mesoscopic resolution with the ability to resolve single cells if

they are separated from the larger organoid structures [99]. True cellular-level resolution

in 3D LFHM imaging has been achieved for thick samples (200 µm) of mouse brain [100].

These samples had to be cleared with the CLARITY method and underwent DAB staining

to visualize neurons, but 2D reconstructions using a single LED source and multi-height

holograms could be produced at any plane in the tissue.

The 3D imaging capability of LFHM makes it especially suitable for the imaging of fluids

or aspirates of cells collected in clinical settings. LFHM configurations have been successfully

applied to suspensions of cells in solution [101]. The insertion of a polarization generator or

filter between the light source and sample and a polarization state analyzer or second filter

between the sample and image sensor of a LFHM setup enables the microscope to image

polarization-state sensitive samples. The most clinically relevant use of this setup is to im-

age synovial fluid for detection of gout, whose crystals exhibit negative birefringence under

conventional polarization microscopy imaging conditions. The polarization-specific charac-

teristics of needle-shaped monosodium urate (MSU) crystals from gout and oxaloacetate

crystals found in urine have been successfully imaged by LFHM using a linearly polarized

source [102] and circularly polarized source [103] with psuedocoloring to produce a recogniz-
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able color image. Additionally, MSU crystals imaged with left-hand circularly polarized light

produced holograms that have been colored using a deep learning algorithm so as to quan-

tify polarization state changes in these samples [104]. Urinalysis has been performed using

a single-source LFHM system to detect and track Trichomonas vaginalis in urine [105]. A

novel reconstruction method termed adaptive sparse reconstruction, which estimates a point

spread function directly from data to perform hologram reconstruction, was shown to image

urine with blood cells, crystals, and casts [106]. A recent translational study of LFHM in

urinalysis with urine phantoms showed that it was sensitive to hematuria and pyuria, cor-

relating strongly to hemocytometer measurements of the same samples by detecting blood

cells, bacteria, crystals, and casts [107]. Cerebrospinal fluid analysis using LFHM for diag-

nosis of meningitis has been successfully demonstrated as well, with an LFHM configuration

that imaged erythrocytes and leukocytes in 215 samples [108]. This device also implemented

automated cell counting, which enabled it to achieve 100% sensitivity and 86% specificity

compared to confirmed diagnostics, which can help eliminate human error in meningitis

diagnosis.

A unique application of LFHM in pathology is the ex-vivo analysis of tissues for anatom-

ical research. One LFHM system paired acoustic and electromagnetic waves into a single

imaging experiment, where a pulsed laser source captured holograms at specific points on a

sound wave as it passed through an ex-vivo tympanic ring and tympanic membrane [109].

Two wavelengths were used to map the surface height of the sample interferometrically. This

application is unlikely to be performed in a clinical setting as an intervention or used as a

treatment, but is nonetheless relevant to pathological biomedical research so is included here.

For pathological imaging, LFHM has already shown extensive results replicating and
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even improving on images achieved with conventional microscopy. The large space band-

width product enables LFHM to function particularly well when looking for disease pathology

which may only be present in a small portion of a very large tissue section, as is sometimes

the case in cancer pathology. LFHM is generally incompatible with fluorescence microscopy,

which is also used in biomedical research, due to the incoherent nature of fluorescent imag-

ing. However, other labels such as nanoparticles are often just as effective, and serve as

coherent scattering labels [58]. Recently, lensfree (non-holographic) fluorescent microscopy

has been demonstrated that typically has lower resolution than its holographic counterparts,

but research is underway to improve this and this could enable lensless fluorescent imaging

in the future [110]. LFHM emerges as a superior technique for pathology in the imaging of

3D samples. While 3D reconstructions of thick, unprocessed tissue with cellular-level reso-

lution have not yet been achieved, various LFHM imaging techniques have achieved either

bulk, unprocessed tissue reconstruction or cellular resolution of processed tissues separately.

This is due to a current limitation in LFHM where phase modulations to the incident field

created by tissues composed of cells, fluids, and extracellular matrix generate too much in-

terference or too little light penetration to effectively reconstruct images from bulk tissues.

However, LFHM has achieved cellular resolution of 3D samples when cells are dispersed in

a 3D medium, as is discussed in the following section, showing that LFHM may be on the

cusp of achieving high-resolution 3D unprocessed tissue imaging in the near future.

2.3.2 Cytometric analysis of cells and blood

Cytometry and hemocytometry applications of LFHM have been quite common in recent

years. For cells floating in fluid such as blood, no other imaging technique can retain infor-
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mation at any focal plane in 3D as efficiently as LFHM, making this application an obvious

choice for researchers to investigate. Additionally, hematological samples are highly relevant

to clinical medicine through hematology, oncology, infectious disease, and immunological

biomedical research. These are convenient samples for benchmarking studies of novel LFHM

configurations due to their availability to researchers. As a result, many recent technolog-

ical advances in LFHM include some form of hematological analysis. For image processing

and hologram reconstruction, hematological samples or cell suspensions satisfy a sparsity

assumption that can be leveraged to computationally remove twin-image artifacts [57]. Al-

ternatively, some novel methods have been able to remove twin image artifacts through novel

hardware configurations that include two light sources, one of which is off axis [111].

Figure 2.5: Schematic of an on-chip LFHM cytometer with am example measured fluorescent
signal and hologram from a single cell. This system uses fluorescent signal detection to trigger
hologram acquisition and it uses cell characteristics extracted from holographic reconstructions
as inputs to a machine learning algorithm to classify immune cells into three leukocyte types:
granulocytes, monocytes, and lymphocytes. Figure reproduced with permission from [112].

Portable LFHM configurations have become more robust and powerful in recent years.
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3D printed designs enable cost-effective, point-of-care (POC) implementation in sizes as

small as 55 mm × 55 mm × 40.5 mm (W × L × H) [113] to image buccal swabs and blood

smears [114]. The replacement of a pinhole filter with a cone-shaped optical fiber tip has

been shown to be viable in portable and non-portable LFHM configurations for imaging

blood smear samples, improving device stability and robustness compared to a pinhole fil-

ter [115, 116]. A benchtop holographic point-source configuration has been described for

buccal swab and blood smear imaging which also achieves improved device stability (and

therefore improved portability) by using off-axis light to illuminate a photopolymer holo-

graphic film that encodes a transmission hologram of a point source [117].

Computational techniques, like PSR, have been applied to cytometric samples as well.

PSR has been demostrated in a portable LFHM setup for platelet imaging with 1.55 µm lat-

eral resolution through a stationary light source and shifting pinhole [118]. Other pixel super

resolution techniques have been effectively implemented to improve single-cell resolution in

benchtop setups. Arrays of diodes have been understood for over a decade to be effective

for this task [119], and additional processing using algorithms for motion estimation have

recently enabled pixel super resolution to be performed on free-floating samples undergoing

Brownian motion [120]. Gradient-descent phase retrieval methods have been shown to re-

solve twin-image artifacts and achieve a depth resolution of 50 nm in red blood cell images

with a single illumination source [121], while additional registration steps have been tested

to determine precise z-positions of holograms for more effective phase retrieval [122].

LFHM’s ability to image cells in suspension due to its resolution, FOV, and 3D imaging

characteristics enables it to perform superior motility analyses of sperm cells compared to

conventional methods. Early methods using multi-illumination and multi-wavelength con-
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ditions tracked sperm in 3D using on-chip integration and revealed sperm cells travelling in

helical trajectories [59]. However, a simple single-illumination and single-wavelength LFHM

can also perform 3D imaging of sperm cells by employing more standard reconstruction

and focusing techniques [101, 118]. A technique called MISHELF (multi-illumination single-

holographic-exposure lensless Fresnel) microscopy, which uses three distinct wavelengths that

are combined before sample illumination and a novel fast converging algorithm for image

reconstruction, similarly tracked sperm in 2D and 3D for motility and morphological analy-

sis [123–125].

Cytometric samples can be easily integrated into LFHM systems with on-chip processes

to further expand device functionality. As in conventional flow cytometers, cell sorting and

counting algorithms are typically part of these modern LFHM systems. Simple configura-

tions with a single illumination source have captured intensity reconstructions of diluted cells

flowing through an S-channel microfluidic chip and have used a thresholding-based image

segmentation approach to count cells with reasonable success [126]. A Fourier domain-based

classification algorithm has recently been shown in a similar on-chip LFHM setup with a

straight channel for classifying white blood cells into three subtypes using a raw hologram

without image reconstruction [127]. Other methods use deep learning algorithms to count,

classify, and even distinguish different cell populations [128, 129]. This approach has been

translated into a 3D printed device [130]. These counting methods have shown success when

working with multi-height phase reconstructions and with intensity reconstructions. Mov-

ing closer to the functionality of modern flow cytometers, one LFHM-based method used

nanoparticles bound to target cells to increase scattering and enhance LFHM imaging per-

formance [58]. The specific plasmon resonance characteristics of the particles allowed for the
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classification of immune cell populations based on the cell’s CD4 and CD8 expression. Mag-

netic beads functionalized for specific cell detection have been used on-chip to detect target

cells in blood on-chip by applying a periodic magnetic field which enables a simple LFHM

system to distinguish rare cells in blood [131]. This is relevant for diagnosis of leukemia

and other cancers. One particularly sophisticated method combines on-chip microfluidic cell

separation, automated cell counting, and fluorescence imaging in a single platform to distin-

guish 3 different types of leukocytes [112, 132]. Figure 2.5 shows a schematic of this method,

in which cells flow through a microfluidic chip where a fluorescence signal is detected and

recorded, then used to trigger acquisition of a hologram [112]. This pairs high-resolution

imaging of a cell with its fluorescence signature for every cell that passes through the mi-

crofluidic chip, a new feature found in expensive modern flow cytometers, but replicated here

in a low cost, compact, and portable platform.

LFHM has several advantages over conventional methods of cytometric analysis involv-

ing conventional microscopy and even flow cytometry. Firstly, LFHM can easily achieve

the same resolution and reproduce the same images for these samples as conventional mi-

croscopy. This enables LFHM to be used in low-resource, POC, and large hospital settings

where hemotological analysis would be instrumental to clinical decision making. LFHM also

preserves the 3D information in a sample, allowing a technician to perform fewer sample

processing steps and track cells in real-time for clinical information. However, this does

come at the cost of some training on the particular LFHM system. Additionally, LFHM

systems are more sensitive to dust and impurities in the sample in question, which can place

additional burden on a trained technician in the sample processing steps. On-chip function-

ality also enables LFHM to replace other techniques like flow cytometry for cell expression
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analysis and cell counting in a low cost and portable device. One LFHM system, NaviCell,

has reached the commercial stage and has shown high accuracy when compared with conven-

tional, dye-based hemocytometers, and can even perform cell viability testing functions (see

Section 2.4.2) [133]. Another commercial system, Cellytics, has shown effective cell sorting

of blood cells and cancer cells when images produced with this system are passed through a

deep learning classification algorithm [76]. These devices successfully combine on-chip func-

tionality, cell counting and sorting algorithms, and the inherent 3D imaging characteristics

of LFHM. The advances of LFHM devices in pathology demonstrated in recent years illu-

minates LFHM as a compelling emerging technology in clinical cytometric analysis which

requires more clinical study.

2.3.3 Infectious disease monitoring and diagnosis

LFHM techniques have a wide variety of configurations and coupled methodologies

when applied to infectious disease monitoring and diagnosis. Typically, traditional infectious

disease diagnosis involves microscopic visualization of individual infectious particles such as

malaria or parasites, visualization of colony-forming units (CFUs) or plaque-forming units

(PFUs) in bacterial or viral culture, measurement of viral or bacterial load like what is done

in lateral flow assays (LFAs) or polymerase chain reaction (PCR) analysis, or a combination

of these techniques depending on the specific disease. LFHM has been tested successfully

for each of these detection methodologies.

Direct visualization of individual bacteria with LFHM imaging has been achieved in a

variety of configurations and contexts. The simplest LFHM systems are capable of imaging

disperse samples of microorganisms. However, because of their simplicity, these systems can
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Figure 2.6: Workflow for a LFHM-based system to quantify viral plaques. a) Sample preparation
for plaque assay, with a traditional plaque assay shown at the end. b-f) LFHM imaging and live
viral plaque quantification workflow that is performed before the traditional quantification assay.
b) Whole-well holograms are captured for different time points. c) A DenseNet-based [134] neural
network is used to create (d) a probability map for plaque-forming units (PFUs) for each hologram
by scanning across the hologram spatially and temporally. e) PFU detection performed through
application of a threshold of 0.5 to the probability map. f) Result of processing of whole 6-well plate.
This method yielded an assay with a 10-fold higher dynamic range with reduced incubation times
than conventional approaches without the need for staining. Figure reproduced with permission
from [135].

suffer from poor resolution limits, which makes visualizing organisms any smaller than large

bacteria challenging [136]. Fundamentally, LFHM resolution, under optimal configurations

based on the sensor, wavelength of light used, and source-sample-sensor distances, is limited

by the sensor’s pixel size [137]. Under optimal configurations, Schistosoma haematobium

eggs, parasitic eggs present in stool and urine of infected individuals, and t. vaginalis par-

asites have be imaged [105]. 3D motility of t. vaginalis has been used as an endogenous

biomarker for automated biosensing of this parasite in dense blood or cerebrospinal fluid

with an LFHM system that scans across a capillary tube containing 3.2 mL of fluid [138]. A

three-wavelength LFHM configuration has been shown to provide micrometer resolution to

image Giardia duodenalis cysts in contaminated water [139].
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Tightly tuned LFHM configurations enable detection of parasites or even large bacteria,

but typically not smaller pathogens. Several techniques have attempted to split the reference

and sample waves to achieve higher resolution, a technique which produces global interference

fringes similar to Michelson interferometer-like digital holographic microscope configurations.

One LFHM which used two small GRIN lenses to do this still had difficulty resolving bacteria

like Bacilis subtilis [140]. This reference and sample wave splitting has also been achieved by

collecting holograms from a reflected field created by a step-down chip design [141], and by

passing the source wave through a prism with two diffraction gratings which direct a single

diffraction order each towards the image sensor, with one beam passing through the sample

and the other reference beam propagating unaffected [142].

PSR techniques, which computationally reduce pixel size, are therefore often necessary

to achieve the resolution required to visualize pathogens directly. One configuration used

an LED array to achieve PSR-based imaging of malaria (Plasmodium falciparum) parasites

in an LFHM system [119]. A similar PSR technique coupled with on-chip immune-based

immobilization of HSV-1 and HSV-2 viruses enabled the visualization and sizing of these

small viral particles directly [143]. A simplification of typical LFHM systems through the

substitution of a cone-shaped optical fiber tip instead of a pinhole filter in a single-source

LFHM setup also enabled direct visualization of microorganisms in pond water [116].

Other, even more creative (although potentially difficult to implement translationally)

methods have been explored to improve LFHM imaging for pathogens. The deposition

of polyethylene glycol onto immobilized adenovirus and influenza A virus created small

nanolenses which enabled visualization of the virus [144]. Ultrasonic wave propagation has

been shown to similarly produce nanolenses around nanoparticles, rendering them detectable
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in solution through LFHM, which could theoretically be possible with small pathogens [145].

When performing bacterial or viral culture for diagnosis of infectious disease, often

time is the main cost. LFHM presents some compelling methods that reduce the time it

takes to process these types of samples, and even reduces the sample processing complexity.

Since effective imaging of bacterial and viral culture involves quantification of colonies or

plaques rather than single microbes, high resolution techniques do not need to be used. This

allows for the use of simple LFHM imaging configurations that permit use within incubators,

or the incorporation of additional sample handling and environmental control components

within the LFHM microscope itself. Recent examples of LFHM used for this application

include bacterial culture imaging, where a moving stage and heating plate are introduced

into the microscope to take scanning images of an entire bacterial culture plate [146]. Stitched

images were paired with a deep learning algorithm so that bacterial growth was detectable

in only 3 hours, and classification among 3 different disease-causing bacterial strains was

reliable within 7–12 hours. Viral plaques have also been quantified using a very similar

setup (Figure 2.6), which combines a simple LFHM imaging configuration with in-microscope

temperature control and deep learning to quantify plaque-forming units (PFUs) for viral

cultures of VSV, HSV-1, and EMCV more rapidly than conventional approaches and without

the need for staining [135]. LFHM has also been used to visualize and quantify Staphylococcus

aureus phage plaque growth in nearly half the time of conventional assays, which is important

for the development of novel antibacterial targeted phage therapeutics [147].

LFHM has also been applied as a component of immunoassays for sensing of pathogens.

These systems generally image infectious particles indirectly through a sandwich assay, where

one antibody is used to fix the target to a surface, and a second antibody is conjugated to
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some reporter molecule or microparticle. Immunoassays have been coupled with LFHM

in several ways. One unique method immobilized Staphylococcus aureus bacteria onto a

contact lens surface, using 5 µm polystyrene microspheres to visualize bound bacteria, and

accounted for surface topology with computational techniques to achieve a detection limit

of 16.3 colony-forming units (cfu) / µL [148]. Agglutination assays, discussed in more detail

in Section 2.3.4, have also been shown to detect infectious diseases indirectly. Using a

single illumination source, 2 µm polystyrene spheres can be resolved [149]. Tracking the

agglutination of these particles in response to HSV-1 with LFHM enabled a limit of detection

of 5 HSV-1 viral copies/µL to be achieved. In this method, a deep learning algorithm was

used to perform autofocusing and phase recovery of particle clusters. Deep learning and

particle agglutination have been combined in a LFHM-based portable COVID-19 assay as

well, enabling detection of SARS-CoV-2 virus at concentrations as low as 1.27·103 copies/mL

while using deep learning to accommodate cellular debris in LFHM reconstructions [75]. This

limit of detection is similar to that in polymerase chain reaction (PCR) tests, but is simpler

and faster to perform than PCR.

