

1

MACHINE LEARNING DENOISING SOLUTION FOR

ACOUSTOELECTRIC IMAGING

by

Eric Nelson

A Thesis Submitted to the Faculty of the

JAMES C. WYANT COLLEGE OF OPTICAL SCIENCES

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

2024

2

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Master’s Committee, we certify that we have read the thesis

prepared by Eric Nelson, titled Machine Learning Denoising Solution for

Acoustoelectric Imaging and recommend that it be accepted as fulfilling the dissertation

requirement for the Master’s Degree.

3

Acknowledgements

 Completion of my thesis, as well as the personal development achieved along the

way, could not have been done on my own. There are far too many people that I must

thank for helping me on my journey that I would be certain to forget some if I was to

name them here. A few integral influences will be addressed. I extend my deepest

thanks to my supervisor and mentor, Professor Russell Witte, who has believed in me

since I first came to the University of Arizona. Russ first introduced me to Arizona by

giving me an internship position at his start up company where I gained some

foundations in the topic that would later become my thesis project. Upon completion of

my internship, I joined my first lab in the college of optical sciences, the intelligent

imaging and sensing laboratory led by Professor Amit Ashok. After a year I realized

that the projects I was supporting were not fulfilling my interests. I once again

contacted Professor Russell Witte about joining his lab. After meeting with Russ, I

began attending the weekly meetings of the Experimental Ultrasound and Neural

Imaging Laboratory where I was greeted by my previous colleagues. Russ quickly

found me a project which he thought I could contribute to with my new experience.

This project became my thesis topic.

 As my thesis project developed, collaborating labs began getting involved. I next

want to thank our collaborators at the University of Washington led by Professor

Matthew O’Donnell. I also want to thank our collaborating lab here at the University of

4

Arizona led by Professor Janet Roveda. Janet’s lab provided guidance to get past the

many obstacles faced during my project and Janet went on to be on my thesis

committee. I also would like to thank the final member of my thesis committee

Professor Florian Willomitzer. Before Florian joined my thesis committee, I was a

student in his Computational Imaging and Computer Vision course where I further

developed my technical knowledge on computational imaging as well as my technical

communication skills. I also want to recognize both Jini Kandyil and Professor Brian

Anderson who have been great advisors to me since I’ve come to Arizona. Both Jini

and Brian have had open door policies with me and have provided me with all the

guidance I needed to navigate graduate school

 Finally, I want to thank my cohort of students at the College of Optical Sciences

who came with me from the University of Nevada, Reno. Having these friends as my

support system is a large part of why I was successful in this program. This includes

my friend and mentor Christopher Salinas who is also in Russ’ lab. Chris has been my

friend since high school and is the primary influence which brought me here to the

College of Optical Sciences. These are some of many influences I’ve had over the years,

thank you for helping me grow into a person I can be proud of.

5

Dedications

For my family. To my mother and sisters who taught me to love, laugh, and live. To my father

who taught me to be curious. And to my grandparents who taught me to always be my best, to

always grow, and to always believe in the future.

6

Table of Contents

Abstract..10

Chapter 1: Introduction...11

- 1.1 Background…..11

 1.1.1 Acoustoelectric Effect ...11

1.1.2 Acoustoelectric Imaging Theory ..12

1.1.3 Acoustoelectric Data ..13

- 1.2 AE Data Simulation………………..14

1.2.1 Simulation Pipeline ...14

1.2.2 Simulation Parameters ..16

1.2.3 Dimensionality ..17

- 1.3 Motivation……………...18

1.3.1 Potential advantages of AEI over other medical imaging..18

1.3.2 Clinical AE Imaging for brain and heart disease diagnosis19

1.3.3 Surgical assistive tool ..21

- 1.4 Problem…………………………………………………………………………………....21

1.4.1 Noninvasive AE imaging...21

7

1.4.2 Weak signal detection with high noise floor ..22

1.4.3 Need for a robust denoising method..22

- 1.5 Proposed Solution…………..23

1.5.1 Why ML? ...23

1.5.2 Goal of Thesis ...24

Chapter 2: Methodology and Results...24

- 2.1 Machine Learning Methods……………………………………………………………..24

2.1.1 ML Theory ………………………………….……………………………………..24

2.1.2 ML Solution ……………………………………………...………………………..26

2.1.3 Activation Function, Loss Function, and Optimizer ……………………………..28

- 2.2 Data Analysis……………………………………………………………………………..30

2.2.1 Hyperparameter Testing …………………………………………………………..30

2.2.2 Monitoring model fitting (training loss vs test loss) ...………………..…………..31

2.2.3 Image Analysis Metrics …………………………..……………………………..31

- 2.3 Results……………………………………………………………………………………..32

2.3.1 Training Loss Vs. Test Loss ……………………………………………..…….…..32

8

2.3.2 Results with Optimized Hyperparameters Vs. Traditional Methods ……….…..33

Chapter 3: Conclusions and Future Work ……………………………..…………………..35

- 3.1 Discussion………………………………………………………………………..………..35

3.1.1 What observations can be drawn from results? …………………………………..35

3.1.2 Does the work provide reason to focus ML pursuit? ……………………………...35

- 3.2 Future Work…………………………………………………………………………..…..36

3.2.1 More expansive data simulations ……………………………………….…….…..36

3.2.2 Feature Engineering …………………………………………………….….……..36

3.2.3 Unsupervised methods (statistical learning)…………………………………..…..37

3.2.4 Physics-informed ML ……………………………………………………………..37

Appendix A – Instructions and Source Code…...38

Citations...60

9

List of Figures

Figure 1: Acoustoelectric Imaging Overview.……………………..…………..………..…..12

Figure 2: Scanning Ultrasound to Form 2D Image..14

Figure 3: Acoustoelectric Data Simulation Pipeline……………………..............................15

Figure 4: Simulated Saline Cube Geometry..16

Figure 5: Simulated Acoustoelectric 2D Data...18

Figure 6: Real World Acoustoelectric Imaging Applications.. 20

Figure 7: Training Process...…..26

Figure 8: HINet Architecture...27

Figure 9: Leaky ReLU Function…………... 28

Figure 10: HIN Block and Res Block……..…... 29

Figure 11: Training and Validation Loss in Command Window....................................... 32

Figure 12: Training Vs. Validation Loss Plot..33

Figure 13: Network Output Vs. Traditional Methods Output.. 34

10

Abstract

 Acoustoelectric imaging is a novel medical imaging technique that uses

ultrasound to image the flow of current in a tissue. Acoustoelectric imaging has a wide

range of high impact applications such as being able to study and diagnose diseases of

the heart and brain as well as being a potential surgical assistive tool. The primary

obstacle in bringing acoustoelectric imaging to the forefront of medical imaging is the

inability to effectively perform the technique noninvasively. Performing the technique

in-vivo requires cutting edge ultrasound and radiofrequency (RF) sensing technology,

and along with the ultra-high sensitivity of the instruments comes a high susceptibility

to background noise. The very small acoustoelectric signals end up buried in a high

noise floor, thus the need for high performing denoising capabilities. This thesis

explores the potential of pursuing machine learning as a denoising solution. An

acoustoelectric data simulation pipeline is used to provide realistic acoustoelectric data

along with the corresponding ground truth. A machine learning architecture called

HINet is explored for its reputation as being high performing in image restoration tasks.

Through a series of hyperparameter testing, the HINet model is optimized for the

simulated acoustoelectric data and is found to outperform the traditional denoising

methods by an average of 10dB by PSNR.

11

Chapter 1

Introduction

1.1 Background

1.1.1 Acoustoelectric effect

In medical imaging, the physiology that we’re interested in may not always be

directly observable. Sometimes, that which we wish to see may be measurable, but the

image quality may be fundamentally limited by the nature of the signal or the system.

In such situations, one may wish to exploit another related physical phenomenon to act

as a contrast mechanism in an image. One such physical phenomenon that one may

wish to use is the acoustoelectric (AE) effect.[1]

The AE effect is a novel physical mechanism produced from the interaction of

ultrasound waves and electric current flowing through a medium. Ultrasound is

coupled into a current carrying medium; because the ultrasound is a traveling pressure

wave, the medium is contracted and expanded according to that pressure wave. This

contraction and expansion modulate the density of the material and thus also

modulates the electrical resistivity of the medium. This encodes the underlying electric

signal according to the modulated resistivity of the medium. This resultant AE signal

produced is proportional to the underlying current source density within the medium.

12

1.1.2 Acoustoelectric Imaging Theory

Acoustoelectric Imaging (AEI) is a 4-D medical imaging technique in which

ultrasound is coupled into a current carrying medium and multiple remote recording

electrodes (leads) measure the resultant AE voltage perturbations.[The resultant AE

signal on a given lead will be a function of the electrical properties of the medium, the

geometry of the system, the underlying current source density, and the ultrasound

profile. The following figure will describe the AE voltage signal ViAE for a given lead i is

produced. Please note that the fundamental AE interaction constant K is material

specific, and the US pulse waveform a(t) refers to the slow time propagation of the

ultrasound.[2]

Figure 1: The measured AE image is a function of the local current and ultrasound fields. [3]

13

There are many ways ultrasound can be sent into the medium which will directly

affect the produced image. One common “sampling” strategy for ultrasound is focused

ultrasound pulses. In this sampling strategy, a separate ultrasound pulse is sent to each

point in the volume for each measurement. Focused ultrasound sampling provides the

best resolution but the long sampling time. Although several sampling strategies were

considered, for the purposes of this project a focused ultrasound sampling strategy was

utilized. This concept will be described later when discussing the data simulation

pipeline.

