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Abstract 

 Acoustoelectric imaging is a novel medical imaging technique that uses 

ultrasound to image the flow of current in a tissue.  Acoustoelectric imaging has a wide 

range of high impact applications such as being able to study and diagnose diseases of 

the heart and brain as well as being a potential surgical assistive tool.  The primary 

obstacle in bringing acoustoelectric imaging to the forefront of medical imaging is the 

inability to effectively perform the technique noninvasively.  Performing the technique 

in-vivo requires cutting edge ultrasound and radiofrequency (RF) sensing technology, 

and along with the ultra-high sensitivity of the instruments comes a high susceptibility 

to background noise.  The very small acoustoelectric signals end up buried in a high 

noise floor, thus the need for high performing denoising capabilities.  This thesis 

explores the potential of pursuing machine learning as a denoising solution.  An 

acoustoelectric data simulation pipeline is used to provide realistic acoustoelectric data 

along with the corresponding ground truth.  A machine learning architecture called 

HINet is explored for its reputation as being high performing in image restoration tasks.  

Through a series of hyperparameter testing, the HINet model is optimized for the 

simulated acoustoelectric data and is found to outperform the traditional denoising 

methods by an average of 10dB by PSNR. 
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Chapter 1 

Introduction 

1.1 Background 

1.1.1 Acoustoelectric effect  

In medical imaging, the physiology that we’re interested in may not always be 

directly observable.  Sometimes, that which we wish to see may be measurable, but the 

image quality may be fundamentally limited by the nature of the signal or the system.  

In such situations, one may wish to exploit another related physical phenomenon to act 

as a contrast mechanism in an image.  One such physical phenomenon that one may 

wish to use is the acoustoelectric (AE) effect.[1]    

The AE effect is a novel physical mechanism produced from the interaction of 

ultrasound waves and electric current flowing through a medium.  Ultrasound is 

coupled into a current carrying medium; because the ultrasound is a traveling pressure 

wave, the medium is contracted and expanded according to that pressure wave.  This 

contraction and expansion modulate the density of the material and thus also 

modulates the electrical resistivity of the medium.  This encodes the underlying electric 

signal according to the modulated resistivity of the medium.  This resultant AE signal 

produced is proportional to the underlying current source density within the medium. 
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1.1.2 Acoustoelectric Imaging Theory 

Acoustoelectric Imaging (AEI) is a 4-D medical imaging technique in which 

ultrasound is coupled into a current carrying medium and multiple remote recording 

electrodes (leads) measure the resultant AE voltage perturbations.[ The resultant AE 

signal on a given lead will be a function of the electrical properties of the medium, the 

geometry of the system, the underlying current source density, and the ultrasound 

profile.  The following figure will describe the AE voltage signal ViAE for a given lead i is 

produced.  Please note that the fundamental AE interaction constant K is material 

specific, and the US pulse waveform a(t) refers to the slow time propagation of the 

ultrasound.[2] 

 

 

Figure 1: The measured AE image is a function of the local current and ultrasound fields. [3] 
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There are many ways ultrasound can be sent into the medium which will directly 

affect the produced image.  One common “sampling” strategy for ultrasound is focused 

ultrasound pulses.  In this sampling strategy, a separate ultrasound pulse is sent to each 

point in the volume for each measurement.  Focused ultrasound sampling provides the 

best resolution but the long sampling time.  Although several sampling strategies were 

considered, for the purposes of this project a focused ultrasound sampling strategy was 

utilized.  This concept will be described later when discussing the data simulation 

pipeline. 

 

1.1.3 Acoustoelectric Data 

Acoustoelectric data is typically recorded as a voltage on a recording electrode or 

lead.  Multiple data channels are recorded on N different leads.  Ultrasound is focused 

on different spatial locations in the measurement volume.  In the direction of 

ultrasound propagation, the depth direction is sampled as the ultrasound propagates 

through the medium.  By scanning the ultrasound beam across the X or Y direction, we 

can form a 2D image.  This is called the slow time dimension and is converted to spatial 

depth via multiplication by the speed of sound through the medium.  We also have the 

fast time dimension which contains information of how the local time-varying currents 

evolve.  Finally, it is standard to collect many repeated measurements or trials of the 
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data for post processing purposes.  This makes the full acoustoelectric dataset six 

dimensional, including data channels, the three spatial dimensions of the volume, fast 

time, and trials. 