Culture and PFU analysis is the most commonly used method to determine the appro-

priate antibiotic to use for treatment in an inpatient clinical scenario. Some diseases are

diagnosed through a patient’s history or physical exam findings, but sometimes empirical

antibiotic treatment is started without fully knowing which bacteria is present due to the

time it takes for a culture to grow. This delay can be a contributing factor for the develop-

ment of antibiotic-resistant bacteria. A better approach could be provided through LFHM,

since these methods can detect and quantify infectious diseases much faster than traditional

methods, without the need for sample processing, and in POC settings. The FOV, high
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resolution, and component simplicity of LFHM enables this method to be used effectively

for clinical infectious disease diagnosis. Some of the typical limitations of LFHM continue

to be disadvantageous in this application, including sensitivity to dust and debris, and com-

putational load, but several of the above referenced studies have shown that computational

techniques and deep learning methods are starting to resolve these limitations and make

LFHM a compelling approach in this field.

2.3.4 Molecular diagnosis and biosensing

As modern medicine advances, biomarkers for disease are becoming important areas of

research. Current widespread methods of performing molecular biosensing are the enzyme-

linked immunosorbent assay (ELISA), LFAs, PCR, and others (see Chapter 1). Each of

these approaches has their own advantages and drawbacks—for example, PCR and ELISA

are both known to be sensitive tests with very low limits of detection, but they require

technician training to perform and often are unavailable in POC settings due to system bulk

and infrastructure requirements. LFAs are ubiquitous, as they can be utilized in virtually

any environment and are inexpensive to manufacture, however they are not very sensitive,

requiring a high target concentration to yield a positive test, and are not quantitative.

LFHM-based techniques have recently attempted to combine a very low limit of detection

with POC utilization in a number of ways to detect biomolecules.

As mentioned in Section 2.3.3, agglutination assays present a powerful sensing method-

ology when combined with LFHM. In an agglutination assay, microparticles or nanopar-

ticles are functionalized with an antibody or capture molecule to detect a specific target

biomolecule or cellular surface marker. In the presence of this target, the particles will
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Figure 2.7: Quantification results from a LFHM biosensor used to image an agglutination assay
for the detection of SARS-CoV-2 pseudovirus. a,b) Analysis of pixel super-resolved hologram re-
constructions of agglutinated microparticles mixed with viral particles and cell debris using either
(a) a thresholding-based image segmentation approach or (b) a residual CNN-based feature classifi-
cation approach. Vesicular stomatitis virus G (VSV-G) served as a negative control and three times
the standard deviation of variation of the zero-concentration point was used to calculate a limit-
of-detection threshold (red dashed lines). c) The CNN performed better on feature classification
than the thresholding approach as it was able to distinguish debris in the sample from agglutinated
particles. This enabled the detection and quantification of viral particles at a concentration as
low as 1.27·103 copies/mL. Figure reproduced with permission from [75] and more information is
presented in Chapter 3.

sandwich the target, resulting in agglutination of particles. At high enough concentrations,

particle aggregates can even become visible with the naked eye. So long as a system ex-

ists to quantify this agglutination, the particles can be functionalized to detect virtually

any biomolecule. LFHM’s large FOV and high resolution enables it to detect very subtle

changes in particle agglutination as target concentration increases, enabling a much more

sensitive readout of particle agglutination assays. Figure 2.7 shows results from an aggluti-

nation based biosensor for SARS-CoV-2 virus [75]. In this configuration, also discussed in

Section 2.3.3, PSR was performed using a high-speed LED array to limit blur from Brown-

ian motion, and deep learning was implemented to quantify agglutination while accounting

for debris in the large FOV. This enabled a limit of detection on the same order as PCR.

Additionally, this method was portable and achieved a readout of results in less than 3 hrs in

POC settings, showing effective combination of the sensitivity of PCR and portability. This
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same PSR LFHM system has also been used to detect biomolecules like interferon-γ, a pro-

inflammatory molecule present in sepsis [11]. In non-PSR LFHM configurations, a detection

method for HSV-1 has already been discussed in Section 2.3.3, but the deep learning-based

autofocus and phase reconstruction can easily be translated to any biomolecule assay by

changing particle functionalization [149]. Another LFHM agglutination assay was unable

to resolve individual nanoparticles, but could detect the agglutination of large enough par-

ticle clusters which, when coupled with a deep learning quantification algorithm, enabled

c-reactive protein (CRP) concentrations as low as 0.5 µg/mL and as high as 500 µg/mL

to be detected, relevant for heart failure and inflammation [12]. DNA molecules have also

been sensed with magnetic particles, albeit not through agglutination, but rather a sand-

wich assay where magnetic particles acted as reporters to visualize target DNA linkage using

LFHM [150]. This resulted in the detection of DNA concentrations down to 10 pM.

LFHM biosensors are an emerging field that has the potential to have a high impact on

the way clinical tests are performed. The portability and imaging characteristics of LFHM

systems enable a single system to be effectively coupled with microparticles and nanoparticles

to indirectly sense the presence of important biomolecules for many diseases. However, these

LFHM systems still present a typical cost of around $200, and users would need training

and access to moderate computational resources. Fortunately, once LFHM platform access

has been established, individual tests for these systems tend to be on the order of a few

cents per test, and deep learning algorithms have been shown to lighten computational load,

reducing the cost over time and making LFHM an active area of research for novel biosensor

platforms. As biomarkers become more important in the diagnosis of neurodegenerative

disorders, cancer, and in the development of personalized medicine, LFHM technologies can
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help meet the clinical demand.

2.4 Use of lens-free holographic microscopy in biomedical research

LFHM-based methods have seen increased use in the last five years in the context of

biomedical research, impacting clinical medicine and our understanding of disease, treat-

ment, and fundamental biology and medicine. LFHM presents a unique and potentially

transformative technique that in recent years has enabled researchers to make observations

and to answer questions in novel workflows that would otherwise be impossible without

LFHM. LFHM has also been shown to be an alternative to conventional imaging for sev-

eral applications in biomedical research, and has been implemented into existing workflows

seamlessly. In this section, LFHM within the context of biomedical research is discussed,

focusing on basic science uses of LFHM and how LFHM can enable these types of research

endeavors.

2.4.1 Live-cell imaging and cell culture analysis

Within the context of biomedical research, perhaps no application is more suited to

LFHM than live-cell imaging. This type of imaging is widely used for research involving cell

growth and cultures, including cancer research, developmental biology, and stem cell biology.

The absence of objective lenses in LFHM systems means that these systems can operate in

a variety of conditions, including high humidity and warm temperature environments like

those inside incubators used to grow and maintain cell cultures. Figure 2.8 shows results

from one particular system that captured multi-angle holograms to retrieve 3D information

from cells as they grew in culture inside an incubator [151, 152]. The frequently captured
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timecourse reconstructions enabled researchers to discover novel cell-to-matrix and cell-to-

cell interaction and migration phenomena, without disturbing or removing cells from the

incubator. Simple single-source LFHM configurations have tracked and quantified cell growth

and cell motility as well, including analysis of neuroblastoma cells in culture [153]. A novel 4-

hour ultradian rhythm was discovered through single-source LFHM imaging of the dry mass

of thousands of cells in culture, which, when coupled with pharmacological interventions

to probe different points of the cell cycle, revealed that the rhythm represents a massive

degredation and re-synthesis of protein during the cell cycle [154]. Cell cycle tracking of

individual cells has been achieved with single-source LFHM cofigurations, and the inhibitory

effect of actinomysin D on the cell cycle has been observed [155].

To aid in and automate the reconstruction and quantification of LFHM holograms,

parfocal autofocusing methods have been created, where wave propagation properties and

image intensity distribution are used to establish a continuous autofocus condition, similar to

a parfocal lens. This approach can continuously monitor growing cells and track the motility

of neuroblastoma cells and bacteria [156]. Cell tracking has been automated computationally

in another simple LFHM configuration, which enabled researchers to compare cell motility

for NIH 3T3 cells on substrates of fibronectin and type IV collagen [157]. Deep learning

methods have also been used to analyze LFHM images of live cell culture, where they perform

everything from phase unwrapping for phase retrival to estimation of cell metrics for analysis,

processing over 25,000 cells per second [82].

Some samples of cell culture can be quite dense, creating problems for hologram re-

construction. To improve reconstruction under these conditions, several methods have been

explored. One multiwavelength LFHM system used red, green, and blue LED illumination
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Figure 2.8: a,b) In-incubator compact LFHM device used to reconstruct 3D information from
prostatic RWPE-1 cells in culture over time. c) 1 of 31 raw holograms captured with this device
and used to perform the 3D reconstruction. d) 3D orthogonal average intensity projection for
the reconstructed sample volume where color denotes object depth relative to the plane shown:
blue being high, red being low. e-h) Average intensity projections at the data processing iteration
shown in the bottom right of each image. Each iteration fills in additional information according
to a cost function (i). This device was used to discover a new phenomenon regarding cell-to-matrix
and cell-to-cell interactions and migrations of growing tumor cell cultures. Figure reproduced with
permission from [151].
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sources to collect holograms from dense cell cultures [158]. This enables phase retrieval and

resolves the twin-image artifact without relying on a sparsity assumption, which allowed

researchers to track cell confluence as growth and proliferation occurred. A similar config-

uration imaged and tracked individual cells as they progressed through the cell cycle and

divided, yielding over 2× 106 measurements [159]. Another compressive sensing approach

showed promise as an alternate method to remove this twin-image artifact and was tested

for images of cells in culture [53].

LFHM can also be used in situations where light must be kept to a minimum to prevent

disturbing or harming cell growth. In one such low photon budget application, live glial

progenitor cells were imaged successfully in-incubator using as little as 7 µW of illumination

power in a simple single-source LFHM system [160]. This method was also effective for

imaging stained sections of ex-vivo rodent neural tissue.

The main advantage of using LFHM to monitor and quantify growing cells in culture

is its ability to do so in-incubator with minimal sample interference. The compactness,

FOV, resolution, and absence of lenses in LFHM systems enables them to function well even

within this challenging environment. Furthermore, imaging protocols can be automated to

continuously monitor samples without sample alteration. The performance of LFHM under

low photon budget constraints further reduces cell damage that can occur with extensive

sample manipulation and conventional imaging. Drawbacks of using LFHM such as the

density of samples affecting the image quality are being addressed. These factors, combined

with the novel workflows developed and the discoveries that have been made using LFHM,

make LFHM a compelling choice for future biomedical research involving live cell culture.
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2.4.2 Pharmacological testing

Biomedical research on pharmaceutical development is important for drug discovery and

the initial stages of drug testing before clinical trials. Pharmacological testing, particularly

of chemotherapeutic drugs for cancer treatment, has recently begun to benefit from LFHM-

based imaging and analysis methods. Utilizing the same in-incubator approaches that make

LFHM ideal for live-cell imaging in culture, LFHM also presents an ideal platform for cell

viability analysis. This has been accomplished with a single-source LFHM setup used to

image cultured cells exposed to methyl mercury in a 96-well plate [161]. Other similar LFHM

configurations have been used to perform cell viability testing for scraped and suspended

cells in solution, enabling viability analysis to be performed on triple negative breast cancer

cells exposed to apoptotic and necrotic drugs with the incorporation of a deep learning

algorithm for live/dead cell classification [162]. This bypasses the need for flow cytometry

in this type of research. Cell cycle arrest has also been observed through LFHM imaging

of cells treated with doses of several inhibitory drugs [163]. Another method used fractal

geometries of suspended cells with machine learning to classify live and dead MCF-7 cancer

cells stained with tryptan blue [81].

Several on-chip methods have also been developed for LFHM-based viability analysis.

One method simply characterized cells into live and dead populations based on their diameter

and refractive index as cells flowed through a microfluidic chip without the need for staining

or additional processing [164]. Another on-chip method first placed cells in a paramagnetic

medium before applying a magnetic field across a microfluidic chip [165]. Under these con-

ditions, cells will levitate towards the center of the chip, with live cells, being denser than
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dead ones, moving towards the center more quickly. In-depth image processing was used to

detect mouse bone marrow cells and breast cancer cells and determine whether populations

of these cells were alive or dead via apoptosis. The previously described commercial LFHM

cytometer (Section 2.3.2) is also capable of performing cell viability analysis [133].

Research into the use of LFHM for cell viability analysis has resulted in the development

of multiple methodologies to assess the effects of novel therapeutics on cells. This has been

shown in on-plate, on-chip, and in-suspension analysis methods, which have used stained,

or labelled, and unlabelled samples. For this application, superresolution techniques are

unnecessary since mammalian cell lines, which are most commonly used for viability analysis,

are on the order of tens of microns, making them easily resolvable by most LFHM systems.

Additionally, LFHM is well suited for this application because cells can be analyzed on-plate

over time after drug exposure without disturbance.

2.4.3 Basic biological science

This final category of LFHM application is the furthest removed from the clinic, however

it is nonetheless important to cover as the dissemination of basic biological discoveries often

has transformative effects on translational research and patient treatment in the clinic. To

this end, LFHM has been used to investigate various basic biological science questions. PSR

techniques in LFHM have enabled the investigation of microorganisms like Caenoharbditis

elegans with resolution comparable to a 40× microscope objective [64]. At this resolution,

organelles and internal structures of C. elegans are visible. PSR in LFHM has also been

shown to enable reconstruction of multilayer samples by leveraging the 3D information pre-

served in the holograms [166]. More advanced PSR algorithms have been demonstrated that
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virtually rotate the pixel layout of a color image sensor to achieve amplitude and phase

reconstructions with 350 nm lateral resolution and gigapixel images of C. elegans [167]. Ad-

ditionally, tomographic or 3D reconstructions have been obtained using this LFHM setup

by capturing angled holograms. Another approach to enhancing LFHM resolution for basic

biological research involved laterally shifting a sample and capturing multiple holograms,

which enhanced the FOV of the image and, through a unique PSR algorithm, resulted in

higher resolution in the center of the image and lower resolution around the outer edges

with reduced data volume [168]. This approach was used to image the leg of a fly. Other

methods of LFHM image quality improvement have also been applied to biologically rel-

evant samples. An algorithmic approach with a parameterized sharpening step was able

to significantly improve the contrast of LFHM images of the head section of a Drosophila

melanogaster fly [169].

To address drawbacks of conventional biological imaging, several LFHM techniques

have been developed and tested. For samples where light could impact growing or sensitive

samples, imaging must use a low-photon schema. One LFHM system managed to produce

images of ex-vivo rat neural tissue and live glial progenitor cells with illumination intensity

as low as 7 µW (also discusssed in Section 2.4.1) [160]. Autofocusing methods, whereby an

LFHM hologram reconstruction distance is selected by scanning through several reconstruc-

tion distances and a distance with a local minimum pixel value is selected, enabled effective

resolution of paramecium floating in solution and of section of a D. melanogaster fly [170].

Finally, to address the computational load that phase retrieval can have on LFHM, a sub-

sampled pixel approach has been developed, enabling a 5.5× improvement in video framerate

and order of magnitude fewer pixel measurements in the phase imaging of paranema microor-
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ganisms [171].

LFHM configurations in basic biological applications tend to be fairly simple in their

design, consisting of a single illumination source or otherwise employing an array of sources

or a moving sample stage to acquire images for PSR. For these applications, high-resolution

imaging tends to be the most desirable, and so algorithms that either improve resolution

like PSR, aid in focusing like autofocusing algorithms, or improve image quality like contrast

enhancement are indispensable. LFHM can easily be tuned to operate within the constraints

imposed by biological samples, such as low-light conditions, or even (multi-layer) cell growth

conditions. Additionally, fluorescent imaging, which in generally incompatible with LFHM

due to its incoherent nature, has been demonstrated which could enable lensless imaging

of fluorescently labelled samples [110]. LFHM can suffer from high computational cost in

this application as well, however the introduction of subsampling and even deep learning can

alleviate the computational load and enable LFHM to have a great impact in basic biological

research in the future.

2.5 Conclusions and Outlook

In this Chapter, number of key innovations for LFHM that enabled its application to

many high-impact regimes in clinical medicine and biomedical research have been discussed.

In clinical pathology, LFHM benefits from being compact and POC, and can become trans-

formative in this field through 3D imaging of bulk tissues. On-chip functionality is key for

LFHM’s success in cytometric applications. High-resolution LFHM configurations are very

useful for infectious disease monitoring and for biosensors utilizing micro or nanoscale parti-

cles. In biomedical research, LFHM enables unique and compelling new workflows through
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in-incubator continuous monitoring of cell culture and cell viability analyses. Finally in ba-

sic biological research, high-resolution LFHM and the customizabity of LFHM systems is

particularly beneficial. Overall, the breadth of computational and deep learning approaches

for image processing and quantification have played a major role in LFHM’s success in these

fields.