1.1.3 Acoustoelectric Data

Acoustoelectric data is typically recorded as a voltage on a recording electrode or

lead. Multiple data channels are recorded on N different leads. Ultrasound is focused

on different spatial locations in the measurement volume. In the direction of

ultrasound propagation, the depth direction is sampled as the ultrasound propagates

through the medium. By scanning the ultrasound beam across the X or Y direction, we

can form a 2D image. This is called the slow time dimension and is converted to spatial

depth via multiplication by the speed of sound through the medium. We also have the

fast time dimension which contains information of how the local time-varying currents

evolve. Finally, it is standard to collect many repeated measurements or trials of the

14

data for post processing purposes. This makes the full acoustoelectric dataset six

dimensional, including data channels, the three spatial dimensions of the volume, fast

time, and trials.

Figure 2: A 1D voltage vs. time plot is captured from a single electrode and a single firing
of the ultrasound transducer. A 2D AE image can be captured by scanning the ultrasound

in either the X or Y direction.[4]

1.2 AE Data Simulation

1.2.1 Simulation pipeline

 The Experimental Ultrasound Neural Imaging Laboratory (EUNIL) here at the

University of Arizona has long collaborated with faculty at the University of

Washington on a wide variety of projects. One such project was on developing an AE

simulation pipeline to aid in software development and analysis tools. The resulting

15

pipeline involves separating the modeling into several professional modeling tools;

Field II, COMSOL, and MATLAB. Field II is a free professional simulation tool

specializing in modeling ultrasound fields and imaging using linear acoustics theory.

COMSOL is a general-purpose Multiphysics simulation tool that we use to model the

electrical and radio frequency properties of our selected geometry. The simulation files

produced in these tools are then imported into MATLAB where the resultant AE fields

and sensing are simulated.

Figure 3: Ultrasound fields are simulated in Field II. Electrical and RF properties are simulated
in COMSOL. These simulated properties are imported into MATLAB to then model the

resultant AE fields and RF measurements.[4]

16

1.2.2 Simulation Parameters

For the purposes of the thesis project, a simplified model system developed by

our partners at the University of Washington is considered.[4] A cube of dimensions

8x8x8 cm filled with saline (0.9% NaCl) is the medium. Ultrasound enters the medium

through an acoustic window at the bottom of the cube. The ultrasound transducer is a

customized 1.5D, 0.6 MHz concave-linear US array with 126 piezoelectric elements and

a focus of 35 mm (Sonic Concepts Inc., Bothell, WA, USA). A single dipole current

source, provided by a pair of platinum electrodes, is placed in the center of the cube,

and is recorded by three gold cup recording electrodes positioned as seen in the

following figure.

Figure 4: Simulated saline cube geometry (Kang et al. 2022[3]).

 The 0.9% NaCl saline in the cube is at room temperature which would make the

acoustoelectric interaction constant KI = 0.034/MPa with the conductivity σ = 1.2 S/m.

The electric fields simulated in COMSOL were as follows: a pair of cylindrical (diameter

= 0.2 mm) platinum electrodes injected with a 200 Hz current waveform and three

17

cylindrical gold recording electrodes (diameter = 10mm) injected with unit current 1 A

connected to a common ground. Realistic acoustic fields parameters were obtained

from a programmable research US system (Vantage 64 LE, Verasonics Inc., Redmond,

WA, USA) for our ultrasound transducer which were then fed into Field II to calculate

the 3D spatial impulse response over time (4D). The maximum input pressure used is 1

MPa.

1.2.3 Dimensionality

For the sake of keeping our problem as simple as possible for a proof of concept,

a limited dataset was modeled and simulated. The modeled physics of the generated

dataset reflects that of a saline cube with a single, non-time-varying dipole in the center

being measured by three electrode leads. The ultrasound is then steered only in the x-

direction. For these assumptions, the 6D acoustoelectric dataset is reduced to a 4D

dataset. This is due to the Y spatial dimension and the fast time dimension being

invariant and thus being ignored for the purposes of simplicity. The generated dataset

thus has the dimensions (channels, X-direction, Slow time or depth, Trials). To generate

data that we would observe in an experiment, we add gaussian noise to a noiseless

acoustoelectric image. Note: In an AE experiment, the ultrasound transducer acts as a

passband filter to the system.

18

Figure 5: In the data simulation, first a noiseless acoustoelectric image is generated where the
spectrum of the AE signal corresponds to the passband of the ultrasound transducer.[4]

1.3 Motivation

1.3.1 Potential advantages of AEI over other medical imaging

AEI allows the mapping of biological currents in a volume in real time at

unprecedented spatial and temporal resolution.[7] Providing noninvasive 4D mapping

of localized electrical activity at sub-millimeter spatial resolution and millisecond

temporal resolution makes AEI competitive with the standard medical imaging

modalities such as MRI, PET/CT, EEG, and ECG for imaging the brain and heart

19

respectively. However promising, AEI is not yet commonly deployed due to a few

obstacles preventing practical use. These obstacles will be discussed in depth in this

thesis.

1.3.2 Clinical AE Imaging for brain and heart disease diagnosis

 Imaging the flow of electricity offers much potential utility for clinical

applications. Having an observable value which is directly proportional to the current

density of the tissue opens many doors. We can image current carrying tissues such as

those of the heart and brain. Many such biological signals are small and highly

localized, making other medical diagnostic tools with poor spatial resolution

capabilities ineffective. AEI provides noninvasive 4D mapping of localized electrical

activity which has the potential to greatly enhance our ability to both study and

diagnose diseases of the heart and brain.[6]

20

Figure 6: To the left is a current density reconstruction from AEI of an in-vivo swine heart.[12]
The right shows images of AEI being performed on a human brain and in-vivo rabbit heart.[13]

in-vivo swine ACI

Apex to Base (mm)

D
e

p
th

 (
m

m
)

Time (ms)

mV

LV Epicardium

LV Endocardium

Alvarez et al. 2020
Qin et al. 2015

21

1.3.3 Surgical assistive tool

 In medicine, the prerogative is to do no harm and of course this extends to

surgical procedures. However, the intricacies often involved for certain individuals can

make this highly difficult. Particularly in surgeries involving highly sensitive tissues

such as the heart and brain. It is often challenging to know where the exact boundaries

of problem tissues are located. The high localization offered by AEI can assist with this

problem. For example, with removing a section of the brain believed to be causing

seizures in a patient with epilepsy, the healthy and troubled tissues may be impossible

to distinguish to the human eye. But AEI can precisely indicate which sections of the

tissue are firing during seizure episodes. Minimizing the amount of healthy brain

tissue removed in this example would drastically improve that patient’s outcome.

1.4 Problem

1.4.1 Noninvasive AE imaging

 As previously mentioned, there are a few obstacles that need to be overcome

before AEI becomes more practical for field use. The most significant will be discussed

throughout this thesis. Currently, AEI can be performed with excellent results when

the recording electrode is in proximity with the current source.[7] However, being that

we are discussing a medical imaging modality, the ideal case would be performing this

imaging noninvasively. Because the signal strength drops off with the distance

22

squared, this makes the task of performing AEI noninvasively quite challenging. The

AE signal gets to a level low enough that the background noise begins to dominate.

1.4.2 Weak signal detection with high noise floor

 Being that the original biological signals are already very small, and the

produced AE signal will be even smaller, we suddenly have a big problem

distinguishing our interested signal with the background noise. For example, the local

currents in the brain can be less than 0.1 mA/cm2.[5] The noise floor can be larger than

this due to radiofrequency interference and aberrations related to ex-vivo ultrasound

propagation. The state-of-the-art AE systems utilize cutting edge ultrasound and

radiofrequency sensing technology to perform the imaging technique. With the ultra-

sensitive sensing technology comes a very high susceptibility to background noise

sources. Before imaging, there is an involved process of grounding the system to get

the system noise floor as low as possible. The lowest noise floor we can achieve is still

not low enough to perform AEI noninvasively.

1.4.3 Need for a robust denoising method

 Even with every effort to minimize the noise floor, we need to put our raw

measurements through a series of slow-time, fast-time, and bandpass filtering as well as

averaging many samples. Although the increase in SNR from the raw images to the

23

resultant images is significant, the signal fall-off from noninvasive AEI is too great. To

increase the viability of AEI in a clinical setting, we still need another 10-20 dB

improvement to our SNR. We have increased our capabilities to sense the tiny

biological signals we’re interested in, but the issue of noise needs to be addressed. A

robust denoising algorithm is necessary to bring AEI into the spotlight. We believe

machine learning (ML) may be able to provide the denoising capabilities we are

searching for.

1.5 Proposed Solution

1.5.1 Why ML?

 For the last decade, ML has demonstrated unprecedented versatility in tackling

image processing tasks, such as denoising, in countless applications. We believe our

standard methods of filtering and averaging may be outperformed by a robust ML

strategy. Through discussion with collaborators, we’ve decided to try a Half Instance

Regularization Network (HINet) ML framework that would be an excellent starting

point. HINet has developed recent acclaim for its performance in image restoration

tasks such as denoising, deblurring, and deraining. HINet provides almost state-of-the-

art performance in a relatively simple end to end package. A robust deep learning

method may just provide the 10-20 dB SNR improvement we need to make AEI a

standard modality in clinical settings.