  

Figure 2: A 1D voltage vs. time plot is captured from a single electrode and a single firing 
of the ultrasound transducer.  A 2D AE image can be captured by scanning the ultrasound 

in either the X or Y direction.[4] 

 

 

1.2 AE Data Simulation 

1.2.1 Simulation pipeline 

 The Experimental Ultrasound Neural Imaging Laboratory (EUNIL) here at the 

University of Arizona has long collaborated with faculty at the University of 

Washington on a wide variety of projects.  One such project was on developing an AE 

simulation pipeline to aid in software development and analysis tools.  The resulting 
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pipeline involves separating the modeling into several professional modeling tools; 

Field II, COMSOL, and MATLAB.  Field II is a free professional simulation tool 

specializing in modeling ultrasound fields and imaging using linear acoustics theory.  

COMSOL is a general-purpose Multiphysics simulation tool that we use to model the 

electrical and radio frequency properties of our selected geometry.  The simulation files 

produced in these tools are then imported into MATLAB where the resultant AE fields 

and sensing are simulated. 

 

 

 

Figure 3: Ultrasound fields are simulated in Field II.  Electrical and RF properties are simulated 
in COMSOL.  These simulated properties are imported into MATLAB to then model the 

resultant AE fields and RF measurements.[4] 
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1.2.2 Simulation Parameters 

For the purposes of the thesis project, a simplified model system developed by 

our partners at the University of Washington is considered.[4]   A cube of dimensions 

8x8x8 cm filled with saline (0.9% NaCl) is the medium.  Ultrasound enters the medium 

through an acoustic window at the bottom of the cube.  The ultrasound transducer is a 

customized 1.5D, 0.6 MHz concave-linear US array with 126 piezoelectric elements and 

a focus of 35 mm (Sonic Concepts Inc., Bothell, WA, USA).  A single dipole current 

source, provided by a pair of platinum electrodes, is placed in the center of the cube, 

and is recorded by three gold cup recording electrodes positioned as seen in the 

following figure. 

 

Figure 4: Simulated saline cube geometry (Kang et al. 2022[3]). 

 The 0.9% NaCl saline in the cube is at room temperature which would make the 

acoustoelectric interaction constant KI = 0.034/MPa with the conductivity σ = 1.2 S/m.  

The electric fields simulated in COMSOL were as follows: a pair of cylindrical (diameter 

= 0.2 mm) platinum electrodes injected with a 200 Hz current waveform and three 
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cylindrical gold recording electrodes (diameter = 10mm) injected with unit current 1 A 

connected to a common ground.  Realistic acoustic fields parameters were obtained 

from a  programmable research US system (Vantage 64 LE, Verasonics Inc., Redmond, 

WA, USA) for our ultrasound transducer which were then fed into Field II to calculate 

the 3D spatial impulse response over time (4D).  The maximum input pressure used is 1 

MPa. 

 

1.2.3 Dimensionality 

For the sake of keeping our problem as simple as possible for a proof of concept, 

a limited dataset was modeled and simulated.  The modeled physics of the generated 

dataset reflects that of a saline cube with a single, non-time-varying dipole in the center 

being measured by three electrode leads.  The ultrasound is then steered only in the x-

direction.  For these assumptions, the 6D acoustoelectric dataset is reduced to a 4D 

dataset.  This is due to the Y spatial dimension and the fast time dimension being 

invariant and thus being ignored for the purposes of simplicity.  The generated dataset 

thus has the dimensions (channels, X-direction, Slow time or depth, Trials).  To generate 

data that we would observe in an experiment, we add gaussian noise to a noiseless 

acoustoelectric image.  Note:  In an AE experiment, the ultrasound transducer acts as a 

passband filter to the system. 
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Figure 5: In the data simulation, first a noiseless acoustoelectric image is generated where the 
spectrum of the AE signal corresponds to the passband of the ultrasound transducer.[4] 

 

1.3 Motivation 

1.3.1    Potential advantages of AEI over other medical imaging  

AEI allows the mapping of biological currents in a volume in real time at 

unprecedented spatial and temporal resolution.[7]  Providing noninvasive 4D mapping 

of localized electrical activity at sub-millimeter spatial resolution and millisecond 

temporal resolution makes AEI competitive with the standard medical imaging 

modalities such as MRI, PET/CT, EEG, and ECG for imaging the brain and heart 
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respectively.  However promising, AEI is not yet commonly deployed due to a few 

obstacles preventing practical use.  These obstacles will be discussed in depth in this 

thesis. 