Several key aspects of imminent LFHM research will likely lead to transformative clinical

and biological impact. One clear example is to extend the work done with 3D sample imaging,

especially for treatment and excision of cancers, which could significantly improve surgical

outcomes in cancer patients. Another is the in-incubator approaches for LFHM cell culture

monitoring. Refining and translating these systems could enable quite novel workflows in

biomedical research to answer questions relating the stem cell research and regenerative

medicine, as well as infectious disease and pharmacology. The translation of technology

into this field is still nascent, with great future potential. The absence of many commercial

LFHM-based systems in clinics and in laboratories indicates the need for more work in this

area.

Other areas of future research will be directed at addressing the common drawbacks of

LFHM in clinical and biomedical applications, such as LFHM’s sensitivity to dust or debris

in a given sample, the difficulty of reconstructing dense samples without artifacts, and the

computational load of LFHM, which presents the main barrier for effective POC implementa-

tion. Deep learning in particlular seems to be an ever-growing method in LFHM applications

and can pose some significant advantages for data processing and visualization, as well as

some risks. Traditional LFHM image reconstruction and quantification is based on physical

properties of either light or of the sample. As such, traditional image reconstruction is a
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physics-based method that can produce accurate images of unexpected outcomes, perhaps

of tissue that was not stained correctly but tells us something new or unique cell growth

characteristics never observed before. Deep learning, on the other hand, can be unreliable in

processing data that is dissimilar from what it was trained on. This is because it optimizes

its performance from a limited training set and is unconstrained by physics. The training

dataset, therefore, should ideally encompass examples of all possible outcomes. This is nearly

impossible to do, so each network will need to generalize to unfamiliar inputs occasionally, in

which case it could “hallucinate” and generate reconstructions that are not truly present in

the sample. This could be a massive problem in clinical application, so caution is essential.

Some interesting research has been performed on lens-based holographic systems (often

referred to as digital holography) that could easily be converted into LFHM systems. These

systems often place a lens between the sample and the sensor, using the lens to magnify a

hologram before recording it. This improves the resolution of the system, but reduces the

field of view. Placing the sensor at the focal plane of the objective, along with some PSR

and other image improvement techniques would convert these systems to operate lens-free,

reducing cost, improving portability, and enabling them to function in a wide range of envi-

ronmental conditions. Systems like this have been applied to some of the same applications

already discussed, such as on-chip leukemia detection [172], red blood cell imaging for ane-

mia diagnosis [173], and malaria diagnosis [174]. Others have explored novel applications like

observation of neuronal network activity [175], observation and characterization of protein

and colloidal aggregates [176–180], investigation of Streptococcus mutans biofilm microrhe-

ology [181], investigation of cell adhesion gaps in various cancer cells [182], and sensing bone

cell morphogenesis under shear stress [183]. Each of these applications presents a poten-
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tial area of investigation for LFHM system development, and would expand the range of

applications for LFHM.

LFHM presents a compelling technique for many clinical and biomedical applications.

Its unique characteristics enable it to simultaneously replace conventional microscopic imag-

ing techniques in many ways while also enabling novel imaging and treatment workflows.

Future research in LFHM would be best directed towards improving its transformative as-

pects, such as on-chip functionality, in-incubator approaches, 3D reconstructions, novel deep

learning approaches, and translational studies to drive LFHM adoption in the clinic and

biomedical research.
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CHAPTER 3

A Biosensor for SARS-CoV-2 Diagnosis1

As a result of the COVID-19 pandemic and the initial limited availability of effective

testing resources, a previously tested LFHM-based biosensor was modified, improved, and

applied to sense severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particles in

a complex, biological debris-filled solution at POC settings. This technique uses a combina-

tion of a microparticle agglutination immunoassay and a classification convolutional neural

network (CNN) in addition to LFHM to detect and diagnose SARS-CoV-2.

3.1 Introduction

As we have seen in Chapter 2, LFHM has been used in a variety of biosensing appli-

cations, often involving the use of microparticles as indicators for a target. The portability

and sensitivity of LFHM as a biosensing platform enables it to function well in point-of-care

(POC) applications, sensing biomolecules that are of clinical interest in those environments.

In the last decade, perhaps no sensing application has been as pressing or as impactful

as sensing for SARS-CoV-2 virus, the virus responsible for the COVID-19 pandemic. The

disproportionate impact the pandemic had on low-resource and remote communities was

1This chapter has been published previously as [75] and partially as [11], reprinted with permission
from [75] and [11]. Copyright 2022 The Royal Society of Chemistry and 2021 American Chemical Society.
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particularly striking.

As the pandemic persisted and new strains of the virus emerged that evaded the human

immune response, there continued to be a need for powerful point-of-care (POC) tests to

diagnose infection and limit the impact of new viral mutations [184]. Currently, the main

biosensors used in clinical settings are LFAs, used in rapid antigen tests, and the gold

standard technique of RT-qPCR, used to detect viral genetic material [185–189]. LFAs

for SARS-CoV-2 can be implemented in point-of-care (POC) settings or as take-home tests

and give a readout of results within minutes. However, their drawback is a relatively high

limit of detection (LOD), as there needs to be a lot of viral antigen present to receive a

positive test. Widely used LFAs for SARS-CoV-2 have a LOD of 3 × 106 copies per mL,

which contributes to a large proportion of tests returning false negatives and can contribute

to the spread of SARS-CoV-2 as infected individuals assume they are not contagious and

fail to limit exposure to others accordingly [188–190]. RT-qPCR by contrast has a very

low LOD, from 560 copies per mL to 1,065 copies per mL depending on the individual

test [191]. This enables it to diagnose SARS-CoV-2 infection even before patients become

symptomatic. However, this sensitivity comes at a cost of a slow turnaround time. RT-qPCR

tests typically take days to come back with results, and it requires specialized equipment,

training, and personnel to perform, as discussed in Chapter 1 [23, 24]. A turnaround time

of days can result in patients spreading the virus before receiving results [13, 192].

To address these issues, several groups have been experimenting with alternative POC

biosensors. One promising approach is an agglutination assay [193–198]. As described in

Chapter 1, it is performed by coating latex or polystyrene microspheres with a functional

capture molecule, typically an antibody, and mixing these microbeads with the test sample.
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In the presence of the target biomolecule or pathogen, beads will bind together, aggregating

and resulting in bead precipitation from suspension. In conventional agglutination assays,

agglutination is seen qualitatively, not quantitatively, and typically requires the target to be

cultured or amplified in some way to get enough agglutination to be visible. Agglutination

assays are commonly used in food safety applications, as well as in the diagnosis of infectious

diseases, and, barring the need for complex analyte amplification techniques, can be used in

POC settings [199, 200].

As a brief reminder, recently, LFHM has been combined with agglutination assays that

make these tests more sensitive, quantitative, and easier to perform in POC settings than

conventional qualitative agglutination assays[12, 149]. In these in-line LFHM systems, a

coherent light source is used to generate an interference pattern from a sample placed between

the source and the sensor and an image of the sample is computationally reconstructed based

on the interference pattern [47, 201]. This enables LFHM to maintain a wide FOV, essentially

the size of the image sensor itself, while achieving a high resolution [67, 202]. To achieve

the sub-micron resolution necessary to resolve microbeads for agglutination assays, pixel

superresolution LFHM designs and corresponding algorithms have been utilized [57, 64, 119].

This resolution is necessary to detect subtle changes in agglutination of microbeads.

To address the unmet need exposed by the pandemic and take steps to bring a POC,

rapid, low-cost biosensor to low-resource communities, a portable LFHM-agglutination assay

sensor was developed. This sensor has been optimized for SARS-CoV-2 pseudovirus sensing

and is coupled with a deep-learning (DL) algorithm that can distinguish beads in the sample

from cell debris and viral particle aggregates in order to aid in the computational speed and

accuracy of agglutination quantification. This sensor can resolve and track 2 µm - diameter
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latex microspheres undergoing Brownian motion in solution to detect subtle agglutination

changes in a sample of over 10,000 beads. Compared to similar biosensors [12], the one that

has been developed here utilizes a unique quantification method for individually resolved

beads in clusters, is robust in handling samples polluted with unpredictable debris, exhibits

a large dynamic range, and is accurate in quantifying analyte concentration. The biosensor

is able to provide a POC readout of SARS-CoV-2 pseudovirus concentration within 3 h of

sample collection and has a LOD within an order of magnitude of RT-qPCR tests.

3.2 Experimental Methods

3.2.1 Quantitative large-area binding sensor

The light source of the system consists of a 15 green light-emitting diode (LED) array

positioned 15 cm above the sample. LEDs illuminate one at a time for 120 ms each, with

a delay of 15 ms between each LED, resulting in 15 sub-pixel shifted images captured over

2.025 seconds that are used for pixel super-resolution (PSR) (Fig. 3.1a). Spatial coherence

is provided by 180 µm - diameter hole punches placed just below each LED, and temporal

coherence is provided by a bandpass filter with central wavelength 532 nm and bandwidth

3 nm, which results in the generation of holograms on imaging. At the base of the biosensor

is a CMOS monochromatic image sensor (ON Semiconductor AR1335) with a pixel width

of 1.1 µm.

The rapid image capture sequence performed is designed to maximize the signal-to-noise

ratio of the reconstructed image after PSR. Shorter on-times (ton) result in less blur as a

result of particles undergoing brownian motion, while longer on-times result in higher signal
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Figure 3.1: QLAB sensor configuration. a) Illustration of the exposure sequence for an LED on-
time of ton = 120 ms. The sensor integration time for each frame is ton ± 15 ms of buffer, providing
7.407 sensor frames per second in this example. b) Imaging performance for beads undergoing
Brownian motion. Performance for the three system configurations plotted on a log-log scale.
Average pixel signal-to-noise ratio, which peaks for ton = 2.025 s, is limited by brightness for small
ton and by motion blur for large ton. Each point represents one reconstructed image.

collection by the sensor are lower SNR (Fig. 3.1b). The on-time used in these experiments

optimizes these two opposing factors.

3.2.2 Novel modifications to the QLAB sensor

The main alteration to the LFHM system described above that is different than previous

publications is that it is fully contained in a light-weight portable housing weighing less than

800 g. This custom housing was designed and then printed in a FlashForge Creator 3 3D

printer with black polylactic acid (PLA) (Fig. 3.2a). The housing was designed to optimize

deployment in a portable setting by blocking all ambient light from the image sensor for

maximum optical signal-to-noise ratio. The entire top portion of the housing is hinged,

allowing the device to be opened for easy placement of the microfluidic chip over the image
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sensor, and then closed again for imaging. The footprint of the device is only 15 × 15 cm,

and images were captured using this setup paired with a laptop computer outside of the

environment in which the LFHM was initially tested and constructed, i.e. at a POC site.

Figure 3.3 shows images of the fully assembled LFHM components inside the housing. The

total cost of this prototype device is $1,382, with the majority of the cost allocated to a

development board attached to the image sensor. Future iterations of this device would not

include this board, reducing the cost to $517. The cost could further be reduced to $267 by

using a different image sensor, such as a Sony IMX519.

Figure 3.2: Portable QLAB sensor. a) CAD design of all components of the portable sensor
housing. The housing was 3D printed from black PLA. b) Functional components of the LFHM
inside the sensor.

The liquid sample is loaded into a large-area (65 mm2) microfludic chamber, or imaging

chip, constructed out of 2 layers of clear, laser-cut polycarbonate and a single No.1 glass

coverslip constructed in advance of performing the assay (Fig. 3.4). The center layer forms

the boundary and thickness of the open chamber and is cut from a 125 µm polycarbonate
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Figure 3.3: Fully assembled portable QLAB sensor. a) External view of portable LFHM housing.
Top portion is hinged to facilitate loading of imaging chamber into the biosensor. b) Placement
of image sensor within the base of the housing. c) Custom LED array and Arduino Leonardo
microcontroller in top compartment of the housing. The underlying optical table has holes on a
one-inch grid.
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sheet. Inlet and outlet ports are cut from a 250 µm thick upper polycarbonate sheet. The

coverslip serves as the bottom of the chip and is placed closest to the image sensor. The

imaging chips can be fabricated for as little as $0.11 each. To ensure optical clarity of the

coverslip and to remove dust and other particles, coverslips were treated using a piranha

solution. For this procedure, 30% H2O2 was mixed with sulfuric acid ((H2SO4)) in a 1:3

ratio, then coverslips were placed into this piranha solution for 1 h. Treated coverslips were

washed with Milli-Q ultrapure water before being dried and assembled into the finished

imaging chip. All layers were adhered to each other using UV-curable adhesive (Norland

Products 7230B).

Figure 3.4: Imaging chip assembly. a) Imaging chamber components, from left to right on top:
glass coverslip, 125 µm thick polycarbonate (PC) chamber spacer, 250 µm thick PC cover. b)
Imaging chamber filling with 1:1 DMEM + pseudovirus and PBS + latex bead suspension. c)
Imaging chip placed on top of image sensor inside the portable LFHM. Scale bars = 25 mm.
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3.2.3 SARS-CoV-2 pseudovirus

The pseudovirus used for these experiments is a pseudotype HIV-1-derived lentiviral

particle bearing SARS-CoV-2 spike protein. The particle has a lentiviral backbone and ex-

presses luciferase as a reporter. Viral particles were produced in HEK293T cells engineered

to express ACE2, the SARS-CoV-2 receptor, as previously described [203–205]. Cells were

lysed using the Bright-Glo Luciferase Assay System (Cat: E2610, Promega, Madison, WI,

USA). Lysate was transferred to 96-well Costar flat-bottom luminometer plates where rela-

tive luciferase units (RLUs) were detected using Cytation 5 Cell Imaging Multi- Mode Reader

(BioTek, Winooski, VT, USA). Luciferase luminescence scales linearly with the concentra-

tion of pseudovirus copies in a given sample, and enabled calculation of pseudoviral copies

per mL [204]. For these experiments, the initial pseudoviral concentration was determined

to be 3 × 106 copies per mL.

Vesicular stomatitis virus G (VSV-G), a lentivirus similar to the SARS-CoV-2 pseu-

dovirus, but which does not bear the acetyl cholinesterase 2 (ACE2) binding spike, was

used as a control to confirm assay specificity. VSV-G concentrations were not separately

quantified using luminescence, but the virus was produced similarly to the SARS-CoV-2

pseudovirus, and a wide range of dilution concentrations were tested to confirm an absence

of agglutination signal.

3.2.4 Particle preparation and SARS-CoV-2 agglutination assay

The protocol for performing the agglutination assay is depicted in Figure 3.5. Polystyrene

microspheres 2 µm in diameter and conjugated with streptavidin (Nanocs PS2u-SV-1) were
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diluted to a concentration of 0.005% and mixed with 0.01 mg of ACE2 per mL of bead

suspension. This concentration corresponds to approximately 50,000 molecules of ACE2 per

microsphere. Microspheres and biotinylated ACE2 were incubated for 2 h at 25 °C on a

shaker at 1,200 rpm. Functionalized beads were stored at 4 °C before use.

Extracted pseudovirus or VSV-G was filtered using a syringe filter with a 0.22 µm pore

size to remove larger cell debris from the sample. The filtered virus was diluted in Dulbecco’s

modified Eagle medium (DMEM) in half-log dilutions ranging from 3 × 106 copies per mL to

3 × 102 copies per mL, with a negative control of pure DMEM. Functionalized microbeads

were mixed 1 : 1 with each pseudovirus dilution for triplicate samples per dilution, creating 30

samples with a microbead concentration of 0.0025% or 0.005% and pseudovirus concentration

ranging from 1.5 × 106 copies per mL to 1.5 × 102 copies per mL, including the 3 negative

controls. In this procedure, only 40 µL of viral sample is required per test. A single microbead

sample was reserved in pure PBS for comparison. Samples were incubated for 2 h at 25 °C

on a shaker at 1,200 rpm and then 25 µL were micropipetted into the imaging chip. The

chamber was sealed using UV-curable adhesive, allowed to sediment for 15 minutes to ensure

particles were at the bottom plane of the chip, and placed inside the portable LFHM for

on-chip imaging of the completed agglutination reaction. Sealing the chip is only necessary

for preventing evaporation when storing the chip to make repeated measurements at later

times.

3.2.5 Image processing and analysis

To process the low-resolution (LR), sub-pixel shifted holograms captured of the SARS-

CoV-2 agglutination assay, the following workflow was employed. LR holograms are first
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Figure 3.5: SARS-CoV-2 agglutination assay procedure. a) 2 µm polystyrene beads conjugated
with streptavidin are incubated with biotinylated ACE2, yielding ACE2-functionalized microbeads.
b) Functionalized beads are incubated with SARS-CoV-2 pseudovirus within a 1.5 mL test tube
on a shaker at 1200 rpm, resulting in microbead agglutination. c) The completed assay is loaded
into the imaging chip via micropipette direct injection.

divided into 5 × 7 partially overlapping patches. A PSR technique that has been optimized

for small targets was used to synthesize a high-resolution (HR) hologram from the LR holo-
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grams for each patch in parallel [57]. HR hologram patches are then back-propagated to

the sample plane. Cardinal-neighbor regularization (weight = 200) and twin-image noise

suppression were used to improve the signal-to-noise ratio of the back-propagated HR recon-

structions. Then, the reconstructed HR patches are stitched back together to create a single

image of the full FOV that is used for assay analysis. This image processing is performed

using the University of Arizona’s high-performance computing clusters, which are accessed

remotely on a portable laptop computer, and takes on average 20 minutes per image to pro-

cess. Performing the data processing on the laptop alone without access to a cluster takes

approximately 42 minutes. Similar holographic reconstruction tasks using parallel processing

on a graphical processing unit (GPU) have demonstrated approximately an order of magni-

tude improvement in processing time, and so processing time could potentially be reduced to

just a few minutes [167, 206, 207]. Figure 3.6 depicts LR holograms and their fully processed

HR reconstructions.