24

1.5.2 Goal of thesis

 Since this project began, it has been my goal to explore ML as a potential

denoising method and begin the framework for continued development of ML for AEI.

Many ML architectures have been investigated and several have been identified as

potential future endeavors. Due to my limited time in the group, a simple but high

performing model has been chosen for the purposes of my project. It is the goal of this

thesis to investigate ML as a strong candidate for denoising AE images. The methods

and results hereafter will act as both a proof of concept and framework for future ML

development in the group.

Chapter 2

Methodology and Results

2.1 Machine Learning Methods

2.1.1 ML Theory

 Machine Learning has continually and increasingly demonstrated great utility

and flexibility in a wide range of problems for the past couple decades. This includes

regression problems which the AE denoising problem would be classified. The

25

framework for a machine learning architecture can be described as a neural network. A

neural network is an artificial mathematical model made up of many groups of

interconnected units called neurons and is used to approximate a mathematical

function through a series of non-linear transformations. Each transformation, or layer,

is a matrix function with weights that govern how the input is continually changed as it

is fed through the model. It is only through the algorithmic process of training the

neural network that the model gains the ability to transform a given input to a desired

output.

 How network training is implemented largely depends on the type of learning

that is being done. In our problem, we’re using simulated data with corresponding

ground truth data to iteratively calculate loss and update model parameters. This is

considered supervised learning. In this case, as well as with other learning types, an

optimizer, loss function, and activation function need to be chosen for the initializing

the training process. The training process involves fetching a batch of data from a data

loader, a forward pass of that batch through the model, evaluating the loss, and back

propagating that loss along the gradient of the loss function to update the network

weights.

26

Figure 7: Training loop involves a forward pass through the model, calculating the loss, and
backpropagating that loss to update the model weights.

2.1.2 ML solution

 Choosing a network architecture is a nontrivial task. Different architectures have

pros and cons and will accel in different problems since features are extracted in

different ways. EUNIL and collaborators here at the University of Arizona deliberated

for quite some time and considered several different architectures. An elegant end-to-

end network called Half Instance Normalization Network (HINet) was selected.

[3]HINet is an architecture that came out of an image restoration machine learning

27

competition and has recently been gaining attention for its performance in various

image restoration tasks. HINet is a multi-stage network with two U-Net subnetworks.

The creators proposed a novel Half Instance Normalization (HIN) block. The HIN

block is included in each subnetwork’s encoder and improves the robustness of the

extracted features. To further enrich multi-scale features and improve network cross

connections, Cross-Stage Feature Fusion (CSFF) block and Supervised Attention

Module (SAM) are also throughout the network.

Figure 8: HINet architecture[14]

28

2.1.3 Activation Function, Loss Function, and Optimizer

 Activation functions decide to what degree should an abstract (hidden) layer be

activated. Activation functions act as hidden layer weights and introduce non-linearity

to a neuron. The HINet architecture uses the LeakyReLU activation function in the HIN

block and Res block.

Figure 9: Leaky ReLU has a nonzero slope when less than 0 to reduce the likelihood of hidden
layer inactivation.

29

Figure 10: HIN block and Res Block with leaky ReLU activation function[14]

 The loss function is a very important choice when designing a machine learning

model. Loss functions guide the optimization algorithm during training and directly

impact the resultant predictive ability of the model. One of the most used loss functions

in regression tasks is Mean Squared Error (MSE), also known as the L2 Loss. MSE

calculates the average of the squared difference between the predicted and ground

truth values. A crucial aspect to MSE as a loss function is the fact that the value is being

squared. Because of this, larger errors are penalized severely in the optimization

process.

30

 Another important choice to make when designing a machine learning algorithm

is of course the optimization function. For this problem, an optimization function called

Adaptive Moment Estimation (Adam) was selected.[4] Adam is an extension to

traditional stochastic gradient descent. However, Adam is commonly hailed for

combining advantages from two other stochastic gradient descent methods, Adaptive

Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp).

AdaGrad adaptively chooses a learning rate to improve the performance on problems

with sparse gradients. RMSProp adjusts learning rate based on the magnitude of the

most recent gradient calculation making it accel on non-stationary problems. Having

both qualities, Adam is a highly effective and highly efficient optimization algorithm

which has championed its way as a go to in the ML community.

2.2 Data Analysis

2.2.1 Hyperparameter testing

 There were three hyperparameters in my model that were tested. Epochs, batch

size, and learning rate. Epochs indicate how many times the entire input dataset will be

passed through the model for training. Batch size is a hyperparameter determined by

how the data loader fetches data. The data loader breaks the total dataset up into

batches to be fed into the network one at a time. Training the model in this mini

batched manner helps stability and training performance. The learning rate is a

31

parameter that helps the optimizer determine how much to tweak a neuron's weight

during training. A learning rate that is too large will result in training instability where

a local minimum of the loss function is not approached, and the loss will bounce

around. Decreasing the learning rate too much will result in extraordinarily large

training times. A balance between these three hyperparameters needs to be made to

monitor model fitting.

2.2.2 Monitoring model fitting (training loss vs test loss)

 The neural network model, like all trained models, is susceptible to underfitting

and overfitting.[5] The model fitting can be loosely determined by how the training and

test loss behave during training. Underfitting would be due to the loss function’s

minima not being reached before training is complete. This would look like the training

and test loss to continue trending down at the end of training. Overfitting would be

due to the training dataset being “memorized" by the network resulting in the model

not generalizing to the test set which was not used to adjust the model weights.

2.2.3 Image Analysis Metrics

 The primary image analysis metrics which are used to determine the

performance of the model are Peak Signal-to-Noise Ratio (PSNR) and our loss function

metric MSE. These metrics are defined as follows:

32

PSNR is a widely adopted metric for comparing reconstruction quality. We will be

using PSNR to compare our network denoising capabilities to our traditional methods

of averaging.

2.3 Results

2.3.1 Training Loss Vs. Test Loss

 Many combinations of hyperparameters were tested when training the network.

Too many epochs or too high of a learning rate often resulted in training instability

where the loss and validation loss would suddenly explode. The best training results I

was able to obtain were with epochs=6, learning rate=0.0005, and batch size of 25. The

training losses were collected and plotted as follows:

Figure 11: The Loss and Validation Loss were printed in the command window.

33

Figure 12: The collected Loss and Validation loss were collected and plotted to demonstrate that
overfitting is not taking place.

When any more epochs were added, both losses began to grow.

2.3.2 Results with Optimized Hyperparameters Vs. Traditional Methods

Finally, tested the network results against our traditional method of averaging multiple

trials. The left column shows examples of three different levels of gaussian noise added

to the clean AE image. The center column shows our traditional method of averaging

100 trials. The averaged trials in this case had the same underlying signal, same noise

level, but different realizations of the same noise. The right column is the network

output when the noisy images in the left column are input into the HINet model we just

trained.

34

Figure 13: Left column are the noisy images with three different levels of gaussian noise as well
as the input to HINet. Center column is the result of averaging 100 trials of the images with

different noise realizations. The right column is the output to the network.

35

Chapter 3

Conclusions and Future Work

3.1 Discussion

3.1.1 What observations can be drawn from results?

 The HINet outperformed the traditional methods. This is especially surprising

since the mean image required 100 trials to achieve that denoising level, and the neural

network only took in the single noisy image to produce a far greater denoising level for

all the tested noise levels.

3.1.2 Does the work provide reason to focus ML pursuit?

 The results do provide solid reasoning for focusing EUNIL’s ML pursuits for AE

denoising. The ML result greatly surpassed expectations. The network was only

trained on gaussian noise images. We believe that ML will also be able to handle other

noise sources that we experience in a laboratory setting such as spike noise. These other

noise sources are also where the traditional methods especially break down, we would

expect an even greater improvement in performance with an ML model over the

traditional denoising methods in such cases.

36

3.2 Future Work

3.2.1 More expansive data simulations

 The ML model that was trained will not generalize well. The simulated dataset

was representative of a single physical experiment. This makes the simulated dataset

limited and introduces bias in the training process. This is perhaps why the model

performed so extraordinarily. To remove this bias, many different physics models need

to be represented in the dataset. This would include different AE signals, different

recording lead geometries, different ultrasound fields, and different noise sources.

3.2.2 Feature engineering

 Feature engineering is the process of transforming raw data with specific

features into a form that the model can better learn from. The goal is to drive model

performance by passing in particularly meaningful and relevant information. In other

words, feature engineering is the process of selecting, extracting, and transforming the

most critical features from the available data to streamline training efficiency and

accuracy. For the AE denoising problem, this could be particularly fruitful since the

traditional denoising methods are believed to destroy some low-level information in the

raw AE data.

37

3.2.3 Unsupervised methods (statistical learning)

 We defined supervised learning as using ground truth data to guide the training

process. Unsupervised learning finds patterns in the data without the ground truth

data. Unsupervised learning is often used to solve various clustering problems. So,

while this wouldn’t be a denoising network, it may help with our small signal detection

problem that denoising is attempting to tackle. Unsupervised learning may be used to

locate and extract a small AE signal in a large noise floor as they accel in providing

essential features in medical imaging and computer vision tasks. Unsupervised

learning methods typically rely on iterative apriori and dimensionality reduction

algorithms along with an autoencoder. An unsupervised learning method may be ideal

for EUNIL because we have a vast archive of AE data without ground truth.