1.3.2 Clinical AE Imaging for brain and heart disease diagnosis  

 Imaging the flow of electricity offers much potential utility for clinical 

applications.  Having an observable value which is directly proportional to the current 

density of the tissue opens many doors.  We can image current carrying tissues such as 

those of the heart and brain.  Many such biological signals are small and highly 

localized, making other medical diagnostic tools with poor spatial resolution 

capabilities ineffective.  AEI provides noninvasive 4D mapping of localized electrical 

activity which has the potential to greatly enhance our ability to both study and 

diagnose diseases of the heart and brain.[6] 
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Figure 6: To the left is a current density reconstruction from AEI of an in-vivo swine heart.[12]  
The right shows images of AEI being performed on a human brain and in-vivo rabbit heart.[13] 
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1.3.3 Surgical assistive tool 

 In medicine, the prerogative is to do no harm and of course this extends to 

surgical procedures.  However, the intricacies often involved for certain individuals can 

make this highly difficult.  Particularly in surgeries involving highly sensitive tissues 

such as the heart and brain.  It is often challenging to know where the exact boundaries 

of problem tissues are located.  The high localization offered by AEI can assist with this 

problem.  For example, with removing a section of the brain believed to be causing 

seizures in a patient with epilepsy, the healthy and troubled tissues may be impossible 

to distinguish to the human eye.  But AEI can precisely indicate which sections of the 

tissue are firing during seizure episodes.  Minimizing the amount of healthy brain 

tissue removed in this example would drastically improve that patient’s outcome. 

 

1.4 Problem 

1.4.1 Noninvasive AE imaging 

 As previously mentioned, there are a few obstacles that need to be overcome 

before AEI becomes more practical for field use.  The most significant will be discussed 

throughout this thesis.  Currently, AEI can be performed with excellent results when 

the recording electrode is in proximity with the current source.[7]  However, being that 

we are discussing a medical imaging modality, the ideal case would be performing this 

imaging noninvasively.  Because the signal strength drops off with the distance 
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squared, this makes the task of performing AEI noninvasively quite challenging.  The 

AE signal gets to a level low enough that the background noise begins to dominate. 

 

1.4.2 Weak signal detection with high noise floor 

 Being that the original biological signals are already very small, and the 

produced AE signal will be even smaller, we suddenly have a big problem 

distinguishing our interested signal with the background noise.  For example, the local 

currents in the brain can be less than 0.1 mA/cm2.[5]  The noise floor can be larger than 

this due to radiofrequency interference and aberrations related to ex-vivo ultrasound 

propagation.  The state-of-the-art AE systems utilize cutting edge ultrasound and 

radiofrequency sensing technology to perform the imaging technique.  With the ultra-

sensitive sensing technology comes a very high susceptibility to background noise 

sources.  Before imaging, there is an involved process of grounding the system to get 

the system noise floor as low as possible.  The lowest noise floor we can achieve is still 

not low enough to perform AEI noninvasively.   

 

1.4.3 Need for a robust denoising method 

 Even with every effort to minimize the noise floor, we need to put our raw 

measurements through a series of slow-time, fast-time, and bandpass filtering as well as 

averaging many samples.  Although the increase in SNR from the raw images to the 
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resultant images is significant, the signal fall-off from noninvasive AEI is too great.  To 

increase the viability of AEI in a clinical setting, we still need another 10-20 dB 

improvement to our SNR.  We have increased our capabilities to sense the tiny 

biological signals we’re interested in, but the issue of noise needs to be addressed.  A 

robust denoising algorithm is necessary to bring AEI into the spotlight.  We believe 

machine learning (ML) may be able to provide the denoising capabilities we are 

searching for. 

 

1.5 Proposed Solution 

1.5.1 Why ML?  

 For the last decade, ML has demonstrated unprecedented versatility in tackling 

image processing tasks, such as denoising, in countless applications.  We believe our 

standard methods of filtering and averaging may be outperformed by a robust ML 

strategy.  Through discussion with collaborators, we’ve decided to try a Half Instance 

Regularization Network (HINet) ML framework that would be an excellent starting 

point.  HINet has developed recent acclaim for its performance in image restoration 

tasks such as denoising, deblurring, and deraining.  HINet provides almost state-of-the-

art performance in a relatively simple end to end package.  A robust deep learning 

method may just provide the 10-20 dB SNR improvement we need to make AEI a 

standard modality in clinical settings.   
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1.5.2 Goal of thesis 

 Since this project began, it has been my goal to explore ML as a potential 

denoising method and begin the framework for continued development of ML for AEI.  