Two methods of feature analysis were used to quantify the agglutination assay from

these HR reconstructions. In one method, image features (monomers and clusters) were

isolated by applying a binary threshold to the reconstructed HR image, and then finding

connected features. Feature area and eccentricity were calculated and a boundary in this

parameter space was automatically determined to separate monomer features from clusters.

Cluster size was then extrapolated based on the given feature’s area. Intensity (brightness)

and size (area) thresholds were selected to include as many true beads as possible, while

excluding non-bead features. All features are plotted based on these two parameters, as

shown in Figure 3.7. A built-in Matlab classifier function (fitcsvm) was used to draw a

monomer-cluster boundary line (red line) for 18,747 beads which enables the quantification
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Figure 3.6: Hologram reconstruction and PSR. The top image is a single LR hologram captured
with the portable LFHM. Green boxes represent the FOV of a conventional microscope using
different objective lenses. Scale bar = 1 mm. The second row is a small region of interest showing a
comparison of a LR hologram (left) to the reconstructed HR image after PSR and back propagation
(right). Scale bar = 100 µm. The bottom row is a further zoomed-in region of this image, depicting
the LR hologram (left) and HR reconstruction of fully resolved beads (right). Scale bar = 10 µm.
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of binding during agglutination.

Figure 3.7: Threshold-based binding quantification algorithm. Scatter plot of a single sample
with 18,747 features, exhibiting a clear monomer-cluster boundary (red line) drawn automatically
with the Matlab classifier function.

To further optimize thresholding, a range of intensity and size thresholds were scanned

through and the combination of values that resulted in calculated monomer and dimer areas

most similar to expected areas were selected. This slightly improved the performance of this

technique when used with images containing features other than microspheres. Bound ratio

(BR) was calculated with the following equation based on the results of the thresholding

analysis.

BR =
Number of Beads in Clusters

Number of Beads in FOV
(3.1)

The LOD for the overall assay was determined by calculating the mean and standard

deviation of the BR for the negative control sample and using Eqn. 3.2, which combines the

mean and standard of deviation of the negative control data points, to determine the BRLOD
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cutoff. The range of SARS-CoV-2 concentrations with a BR above this cutoff determine the

dynamic range of this assay, while the LOD is given by the lowest concentration where BR

≥ BRLOD. Similarly, any BR that falls below the lower limit of detection cutoff, BRLLOD

(Eqn. 3.3), is also within the dynamic range of this assay.

BRLOD = µControl + 3σControl (3.2)

BRLLOD = µControl − 3σControl (3.3)

3.2.6 Residual convolutional neural network

The second method of image analysis was implementation of a deep convolutional neural

network (CNN) with residual connections to classify image features (Fig. 3.8). This network

was designed to account for the complex imaging conditions present in the SARS-CoV-2

agglutination assay that contains cell debris, viral particles, and other contaminants. To

accomplish this, a 4-block deep CNN with residual connections was designed with the MAT-

LAB deep learning toolbox. This network updates convolutional filters, weights, and biases

according to the built-in stochastic gradient descent with momentum optimizer, and employs

L2 regularization to prevent overfitting. Classification loss is calculated using the following

equation and used to update values in the network:

Loss = − 1

N

N∑
n=1

K∑
i=1

witni ln(yni), (3.4)
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where N is the number of samples, K is the number of classes, wi is the weight for class i,

tni is the indicator that the nth sample belongs to the ith class, and yni is probability that

the network associates the nth input with class i.

Figure 3.8: Residual CNN architecture. Input images of size 60 × 60 pixels are fed individually
into the network. Each image passes through the input block, consisting of a convolutional layer
with 16 3 × 3 filters, a batch normalization (BN) layer, and ReLU activation layer. Then the data,
now 16 channels wide, is passed to the first of 3 residual blocks. Each residual block consists of
2 residual units, and connections between the blocks contain pooling layers that reduce the data
size by a factor of 42. Each residual block increases the width of the network by a factor of 2.
Finally, data is passed into a fully connected layer which outputs a classification for the input
image. Examples of the classification result for 5 input images are shown in the last column of the
diagram.

Training of this network was accomplished by using a single intensity threshold to iden-

tify features of interest in several agglutination assay images and cropping a subset (¡ 1% of

the total features in any given image) of these features into small images 60 × 60 pixels in

size. These 1,410 unique images were hand-classified into 5 categories: features consisting of

1, 2, 3, or 4 microspheres, as well as a fifth category for cell debris or unknown features that

should not contribute to the calculation of BR. Cluster sizes greater than 4 are disregarded
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because their size cannot be measured as accurately and this sensor is optimized for very

low concentrations of SARS-CoV-2, where very large cluster sizes are rare. To augment the

training dataset, the cropped and hand-classified feature images were rotated and mirrored,

to yield a total of 11,280 images. Of these images, 75% were used for training and 25%

were reserved for validation. Training data was fed into the network in a random order each

epoch to ensure generalizability of the training. Validation was performed every 2 epochs.

A 2-core Intel® Xeon® Gold 5218 2.29 GHz processor was used to train the network. To

prevent overtraining, training was halted after the classification accuracy of the validation

image set stopped improving.

3.3 Experimental Results and Discussion

CNN training took 1,980 iterations or 30 epochs (Fig. 3.9a and b). Each iteration

consisted of a batch of 128 training images. After 30 epochs, validation accuracy ceased

improving so the training was halted to prevent overtraining (training accuracy and loss

diverging from validation accuracy and loss). The final validation accuracy of the trained

CNN was 82.06%. Due to the complexity of appearance of the debris in the training images,

varied bead configurations for any given cluster size (e.g. linearly arranged, beads touching

all other beads in the cluster, etc.), and slight variations in focus of the individual features,

the image data was highly heterogeneous. Because of this heterogeneity, CNN validation

accuracy could not be further improved without sacrificing generalizability to the broader

intended dataset. To account for this, the CNN was designed to place features with low

maximum softmax probabilities or activations, or ones that could be classified incorrectly,

into smaller feature size categories, rather than larger ones (Fig. 3.9c). The net effect of
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this “rounding down” network behavior is the undervaluation of BR, as cluster size tends

to be undercounted rather than overcounted. Thus, even though validation accuracy never

reached 100%, the network is not artificially inflating the BR for any samples and that the

calculation of LOD for the assay is therefore conservative. Furthermore, since this behavior

is consistent among all samples tested, it is unlikely that the validation error had a significant

impact on the assay. Precision and recall measurements for each classification category are

shown in Figure 3.9c, with averages across all categories of 83.21% and 82.04% respectively.

To ensure the network was not overfit to augmented data, a test data set of 1,200

images without augmentation was analyzed using the CNN (Table 3.1). Unlike the training

and validations sets, the test data set did not have an equal number of images in each

category, and instead the category distribution was representative of the distribution seen in

real images. The accuracy for this real-world application of the network was 88.58%. Since

the images of this test set consist predominately of single beads (874 out of the 1,200), this

high accuracy is consistent with the accuracy values shown in Figure 3.9c. To better compare

this result to the training and validation accuracy, images in test data set were removed and

features of size 3 and 4 taken from other sample images were added such that the categories

were balanced and large enough to provide an adequate comparison (150 images total). The

resulting accuracy of 81.33% is within a percent of the validation accuracy and definitively

confirms that this network is not overfit and performs well for real images.

The network also exhibited higher maximum softmax probability values for correctly

identified features than for incorrectly identified features (Table 3.2). In this case, maximum

softmax probability values represent the relative activation of the network output layer neu-

rons and give an indication of the “certainty” the network has for a given prediction, with
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Figure 3.9: Results of CNN training. a) Accuracy of the training and validation data over the
course of training. Validation accuracy does not diverge from the training accuracy over the course
of training, indicating the network is not overtraining. b) Loss calculation for the training and
validation data over the same training timespan. Again, validation loss does not diverge from
training loss, indicating the network has not been overtrained. The training duration of 1,980
iterations corresponds to 30 epochs. White and grey chart backgrounds denote 2 epochs in width
each. c) Confusion matrix for validation data classification. The blocks at the right and bottom
show the total correct and incorrect classifications in each row and column of the confusion matrix.
63.83% of all incorrectly classified features are classified as smaller than they actually are, resulting
in a slight undervaluation of bound ratio.

high values indicative of a high degree of certainty that the classification is indeed accu-

rate [208]. This network behavior was unexpected, but unsurprising as the network training

is designed to minimize training loss (a more complex measure of network error that includes

all softmax probabilities), rather than maximizing accuracy (see Eqn. 3.4). Low maximum

softmax probability for incorrectly classified images represents lower loss than high maxi-
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Table 3.1: Network output results for test data sets. Training and validation images are drawn
from an augmented data set. Test data are unaugmented. Balanced test data include equal numbers
of images with 0, 1, 2, 3, and 4 beads, while representative test data include a distribution of bead
cluster sizes that is representative of real samples.

Image Data Set Network Output Accuracy

Training 89.28%
Validation 82.06%
Test (Balanced) 81.33%
Test (Representative) 88.58%

mum softmax probability for incorrect classifications. While softmax probabilities provide

some indication of certainty, and can be used to derive useful statistics, they should not be

used as direct measures of statistical confidence [208].

Table 3.2: Network confidence values for image classification of training and validation data.

Mean Confidence (correctly
classified)

Mean Confidence (incor-
rectly classified)

Training 90.31% 63.11%
Validation 90.27% 68.02%

The training time for this network was 175 s. Feature classification using the trained

CNN takes 14.11 s for an average full field of view sample, which is 2.74x faster than the

previous thresholding-based classification, which takes 38.65 s for an average full image.

3.3.1 SARS-CoV-2 biosensing assay

The SARS-CoV-2 agglutination assay dilutions were imaged and analyzed following the

procedures described in Section 3.2. The optimized thresholding analysis and CNN-based

results are shown in Figure 3.10a and b, respectively. The BRLOD cutoff for thresholding

analysis was calculated to be 34.13%. According to this calculation, the lowest sample con-

centration in Figure 3.10a whose mean minus one standard error of the mean (SEM) falls
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above the LOD cutoff corresponds to 1.5 × 102 copies per mL. However, for an imaging

chamber with 25 µL of sample, one would expect < 4 viral particles in the chamber. There-

fore, this point is very unlikely to be a true LOD and only falls above the LOD cutoff due

to the high variability (average standard of deviation of 10.66% over all non-control points)

in the thresholding analysis process. Additionally, the VSV-G specificity control shows this

same high variability as its concentration changes, even though the BR for this control

should remain constant at or near the BR of the negative SARS-CoV-2 pseudovirus control

at 31.70%. Overall, thresholding analysis had a very high average standard of deviation for

all non-control points of 10.66%. This makes determination of a true LOD from these data

impossible, as there appears to be no clear trend as either virus concentration increases.

For this dataset, thresholding analysis fails as it is not robust enough to account for the

heterogeneous nature of a sample with cell debris and higher levels of non-specific binding.

For CNN-based analysis (Fig. 3.10b), the BRLOD cutoff was calculated to be 30.33%.

The mean BR corresponding to 1.5 × 103 copies per mL is the first to fall above the LOD

cutoff. VSV-G control points all remain within the negative control zone, indicating assay

specificity for SARS-CoV-2. Additionally, measurements for each dilution using the CNN

show a much lower variability (average standard of deviation for the BR of all non-control

virus concentrations is 3.89%). An empirical curve of best fit, plotted in Figure 3.10b, was

determined according to the following equation:

BR(x) = Ae−x/10b − Ce−x/10d (3.5)

The functional form of this empirical curve is useful for inferring the analyte concentration
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Figure 3.10: Results of SARS-CoV-2 agglutination assay. a) Optimized threshold-based quan-
tification of the agglutination assay, which fails to find a clear trend in BR as a function of con-
centration. b) CNN-based agglutination quantification. The blue curve is a best fit to Eq. 3.5
(R2 = 0.974). The LOD based on this curve is 1,270 viral copies per mL. For both graphs, orange
points indicate measurement results for the negative control VSV-G. As the viral concentration
of the VSV-G was not independently measured, the dilutions of the sample relative to the stock
solution (top axis) were matched to the same dilutions of the SARS-CoV-2 pseudovirus, whose
stock concentration was independently measured, yielding the bottom axis values. The red dashed
lines are the upper and lower LOD cutoffs, while the green point and dashed lines indicate the
BR in pure PBS. Black points indicate triplicate samples for each concentration and error bars are
standard error of the mean. c) Example images classified by thresholding vs CNN. Scale bar = 5
µm.

of an unknown sample from its BR, as described below, but is not intended as a physical

model of the binding process, which is a more complex relationship [11]. The coefficients

and 95% confidence intervals are: A = 46.86 ± 4.11, b = 5.982 ± 0.125, C = 20.60 ± 4.86,

d = 3.753 ± 0.328 (R2 = 0.974). Since measurements of BR are compared to this curve,
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the LOD can be determined by where the curve first exceeds the BRLOD, which occurs at a

concentration of 1.27 × 103 copies per mL.

Unlike the thresholding analysis (Fig. 3.10a), the CNN-based analysis (Fig. 3.10b) ex-

hibits a clear peak in BR, where higher viral concentration ultimately leads to bead satura-

tion and therefore reduced binding, which was observed previously in agglutination assays

for other proteins [11]. As a result, it is not possible to determine the exact concentration

of virus in a sample from a single BR measurement when the BR > 19.40%. Nonetheless, a

BR > BRLOD = 30.33% would be an unambiguous positive result, which is most relevant for

rapid COVID-19 diagnosis. The CNN resolves the variability seen in the VSV-G specificity

control and those points are seen to lie within the LOD cutoffs, correctly interpreted as a

negative result.

Interestingly, the BR for the highest concentrations of SARS-CoV-2 fell well below the

BR for the negative control samples that still contained DMEM (black points at zero concen-

tration in Fig. 3.10b). This can be explained by DMEM causing non-specific binding [193].

For comparison, negative control samples of PBS without DMEM (green point at zero con-

centration in Fig. 3.10b), exhibit a significantly lower BR than the negative control samples

with DMEM. At very high viral concentrations, the beads in the sample become saturated

with viral particles before the beads can collide with one another. In this way, the viral

particles effectively act as blockers for both specific and non-specific bead-to-bead binding.

Hence, for high viral concentrations, the BR trends toward the BR found in PBS in the

absence of DMEM. This behavior indicates that the use of fully saturated beads as a con-

trol for nonspecific binding [12] would be inappropriate for this type of agglutination assay

because it fails to account for non-specific binding that occurs as a result of bead-to- bead
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interactions in different media. Additionally, this result means that this assay can distinguish

between low levels and very high levels of virus by defining a lower LOD cutoff as specified

in Eqn. 3.3. For the CNN-based assay with 0.0025% bead concentration, BRLLOD = 19.40%,

which corresponds to viral concentrations of 8.45 × 105 copies per mL and greater on the

best-fit curve.

Overall, compared to traditional image processing based on thresholding, CNN-based

analysis enables successful and robust quantification of BR from complex pseudovirus sam-

ples, and extends the assay’s dynamic range by enabling sensing of higher pseudovirus con-

centrations whose BR falls below BRLLOD. Figure 3.10c shows a selection of features that

were incorrectly classified by thresholding, but correctly classified by the CNN.

3.3.2 Quantitative and unnambiguous assay readout

Unfortunately, there is still a blind spot between 1.5 × 105 copies per mL and 1.5 × 105

copies per mL, where a false negative result would occur since BRLLOD < BR < BRLOD for

these concentrations. One method to reduce this blind spot and infer specific viral concen-

trations from BR measurements throughout the dynamic range is to perform a second BR

measurement on the same original sample, but with a higher bead concentration. Previous

work with agglutination assay-based sensing has shown that increasing bead concentration

shifts the binding curve from left to right [11]. Here, a second measurement on an unfiltered

pseudovirus sample with a 0.005% bead concentration was instead of 0.0025% was performed

(Fig. 3.11a). The higher negative control BR can be explained by a higher number of bead-

bead interactions in the higher bead concentration, resulting in more non-specific binding.

Since the CNN analyzes small images of individual features, the network performance was
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not impacted by a higher bead concentration or a lack of pseudovirus filtration because those

factors only increased the number of features classified without changing their appearance.

The only effect an unfiltered sample had was a slight increase in average standard devia-

tion of non-control BR measurements: 4.45% compared to 3.89% for filtered sample at a

lower bead concentration (representative images shown in Fig. 3.12). A curve was fitted

using Eqn. 3.5 with the following best-fit coefficients: A = 59.79 ± 4.00, b = 6.429 ± 0.132,

C = 20.88± 4.60, d = 4.077± 0.301 (R2 = 0.962). This leads to a LOD of 4.81 × 103 copies

per mL, were this measurement to be used in isolation.