3.2.4 Physics-informed ML

 In general, supervised learning methods do not generalize well. This is because

these methods often overfit the hardware being modeled. Generalizability is critical to

deploy these models in the real world. Physics-informed ML (PIML) may be able to

provide this desirable trait. PIML is like unsupervised learning in that it requires

applying apriori knowledge to solve the task. However, PIML utilizes knowledge of

physics being modeled to drive performance. PIML enforces physical consistency and

38

therefore does not hallucinate when presented with never-before-seen data. PIML is

also a single inference process and therefore can be deployed in real time.

Appendix A – Instructions and Source Code

 The distributions for the python packages are managed using Anaconda. A conda

environment with following requirements.txt can be installed from the anaconda

powershell prompt command window with:

using pip
pip install -r requirements.txt

using Conda
conda create --name <env_name> --file requirements.txt

Requirements.txt

absl-py==1.4.0

addict @ file:///home/conda/feedstock_root/build_artifacts/addict_1636818143388/work

alabaster==0.7.12

appdirs==1.4.4

argh==0.26.2

astroid @ file:///C:/ci/astroid_1628063237844/work

atomicwrites==1.4.0

attrs @ file:///opt/conda/conda-bld/attrs_1642510447205/work

autopep8 @ file:///tmp/build/80754af9/autopep8_1615918855173/work

Babel @ file:///tmp/build/80754af9/babel_1620871417480/work

backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work

Editable install with no version control (basicsr==1.2.0+unknown)

-e c:\users\emnel\documents\hinet-main

bcrypt @ file:///C:/ci/bcrypt_1597936262193/work

black==19.3b0

bleach @ file:///opt/conda/conda-bld/bleach_1641577558959/work

brotlipy==0.7.0

cachetools==4.2.4

certifi==2021.5.30

cffi @ file:///C:/ci/cffi_1625831763871/work

chardet @ file:///C:/ci/chardet_1607706912142/work

charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work

click==8.0.3

39

cloudpickle @ file:///tmp/build/80754af9/cloudpickle_1632508026186/work

colorama @ file:///tmp/build/80754af9/colorama_1607707115595/work

cryptography @ file:///C:/ci/cryptography_1635366724772/work

cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work

cytoolz==0.11.0

dask @ file:///tmp/build/80754af9/dask-core_1615055117017/work

dataclasses==0.8

decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work

defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work

diff-match-patch @ file:///Users/ktietz/demo/mc3/conda-bld/diff-match-patch_1630511840874/work

docutils @ file:///C:/ci/docutils_1620828217025/work

entrypoints==0.4

flake8 @ file:///tmp/build/80754af9/flake8_1615834841867/work

future==0.18.2

google-auth==2.22.0

google-auth-oauthlib==0.4.6

grpcio==1.48.2

h5py==2.10.0

idna @ file:///tmp/build/80754af9/idna_1637925883363/work

imageio @ file:///tmp/build/80754af9/imageio_1617700267927/work

imagesize @ file:///tmp/build/80754af9/imagesize_1637939814114/work

importlib-metadata==4.8.3

intervaltree @ file:///Users/ktietz/demo/mc3/conda-bld/intervaltree_1630511889664/work

ipykernel==5.5.6

ipython @ file:///C:/ci/ipython_1593446240034/work

ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work

isort @ file:///tmp/build/80754af9/isort_1628603791788/work

jedi @ file:///C:/ci/jedi_1606914470086/work

Jinja2 @ file:///opt/conda/conda-bld/jinja2_1647436528585/work

jsonschema @ file:///Users/ktietz/demo/mc3/conda-bld/jsonschema_1630511932244/work

jupyter-client==7.1.2

jupyter-core==4.9.2

keyring @ file:///C:/ci/keyring_1629321701302/work

kiwisolver @ file:///C:/ci/kiwisolver_1612282446297/work

lazy-object-proxy @ file:///C:/ci/lazy-object-proxy_1616529300868/work

Markdown==3.3.7

MarkupSafe @ file:///C:/ci/markupsafe_1621528313524/work

matplotlib @ file:///C:/ci/matplotlib-suite_1613408055530/work

mccabe==0.6.1

mistune==0.8.4

mkl-fft==1.3.0

mkl-random==1.1.1

mkl-service==2.3.0

nbconvert==5.6.1

nbformat @ file:///tmp/build/80754af9/nbformat_1617383369282/work

nest-asyncio==1.6.0

networkx @ file:///tmp/build/80754af9/networkx_1598376031484/work

40

numpy==1.19.5

numpydoc @ file:///tmp/build/80754af9/numpydoc_1605117425582/work

oauthlib==3.2.2

olefile==0.46

packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work

pandocfilters @ file:///opt/conda/conda-bld/pandocfilters_1643405455980/work

paramiko @ file:///opt/conda/conda-bld/paramiko_1640109032755/work

parso==0.7.0

pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work

pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work

Pillow @ file:///C:/ci/pillow_1625663293114/work

pluggy @ file:///C:/ci/pluggy_1633715371909/work

prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1633440160888/work

protobuf==3.19.6

psutil @ file:///C:/ci/psutil_1612298125479/work

ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-

none-any.whl

pyasn1==0.5.1

pyasn1-modules==0.3.0

pycodestyle @ file:///home/ktietz/src/ci_mi/pycodestyle_1612807597675/work

pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work

pyDeprecate==0.3.2

pydocstyle @ file:///tmp/build/80754af9/pydocstyle_1621600989141/work

pyflakes @ file:///home/ktietz/src/ci_ipy2/pyflakes_1612551159640/work

Pygments @ file:///opt/conda/conda-bld/pygments_1644249106324/work

pylint @ file:///C:/ci/pylint_1627536908981/work

pyls-black @ file:///tmp/build/80754af9/pyls-black_1607553132291/work

pyls-spyder @ file:///tmp/build/80754af9/pyls-spyder_1613849700860/work

PyNaCl @ file:///C:/ci/pynacl_1595009245871/work

pyOpenSSL @ file:///opt/conda/conda-bld/pyopenssl_1643788558760/work

pyparsing @ file:///tmp/build/80754af9/pyparsing_1635766073266/work

pyreadline==2.1

pyrsistent @ file:///C:/ci/pyrsistent_1600141799440/work

PySocks @ file:///C:/ci/pysocks_1605305839978/work

python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work

python-jsonrpc-server @ file:///tmp/build/80754af9/python-jsonrpc-server_1600278539111/work

python-language-server @ file:///tmp/build/80754af9/python-language-server_1607972495879/work

pytz==2021.3

PyWavelets @ file:///C:/ci/pywavelets_1601658410782/work

pywin32==305

pywin32-ctypes==0.2.0

PyYAML==5.4.1

pyzmq==25.1.2

QDarkStyle==2.8.1

QtAwesome @ file:///tmp/build/80754af9/qtawesome_1637160816833/work

qtconsole @ file:///opt/conda/conda-bld/qtconsole_1643819126524/work

QtPy @ file:///opt/conda/conda-bld/qtpy_1649073884068/work

41

requests @ file:///opt/conda/conda-bld/requests_1641824580448/work

requests-oauthlib==1.3.1

rope @ file:///opt/conda/conda-bld/rope_1643788605236/work

rsa==4.9

Rtree @ file:///C:/ci/rtree_1618421017076/work

scikit-image==0.17.2

scipy @ file:///C:/ci/scipy_1597675683670/work

six @ file:///tmp/build/80754af9/six_1644875935023/work

snowballstemmer @ file:///tmp/build/80754af9/snowballstemmer_1637937080595/work

sortedcontainers @ file:///tmp/build/80754af9/sortedcontainers_1623949099177/work

Sphinx==4.2.0

sphinxcontrib-applehelp @ file:///home/ktietz/src/ci/sphinxcontrib-applehelp_1611920841464/work

sphinxcontrib-devhelp @ file:///home/ktietz/src/ci/sphinxcontrib-devhelp_1611920923094/work

sphinxcontrib-htmlhelp @ file:///tmp/build/80754af9/sphinxcontrib-htmlhelp_1623945626792/work

sphinxcontrib-jsmath @ file:///home/ktietz/src/ci/sphinxcontrib-jsmath_1611920942228/work

sphinxcontrib-qthelp @ file:///home/ktietz/src/ci/sphinxcontrib-qthelp_1611921055322/work

sphinxcontrib-serializinghtml @ file:///tmp/build/80754af9/sphinxcontrib-

serializinghtml_1624451540180/work

spyder @ file:///C:/ci/spyder_1616775991046/work

spyder-kernels==2.2.0

tb-nightly==2.11.0a20220816

tensorboard-data-server==0.6.1

tensorboard-plugin-wit==1.8.1

testpath @ file:///tmp/build/80754af9/testpath_1624638946665/work

textdistance @ file:///tmp/build/80754af9/textdistance_1612461398012/work

three-merge @ file:///tmp/build/80754af9/three-merge_1607553261110/work

tifffile==2020.10.1

toml @ file:///tmp/build/80754af9/toml_1616166611790/work

toolz @ file:///tmp/build/80754af9/toolz_1636545406491/work

torch==1.8.0+cu111

torchaudio==0.8.0

torchmetrics==0.8.2

torchvision==0.9.0+cu111

tornado @ file:///C:/ci/tornado_1606942379977/work

tqdm @ file:///opt/conda/conda-bld/tqdm_1647339053476/work

traitlets @ file:///C:/ci/traitlets_1632759765830/work

typed-ast @ file:///C:/ci/typed-ast_1624953776872/work

typing_extensions @ file:///opt/conda/conda-bld/typing_extensions_1647553014482/work

ujson @ file:///C:/ci/ujson_1611259572767/work

urllib3 @ file:///opt/conda/conda-bld/urllib3_1643638302206/work

watchdog @ file:///C:/ci/watchdog_1612471247473/work

wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work

webencodings==0.5.1

Werkzeug==2.0.3

win-inet-pton @ file:///C:/ci/win_inet_pton_1605306197271/work

wincertstore==0.2

wrapt==1.12.1

42

yapf @ file:///tmp/build/80754af9/yapf_1615749224965/work

zipp @ file:///tmp/build/80754af9/zipp_1633618647012/work

The code was then ran using the Spyder API.