Many ML architectures have been investigated and several have been identified as 

potential future endeavors.  Due to my limited time in the group, a simple but high 

performing model has been chosen for the purposes of my project.  It is the goal of this 

thesis to investigate ML as a strong candidate for denoising AE images.  The methods 

and results hereafter will act as both a proof of concept and framework for future ML 

development in the group.   

 

Chapter 2 

Methodology and Results 

2.1 Machine Learning Methods 

2.1.1 ML Theory 

 Machine Learning has continually and increasingly demonstrated great utility 

and flexibility in a wide range of problems for the past couple decades.  This includes 

regression problems which the AE denoising problem would be classified.  The 
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framework for a machine learning architecture can be described as a neural network.  A 

neural network is an artificial mathematical model made up of many groups of 

interconnected units called neurons and is used to approximate a mathematical 

function through a series of non-linear transformations.  Each transformation, or layer, 

is a matrix function with weights that govern how the input is continually changed as it 

is fed through the model.  It is only through the algorithmic process of training the 

neural network that the model gains the ability to transform a given input to a desired 

output. 

 How network training is implemented largely depends on the type of learning 

that is being done.  In our problem, we’re using simulated data with corresponding 

ground truth data to iteratively calculate loss and update model parameters.  This is 

considered supervised learning.  In this case, as well as with other learning types, an 

optimizer, loss function, and activation function need to be chosen for the initializing 

the training process.  The training process involves fetching a batch of data from a data 

loader, a forward pass of that batch through the model, evaluating the loss, and back 

propagating that loss along the gradient of the loss function to update the network 

weights. 
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Figure 7: Training loop involves a forward pass through the model, calculating the loss, and 
backpropagating that loss to update the model weights. 

 

2.1.2 ML solution 

 Choosing a network architecture is a nontrivial task.  Different architectures have 

pros and cons and will accel in different problems since features are extracted in 

different ways.  EUNIL and collaborators here at the University of Arizona deliberated 

for quite some time and considered several different architectures.  An elegant end-to-

end network called Half Instance Normalization Network (HINet) was selected.     

[3]HINet is an architecture that came out of an image restoration machine learning 
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competition and has recently been gaining attention for its performance in various 

image restoration tasks.  HINet is a multi-stage network with two U-Net subnetworks.  

The creators proposed a novel Half Instance Normalization (HIN) block.  The HIN 

block is included in each subnetwork’s encoder and improves the robustness of the 

extracted features.  To further enrich multi-scale features and improve network cross 

connections, Cross-Stage Feature Fusion (CSFF) block and Supervised Attention 

Module (SAM) are also throughout the network. 

 

Figure 8:  HINet architecture[14] 
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2.1.3 Activation Function, Loss Function, and Optimizer 

 Activation functions decide to what degree should an abstract (hidden) layer be 

activated.  Activation functions act as hidden layer weights and introduce non-linearity 

to a neuron.  The HINet architecture uses the LeakyReLU activation function in the HIN 

block and Res block. 

 

Figure 9: Leaky ReLU has a nonzero slope when less than 0 to reduce the likelihood of hidden 
layer inactivation. 
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Figure 10: HIN block and Res Block with leaky ReLU activation function[14] 

 

 The loss function is a very important choice when designing a machine learning 

model.  Loss functions guide the optimization algorithm during training and directly 

impact the resultant predictive ability of the model.  One of the most used loss functions 

in regression tasks is Mean Squared Error (MSE), also known as the L2 Loss.  MSE 

calculates the average of the squared difference between the predicted and ground 

truth values.  A crucial aspect to MSE as a loss function is the fact that the value is being 

squared.  Because of this, larger errors are penalized severely in the optimization 

process.  
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 Another important choice to make when designing a machine learning algorithm 

is of course the optimization function.  For this problem, an optimization function called 

Adaptive Moment Estimation (Adam) was selected.[4]  Adam is an extension to 

traditional stochastic gradient descent.  However, Adam is commonly hailed for 

combining advantages from two other stochastic gradient descent methods, Adaptive 

Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp).  

AdaGrad adaptively chooses a learning rate to improve the performance on problems 

with sparse gradients.  RMSProp adjusts learning rate based on the magnitude of the 

most recent gradient calculation making it accel on non-stationary problems.  Having 

both qualities, Adam is a highly effective and highly efficient optimization algorithm 

which has championed its way as a go to in the ML community. 