By combining the binding results from the two bead concentrations, the exact viral

concentration of almost any given sample (above the LOD) can be inferred due to the

relative shift in binding curves for the two concentrations (Fig. 3.11b). To incorporate

this into the assay workflow, the procedure depicted in Figure 3.11c was performed. For

example, a BR of 35% using a single 0.0025% bead concentration assay would yield 2 possible

viral concentrations of 3.20 × 103 copies per mL or 2.80 × 105 copies per mL. However,

when combined with a BR of 54% from the 0.005% bead concentration assay, the true

viral concentration of 2.80 × 105 copies per mL would be selected. The outcome of this

process for all mean points is illustrated in Figure 3.11d (R2 = 0.993 for values within

the assay’s dynamic range). The effect of this extra step on assay time would only be an

additional 20 min for image processing, as the incubation and imaging could be done for

both samples concurrently while the additional final calculation step occurs in a matter of

1–2 seconds, resulting in a total assay time of less than 3 h. Although this procedure is

successful in inferring concentration for most of the experiments, a small blind spot remains,

corresponding to where both best-fit curves fall between the BRLOD and BRLLOD cutoffs at
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Figure 3.11: Two-measurement assay. a) CNN-based agglutination quantification on unfiltered
pseudovirus lysates with 0.005% bead concentration. The LOD cutoffs (red dashed lines) are
calculated as 45.72% and 34.86%. The light blue curve is fitted using Eq. 3.5 (R2 = 0.962). The
green point and dashed line indicate the BR in pure PBS. b) Comparison of binding curves for
0.0025% (blue) and 0.005% (light blue) bead assays normalized by their z-score: how many standard
deviations a measurement is away from the negative control value. A z-score of ±3 corresponds
to the BRLOD and BRLLOD for each assay. c) Flowchart of combined assay to achieve accurate
quantification of viral concentration using the bead dilution method. d) Results of quantification
based on the method in (c) performed on the two mean BR values for each viral concentration.
The R2 is 0.993, calculated based on the log of the y-values above the LOD compared to ideal
result. e) Flowchart of assay using the sample dilution method. f) Results of quantification based
on the method in (e) performed on the mean BR values from the 0.0025% bead curve for each
viral concentration. The R2 is 0.989, calculated based on the log of the y-values above the LOD
compared to ideal result.
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Figure 3.12: Comparison of filtered and unfiltered samples. a) Representative image of sample of
filtered SARS-CoV-2 pseudovirus with 0.0025% latex beads. Despite filtering, there is still debris
present. b) Representative image of sample of unfiltered SARS-CoV-2 pseudovirus with 0.005%
latex beads. Lack of filtering adds more debris and particle irregularity. Scale bars = 150 µm.

concentrations greater than the LOD: 7.26 × 105 copies per mL to 8.45 × 105 copies per

mL. This approach likely could completely remove the blind spot if an even higher bead

concentration were used for the second measurement.

A second alternate method of performing this assay, which completely resolves any

blind spot using only one binding curve, is described in Figure 3.11e and f. By diluting the

original sample by 1 : 10 and performing the agglutination assay on this dilution as well as

the initial sample, both using the same bead concentration, 2 points along the binding curve

are retrieved that can be used to determine which side of the peak the points correspond to.

While this gives a slightly less accurate measurement of the true concentration (R2 = 0.989

for values within the assay’s dynamic range) and adds an extra dilution step over the two-

bead concentration method, it nevertheless shows that the blind spot observed in this assay

can be fully resolved through at most one additional measurement.
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3.4 Summary

In this chapter, a portable LFHM biosensor capable of detecting SARS-CoV-2 pseu-

dovirus concentrations at least as low as 1,270 copies per mL within 3 hours, using only

40 µL of viral sample per test was developed and tested successfully. This LOD is within

an order of magnitude of widely used RT-qPCR tests for SARS-CoV-2 and greatly im-

proves upon the LOD of 3 × 106 copies per mL for SARS-CoV-2 LFAs. Additionally, a

deep-learning based categorization method that can accommodate heterogeneous solutions

by distinguishing cell debris and other non-bead particles from microbead clusters was de-

veloped, improving on traditional algorithms in speed, accuracy, and versatility. The results

produced during testing indicate that the choice of negative control beads (fully saturated

vs. unsaturated) for high-sensitivity agglutination assays is important by showing that fully

saturated beads fail to take into account non-specific binding that occurs as a result of ex-

posure to different liquid media, potentially leading to a miscalculation of LOD. Finally, two

methods were shown by which two measurements of BR can be used to compensate for the

blind spots of a single individual assay and accurately determine the exact viral load of the

sample across a dynamic range of at least 3 orders of magnitude in concentration.
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CHAPTER 4

Deep Learning Algorithms for LFHM Image Classification1

The positive impact that utilization of deep learning approaches had on this LFHM-

based biosensor prompted further characterization of the effects different convolutional neu-

ral network (CNN) parameters had on network training outcomes. Given that few existing

publications discuss the impact of CNN hyperparameters on CNN performance for datasets

limited by real-world constraints on data collection, various hyperparameter settings were

thoroughly tested and network performance and training was quantified to provide a compre-

hensive source for implementation of simple deep learning algorithms to LFHM and biological

image classification.

4.1 Introduction

As shown in Chapter 3, the performance of any real-world point-of-care (POC) biosen-

sor that utilizes LFHM poses imaging limitations in terms of the quality of samples that can

be produced, where low-quality or low-purity samples tend to result in worse image quantifi-

cation. Ideally, the sample would have solely sub-nanoscale proteins for detection, resulting

in a clean, transparent medium through which to image microparticle agglutination. In

1This chapter is currently submitted to Optics Express
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practice, however, this is rarely the case, as cells and other large particles are often present.

Deep learning was used to resolve these issues, but the impact network structure and hyper-

parameters had on training and performance outcomes remain unclear. To address this and

better understand the impact of various hyperparameters on network performance, a char-

acterization study was performed in which layers and parameters of a CNN were adjusted

and the resulting training outcome was measured.

In lensfree holographic microscopy (LFHM, Fig. 4.1(a)), images are reconstructed from

diffraction patterns captured by an image sensor. In many cases, these diffraction patterns

can be treated as in-line, or Gabor, holograms [54]. The LFHM hardware configuration is

simple and cost-effective when compared to conventional microscopy, making LFHM well-

suited for portable imaging and sensing devices deployed in low-resource settings. Further-

more, LFHM offers an ultra large space-bandwidth product: the combination of an ultra-

large field of view (FOV) together with high resolution [47]. Often, FOVs exceed 15 mm2 and

the smallest resolvable features are smaller than 1 µm. LFHM has been applied to a range

of imaging applications, including pathological imaging [98], cell cytometry [112], infectious

disease monitoring and diagnosis [105], and in-incubator cell culture monitoring [153].

Recently, LFHM has been applied to sensing applications by using automated image

processing routines to count and classify small objects distributed across the FOV. Fine

(diameter < 2.5 µm) and ultrafine (diameter ¡ 100 nm) aerosols have been individually

sized and quantified [110, 209–211]. LFHM has also been combined with agglutination

assays to quantify specific protein concentrations, including herpes simplex virus [149], C-

reactive protein [12], interferon gamma [11], and SARS-CoV-2 [75]. Nanoparticles have

been used as labels for LFHM sensing of interferon gamma [212] and CD4+ and CD8+
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Figure 4.1: (a) Schematic of a single LED illumination condition of the lensfree holographic
microscope used in this study. (b) Architecture of the baseline CNN model used for training.
This shallow CNN is comprised of three convolutional (conv) layers, serving as the foundational
elements of the network. Subsequent to each convolutional layer is an activation layer, such as a
rectified linear unit (ReLU), which introduces non-linearity to the learning process, and a batch
normalization (BNorm) layer to stabilize the process. These layers collectively form the initial
stages of the network. The first two layers among these initial stages also incorporate pooling
layers to downsample the input image. The architecture is concluded with a fully connected layer
that utilizes the outputs from these preceding layers that predicts the class of the input image.

proteins on lymphocyte membranes [58]. These applications used a variety of computational

methods to classify, count, and size small targets, including iterative thresholding-based

image segmentation [201], support vector machines [11], sparsity promoting reconstructions

[57], and convolutional neural networks.

Convolutional neural networks (CNNs) [213, 214], a form of deep learning and artificial

intelligence, offer superior classification than the other methods above, especially for biomed-

ical imaging and microscopy [215, 216]. Although training is often more time consuming,

once trained, CNNs provide computationally speedy classification and are more robust to

real, “messy” data [75, 76, 82, 98, 217]. Deep learning neural networks can be used to solve

complex classification tasks that have seen successful implementation across a wide range of

applications, demonstrating their potential to solve difficult problems that other processing

algorithms cannot [218]. The identification of individual cells, cancerous tissue, and infec-
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tious pathogens is central to biomedical microscopy, and CNNs can rapidly classify these

obejcts [219].

CNNs have previously been used to process LFHM images for image classification,

regression model fitting, pixel super-resolution, and image reconstruction tasks [12, 74, 75,

78, 79, 81, 96, 104, 128, 130, 131, 146, 220, 221]. However, for small-object classification

tasks, such as those introduced above, it has been unclear how to best design the architecture

and tune the hyper-parameters of a CNN. In most of the previous applications of CNNs to

LFHM, CNNs were just presented as satisfactory solutions to a problem, without discussion

of how they were selected and tuned, or whether they are optimal.

A researcher wishing to utilize a CNN can either adapt an existing network design using

what is known as transfer learning, or they can design their own network. Existing CNNs

for broad image classification tasks, such as VGG16, VGG19, or AlexNet, have deep and

complex architectures [216, 222, 223]. To adapt these networks to a particular application,

the user replaces the final layer of the network and performs training on this layer only,

as the networks are already trained to pick out specific image features, and it is only the

final layer that needs to be retrained to associate these features with new image classes.

Drawbacks of transfer learning include the need to resize images to conform to the network’s

input requirements, and the length of time required for training [224, 225].

An effective alternative to transfer learning is to construct a custom, shallow CNN and

fully train it using a dataset of images similar to those for the specific task at hand [226].

However, the number of possible configurations can be quite daunting for even a shallow

CNN, which is generally defined as a CNN with fewer than 5 layers. Design decisions span

the selection of the overall CNN structure and order of the hidden layers to the types of layers
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and hyperparameters that define them. Furthermore, it can be unclear what effect, if any,

changes to these variables have on the overall performance of the CNN—such is the nature

of a self-optimizing algorithm. In this article, we discuss nearly every commonly understood

layer and hyperparameter that can be readily incorporated in a shallow, linear CNN. We

then discuss the training accuracy and time required for each CNN variation to process a

dataset of LFHM images. Our results provide a comprehensive guide to the construction and

customization of a shallow, linear CNN for future biomedically relevant image classification

tasks.

4.2 Materials and methods

4.2.1 Portable lens free holographic imaging

Our LFHM system is based on Gabor’s in-line imaging method [54]. Fifteen green LEDs

illuminate the sample in series. Spatial and temporal coherence is provided through the use of

pinhole and bandpass filters positioned between the LED source and the sample, as described

previously (Fig. 4.1a) [11, 75]. Fifteen sub-pixel shifted low-resolution holograms were

collected by a monochrome CMOS image sensor (pixel size 1.1 µm) over 2.025 seconds and

a pixel super-resolution algorithm was employed to obtain a high-resolution hologram [57].

This high-resolution hologram then underwent angular spectrum method back-propagation

to computationally reconstruct an image of the sample. Sub-micron resolution was achieved

over an ultra large field-of-view (around 17.5 mm2).
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Figure 4.2: (a) Dataset image preparation and CNN training workflow. (b) Implementation of
the trained CNN in an experimental context.

4.2.2 Training dataset generation

The samples that were imaged to form the CNN training dataset were prepared ac-

cording the protocol previously described [75]. Briefly, SARS-CoV-2 pseudovirus was in-

cubated and suspended in Dulbecco’s modified Eagle medium (DMEM). Half-log dilutions

of pseudovirus were prepared such that viral concentrations in samples ranged from 3·106

copies ·mL−1 to 3·102 copies ·mL−1. These dilutions we mixed 1:1 with a suspension of col-

loidal 2-µm diameter polystyrene microspheres, which had been functionalized with ACE2

protein. After incubation for 2 hours at 25°C, particle agglutination occurred as a result of

multiple pseudovirus-ACE2 interactions. Samples were then loaded into a thin imaging chip

and imaged with the LFHM system so that agglutination could be quantified.
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Table 4.1: Baseline CNN architecture. Conv: convolutional. BNorm: batch normalization.
ReLU: rectified linear unit. MaxPool: maximum pooling. FConn: fully connected.

Layer Type Filter dimension Stride Padding Data dimension
0 Input - - - 60×60×1
1 Conv 3×3×8 1 same 60×60×8
2 BNorm - - - 60×60×8
3 ReLU - - - 60×60×8
4 MaxPool 2×2 2 0 30×30×8
5 Conv 3×3×16 1 same 30×30×16
6 BNorm - - - 30×30×16
7 ReLU - - - 30×30×16
8 MaxPool 2×2 2 0 15×15×16
9 Conv 3×3×32 1 same 15×15×32
10 BNorm - - - 15×15×32
11 ReLU - - - 15×15×32
12 FConn 5 - - 1×1×5
13 Softmax - - - 1×1×5
14 Classification - - - 1×1×5

The images used to train and validate the CNNs tested here were reconstructions from

high-resolution holograms of pseudovirus-microparticle agglutination. Features of interest

such as pseudovirus aggregates, cell debris from viral incubation, and agglutinated micro-

spheres were identified through simple pixel intensity thresholding and object grouping im-

plemented in MATLAB, and small 60 pixel × 60 pixel regions of interest (ROIs) surrounding

each feature were cropped from the whole FOV. The complexity of these images, the number

of conformational positions the microparticles could be in, and the ambiguity (from a tra-

ditional image segmentation approach) of feature characteristics made this image set ideal

for a CNN application. In total, 1,410 images of features were extracted and manually as-

signed to 1 of 5 possible categories: features consisting of exactly 1, 2, 3, or 4 microspheres,

and a fifth category for debris or unknown features. This dataset was further augmented

by rotating and mirroring each image to yield a total of 11,280 images evenly distributed

across the 5 training classes or groups. This overall workflow and the application of the CNN
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post-training is detailed in Fig. 4.2.

4.2.3 Convolutional Neural Network Architectures

The baseline neural network architecture used in this study is a shallow, three-layer

CNN with standard rectified linear unit (ReLU) activation and batch normalization layers.

This network is illustrated in Fig. 4.1b, and the dimensionality, full CNN architecture, and

associated hyperparameter values for this baseline network are shown in Table 4.1.

Figure 4.3: Examples of several key layers. (a) Convolutional layers perform convolution opera-
tions as they slide across the image or data. The hyperparameters of padding and stride influence
this sliding and determine the output dimension. Here, the convolution kernel is a 2 by 2 kernel
with all values set to 1. (b) Max pooling layers slide across the data and are influenced by stride
just like convolutional layers, but return only the highest value in each filter. (c) A ReLU activation
sets all negative values in the data to 0. Other activation layers alter the data differently, but each
act as a function with a single value as the input variable, returning the output value. (d) Values
included for batch, layer, and instance normalization. W and H represent the 2 data dimensions
corresponding to rows and columns in the raw images, or the output of each convolutional layer
operating on a single image (first two data dimensions in Table 4.1). N is the number of images
in a mini-batch, and D is the depth of the data at that point in the network, or the third data
dimension in Table 4.1.
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Each layer type from Table 4.1 serves a role in the task of image classification, and

some have adjustable hyperparameters. Some key CNN layers, hyperparameters, and the

operations they perform are depicted in Fig. 4.3. The convolutional layer (layers 1, 5, and

9 of the baseline network) serves as a foundational building block in CNNs. Its convolution

operation involves sliding a filter (also known as a kernel) over the input data, multiplying the

kernel by the overlapping input data, and summing the result (Fig. 4.3a)[214]. Depending

on the filter, some regions of input data will produce high values (where data is similar to the

filter), and some will produce low values (where data is dissimilar to the filter), enabling the

particular kernel to detect various patterns and features, which helps the network identify

distinctive characteristics in the data. The filter is initialized with random values at the start

of training, and each iteration through a mini-batch, the CNN updates the filters (or weights)

for each filter in each convolutional layer to improve the accuracy of the network according

to Equations 4.3 and 4.4. The efficacy of this layer in facilitating optimal feature extraction

relies on layer hyperparameters such as the filter size (e.g., 2 × 2 pixels), the number of filters

(which affects the data depth, shown as the last dimension in the last column of Table 4.1),

the filter stride, and the padding (see Fig. 4.3a). Filter stride indicates the number of pixels

the filter is shifted over between each multiplication operation during convolution, while

padding involves the addition of extra empty pixels to the input image, often used to preserve

the spatial dimensions of the input. Without padding, the dimensions will shrink, limiting

the number of usable convolutional layers and impacting overall performance. Additionally,

without padding, pixels at the corners and edges undergo fewer operations during convolution

or pooling compared to central pixels.

Normalization layers, such as batch normalization, are integral to CNNs due to their
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crucial role in stabilizing and accelerating the training process, noted in layers 2, 6, and 10 of

the baseline network (Table 4.1). One of the primary challenges they address is the internal

covariate shift, a phenomenon where the distribution of the network’s activations or data

values in a given layer changes as data progresses through the layers during training [227].

This shift hinders the model’s ability to learn effectively. Batch normalization counteracts

this internal covariate shift by normalizing the activations within each mini-batch to a normal

distribution, with the addition of a learnable scale and shift, during training, thereby ensuring

a more consistent and stable learning environment. Normalization employs the following

equation to achieve this:

x̂i = η
xi − µB√
σ2
B + ϵ

+ β, (4.1)

where the initial value, xi, is normalized by the mini-batch data’s mean µB and variance σ2
B,

with the addition of a constant, ϵ, that improves numerical stability when variance is very

small, to produce the new data value, x̂i. To account for the possibility that optimum input

data populations do not have a mean of zero and unit variance, two additional learnable

parameters are added, η and β, which scale and offset the data respectively and are updated

during training.