The code used to load the data and train the model is hinet_arch.py.

Hinet_arch.py

HINet: Half Instance Normalization Network for Image Restoration

@inproceedings{chen2021hinet,

 title={HINet: Half Instance Normalization Network for Image Restoration},

 author={Liangyu Chen and Xin Lu and Jie Zhang and Xiaojie Chu and Chengpeng Chen},

 booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},

 year={2021}

}

'''

Load required libraries

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import TensorDataset, DataLoader

import numpy as np

import h5py

import matplotlib.pyplot as plt

def force_cudnn_initialization():

 s = 32

 dev = torch.device('cuda')

 torch.nn.functional.conv2d(torch.zeros(s, s, s, s, device=dev), torch.zeros(s, s, s, s, device=dev))

Define common layers used in HINet architecture

def conv3x3(in_chn, out_chn, bias=True):

 layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias)

 return layer

def conv_down(in_chn, out_chn, bias=False):

 layer = nn.Conv2d(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias)

 return layer

def conv(in_channels, out_channels, kernel_size, bias=False, stride = 1):

 return nn.Conv2d(

 in_channels, out_channels, kernel_size,

 padding=(kernel_size//2), bias=bias, stride = stride)

/tmp/build/80754af9/zipp_1633618647012/work

43

Supervised Attention Module

class SAM(nn.Module):

 def __init__(self, n_feat, kernel_size=3, bias=True):

 super(SAM, self).__init__()

 self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias)

 self.conv2 = conv(n_feat, 3, kernel_size, bias=bias)

 self.conv3 = conv(3, n_feat, kernel_size, bias=bias)

 def forward(self, x, x_img):

 x1 = self.conv1(x)

 img = self.conv2(x) + x_img

 x2 = torch.sigmoid(self.conv3(img))

 x1 = x1*x2

 x1 = x1+x

 return x1, img

Define HINet Architecture

class HINet(nn.Module):

 def __init__(self, in_chn=4, wf=64, depth=3, relu_slope=0.2, hin_position_left=0, hin_position_right=4):

 super(HINet, self).__init__()

 self.depth = depth

 self.down_path_1 = nn.ModuleList()

 self.down_path_2 = nn.ModuleList()

 self.conv_01 = nn.Conv2d(in_chn, wf, 3, 1, 1)

 self.conv_02 = nn.Conv2d(in_chn, wf, 3, 1, 1)

 prev_channels = self.get_input_chn(wf)

 for i in range(depth): #0,1,2,3,4

 use_HIN = True if hin_position_left <= i and i <= hin_position_right else False

 downsample = True if (i+1) < depth else False

 self.down_path_1.append(UNetConvBlock(prev_channels, (2**i) * wf, downsample, relu_slope,

use_HIN=use_HIN))

 self.down_path_2.append(UNetConvBlock(prev_channels, (2**i) * wf, downsample, relu_slope,

use_csff=downsample, use_HIN=use_HIN))

 prev_channels = (2**i) * wf

 self.up_path_1 = nn.ModuleList()

 self.up_path_2 = nn.ModuleList()

 self.skip_conv_1 = nn.ModuleList()

 self.skip_conv_2 = nn.ModuleList()

 for i in reversed(range(depth - 1)):

 self.up_path_1.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope))

 self.up_path_2.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope))

 self.skip_conv_1.append(nn.Conv2d((2**i)*wf, (2**i)*wf, 3, 1, 1))

 self.skip_conv_2.append(nn.Conv2d((2**i)*wf, (2**i)*wf, 3, 1, 1))

44

 prev_channels = (2**i)*wf

 self.sam12 = SAM(prev_channels)

 self.cat12 = nn.Conv2d(prev_channels*2, prev_channels, 1, 1, 0)

 self.last = conv3x3(prev_channels, in_chn, bias=True)

 def forward(self, x):

 image = x

 #stage 1

 x1 = self.conv_01(image)

 encs = []

 decs = []

 for i, down in enumerate(self.down_path_1):

 if (i+1) < self.depth:

 x1, x1_up = down(x1)

 encs.append(x1_up)

 else:

 x1 = down(x1)

 for i, up in enumerate(self.up_path_1):

 x1 = up(x1, self.skip_conv_1[i](encs[-i-1]))

 decs.append(x1)

 sam_feature, out_1 = self.sam12(x1, image)

 #stage 2

 x2 = self.conv_02(image)

 x2 = self.cat12(torch.cat([x2, sam_feature], dim=1))

 blocks = []

 for i, down in enumerate(self.down_path_2):

 if (i+1) < self.depth:

 x2, x2_up = down(x2, encs[i], decs[-i-1])

 blocks.append(x2_up)

 else:

 x2 = down(x2)

 for i, up in enumerate(self.up_path_2):

 x2 = up(x2, self.skip_conv_2[i](blocks[-i-1]))

 out_2 = self.last(x2)

 out_2 = out_2 + image

 return [out_1, out_2]

 def get_input_chn(self, in_chn):

 return in_chn

 def _initialize(self):

 gain = nn.init.calculate_gain('leaky_relu', 0.20)

45

 for m in self.modules():

 if isinstance(m, nn.Conv2d):

 nn.init.orthogonal_(m.weight, gain=gain)

 if not m.bias is None:

 nn.init.constant_(m.bias, 0)

class UNetConvBlock(nn.Module):

 def __init__(self, in_size, out_size, downsample, relu_slope, use_csff=False, use_HIN=False):

 super(UNetConvBlock, self).__init__()

 self.downsample = downsample

 self.identity = nn.Conv2d(in_size, out_size, 1, 1, 0)

 self.use_csff = use_csff

 self.conv_1 = nn.Conv2d(in_size, out_size, kernel_size=3, padding=1, bias=True)

 self.relu_1 = nn.LeakyReLU(relu_slope, inplace=False)

 self.conv_2 = nn.Conv2d(out_size, out_size, kernel_size=3, padding=1, bias=True)

 self.relu_2 = nn.LeakyReLU(relu_slope, inplace=False)

 if downsample and use_csff:

 self.csff_enc = nn.Conv2d(out_size, out_size, 3, 1, 1)

 self.csff_dec = nn.Conv2d(out_size, out_size, 3, 1, 1)

 if use_HIN:

 self.norm = nn.InstanceNorm2d(out_size//2, affine=True)

 self.use_HIN = use_HIN

 if downsample:

 self.downsample = conv_down(out_size, out_size, bias=False)

 def forward(self, x, enc=None, dec=None):

 out = self.conv_1(x)

 if self.use_HIN:

 out_1, out_2 = torch.chunk(out, 2, dim=1)

 out = torch.cat([self.norm(out_1), out_2], dim=1)

 out = self.relu_1(out)

 out = self.relu_2(self.conv_2(out))

 out += self.identity(x)

 if enc is not None and dec is not None:

 assert self.use_csff

 out = out + self.csff_enc(enc) + self.csff_dec(dec)

 if self.downsample:

 out_down = self.downsample(out)

 return out_down, out

 else:

46

 return out

class UNetUpBlock(nn.Module):

 def __init__(self, in_size, out_size, relu_slope):

 super(UNetUpBlock, self).__init__()

 self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True)

 self.conv_block = UNetConvBlock(in_size, out_size, False, relu_slope)

 def forward(self, x, bridge):

 up = self.up(x)

 out = torch.cat([up, bridge], 1)

 out = self.conv_block(out)

 return out

class Subspace(nn.Module):

 def __init__(self, in_size, out_size):

 super(Subspace, self).__init__()

 self.blocks = nn.ModuleList()

 self.blocks.append(UNetConvBlock(in_size, out_size, False, 0.2))

 self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True)

 def forward(self, x):

 sc = self.shortcut(x)

 for i in range(len(self.blocks)):

 x = self.blocks[i](x)

 return x + sc

class skip_blocks(nn.Module):

 def __init__(self, in_size, out_size, repeat_num=1):

 super(skip_blocks, self).__init__()

 self.blocks = nn.ModuleList()

 self.re_num = repeat_num

 mid_c = 128

 self.blocks.append(UNetConvBlock(in_size, mid_c, False, 0.2))

 for i in range(self.re_num - 2):

 self.blocks.append(UNetConvBlock(mid_c, mid_c, False, 0.2))

 self.blocks.append(UNetConvBlock(mid_c, out_size, False, 0.2))

 self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True)

 def forward(self, x):

 sc = self.shortcut(x)

 for m in self.blocks:

 x = m(x)

47

 return x + sc

if __name__ == "__main__":

 CUDA_LAUNCH_BLOCKING=1

 # Define empty torch array to load data into

 data_in = torch.empty([5000, 3, 66, 277], dtype=torch.float32)

 data_gt = torch.empty([5000, 3, 66, 277], dtype=torch.float32)