 

2.2 Data Analysis 

2.2.1 Hyperparameter testing 

 There were three hyperparameters in my model that were tested.  Epochs, batch 

size, and learning rate.  Epochs indicate how many times the entire input dataset will be 

passed through the model for training.  Batch size is a hyperparameter determined by 

how the data loader fetches data.  The data loader breaks the total dataset up into 

batches to be fed into the network one at a time.  Training the model in this mini 

batched manner helps stability and training performance.  The learning rate is a 
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parameter that helps the optimizer determine how much to tweak a neuron's weight 

during training.  A learning rate that is too large will result in training instability where 

a local minimum of the loss function is not approached, and the loss will bounce 

around.  Decreasing the learning rate too much will result in extraordinarily large 

training times.  A balance between these three hyperparameters needs to be made to 

monitor model fitting. 

 

2.2.2 Monitoring model fitting (training loss vs test loss) 

 The neural network model, like all trained models, is susceptible to underfitting 

and overfitting.[5]  The model fitting can be loosely determined by how the training and 

test loss behave during training.  Underfitting would be due to the loss function’s 

minima not being reached before training is complete.  This would look like the training 

and test loss to continue trending down at the end of training.  Overfitting would be 

due to the training dataset being “memorized" by the network resulting in the model 

not generalizing to the test set which was not used to adjust the model weights. 

 

2.2.3 Image Analysis Metrics  

 The primary image analysis metrics which are used to determine the 

performance of the model are Peak Signal-to-Noise Ratio (PSNR) and our loss function 

metric MSE.  These metrics are defined as follows: 
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PSNR is a widely adopted metric for comparing reconstruction quality.  We will be 

using PSNR to compare our network denoising capabilities to our traditional methods 

of averaging. 

 

2.3 Results 

2.3.1 Training Loss Vs. Test Loss 

 Many combinations of hyperparameters were tested when training the network.  

Too many epochs or too high of a learning rate often resulted in training instability 

where the loss and validation loss would suddenly explode.  The best training results I 

was able to obtain were with epochs=6, learning rate=0.0005, and batch size of 25.  The 

training losses were collected and plotted as follows: 

 

Figure 11:  The Loss and Validation Loss were printed in the command window. 
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Figure 12: The collected Loss and Validation loss were collected and plotted to demonstrate that 
overfitting is not taking place. 

When any more epochs were added, both losses began to grow. 

 

2.3.2 Results with Optimized Hyperparameters Vs. Traditional Methods 

Finally, tested the network results against our traditional method of averaging multiple 

trials.  The left column shows examples of three different levels of gaussian noise added 

to the clean AE image.  The center column shows our traditional method of averaging 

100 trials.  The averaged trials in this case had the same underlying signal, same noise 

level, but different realizations of the same noise.  The right column is the network 

output when the noisy images in the left column are input into the HINet model we just 

trained. 

 



 

34 

 

Figure 13: Left column are the noisy images with three different levels of gaussian noise as well 
as the input to HINet.  Center column is the result of averaging 100 trials of the images with 

different noise realizations.  The right column is the output to the network. 
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Chapter 3 

Conclusions and Future Work 

3.1 Discussion 

3.1.1 What observations can be drawn from results? 

 The HINet outperformed the traditional methods.  This is especially surprising 

since the mean image required 100 trials to achieve that denoising level, and the neural 

network only took in the single noisy image to produce a far greater denoising level for 

all the tested noise levels. 

 

3.1.2  Does the work provide reason to focus ML pursuit?  

 The results do provide solid reasoning for focusing EUNIL’s ML pursuits for AE 

denoising.  The ML result greatly surpassed expectations.  The network was only 

trained on gaussian noise images.  We believe that ML will also be able to handle other 

noise sources that we experience in a laboratory setting such as spike noise.  These other 

noise sources are also where the traditional methods especially break down, we would 

expect an even greater improvement in performance with an ML model over the 

traditional denoising methods in such cases.  
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3.2 Future Work 

3.2.1 More expansive data simulations 

 The ML model that was trained will not generalize well.  The simulated dataset 

was representative of a single physical experiment.  This makes the simulated dataset 

limited and introduces bias in the training process.  This is perhaps why the model 

performed so extraordinarily.  To remove this bias, many different physics models need 

to be represented in the dataset.  This would include different AE signals, different 

recording lead geometries, different ultrasound fields, and different noise sources. 