Normalization layers not only facilitate faster convergence, but also enhance the net-

work’s ability to generalize from the data. In the context of neural networks, convergence

refers to the point at which the model’s parameters stabilize, and the loss function reaches

a minimum. It signifies that the network has learned the underlying patterns in the data

and can make predictions with a high degree of accuracy. Generalization, in this context,

means that the trained model can make accurate predictions on unseen data that was not
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part of the training set. This is crucial for the practical application of CNNs in real-world

scenarios, where the model needs to perform well on diverse and previously unseen inputs.

In this article, various normalization layers are investigated, including batch, where

normalization is performed for each filter using all data in the mini-batch; instance, where

normalization is performed for each filter independently using only one set of data values

that corresponds to a single input image; and layer normalization, where normalization is

performed for only one set of data values corresponding to a single input image, but over all

filters together. Fig. 4.3 depicts these differences. Layer normalization is typically utilized

after all the learnable layers, specifically following layer 12 in Table 4.1. In this study, we

explore the effects of employing various normalization layers, including the combination of

layer normalization with batch and instance normalization.

Activation layers, like ReLU in layers 3, 7, and 11 (Table 4.1), bring a crucial aspect to

the network by introducing nonlinearity, which allows it to handle more intricate relation-

ships within the data [228]. In a linear system, the model can only grasp straightforward

connections, limiting its ability to understand complex patterns. Some activation functions,

such as ReLU, replace negative values with zero. This prevents the neurons from saturating,

where the gradient, ∇L from Equation 4.4, gets small as training progresses and training

slows. While ReLU stands as the predominant activation layer choice, noteworthy improve-

ments in CNN validation accuracy have been observed in certain cases by introducing a

nonzero value for the negative inputs [229–231]. Here we investigate several ReLU variants,

such as leaky ReLU, which has a small, near-zero, positive slope for negative inputs; clipped

ReLU, where values greater than a ceiling are clipped to the ceiling; and Elu, which is the

same as ReLU for positive inputs but applies an exponential function to negative inputs.
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Clipped ReLU was tested with lower, mid-level, and higher ceiling values. In addition, we

compare the network performance among other types of activation layers, including tanh,

softplus, and swish. The swish operation is given by the equation:

f(x) =
x

1− e−x
, (4.2)

Pooling layers, such as max pooling in layers 4 and 8 in Table 4.1, downsample the

data. This is apparent from Table 4.1, where the total data dimensionality, equal to the

product of the first two dimensions in the last column, only drops during pooling by a factor

corresponding to the pooling layer filter dimension. By down-sampling the input image,

pooling layers can prune insignificant data, while retaining significant values, no matter

what location they correspond to in the original image. This feature is called transverse

invariance. There are two types of pooling layers tested here: maximum (max) and average

pooling, which capture either the max or average value over the region of overlap between

the data and the filter. As with convolutional layers, both types of pooling layers can be

tuned by stride and padding (see Fig. 4.3).

Although dropout layers are not present in our baseline architecture, they can signif-

icantly mitigate overfitting, a common challenge in deep learning models [232]. Dropout

layers randomly deactivate a subset of neurons in a fully connected layer, which appears as

layer 12 in Table 4.1, during each training iteration, preventing the network from relying

too heavily on specific features or patterns and, thereby, improving its ability to generalize.

During some of our tests, we introduced a dropout layer immediately following layer 11 in

Table 4.1. The dropout layer hyperparameter ranges from 0 to 1, where 1 deactivates 100%
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of the neurons, while 0, as the default, keeps all the neurons activated. The effect of this

layer and its hyperparameter value on the CNN was investigated.

4.2.4 CNN training and validation

The network was trained using MATLAB on a 2-core Intel® Xeon® Gold 5218 2.29

GHz processor. The augmented dataset comprised 11,280 images, of which 75% (N = 8, 460)

were allocated for training, and the remaining 25% were designated for validation. Each

network underwent training and validation three times. Each time, data was randomly re-

assigned into training and validation groups and filter weights and biases were randomly

re-generated, ensuring that the training behavior observed was not due to the specific as-

signment of data to either training or validation.

Learning is achieved through updating weights and biases of the CNN to minimize

cross-entropy loss:

L = − 1

N

N∑
n=1

K∑
i=1

ci tni ln(yni), (4.3)

where L is the loss, K = 5 denotes the number of distinct classifications, ci stands for

the weight assigned to class i, tni is an indicator (either 0 or 1) that a given input, n, is

associated with class i, and yni represents the network’s calculated probability of associating

the nth input with class i. These components enable the network to assign a loss value for

its performance, which it then tries to minimize by adjusting the learnable parameters in

the network (commonly referred to as weights and biases), such as the convolutional filters

in a CNN, to increase the probability, yni of an input being associated with the correct class.

To adjust the learnable parameters in the network contained in the vector θ, a stochastic
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gradient descent with momentum solver is used, where the parameters in the (l+1)th iteration

are set as:

θl+1 = θl − α∇L(θl) + γ(θl − θl−1), (4.4)

where α is the training rate and γ is a momentum constant that influences the impact

that the change in parameter values from the previous iteration has on training. Here, γ is

always set to 0.9. A fixed learning rate of α = 0.0001 (Eqn. 4.4 was employed throughout

the training of all networks.

This solver is applied after each iteration, which corresponds to a pass through a “mini-

batch” of input images, rather than the whole training dataset. The duration of each iteration

spanned from 1.2 seconds to 27 seconds, contingent upon factors such as the network’s

complexity, the order in which training data was presented, and the convergence rate. By

updating the parameter set after each mini-batch, the CNN can be more rapidly trained. In

our case, each mini-batch is 64 images that are randomly selected from the unused training

dataset images remaining in the current epoch. The random order in which images are

incorporated into mini-batches during each epoch adds variability that enhances the model’s

adaptability and robustness. Validation is performed after every 100 iterations. Once all

training dataset images have been used, a new epoch begins, and the process repeats until

there has been no improvement over three consecutive validation cycles. Ceasing training at

this point prevents overfitting (overtraining), which is defined as when a network exhibits

close to 100% training accuracy but significantly lower validation accuracy, indicating reliance

on the training data and poor generalization to unseen data.

Another way in which we mitigate overfitting and enhance generalization is by employing
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L2 regularization during training. A penalty term proportional to the squared magnitude of

the network’s weights is added to the loss function:

LR(θ) = L(θ) + λ

(
1

2
wTw

)
, (4.5)

where λ is the regularization factor, which we range from 0 to 1, and w represents a vector

of each of the weights, with wT being the transpose of that vector. The inclusion of the

L2 regularization term discourages the model from assigning excessively large weights to

individual parameters, effectively preventing the network from becoming overly reliant on

any given feature in the training data, and it improves the network’s ability to generalize to

unseen data. Here, we investigate the effect that different levels of L2 regularization has on

performance.

4.3 Results and discussion

The modifications to the baseline network were performed in the order below. At each

stage, a range of different network parameters was considered, and then the optimal param-

eter choice was retained for the next stage of network modification, rather than returning to

the baseline network. Network optimality was quantified by the highest end validation accu-

racy. This approach ensured that the best-performing layer or parameter used to effectively

define a new “baseline” before introducing subsequent modifications.

Each test involving a modified layer or parameter was conducted three times to account

for variability from randomized weight and bias starting conditions and dataset distribution,

with the average end validation accuracy represented by the blue dots in the figures below.
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Error bars, indicative of the standard error of the mean, were calculated based on the results

of these three independent training trials.

4.3.1 Dropout layer

Initially, the dropout layer was introduced following layer 11 in Table 4.1, aimed at

mitigating overfitting and enhancing the CNN’s performance. In Fig. 4.4a, it is apparent that

deactivating 80% of neurons yielded the highest end validation accuracy; with all neurons

activated and no dropout layer, the network exhibited greater variability and instability. The

number of training iterations required to achieve convergence correlates with the exposure

of the network to the data. Without dropout, all neurons are always active and undergo

optimization, thus fewer iterations occur before training converges to its final minimum loss.

With dropout, the training in general demands more iterations for the network to achieve

a higher validation accuracy. In summary, while training with an 80% dropout incurs more

iterations, the superior performance of this network outweighs the slightly extended training

time.

Figure 4.4: (a) The end validation accuracy of the CNN is plotted as a function of the fraction of
neurons deactivated in the dropout layer. (b) The required number of iterations before the network
ceased to improve after three consecutive validation cycles.
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4.3.2 Convolutional layers

For the convolutional layers, two critical parameters were considered: the number of

filters and the size of the filters, as outlined in Table 4.1 for the baseline architecture. In

the baseline network, the first, second, and third convolution layers had 8, 16, and 32 filters,

respectively, with dimensions of 3 × 3 for each filter. From Fig. 4.5a, the network with

the highest end validation accuracy had 16, 16, and 32 filters in the three respective layers

and achieved an average end validation accuracy of 82.51%. Although the networks with

(20, 20, 36) and (8, 8, 24) filters each showed comparable results to the network with (16,

16, 32) filters, the former, having more learnable layers, required an extended training time

(Fig. 4.5b), while the latter exhibited greater training instability evidenced through higher

variability. For these reasons, we selected (16, 16, 32) as the optimal numbers of filters in

each layer.

When testing filter dimensions, the number of filters in each convolutional layer was kept

constant (16, 16, 32). In Fig. 4.5c and d, the lower axes labels indicate the filter dimensions.

Note that all filters are square with an equal number of rows and columns. The (15, 15,

10) network with filter dimensions 15× 15 for the first two convolutional layers and 10× 10

for the last layer attained the highest end validation accuracy at 81.31%. A comparison

with networks having filter dimensions (10, 10, 6) and (20, 20, 15) showed that training for

the former, while more stable, had significantly lower end validation accuracy, and that the

latter, though unstable, required more iterations for a slightly higher average accuracy (Fig.

4.5d).

In summary, the combination of using (16, 16, 32) for the number of filters and (15, 15,
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Figure 4.5: (a) The end validation accuracy and (b) number of required iterations of the CNN
is plotted as a function of number of filters in each of the three convolutional layers (D1, D2, D3).
(c) The end validation accuracy and (d) number of required iterations of the CNN is plotted as a
function of dimension of filters (m1, m2, m3).

10) for filter dimensions in the three convolutional layers yielded the best results. Exploring

more filters in each layer and larger filter dimensions did not exhibit significant improvements

and prolonged network training.

4.3.3 Normalization layers

In the initial architecture (Table 4.1), normalization was performed in layers 2, 6, and

10. We investigated the effect of using batch normalization versus instance normalization

in these layers (see Fig. 4d for an explanation of these types of normalization), as well as
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removing the normalization layers entirely. We also investigated adding layer normalization

near the end of the network, after layer 11 in Table 4.1) The results are shown in Figure

4.6. The configurations with no normalization and with solely layer normalization proved

impractical, exhibiting poor end validation accuracy and high instability. The most effective

option emerged as batch + layer normalization, achieving an average end validation accuracy

of 83.53%, which is higher than that of batch normalization alone, and this combination is

also more stable, but it requires slightly more training time.

Figure 4.6: (a) The end validation accuracy of the CNN is plotted for different normalization
layers. (b) The number of required iterations for training for each normalization layer.

4.3.4 Pooling layers

Pooling occurred in layers 4 and 8 of the baseline network (Table 4.1). We explored

two distinct pooling layer types (max and average pooling) and two adjustable parameters

(filter size and stride). We tested big (B) filter sizes of 4× 4 for the first pooling layer (layer

4 from Table 4.1) and 3 × 3 for second pooling layer (layer 8 from Table 4.1) versus small

(S) filter sizes of 2 × 2 for layer 4 and 1 × 1 for layer 8. A big (B) stride value was defined

as 4 and 3 respectively for the two layers, whereas a small stride was defined as 1 for both
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layers. A particular combination of filter and stride size is denoted, for example, as (S,B),

which corresponds to small filter sizes and big strides. The effects of filter and stride size

were quantified for both max and average pooling.

Figure 4.7: (a) The end validation accuracy and (b) number of training iterations of the CNN is
plotted as a function of filter size and stride for max pooling. The lower axes labels correspond to
(filter size, stride size), where B stands for “big” and S stands for “small.” See the main text for
the precise definitions. (c) The end validation accuracy and (d) number of iterations of training is
plotted as a function of filter size and stride for average pooling.

Fig. 4.7a and b show the results for Max Pooling. Overall, the big filter and small

stride (B,S) achieved the highest end validation accuracy of 83.1%. With this configuration,

more information is combined in each new data point, with potentially large regions in a

data block set to the same value, but a higher dimensionality is retained due to small stride.

With a negligible difference in the number of iterations required for convergence (Fig. 4.7b),
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the substantial accuracy improvement makes (B,S) the optimal choice.

For average pooling, results in Fig. 4.7 show that a small filter but big stride (S,B) yields

the highest average end validation accuracy at 82.94%. Compared to the other conditions,

this configuration exhibits greater stability, albeit requiring more iterations to train. When

comparing this result to the max pooling optimal configuration of a big filter and small stride,

we find that max pooling not only achieves higher validation accuracy but also requires fewer

iterations to achieve convergence. In summary, utilizing max pooling with a big filter and

small stride emerges as the superior option.

4.3.5 Padding for Convolutional and Pooling layers

In the previous section, the application of a max pooling layer with a large filter and

a small stride proved to be superior. Additionally, a combination of employing (16, 16, 32)

filters in each convolutional layer with (15, 15, 10) filter dimensions in each layer yielded

optimal results. In the following tests, these parameters were all held fixed.

Both convolutional and pooling layers enable the user to add padding to the filter

as it steps across the data. As illustrated in Fig. 4.8a, the use of “same” padding in

the convolutional layer, which preserves the data size as it passes through the layer, led

to higher validation accuracy, averaging 82.51%. The absence of any padding resulted in

a significant drop in accuracy, while “same” padding necessitated more iterations before

convergence. A similar analysis was conducted for pooling layers, shown in Fig. 4.8c. No

padding yielded a higher average end validation accuracy of 82.1%. Typically, padding in

pooling prevents neglecting corner and edge pixels during down-sampling. However, given

that the dataset lacks crucial features in these regions, the absence of padding for pooling
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Figure 4.8: (a) The end validation accuracy and (b) number of iterations trained of the CNN is
plotted for convolutional layer padding hyperparameters. (c) The end validation accuracy and (d)
number of iterations trained of the CNN is plotted for Pooling layer padding hyperparameters.

emerged as the optimal choice. In summary, for this particular dataset, the use of padding

for the convolutional layers proved beneficial, while no padding in pooling layers yielded

superior results.

4.3.6 L2 regularization

Accuracy varies with the L2 parameter, with lower parameter values tending to yield

better results (Fig. 4.9). Optimal performance was achieved without utilizing L2 regular-

ization with an average end validation accuracy of 82.91%. It is typically not recommended

to construct a network without regularization due to the risk of data overfitting. In our
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application, the network incorporates an auto-stop function, terminating training if no im-

provement is observed after three validation cycles. This could explain why the network

achieved a high accuracy for validation data after training with no regularization. Due to

the potential negative effect this can have to a CNN’s generalization performance on ex-

panded or dissimilar data, more testing would be needed to ensure network performance is

unaffected in the end application.

Figure 4.9: (a) The end validation accuracy of the CNN and (b) The number of iterations trained
is plotted as a function of different L2 parameters.

Fig. 4.9b provides additional insights, suggesting that the network with a 0.1 L2 reg-

ularization coefficient trains in fewer iterations, converging earlier. This implies a potential

improvement in mitigating overfitting, although the presence of the auto-stop function makes

it challenging to unequivocally attribute these improvements to L2 regularization alone.

4.3.7 Activation layer

The activation layer introduces non-linearity to a neural network, with ReLU commonly

being the preferred choice. In the baseline network, ReLU was employed in layers 3, 7, and

11, as outlined in Table 4.1. To explore alternatives that might outperform ReLU, these
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layers were replaced with different activation layers.

Figure 4.10: (a) The end validation accuracy of the CNN and (b) the number of iterations trained
is plotted for a variety of activation layers.

As depicted in Fig. 4.10a, the swish layer exhibited the best overall performance, achiev-

ing an average end validation accuracy of 82.98% and lowest variability between training

sessions. Clipped-low demonstrated comparable accuracy to ReLU, while Clipped-mid and

-high showed worse end validation accuracy. ReLU proved the second best after swish in

our testing, however it is worth noting that in some cases, it might not be the most suitable

choice. For example, tanh, characterized by an S-shaped function, is commonly utilized in

applications with only two classes [233]. ReLU’s characteristic of discarding negative values

and converting them to zero can lead to issues such as vanishing gradient problems [234].

The choice of activation layer depends on the specific characteristics and requirements of the

given task.

4.3.8 Final Optimized Network

After thorough exploration and experimentation with various layers and hyperparam-

eters we have identified the layers and hyperparameters that worked best. The layers and
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their corresponding hyperparameters are presented in table 4.2.

Table 4.2: Updated CNN after optimization of layers and hyperparameters. Conv: convolutional.
BNorm: batch normalization. LayerNorm: layer normalization. MaxPool: maximum pooling.
FConn: fully connected.