 # Define path to dataset.

 path = 'C:\\Users\\emnel\\Documents\\HINet-main\\datasets\\AE MAT Data Files'

 # Parse the ground truth data (depends on how .mat file is saved)

 gt_path = path+'\\AEtestGroundTruth.mat'

 g = h5py.File(gt_path, 'r')

 datagt1 = g.get('nVAE_LE1').value

 datagt1 = np.array(datagt1)

 datagt1 = torch.from_numpy(datagt1)

 datagt2 = g.get('nVAE_LE2').value

 datagt2 = np.array(datagt2)

 datagt2 = torch.from_numpy(datagt2)

 datagt3 = g.get('nVAE_LE3').value

 datagt3 = np.array(datagt3)

 datagt3 = torch.from_numpy(datagt3)

 # Loop through .mat files in directory and parse .mat files.

 for x in range(50):

 # mat = scipy.io.loadmat(path+'\\AEtest'+x+'.mat')

 fpath = path+'\\AEtest'+str(x+1)+'.mat'

 f = h5py.File(fpath, 'r')

 data1 = f.get('totVAE_1').value

 data1 = np.array(data1)

 data1 = torch.from_numpy(data1)

 data_in[100*x:100*x+100, 0, :, :] = data1

 data2 = f.get('totVAE_2').value

 data2 = np.array(data2)

 data2 = torch.from_numpy(data2)

 data_in[100*x:100*x+100, 1, :, :] = data2

 data3 = f.get('totVAE_3').value

 data3 = np.array(data3)

 data3 = torch.from_numpy(data3)

 data_in[100*x:100*x+100, 2, :, :] = data3

 data_gt[100*x:100*x+100, 0, :, :] = datagt1

 data_gt[100*x:100*x+100, 1, :, :] = datagt2

 data_gt[100*x:100*x+100, 2, :, :] = datagt3

 # Shape data to fit through model without clipping

48

 data_in = data_in[:,:,0:64,0:272]

 data_gt = data_gt[:,:,0:64,0:272]

 # Shuffle input and ground truth data in parallel

 indices = torch.randperm(data_in.size(0))

 data_in = data_in[indices,:,:,:]

 data_gt = data_gt[indices,:,:,:]

 # Split data into training and test sets (80/20 split)

 train_in = data_in[0:4000,:,:,:]

 test_in = data_in[4000:5000,:,:,:]

 train_gt = data_gt[0:4000,:,:,:]

 test_gt = data_gt[4000:5000,:,:,:]

 # Create dataloader for trainig set

 class SimpleCustomBatch:

 def __init__(self, train_in):

 transposed_data = list(zip(*train_in))

 self.inp = torch.stack(transposed_data[0], 0)

 self.tgt = torch.stack(transposed_data[1], 0)

 # custom memory pinning method on custom type

 def pin_memory(self):

 self.inp = self.inp.pin_memory()

 self.tgt = self.tgt.pin_memory()

 return self

 def collate_wrapper(batch):

 return SimpleCustomBatch(batch)

 dataset_train = TensorDataset(train_in, train_gt)

 train_loader = DataLoader(dataset_train, batch_size=25, collate_fn=collate_wrapper,

 pin_memory=True)

 # Create dataloader for test set

 class SimpleCustomBatch2:

 def __init__(self, test_in):

 transposed_data = list(zip(*test_in))

 self.inp = torch.stack(transposed_data[0], 0)

 self.tgt = torch.stack(transposed_data[1], 0)

 # custom memory pinning method on custom type

 def pin_memory(self):

 self.inp = self.inp.pin_memory()

 self.tgt = self.tgt.pin_memory()

 return self

 def collate_wrapper(batch):

49

 return SimpleCustomBatch2(batch)

 dataset_test = TensorDataset(test_in, test_gt)

 test_loader = DataLoader(dataset_test, batch_size=25, collate_fn=collate_wrapper,

 pin_memory=True)

 # Create an instance of your model

 net = HINet(in_chn=3, wf=64, depth=3, relu_slope=0.2, hin_position_left=0, hin_position_right=4)

 # Define loss function and optimizer

 criterion = nn.MSELoss()

 optimizer = optim.Adam(net.parameters(), lr=0.0005)

 # Define the number of training parameters

 num_epochs = 6

 torch.cuda.empty_cache()

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 net.to(device)

 # Prepare arrays to save training and validation losses

 val_loss = torch.empty(0,dtype=torch.float32)

 val_loss = 0

 trainingEpoch_loss = []

 validationEpoch_loss = []

 # Training loop

 for epoch in range(num_epochs):

 step_loss = []

 net.train()

 for batch_ndx, sample in enumerate(train_loader):

 # Get the batch and move it to the GPU

 inputs = sample.inp.cuda()

 target = sample.tgt.cuda()

 # Forward pass

 outputs = net(inputs)

 # Compute the loss

 loss = criterion(outputs[0], target)

 # Backward pass and optimization

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 step_loss.append(loss.item())

 trainingEpoch_loss.append(np.array(step_loss).mean())

 net.eval() # Switch to eval mode for validation

50

#%%calculate validation loss

 with torch.no_grad():

 for batch_ndx2, sample2 in enumerate(test_loader):

 validationStep_loss = []

 test_out = net(sample2.inp.cuda())

 test_in = sample2.tgt.cuda()

 validationLoss = criterion(test_out[0],test_in)

 validationStep_loss.append(validationLoss.item())

 temp = np.array(validationStep_loss).mean()

 validationEpoch_loss.append(temp)

 # Print the train loss and validation for each epoch

 print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}, Val Loss: {temp.item()}')

#%%

 plt.plot(trainingEpoch_loss, label='train_loss')

 plt.plot(validationEpoch_loss,label='val_loss')

 plt.legend()

 plt.savefig('TrainLossVsValLoss3.png', bbox_inches='tight')

 plt.show

 # Save your trained model if needed

 torch.save(net.state_dict(), 'your_model3.pth')

To load the saved model and evaluate the performance, run LoadModelPlot.py

LoadModelPlot.py

import torch

import torch.nn as nn

from torchmetrics.image import PeakSignalNoiseRatio

import numpy as np

import h5py

import matplotlib.pyplot as plt

Define netork architecture

def force_cudnn_initialization():

 s = 32

 dev = torch.device('cuda')

 torch.nn.functional.conv2d(torch.zeros(s, s, s, s, device=dev), torch.zeros(s, s, s, s, device=dev))

def conv3x3(in_chn, out_chn, bias=True):

 layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias)

 return layer

def conv_down(in_chn, out_chn, bias=False):

51

 layer = nn.Conv2d(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias)

 return layer

def conv(in_channels, out_channels, kernel_size, bias=False, stride = 1):

 return nn.Conv2d(

 in_channels, out_channels, kernel_size,

 padding=(kernel_size//2), bias=bias, stride = stride)

Supervised Attention Module

class SAM(nn.Module):

 def __init__(self, n_feat, kernel_size=3, bias=True):

 super(SAM, self).__init__()

 self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias)

 self.conv2 = conv(n_feat, 3, kernel_size, bias=bias)

 self.conv3 = conv(3, n_feat, kernel_size, bias=bias)

 def forward(self, x, x_img):

 x1 = self.conv1(x)

 img = self.conv2(x) + x_img

 x2 = torch.sigmoid(self.conv3(img))

 x1 = x1*x2

 x1 = x1+x

 return x1, img

class HINet(nn.Module):

 def __init__(self, in_chn=4, wf=64, depth=3, relu_slope=0.2, hin_position_left=0, hin_position_right=4):

 super(HINet, self).__init__()

 self.depth = depth

 self.down_path_1 = nn.ModuleList()

 self.down_path_2 = nn.ModuleList()

 self.conv_01 = nn.Conv2d(in_chn, wf, 3, 1, 1)

 self.conv_02 = nn.Conv2d(in_chn, wf, 3, 1, 1)

 prev_channels = self.get_input_chn(wf)

 for i in range(depth): #0,1,2,3,4

 use_HIN = True if hin_position_left <= i and i <= hin_position_right else False

 downsample = True if (i+1) < depth else False

 self.down_path_1.append(UNetConvBlock(prev_channels, (2**i) * wf, downsample, relu_slope,

use_HIN=use_HIN))

 self.down_path_2.append(UNetConvBlock(prev_channels, (2**i) * wf, downsample, relu_slope,

use_csff=downsample, use_HIN=use_HIN))

 prev_channels = (2**i) * wf

 self.up_path_1 = nn.ModuleList()

 self.up_path_2 = nn.ModuleList()

 self.skip_conv_1 = nn.ModuleList()

52

 self.skip_conv_2 = nn.ModuleList()

 for i in reversed(range(depth - 1)):

 self.up_path_1.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope))

 self.up_path_2.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope))

 self.skip_conv_1.append(nn.Conv2d((2**i)*wf, (2**i)*wf, 3, 1, 1))

 self.skip_conv_2.append(nn.Conv2d((2**i)*wf, (2**i)*wf, 3, 1, 1))

 prev_channels = (2**i)*wf

 self.sam12 = SAM(prev_channels)

 self.cat12 = nn.Conv2d(prev_channels*2, prev_channels, 1, 1, 0)

 self.last = conv3x3(prev_channels, in_chn, bias=True)

 def forward(self, x):

 image = x

 #stage 1

 x1 = self.conv_01(image)

 encs = []

 decs = []

 for i, down in enumerate(self.down_path_1):

 if (i+1) < self.depth:

 x1, x1_up = down(x1)

 encs.append(x1_up)

 else:

 x1 = down(x1)

 for i, up in enumerate(self.up_path_1):

 x1 = up(x1, self.skip_conv_1[i](encs[-i-1]))

 decs.append(x1)

 sam_feature, out_1 = self.sam12(x1, image)