Layer Type Filter dimension Stride Padding Data dimension

0 Input - - - 60×60×1
1 Conv 15×15×16 1 same 60×60×16
2 BNorm - - - 60×60×8
3 Swish - - - 60×60×8
4 MaxPool 4×4 1 0 57×57×8
5 Conv 15×15×16 1 same 57×57×16
6 BNorm - - - 57×57×16
7 Swish - - - 57×57×16
8 MaxPool 3×3 1 0 55×55×16
9 Conv 10×10×32 1 same 55×55×32
10 BNorm - - - 55×55×32
11 Swish - - - 55×55×32
12 LayerNorm - - - 55×55×32
13 FConn 5 - - 1×1×5
14 Softmax - - - 1×1×5
15 Classification - - - 1×1×5

4.4 Conclusions

In this Chapter, the effect that a wide range of layer types, including dropout layers,

normalization layers, pooling layers, and activation layers, and the effect that a wide range

of their hyperparameters, including filter size, stride, padding, and regularization, on the

training outcomes of a shallow CNN has been demonstrated. The highest average end

validation accuracy achieved by using each of the optimal settings was an average validation

accuracy of 81.75%. This seems to indicate that the stochastic nature of the solving process,

data segmentation, and initial network conditions plays a large role in these shallow networks.

The best solution continues to be expansion of the utilized dataset to improve validation
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performance. While it is not possible to say what will be the best combination of settings

and layers for any given image classification application, it is still useful to look at how

the changes to each layer and hyperparameter affected accuracy and training variability.

For instance, the greatest change in end validation accuracy from worst to best performing

CNN was achieved by changing the activation layer, so starting here when developing a

custom CNN for a new task would be a good place to begin. Additionally, if it is observed

that a network is training inconsistently, sometimes getting low end validation accuracy

and sometimes high as a result of random training/validation data splits, adjustment of

normalization layer or L2 regularization tended to have the greatest effect in stabilizing

this end validation accuracy. While this is by no means a fully comprehensive analysis of

these layers and hyperparameters, since it is not feasible to test every single combination,

it nevertheless serves as a thorough analysis of these layers and the effects they have on

CNN training. The data presented here should serve as an excellent reference for researchers

developing and fine-tuning CNNs for use in image classification applications.
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CHAPTER 5

A Novel Polarization- and LSPR-Based Lens-Free Microscope and Biosensor

In Chapter 3, a novel point-of-care (POC) biosensor for SARS-CoV-2 was developed. It

combined sensitivity close to that of the gold standard RT-qPCR with some of the portability

of an LFA, resulting in a compelling biosensing platform and assay. To improve upon this

sensor’s LFHM platform, a novel, polarization-based LFHM was developed for detection of

gold nanorod agglutination.

5.1 Introduction

A discussed in Chapter 1, ELISA and LFAs provide compelling reasons for use as a

biosensing assay for a variety of proteins, with ELISA attaining a high sensitivity at the

cost of portability, and LFAs achieving portability at the cost of high sensitivity. Plasmonic

ELISA, also discussed in Chapter 1, is a method for improving the sensitivity and POC read-

out of ELISA [28, 29]. This technique relies on the plasmonic properties of gold nanoparticles

to create a hue change rather than saturation change for enhanced eye visualization without

expensive and bulky spectrophotometer. This work shows the usefulness of plasmonic gold

nanoparticles for greatly enhancing the sensitivity traditional assays, but its need for spe-

cialized equipment for quantitative readout of protein concentration hampers its widespread
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use.

Biosensors that rely on surface plasmon resonance (SPR) are also quite compelling. As

discussed in Chapter 1, these sensors have a variety of forms and mechanisms, but in general

rely on detecting subtle changes in the wavelength of evanescent fields launched along the

surface of a probe material, such as gold, termed SPR. Single-molecule detection using this

technique has been achieved using a single immobilized gold nanorod (AuNR) as a particle to

enhance SPR resonance shifts that occur as proteins bind to the AuNR [38]. This represents

one of the highest sensitivities of any biosensing technology. Other SPR sensors use a thin

layer of gold on a prism or a gold nanohole array to acheive biosensing of proteins [34–36].

These sensors have very high sensitivities, but can suffer from a lack of portabilty, high

equipment and training cost, and are sensitive to experimental conditions [9].

To address some of these drawbacks of SPR biosensors while improving upon the pre-

vious LFHM biosensor that was designed [75], a new LFHM biosensor was designed and

tested. The LFHM portion of this new biosensor is based on an 850 nm wavelength laser

diode array rather than an LED array. This enables a high degree of temporal coherence

without the use of an expensive bandpass filter, and adequate spatial coherence without a

pinhole filter, thus simplifying the LFHM design. Additionally, a linear polarizer is inserted

into the light path between source and sample. AuNRs sized 93 nm on the long axis and

25 nm in diameter are used as a particle rather than latex microspheres because AuNRs

exhibit localized SPR (LSPR) resonance that depends mainly on their aspect ratio. Light

at the resonant wavelength of the rods and polarized along the long axis will cause the rod

to scatter more than light polarized along the short axis of the rod. Using these properties,

this LFHM biosensor is designed to detect AuNRs by visualizing high and low intensity
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diffraction-limited objects in the FOV under perpendicular polarizations and quantifying

the dichroism observed under these two conditions.

These modifications to the LFHM device, particles used, and quantification methodology

enable a faster assay time, as smaller particles undergo diffusion more rapidly than larger

ones, resulting in a more rapid readout in POC settings. This also presents a novel LFHM

methodology that improves on existing LFHM techniques in terms of the size of particles

quantified and potentially the sensitivity of LFHM biosensors.

5.2 Methods

5.2.1 AuNR scattering

In all imaging systems, there exist limitations that prevent the system from resolving

very small objects and features. If a system is properly optimized, the fundamental resolution

limit is the diffraction limit, which is determined by the numerical aperture of the system

as well as the working wavelength of light used by the system. In coherent systems like

LFHM, objects smaller than the diffraction limit of the system are imaged as diffraction-

limited spots, where the object appears as a point source imaged through the system, and

thus is dependent on both the coherent transfer function of the system, and the fundamental

diffraction limit of λ/2. For LFHM systems, temporal coherence tends to be the limiting

factor, as seen when investigating the temporal coherence transfer function (TCTF):

TCTF (u) = sinc

(
z2

∆λ

2
|u|2

)
, (5.1)
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where u is the coordinates in frequency space, z2 is the sample-to-sensor distance, and ∆λ

is the FWHM of the source [235]. A reduction in z2 or in ∆λ widens the TCTF, enabling

the collection of higher frequency components before the sinc function drops to zero. This

leads to the first cut-off frequency of:

|u| =
√

2

z2∆λ
, (5.2)

and a half-pitch resolution of the reconstructed image of:

q =
1

2|u|
=

√
z2∆λ

8
. (5.3)

To ensure the fundamental diffraction limit (q < λ/2) can be achieved, it is important that

z2 be smaller than 2λ2/∆λ. For the LFHM system described here, this condition is satisfied

by the system constraints of z2 = 450 µm, ∆λ = 1 nm, and λ = 850 nm. This results in a

value of q = 0.237 µm. Even if the FWHM of the diode was 3.2 nm, this condition would

still be satisfied. Based on Eqn. 2.1, the theoretical resolution of this system is 0.5242 µm

based on a calculated NA of 0.8108.

The AuNRs used in this study (Nanopartz C12 25 nm diameter, SPR = 850 nm, Neutra-

vidin, 50 OD, Lot # 2442) are much smaller than the fundemental diffraction limit (∼ λ/9

on the long, 93 nm axis) and thus are expected to be diffraction-limited in this system,

even though the system constraints satisfy the above condition for temporal coherence. The

difficulty with using AuNRs as an agglutination particle, therefore, is any LFHM system’s

inability to distinguish single particles from particles in small clusters of 2 or 3. To address
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this problem, the LSPR scattering properties of AuNRs will be used.

The AuNR scattered electric field is dependent on their polarizability, α, which is heavily

influenced by the aspect ratio of the rods themselves:

←→a =


α∥ 0 0

0 α⊥ 0

0 0 α⊥

 , (5.4)

α∥,⊥ = V ϵ0
ϵ− ϵb

L∥,⊥ϵ +
(
1− L∥,⊥

)
ϵb
, (5.5)

where the AuNR is modelled as a prolate spheroid with α∥ oriented parallel to the long axis

of the rod and:

V =
4

3
π

(
d

2

)2(
l

2

)
, (5.6)

L∥ =
1− e2

e2

(
−1 +

1

2e
ln

(
1 + e

1− e

))
, (5.7)

L⊥ =
1− L∥

2
(5.8)

e = eccentricity =

√
1−

(
d

l

)2

(5.9)

ϵ is the electric permittivity of the rod material, in this case gold, and ϵb is the permittivity
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of the background media [33]. The AuNRs used in this study are on-resonance with the

850 nm wavelength diodes used in the LFHM, which maximizes the scattering of the rods.

Figure 5.1 shows the absorption spectrum and a transmission electron micrograph (TEM)

image of these AuNRs pulled from the certificate of analysis. Based on Equation 5.5, and

using the appropriate wavelength, material properties of gold, and aspect ratio of these

rods, the polarizability of the long axis (α∥) is over 16 times higher than that of the short

axis (α⊥). A simulation of scattering intensity from a single cylindrical-shaped rod with

spherical end-caps in a linearly-polarized plane-wave source field in Figure 5.2 shows this

dichroic scattering response, indicating that the scattered intensity when light is polarized

aligned with the short axis is only around 0.4% that of the long axis.

Figure 5.1: Gold nanorod characteristics. a) TEM image of stock AuNRs. Scale bar is 500 nm.
b) Absorbance spectrum of AuNRs in the visible and IR spectrum. LSPR absorption peak occurs
at 850 nm. Reproduced from Nanopartz Certificate of Analysis for gold nanorod product C12-25-
850-TN-DIH-50, Lot # N2442

Combining images of single AuNRs reconstructed using two perpendicular polarizations

will result in a dim or undetectable diffraction-limited spot in one polarization, and a bright

and detectable spot in the other. Larger clusters, where the AuNRs will be randomly ori-
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Figure 5.2: Gold nanorod simulated scattering response under linearly polarized 850 nm light.
The x-axis denotes the angle of the linear polarization relative to the long, resonant axis of the
AuNR, with 0 degrees indicating the rod is perfectly aligned with the polarization vector. Response
is normalized to the maximum scattering response. Simulation shows a high degree of polarization
dichroism, with the majority of the scattered power produced between ± 20 degrees from 0 while
outside of 40 degrees is less than 10% of the maximum response.

ented and bound together, will exhibit more scattering, but a lesser degree of dichroism,

enabling the LFHM system to distinguish between single AuNRs oriented in one of the two

polarization directions and clusters of bound AuNRs that have agglutinated in the presence

of a target biomolecule for biosensing.

5.2.2 Polarization-based LFHM design

The new LFHM design is similar to the system described in Chapter 3, but with several

changes that enable it to image AuNRs effectively (Fig. 5.3). The primary alteration is
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that laser diodes centered at 850 nm (ThorLabs L850P010), rather than high-power LEDs

centered at 532 nm are used. These diodes not only align with the LSPR peak of the

AuNRs, they are also smaller, consume less power, are highly temporally coherent with a

full-width half-max (FWHM) of < 1 nm compared to a bandpass filter with a FWHM of 5

nm, and are more spatially coherent than LEDs. These characteristics allow the pinhole filter

and bandpass filter to be removed from the system, improving system robustness, reducing

cost, and reducing the size of the system. It also enables polarization filters to easily be

inserted into the system for AuNR imaging. Figure 5.4 shows the completed laser diode-

based LFHM system, termed the P-LFHM, while Figure 5.5 shows a side-by-side comparison

to the previously reported LFHM system. The system featured in Chapter 3 weighs 835 g

while the P-LFHM system weights just 540 g.

The laser diodes of the P-LFHM are positioned directly above the image sensor on

a custom-built laser diode array (Appendix C). A 5V source powers the array through

a constant current source using a single NPN transistor (2N3904TA). A trimmer resistor

(3296W-1-101LF) is incorporated into the constant current source which enables fine-tuning

of current delivery to the diodes and therefore diode intensity, while also preventing damage

to the diodes. The tunable diode output power is useful when balancing laser intensity with

sensor exposure settings to achieve optimal imaging results. The diodes are switched on and

off one at a time by 16 MOSFET transistors (STP160N3LL).

The image sensor is the Pi-Hawk 64MP CMOS image sensor from Arducam. This

sensor has a working area of 41.07 mm2 and a pixel size of 0.8 µm. This large working area

enables simultaneous imaging of tens of thousands and potentially hundreds of thousands of

AuNR’s simultaneously, while the sub-micron pixel size should improve imaging resolution.
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Figure 5.3: Polarization-LFHM schematic. An array of 16 850 nm laser diodes is positioned
directly above the image sensor. Two linear polarization filters that can be shifted back and forth
to achieve two different source polarizations are positioned between the diodes and sensor, and the
sample is placed atop the sensor beneath the filters.

The sensor itself has a Bayer color filter on it, which would present a significant problem in

the visible color spectrum. To test the sensor performance in the near infrared spectrum,

the IR filter of the sensor was removed and a supercontinuum laser was used to scan across

the visible and near IR spectrum. The response for each of the red, green, and blue channels

was collected and normalized by the power of the supercontinuum laser.

Both the image sensor and the laser diode array are controlled by a Raspberry Pi 4B with

8 GB of RAM. The image sensor itself is simple connected to the CSI-2 port on the board

and is controlled with the Python package, Picamera2. Raw digital negative (.dng) format
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Figure 5.4: Fully assembled P-LFHM device. a) External views of the operating P-LFHM device
with paired laptop computer connected via SSH. b) View of imaging area with laser diode array
and image sensor visible. Polarization filters are embedded in the sliding component visible in the
walls of the main imaging chamber, which are removed and replaced when loading and unloading
samples into the microscope.
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Figure 5.5: Comparison of two LFHM devices. Both LFHM devices used in this dissertation
are shown side-by-side. On the left side of the images is the QLAB sensor used in SARS-CoV-2
quantification in Chapter 3, and on the right is the new P-LFHM sensor, which stands half as tall
with a similar footprint as the QLAB sensor.

images are captured using the code shown in Appendix B. The diode array is connected to

18 total GPIO pins on the Raspberry Pi board: one pin to ground, one 5V power pin that

supplies the constant current source on the array board, and 16 output pins that switch the

MOSFET transistors on the laser diode array board. Images are saved directly on the Pi

and can be exported to a portable laptop computer for processing via a flashdrive or directly

over an ethernet connection.
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The Pi is setup in a headless configuration. In this configuration, a laptop computer

can connect to it directly via an ethernet cable and SSH, eliminating the need for a separate

monitor for the Pi. Internet access can be shared from the laptop to the Pi if needed over this

connection, however no internet connection is needed to operate the P-LFHM and process

the holograms. The laptop can operate on battery for several hours at a time, and the Pi only

needs a single outlet to run all of the components, making the only requirement necessary

for imaging access to power. Imaging with this system currently takes 10 s per frame or 2.5

minutes for a single set of holograms to be captured from one polarization. This can be sped

up significantly to only 6 s by using Python multiprocessing to capture a video feed from the

image sensor at 2.7 frames per second (the maximum frame rate of a full resolution image)

and sync laser diode flashing using code provided in Appendix B.

5.2.3 AuNR agglutination assay

AuNR agglutination is performed to detect the presence of a small molecule, biotin.

AuNRs are functionalized with Neutravidin by the manufacturer, enabling the use of a 4-arm

PEG biotin molecule (Creative PEGWorks PSB-4202) as a sensing target. Figure 5.6 shows

the agglutination assay procedure which relies on Neutravidin-biotin binding to agglutinate

AuNRs. AuNRs diluted 1:100,000 from a stock of 0.36% w/v are mixed with 4-arm biotin

at a final concentration of 100 µg per mL for 40 minutes on a shaker at 1400 rpm at room

temperature.

Due to the current long capture time of the P-LFHM, the agglutinated AuNRs have

to be immobilized before imaging. Without this step, motion blur from the AuNRs un-

dergoing Brownian motion would prevent any imaging of single AuNRs in the sample and
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Figure 5.6: Agglutination assay of AuNRs. AuNRs are diluted 1:100,000 and incubated with
100 µg per mL of 4-arm PEG biotin (MW 5,000) for 40 minutes at room temperature on a shaker
at 1400 rpm. The agglutinated particles are dropped onto a silane-functionalized glass coverslip,
dried, and imaged.

effectively prevent quantification of agglutination [236, 237]. Immobilization is achieved

through silanization of a glass coverslip. 3400 MW Silane-PEG-Biotin is dissolved in DMSO

at a concentration of 20 mg per mL and deposited onto a plasma-treated coverslip. After

20 minutes, the silane solution is washed off first with fresh DMSO, then with ultrapure

water and lightly blown dry with compressed air. Agglutinated AuNRs are dropped onto

the silanized glass coverslip and allowed to sit for 5 min before washing with ultrapure water

and lightly blowing dry with compressed air before being ready for imaging in the P-LFHM.
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5.3 Results

5.3.1 P-LFHM sensor response

The PiHawk image sensor showed little to no channel difference at a wavelength of 850

nm. Figure 5.7a depicts the normalized red, green, and blue channel response to the super-

continuum laser at different wavelengths, which reveals that the channel response converges

at 850 nm and then follows the expected response decay that is indicative of silicon-based

CMOS sensors. Closer inspection of the response curves shows that they remain consis-

tently within 3% of each other, indicating that the Bayer pattern has little impact on images

produced at 850 nm.

This indicates that the PiHawk sensor is a good choice for operating at this wavelength.

Its uniform response across all 3 channels enables the use of every single pixel on the sensor

instead of just the red channel, making the effective pixel size of a raw hologram the sensor

pixel size of 0.8 µm.

5.3.2 Image benchmarking analysis

To assess the imaging performance of the P-LFHM system, a USAF 1951 test target

was imaged, as shown in Figure 5.8. Reconstructions of single holograms captured with the

P-LFHM are achieved here, with a reconstruction of the USAF test target shown on the

left side of the figure. Quantification of the pixel variation along each line (shown on the

right of the figure) reveals that the resolution of vertical lines is 1.74 µm while for horizontal

lines it is 1.38 µm. This discrepancy can be explained by the presence of large, vertical lines

from group 6 immediately to the left of group 8. Sharp lines like this generate many high



155

Figure 5.7: PiHawk sensor channel response at 850 nm. a) All three channels exhibit a similar
response to 850 nm wavelength light, retaining a 3% range between the individual channels, shown
in (b). c) Shows the laser power of the illuminating laser that was used to normalize the graph in
(a). For all, red, green, and blue lines indicate the response of the red, green, and blue channels
respectively.

frequency fringes, exacerbating common holographic reconstruction problems like the twin

image artifact, and likely contribute to a lower resolution of these vertical bars.

5.4 Summary

As a result of the research presented in this Chapter, several things have been accom-

plished. First, a novel LFHM design has been developed. No LFHM sensor has yet been
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Figure 5.8: Single low-resolution hologram USAF reconstruction. Left is a small FOV of the
USAF 1951 test target, depicting groups 6 and smaller, and a zoomed in FOV of this image around
group 8 with red and blue lines indicating the pixels measured in the graphs on the right. The
graphs to the right show the pixel value of the image along the lines shown in the left for each of
the elements in group 8 with their corresponding bar widths. For horizontal groups (red), group 8
element 4 (1.38 µm resolution) is clearly resolved, with even up to element 6 (1.1 µm) exhibiting
intensity dips corresponding with the dark bars. Vertical bars are resolved clearly until group 8
element 2 (1.74 µm) with some intensity drops present up until group 8 element 4.

reported that utilizes a sensor with a pixel size of under a micron. The benefit of this can be

seen in the single hologram reconstruction, which produces a higher resolution image than

a single hologram from the previously reported QLAB system [11, 57, 75]. Additionally,

this system satisfies constraints imposed by the LFHM temporal coherence transfer function

which indicate that the system is only limited by the physical diffraction limit imposed by

using 850 nm light, something which is difficult to achieve.
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In addition to the theoretical implications this system exhibits, a significant amount

of benchmarking has been performed that indicate its usefulness as a novel LFHM imaging

platform. The sensor response data indicate that the P-LFHM will be able to image colloidal

particles, effectively utilizing all channels of the sensor for the highest possible resolution.

Furthermore, simulation results of AuNR scattering supports the use of polarized light when

imaging agglutinated AuNRs. The combination of these factors support the P-LFHM’s use

as a biosensor using agglutinated AuNRs as described above.
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CHAPTER 6

Conclusions and Future Directions

The work in this dissertation represents a substantial advancement in LFHM biosen-

sor technology. First, a LFHM biosensor was applied to biosensing of SARS-CoV-2 virus,

successfully addressing a pressing need during the COVID-19 pandemic. This biosensing

platform excelled in combining portable, point-of-care readout with an assay sensitivity ap-

proaching that of the gold standard of PCR. This sensor achieved a limit of detection of

1,270 copies of virus per mL within 3 hrs of sample collection. Furthermore, it incorporated

a deep learning algorithm to improve the robustness of data quantification, enabling samples

filled with debris to be used for quantification. This advancement addresses a key drawback

of LFHM technologies in that they are sensitive to this type of debris in imaging. As a final

step in this research, the agglutination assay was made quantitative and unambiguous. By

using 2 samples, either at a higher microbead concentration or at a diluted sample concen-

tration, the true concentration of virus could be obtained using this assay, only increasing

assay time by a few minutes in the process. These advancements represent a novel and

compelling contribution to LFHM biosensing technologies and provide a basis for LFHM

biosensors moving forwards.

In the process of developing a deep learning algorithm to quantify the COVID-19
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biosensor samples, a characterization study was performed on shallow convolutional neu-

ral networks. Commonly used and adjusted layers and hyperparameters were systematically

changed, with the resulting effect on network behavior quantified and reported. This yielded

critical information that makes it possible to efficiently approach construction and refinement

for these types of networks. For example, if specific undesirable behaviors in future neural

networks are observed such as overtraining, variability between training iterations, and low

validation accuracy, the knowledge cataloged here can provide a guide for which factors to

adjust and in which order. The usefulness of this research can also extend to other datasets

of biomedically relevant images as well, not just LFHM imaging.

Finally, a new LFHM microscope was developed for use in a novel biosensing platform.

Its novelty lies in the specific combination of components that combine portability with ultra-

small pixel size and custom laser diode array, and in its use of gold nanorods as a particle

for an agglutination assay. The use of LSPR-dependent scattering under linearly polarized

light is particularly unique and will set future research with this device apart from other

research in the field. The thorough examination of this P-LFHM device as a microscope,

and the performance of the necessary calculations, simulations, and testing lay the ground

work to proceed to the next research step of performing a biosensing assay for a relevant

target biomarker of disease.

Future directions for this work primarily include the development and testing of this

biosensing platform. Figure 6.1 depicts a vision of what this biosensor could eventually look

like and how sensing for carcinoembryonic antigen (CEA) as a biomarker for cancer could be

performed using this device. The advantage of the P-LFHM system lies in its ability to target

multiple biomarkers for disease without changing the underlying LFHM device. Nanorods
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functionalized with Neutravidin can easily be conjugated to biotinylated antibodies for any

desired protein and even biotinylated DNA for nucleic acid detection. Furthermore, other

capture molecules with known interactions can be used, expanding the sensing of this device

to small molecules an unconventional proteins with ease. Going even further, multiple targets

could be sensed in a single assay by using multiple source wavelengths and multiple nanorods

with different resonance wavelengths. The research in this dissertation lays the foundation

for all of these advances and more.

Figure 6.1: Next steps for the P-LFHM system. Depicted here is the P-LFHM system imaging
agglutinated AuNRs functionalized with antibodies to detect CEA protein in a biosensing assay
for cancer diagnosis.
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APPENDIX A

Appendix A: 3D CAD models of LFHM housing

A.1 Portable QLAB designs

Below are images from the SolidWorks CAD environment where the housing for the

portable housing for the QLAB sensor was designed for 3D printing. The design is hinged at

the back to allow a sample to be loaded and unloaded easily. Bolts and nuts affix the more

permanent components together (the lid at the top designed to access the LED array for

maintenance and the side walls are bolted together during use. All seams in the device feature

an interlocking step design to prevent ambient room light from affecting the holograms.

A.2 P-LFHM designs

Below is featured representative images of the 5 components comprising the P-LFHM

housing in the CAD environment, Autodesk Fusion 360. These components were designed

and assembled using Fusion 360 before 3D printing with black PLA. For assembly, M2

threaded screws were screwed directly into holes in the models, self-tapping threads and

enabling a stable, semi-permanent connection for parts that were designed to be fixed to-

gether without moving (i.e. components that position the Raspberry Pi, image sensor, and

array relative to each other, shown in the upper right photo). Other, movable components
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Figure A.1: Portable QLAB CAD designs. Each of the 3 main components are shown here, along
with the assembly.
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were attached together using magnets and friction for a firm, but easily removable contact,

important for sample loading and unloading and Raspberry Pi maintenance. All seams into

the imaging compartment are interlocking steps so that ambient room light cannot enter and

wash out the hologram.
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Figure A.2: P-LFHM CAD designs. Various rotations and states of disassembly are shown to
demonstrate how the P-LFHM device was assembled.
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APPENDIX B

Appendix B: Operating Python code for P-LFHM

B.1 Serial illumination and capture

Code for capturing a hologram illuminated throughout the image capture process. This
code can also capture multiple images from a single diode for averaging.

import RPi.GPIO as GPIO

import time

import datetime

import multiprocessing

from picamera2 import Picamera2, Preview

from picamera2.controls import Controls

import time

import numpy as np

import pandas as pd

start = datetime.datetime.now()

print(’Initializing GPIO.’)

# List LD no. and GPIO pin pairs

LD1 = 11

LD2 = 12

LD3 = 13

LD4 = 15

LD5 = 16

LD6 = 18

LD7 = 22

LD8 = 29

LD9 = 31

LD10 = 32

LD11 = 33

LD12 = 35

LD13 = 36
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LD14 = 37

LD15 = 38

LD16 = 40

LDList = [LD1, LD2, LD3, LD4, LD5, LD6, LD7, LD8, LD9, LD10, LD11, LD12,

↪→ LD13, LD14, LD15, LD16]

GPIO.setmode(GPIO.BOARD)

print(’Initializing LD array.’)

# Initialize each pin and set to 0

# (pi will leak current from any previously active pins,

# this ensures new image will not have ambient light.)

for x in LDList:

GPIO.setup(x, GPIO.OUT)

GPIO.output(x,1)

time.sleep(0.1)

GPIO.output(x,0)

time.sleep(2)

print(’Initializing camera.’)

picam2 = Picamera2()

#format must be yuv for main stream - rgb is default and uses double the CMA

↪→ memory as yuv so buffer frame won’t allocate

capture_config = picam2.create_still_configuration(raw={"size": (9152, 6944)

↪→ }, main={"format":"YUV420"})

picam2.options["compress_level"] = 0 #no .png compression performed

picam2.options["quality"] = 95 #highest quality .jpg

picam2.configure(capture_config)

picam2.start()

time.sleep(2)

with picam2.controls as ctrl:

ctrl.AwbEnable = False

ctrl.AnalogueGain = 1.0

ctrl.ExposureTime = 371 #rounded from 2.7 fps

ctrl.NoiseReductionMode = False

ctrl.Sharpness = 0 #may want to change to 1 (default)

time.sleep(2)

print(’Begin capture.’)

request = picam2.capture_request() #initializes camera frame without saving
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↪→ it

request.release()

avgtot = 2

holonum = 1

for x in LDList:

avgnum = 1

for y in range(0,avgtot):

print(’Hologram ’ + str(holonum) + ’-’ + str(avgnum) + ’ start.’)

GPIO.output(x,1) #flash diode

startld = datetime.datetime.now()

print(’ON’)

startcap = datetime.datetime.now()

request = picam2.capture_request() #Capture all streams and metadata

↪→ using request

GPIO.output(x,0) #diode off

stopld = datetime.datetime.now()

print(’OFF’)

deltald = stopld - startld

print(’LD on time: ’, int(deltald.total_seconds() * 1000), ’ms’)

print(’Saving...’)

request.save_dng(’GNR-100ug_LRH_wpol’ + str(holonum) + ’-’ + str(

↪→ avgnum) + ’.dng’) #save raw stream

request.release()

stopcap = datetime.datetime.now()

deltacap = stopcap - startcap

print(’Capture and save time: ’, int(deltacap.total_seconds() *

↪→ 1000), ’ms’)

print(’Hologram ’ + str(holonum) + ’-’ + str(avgnum) + ’ complete.’)

avgnum = avgnum+1

holonum = holonum+1

print(’Cleaning up...’)

picam2.stop()

GPIO.cleanup()

time.sleep(1)

print(’Capture complete’)

stop = datetime.datetime.now()

total = stop-start

imgtot = (holonum-1) * avgtot

print(’Total images: ’, str(imgtot))
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print(’Total time: ’, int(total.total_seconds() * 1000), ’ms’)

B.2 Multiprocessing parallel illumination and capture

Additional code using multiprocessing to illuminate diode independently of capture
process. This framework will enable hologram capture during video recording.

import RPi.GPIO as GPIO

import time

import datetime

import multiprocessing

from picamera2 import Picamera2, Preview

from picamera2.controls import Controls

import time

import numpy as np

import pandas as pd

print(’Initializing GPIO.’)

# List LD no. and GPIO pin pairs

LD1 = 11

LD2 = 12

LD3 = 13

LD4 = 15

LD5 = 16

LD6 = 18

LD7 = 22

LD8 = 29

LD9 = 31

LD10 = 32

LD11 = 33

LD12 = 35

LD13 = 36

LD14 = 37

LD15 = 38

LD16 = 40

LDList = [LD1, LD2, LD3, LD4, LD5, LD6, LD7, LD8, LD9, LD10, LD11, LD12,

↪→ LD13, LD14, LD15, LD16]

GPIO.setmode(GPIO.BOARD)

print(’Initializing LD array.’)

# Initialize each pin and set to 0

# (pi will leak current from any previously active pins,

# this ensures new image will not have ambient light.)
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for x in LDList:

GPIO.setup(x, GPIO.OUT)

GPIO.output(x,1)

time.sleep(0.1)

GPIO.output(x,0)

time.sleep(2)

e = multiprocessing.Event()

t = multiprocessing.Event()

f = multiprocessing.Event()

# Process 1: Flash diode for specified seconds

def DiodeFlash():

while True:

if e.is_set():

f.set()

GPIO.output(x,1) #flash diode

startld = datetime.datetime.now()

print(’ON’)

time.sleep(1)

GPIO.output(x,0) #diode off

stopld = datetime.datetime.now()

print(’OFF’)

deltald = stopld - startld

print(’LD on time: ’, int(deltald.total_seconds() * 1000), ’ms’)

e.clear()

if t.is_set():

break

# Process 2: Start camera capture

def CameraCap():

print(’Initializing camera.’)

picam2 = Picamera2()

capture_config = picam2.create_still_configuration(raw={"size": (9152,

↪→ 6944)}, main={"format":"YUV420"})

picam2.options["compress_level"] = 0 #no .png compression performed

picam2.options["quality"] = 95 #highest quality .jpg

picam2.configure(capture_config)

picam2.start()

time.sleep(2)

with picam2.controls as ctrl:

ctrl.AwbEnable = False

ctrl.AnalogueGain = 1.0
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ctrl.ExposureTime = 371 #rounded from 2.7 fps

ctrl.NoiseReductionMode = False

ctrl.Sharpness = 0 #may want to change to 1 (default)

time.sleep(2)

print(’Begin capture.’)

request = picam2.capture_request() #initializes camera frame without

↪→ saving it

request.release()

holonum = 1

for x in LDList:

print(’Hologram ’ + str(holonum) + ’ start.’)

startcap = datetime.datetime.now()

e.set()

request = picam2.capture_request() #Capture all streams and metadata

↪→ using request

stopcap = datetime.datetime.now()

deltacap = stopcap - startcap

print(’Capture time: ’, int(deltacap.total_seconds() * 1000), ’ms’)

print(’Saving...’)

request.save_dng(’PolLRH’ + str(holonum) + ’.dng’) #save raw stream

request.release()

print(’Hologram ’ + str(holonum) + ’ complete.’)

holonum = holonum +1

print(’Cleaning up...’)

picam2.stop()

t.set()

def Terminate():

while True:

if t.is_set():

p.terminate()

q.terminate()

GPIO.cleanup()

time.sleep(1)

print(’Capture complete’)

break

p = multiprocessing.Process(name=’DiodeFlash’, target = DiodeFlash, args =

↪→ () )

q = multiprocessing.Process(name=’CameraCap’, target = CameraCap, args = ()

↪→ )
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r = multiprocessing.Process(name=’Terminate’, target = Terminate, args = ()

↪→ )

q.start()

p.start()

r.start()
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APPENDIX C

Appendix C: Laser diode array circuit schematics

C.1 Circuit design

The circuit for the custom laser diode array was designed using Autodesk Eagle.

Figure C.1: Constant current source that powers the laser diode array. 5V power connects to the
Raspberry Pi GPIO pin 2 and GND connects to the Raspberry Pi GPIO pin 6.
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Figure C.2: Full ciruit wire diagram of the laser diode array. Each of the 16 connections connects to one output pin on the GPIO.
Resistors are placed between the MOSFET transistors and pin connections to prevent a runaway current as the transistor heats which
could draw excess current from the Raspberry Pi and damage it.
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C.2 PCB layout

Figure C.3: Laser diode board schematics. The laser diode array was printed on an FR-4 base
material with a top and bottom layer, and thickness of 1.6. The printed circuit board color was
black. Total price for a single board was ∼ $2. Total price for the fully assembled array was ∼ $440,
with the laser diodes comprising the majority of the cost (∼ $415).
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Hutomo Suryo Wasisto, and Andreas Waag. Nonmechanical parfocal and auto-
focus features based on wave propagation distribution in lensfree holographic mi-
croscopy. Scientific Reports, 11(1):3213, February 2021. ISSN 2045-2322. doi:
10.1038/s41598-021-81098-7.



191

[157] Ivan Pushkarsky, Yunbo Liu, Westbrook Weaver, Ting-Wei Su, Onur Mudanyali, Ay-
dogan Ozcan, and Dino Di Carlo. Automated single-cell motility analysis on a chip
using lensfree microscopy. Scientific Reports, 4(1):4717, April 2014. ISSN 2045-2322.
doi: 10.1038/srep04717.

[158] C. Allier, S. Morel, R. Vincent, L. Ghenim, F. Navarro, M. Menneteau, T. Bordy,
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