 #stage 2

 x2 = self.conv_02(image)

 x2 = self.cat12(torch.cat([x2, sam_feature], dim=1))

 blocks = []

 for i, down in enumerate(self.down_path_2):

 if (i+1) < self.depth:

 x2, x2_up = down(x2, encs[i], decs[-i-1])

 blocks.append(x2_up)

 else:

 x2 = down(x2)

 for i, up in enumerate(self.up_path_2):

 x2 = up(x2, self.skip_conv_2[i](blocks[-i-1]))

 out_2 = self.last(x2)

 out_2 = out_2 + image

 return [out_1, out_2]

53

 def get_input_chn(self, in_chn):

 return in_chn

 def _initialize(self):

 gain = nn.init.calculate_gain('leaky_relu', 0.20)

 for m in self.modules():

 if isinstance(m, nn.Conv2d):

 nn.init.orthogonal_(m.weight, gain=gain)

 if not m.bias is None:

 nn.init.constant_(m.bias, 0)

class UNetConvBlock(nn.Module):

 def __init__(self, in_size, out_size, downsample, relu_slope, use_csff=False, use_HIN=False):

 super(UNetConvBlock, self).__init__()

 self.downsample = downsample

 self.identity = nn.Conv2d(in_size, out_size, 1, 1, 0)

 self.use_csff = use_csff

 self.conv_1 = nn.Conv2d(in_size, out_size, kernel_size=3, padding=1, bias=True)

 self.relu_1 = nn.LeakyReLU(relu_slope, inplace=False)

 self.conv_2 = nn.Conv2d(out_size, out_size, kernel_size=3, padding=1, bias=True)

 self.relu_2 = nn.LeakyReLU(relu_slope, inplace=False)

 if downsample and use_csff:

 self.csff_enc = nn.Conv2d(out_size, out_size, 3, 1, 1)

 self.csff_dec = nn.Conv2d(out_size, out_size, 3, 1, 1)

 if use_HIN:

 self.norm = nn.InstanceNorm2d(out_size//2, affine=True)

 self.use_HIN = use_HIN

 if downsample:

 self.downsample = conv_down(out_size, out_size, bias=False)

 def forward(self, x, enc=None, dec=None):

 out = self.conv_1(x)

 if self.use_HIN:

 out_1, out_2 = torch.chunk(out, 2, dim=1)

 out = torch.cat([self.norm(out_1), out_2], dim=1)

 out = self.relu_1(out)

 out = self.relu_2(self.conv_2(out))

 out += self.identity(x)

 if enc is not None and dec is not None:

54

 assert self.use_csff

 out = out + self.csff_enc(enc) + self.csff_dec(dec)

 if self.downsample:

 out_down = self.downsample(out)

 return out_down, out

 else:

 return out

class UNetUpBlock(nn.Module):

 def __init__(self, in_size, out_size, relu_slope):

 super(UNetUpBlock, self).__init__()

 self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True)

 self.conv_block = UNetConvBlock(in_size, out_size, False, relu_slope)

 def forward(self, x, bridge):

 up = self.up(x)

 out = torch.cat([up, bridge], 1)

 out = self.conv_block(out)

 return out

class Subspace(nn.Module):

 def __init__(self, in_size, out_size):

 super(Subspace, self).__init__()

 self.blocks = nn.ModuleList()

 self.blocks.append(UNetConvBlock(in_size, out_size, False, 0.2))

 self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True)

 def forward(self, x):

 sc = self.shortcut(x)

 for i in range(len(self.blocks)):

 x = self.blocks[i](x)

 return x + sc

class skip_blocks(nn.Module):

 def __init__(self, in_size, out_size, repeat_num=1):

 super(skip_blocks, self).__init__()

 self.blocks = nn.ModuleList()

 self.re_num = repeat_num

 mid_c = 128

 self.blocks.append(UNetConvBlock(in_size, mid_c, False, 0.2))

 for i in range(self.re_num - 2):

 self.blocks.append(UNetConvBlock(mid_c, mid_c, False, 0.2))

 self.blocks.append(UNetConvBlock(mid_c, out_size, False, 0.2))

55

 self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True)

 def forward(self, x):

 sc = self.shortcut(x)

 for m in self.blocks:

 x = m(x)

 return x + sc

if __name__ == "__main__":

 # Load data as before

 data_in = torch.empty([5000, 3, 66, 277], dtype=torch.float32)

 data_gt = torch.empty([5000, 3, 66, 277], dtype=torch.float32)

 path = 'C:\\Users\\emnel\\Documents\\HINet-main\\datasets\\AE MAT Data Files'

 gt_path = path+'\\AEtestGroundTruth.mat'

 g = h5py.File(gt_path, 'r')

 datagt1 = g.get('nVAE_LE1').value

 datagt1 = np.array(datagt1)

 datagt1 = torch.from_numpy(datagt1)

 datagt2 = g.get('nVAE_LE2').value

 datagt2 = np.array(datagt2)

 datagt2 = torch.from_numpy(datagt2)

 datagt3 = g.get('nVAE_LE3').value

 datagt3 = np.array(datagt3)

 datagt3 = torch.from_numpy(datagt3)

 for x in range(50):

 fpath = path+'\\AEtest'+str(x+1)+'.mat'

 f = h5py.File(fpath, 'r')

 data1 = f.get('totVAE_1').value

 data1 = np.array(data1)

 data1 = torch.from_numpy(data1)

 data_in[100*x:100*x+100, 0, :, :] = data1

 data2 = f.get('totVAE_2').value

 data2 = np.array(data2)

 data2 = torch.from_numpy(data2)

 data_in[100*x:100*x+100, 1, :, :] = data2

 data3 = f.get('totVAE_3').value

 data3 = np.array(data3)

 data3 = torch.from_numpy(data3)

 data_in[100*x:100*x+100, 2, :, :] = data3

 data_gt[100*x:100*x+100, 0, :, :] = datagt1

 data_gt[100*x:100*x+100, 1, :, :] = datagt2

 data_gt[100*x:100*x+100, 2, :, :] = datagt3

 data_in = data_in[:,:,0:64,0:272]

56

 data_gt = data_gt[:,:,0:64,0:272]

 GroundTruth = data_gt[0:99,:,:,:]

 GroundTruthAvg = torch.empty([3, 64, 272], dtype=torch.float32)

 GroundTruthAvg[0,:,:] = data_gt[0,0,:,:]

 GroundTruthAvg[1,:,:] = data_gt[0,1,:,:]

 GroundTruthAvg[2,:,:] = data_gt[0,2,:,:]

 # Specify the path to your saved model

 PATH = 'C:\\Users\\emnel\\Documents\\HINet-

main\\basicsr\\models\\archs\\your_model.pth'

 # Create an instance of your model

 net = HINet(in_chn=3, wf=64, depth=3, relu_slope=0.2, hin_position_left=0, hin_position_right=4)

 # Load the state dictionary from the saved file (loaded the trained model weights into the architecture)

 net.load_state_dict(torch.load(PATH))

 # Set the model to evaluation mode

 net.eval()

 with torch.no_grad():

 # Select the data to be evaluated

 test_in1 = data_in[0:99,:,:,:]

 # Run the input data through the model

 a = net(test_in1)

 test_out1 = a[0]

 test_in2 = data_in[1000:1099,:,:,:]

 b = net(test_in2)

 test_out2 = b[0]

 test_in3 = data_in[2000:2099,:,:,:]

 c = net(test_in3)

 test_out3 = c[0]

 test_in4 = data_in[3000:3099,:,:,:]

 d = net(test_in4)

 test_out4 = d[0]

 test_in5 = data_in[4000:4099,:,:,:]

 e = net(test_in5)

 test_out5 = e[0]

 # Calculate mean images to test against network output

 avg_in1 = torch.mean(data_in[0:99,:,:,:], dim=0)

 avg_in2 = torch.mean(data_in[1000:1099,:,:,:], dim=0)

 avg_in3 = torch.mean(data_in[2000:2099,:,:,:], dim=0)

 avg_in4 = torch.mean(data_in[3000:3099,:,:,:], dim=0)

 avg_in5 = torch.mean(data_in[4000:4099,:,:,:], dim=0)

57

 psnr = PeakSignalNoiseRatio()

 # Calculate and print the PSNR for the input, mean image, and network output.

 psnr_in1 = psnr(test_in1,GroundTruth)

 psnr_avg1 = psnr(avg_in1,GroundTruthAvg)

 psnr_out1 = psnr(test_out1,GroundTruth)

 print(psnr_in1)

 print(psnr_avg1)

 print(psnr_out1)

 psnr_in3 = psnr(test_in3,GroundTruth)

 psnr_avg3 = psnr(avg_in3,GroundTruthAvg)

 psnr_out3 = psnr(test_out3,GroundTruth)

 print(psnr_in3)

 print(psnr_avg3)

 print(psnr_out3)

 psnr_in5 = psnr(test_in5,GroundTruth)

 psnr_avg5 = psnr(avg_in5,GroundTruthAvg)

 psnr_out5 = psnr(test_out5,GroundTruth)

 print(psnr_in5)

 print(psnr_avg5)

 print(psnr_out5)

#%% Plotting the results

plt.rc('xtick', labelsize=25)

plt.rc('ytick', labelsize=25)

f, axarr = plt.subplots(3,3,figsize=(46,46), tight_layout=True)

plt.setp(axarr, xticks=[0,25,50,75], xticklabels=[0, 20, 40,60], yticks=[0, 0.25, 0.5, 0.75,1], yticklabels=[-20, -10,

0, 10, 20])

temp1 = axarr[0,0].imshow(test_in1[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap =

'Greys')

axarr[0,0].set_title("Noisy Image", size = 50)

axarr[0,0].set_xlabel("depth [mm]", size = 30)

axarr[0,0].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp1, orientation='vertical', ax=axarr[0,0], fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[0,0].text(50, -0.15, "PSNR=18.76 dB", size=42, ha="center")

temp2 = axarr[0,1].imshow(avg_in1[0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap =

'Greys')

axarr[0,1].set_title("Mean Image", size = 50)

axarr[0,1].set_xlabel("depth [mm]", size = 30)

58

axarr[0,1].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp2,orientation='vertical', ax=axarr[0,1],fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[0,1].text(50, -0.15, "PSNR=38.52 dB", size=42, ha="center")

temp3 = axarr[0,2].imshow(test_out1[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap

= 'Greys')

axarr[0,2].set_title("Network Output", size = 50)

axarr[0,2].set_xlabel("depth [mm]", size = 30)

axarr[0,2].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp3,orientation='vertical', ax=axarr[0,2],fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[0,2].text(50, -0.15, "PSNR=50.22 dB", size=42, ha="center")

temp4 = axarr[1,0].imshow(test_in3[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap =

'Greys')

axarr[1,0].set_xlabel("depth [mm]", size = 30)

axarr[1,0].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp4,orientation='vertical', ax=axarr[1,0],fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[1,0].text(50, -0.15, "PSNR=26.77 dB", size=42, ha="center")

temp5 = axarr[1,1].imshow(avg_in3[0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap =

'Greys')

axarr[1,1].set_xlabel("depth [mm]", size = 30)

axarr[1,1].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp5,orientation='vertical', ax=axarr[1,1],fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[1,1].text(50, -0.15, "PSNR=46.40 dB", size=42, ha="center")

temp6 = axarr[1,2].imshow(test_out3[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap

= 'Greys')

axarr[1,2].set_xlabel("depth [mm]", size = 30)

axarr[1,2].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp6,orientation='vertical', ax=axarr[1,2],fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[1,2].text(50, -0.15, "PSNR=56.90 dB", size=42, ha="center")

temp7 = axarr[2,0].imshow(test_in5[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap =

'Greys')

axarr[2,0].set_xlabel("depth [mm]", size = 30)

axarr[2,0].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp7,orientation='vertical', ax=axarr[2,0],fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[2,0].text(50, -0.15, "PSNR=40.70 dB", size=42, ha="center")

59

temp8 = axarr[2,1].imshow(avg_in5[0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap =

'Greys')

axarr[2,1].set_xlabel("depth [mm]", size = 30)

axarr[2,1].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp8,orientation='vertical', ax=axarr[2,1],fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[2,1].text(50, -0.15, "PSNR=56.41 dB", size=42, ha="center")

temp9 = axarr[2,2].imshow(test_out5[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap

= 'Greys')

axarr[2,2].set_xlabel("depth [mm]", size = 30)

axarr[2,2].set_ylabel("x [mm]", size = 30)

cbar_int = f.colorbar(temp9,orientation='vertical', ax=axarr[2,2],fraction=0.046, pad=0.04)

cbar_int.ax.tick_params(labelsize=25)

axarr[2,2].text(50, -0.15, "PSNR=62.29 dB", size=42, ha="center")

Save the figure

plt.savefig("example.png",bbox_inches="tight")

--- ---------------

60

Citations

[1] Witte, R. S., Olafsson, R., Huang, S. -W., O’Donnell, M., “Imaging current flow in

lobster nerve cord using the acoustoelectric effect”, 2007 Appl. Phys. Lett. 90,

163902, DOI: 10.1063/1.2724901

[2] Li, Q., Olafsson, R., Ingram, P., Wang, Z., Witte, R., “Measuring the

acoustoelectric interaction constant using ultrasound current source density

imaging” 2012 Phys. Med. Biol. 57 5929, DOI 10.1088/0031-9155/57/19/5929.

[3] Barragan, A., Preston, C., Alvarez, A., Bera, T., Qin, Y., Weinand, M., Kasoff, W.,

Witte, R. S., “Acoustoelectric imaging of deep dipoles in a human head phantom

for guiding treatment of epilepsy”, 2020 J. Neural Eng. 17 056040. DOI

10.1088/1741-2552/abb63a.

[4] Kang, J., Huang, C., Perkins, C., Alvarez, A., Kunyansky, L., Witte, R.S.,

O’Donnell, M., “Current Source Density Imaging Using Regularized Inversion of

Acoustoelectric Signals”, 2022 IEEE Transactions on Medical Imaging, Vol. 42, Issue

3, pp. 739-749, DOI: 10.1109/TMI.2022.3215748

[5] Barragan, A., Preston, C., Alvarez, A., Ingram, C. P., Kanti Bera, T., and Witte, R.

S., "4D Transcranial Acoustoelectric Imaging of Current Densities in a Human

Head Phantom," 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow,

UK, 2019, pp. 2049-2051, DOI: 10.1109/ULTSYM.2019.8926286.

61

[6] Witte, R. S., Allard, M., Trujillo, T., Alvarez, A., Preston, C., Kang, J., O'Donnell,

M., “Transcranial acoustoelectric imaging: Towards noninvasive mapping of

current densities in the human brain.”, March 2023, J. Acoust. Soc. Am. 1; 153

(3_supplement): A154. https://doi.org/10.1121/10.0018479.

[7] Olafsson, R. , Witte, R. S., Huang, S. -W., and O'Donnell, M., "Ultrasound Current

Source Density Imaging," July 2008 in IEEE Transactions on Biomedical Engineering,

vol. 55, no. 7, pp. 1840-1848, DOI: 10.1109/TBME.2008.919115.

[8] Holdefer, R. N., Sadleir, R., & Russell, M. J., “Predicted current densities in the

brain during transcranial electrical stimulation”, 2006, Clinical neurophysiology :

official journal of the International Federation of Clinical Neurophysiology, 117(6),

1388–1397. https://doi.org/10.1016/j.clinph.2006.02.020.

[9] Witte, R. S., Olafsson, R., O’Donnell, M., “1A-4 Acoustoelectric Detection of

Current Flow in a Neural Recording Chamber”, 2006 IEEE Ultrasonics Symposium,

Vancouver, BC, Canada, DOI: 10.1109/ULTSYM.2006.16

[10] Preston, C., Kasoff, W.S., Witte, R. S., “Selective Mapping of Deep Brain

Stimulation Lead Currents Using Acoustoelectric Imaging” 2018 Ultrasound in

Medicine & Biology, DOI: 10.1016

[11] Preston, C., Alvarez, A., Barragan, A., Becker, J., Kasoff, W. S., Witte, R. S.,

“High resolution transcranial acoustoelectric imaging of current densities from a

https://doi.org/10.1121/10.0018479
https://doi.org/10.1016/j.clinph.2006.02.020

62

directional deep brain stimulator”, 2020 Journal of Neural Engineering, DOI

10.1088/1741-2552/ab6fc3

[12] Qin, Y., Li, Q., Ingram, P., Barber, C., Liu, Z., Witte, R. S., “Ultrasound

Current Source Density Imaging of the Cardiac Activation Wave Using a Clinical

Cardiac Catheter”, 2015 IEEE Transactions on Biomedical Engineering, vol. 62, no. 1,

pp. 241-247, DOI: 10.1109/TBME.2014.2345771.

[13] Alvarez, A., Preston, C., Trujillo, T., Wilhite, C., Burton, A., Vohnout, S.,

Witte, R. S., “In vivo acoustoelectric imaging for high-resolution visualization of

cardiac electric spatiotemporal dynamics”, 2020 Appl. Opt. 59, 11292-11300

[14] Chen, L., Lu, X., Zhang, J., Chu, X., & Chen, C., “HINet: Half Instance

Normalization Network for Image Restoration”, 2021 CVPRW2021,

arXiv:2105.06086 [eess.IV].

[15] Kingma, D. P., & Ba, J., “Adam: A Method for Stochastic Optimization.”,

2014, CoRR, arXiv:1412.6980 [cs.LG].

[16] Cawley, G.C., & Talbot, N.L., “On Over-fitting in Model Selection and

Subsequent Selection Bias in Performance Evaluation”, 2010 J. Mach. Learn. Res.,

11, 2079-2107.

[17] Ronneberger, O., Fischer, P., Brox, T., “U-Net: Convolutional Networks for

Biomedical Image Segmentation”, 2015 In: Navab, N., Hornegger, J., Wells, W.,

Frangi, A., (eds) Medical Image Computing and Computer-Assisted Intervention –

https://arxiv.org/abs/2105.06086
https://arxiv.org/abs/1412.6980

63

MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9351.

Springer, Cham, DOI:10.1007/978-3-319-24574-4_28.