 

3.2.2 Feature engineering 

 Feature engineering is the process of transforming raw data with specific 

features into a form that the model can better learn from.  The goal is to drive model 

performance by passing in particularly meaningful and relevant information.  In other 

words, feature engineering is the process of selecting, extracting, and transforming the 

most critical features from the available data to streamline training efficiency and 

accuracy.  For the AE denoising problem, this could be particularly fruitful since the 

traditional denoising methods are believed to destroy some low-level information in the 

raw AE data. 
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3.2.3 Unsupervised methods (statistical learning) 

 We defined supervised learning as using ground truth data to guide the training 

process.  Unsupervised learning finds patterns in the data without the ground truth 

data.  Unsupervised learning is often used to solve various clustering problems.  So, 

while this wouldn’t be a denoising network, it may help with our small signal detection 

problem that denoising is attempting to tackle.  Unsupervised learning may be used to 

locate and extract a small AE signal in a large noise floor as they accel in providing 

essential features in medical imaging and computer vision tasks.  Unsupervised 

learning methods typically rely on iterative apriori and dimensionality reduction 

algorithms along with an autoencoder.  An unsupervised learning method may be ideal 

for EUNIL because we have a vast archive of AE data without ground truth. 

 

3.2.4 Physics-informed ML 

 In general, supervised learning methods do not generalize well.  This is because 

these methods often overfit the hardware being modeled.  Generalizability is critical to 

deploy these models in the real world.  Physics-informed ML (PIML) may be able to 

provide this desirable trait.  PIML is like unsupervised learning in that it requires 

applying apriori knowledge to solve the task.  However, PIML utilizes knowledge of 

physics being modeled to drive performance.  PIML enforces physical consistency and 
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therefore does not hallucinate when presented with never-before-seen data.  PIML is 

also a single inference process and therefore can be deployed in real time. 

Appendix A – Instructions and Source Code 

 The distributions for the python packages are managed using Anaconda.  A conda 

environment with following requirements.txt can be installed from the anaconda 

powershell prompt command window with: 

# using pip 
pip install -r requirements.txt 
 
# using Conda 
conda create --name <env_name> --file requirements.txt 

 

Requirements.txt 

absl-py==1.4.0 

addict @ file:///home/conda/feedstock_root/build_artifacts/addict_1636818143388/work 

alabaster==0.7.12 

appdirs==1.4.4 

argh==0.26.2 

astroid @ file:///C:/ci/astroid_1628063237844/work 

atomicwrites==1.4.0 

attrs @ file:///opt/conda/conda-bld/attrs_1642510447205/work 

autopep8 @ file:///tmp/build/80754af9/autopep8_1615918855173/work 

Babel @ file:///tmp/build/80754af9/babel_1620871417480/work 

backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work 

# Editable install with no version control (basicsr==1.2.0+unknown) 

-e c:\users\emnel\documents\hinet-main 

bcrypt @ file:///C:/ci/bcrypt_1597936262193/work 

black==19.3b0 

bleach @ file:///opt/conda/conda-bld/bleach_1641577558959/work 

brotlipy==0.7.0 

cachetools==4.2.4 

certifi==2021.5.30 

cffi @ file:///C:/ci/cffi_1625831763871/work 

chardet @ file:///C:/ci/chardet_1607706912142/work 

charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work 

click==8.0.3 
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cloudpickle @ file:///tmp/build/80754af9/cloudpickle_1632508026186/work 

colorama @ file:///tmp/build/80754af9/colorama_1607707115595/work 

cryptography @ file:///C:/ci/cryptography_1635366724772/work 

cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work 

cytoolz==0.11.0 

dask @ file:///tmp/build/80754af9/dask-core_1615055117017/work 

dataclasses==0.8 

decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work 

defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work 

diff-match-patch @ file:///Users/ktietz/demo/mc3/conda-bld/diff-match-patch_1630511840874/work 

docutils @ file:///C:/ci/docutils_1620828217025/work 

entrypoints==0.4 

flake8 @ file:///tmp/build/80754af9/flake8_1615834841867/work 

future==0.18.2 

google-auth==2.22.0 

google-auth-oauthlib==0.4.6 

grpcio==1.48.2 

h5py==2.10.0 

idna @ file:///tmp/build/80754af9/idna_1637925883363/work 

imageio @ file:///tmp/build/80754af9/imageio_1617700267927/work 

imagesize @ file:///tmp/build/80754af9/imagesize_1637939814114/work 

importlib-metadata==4.8.3 

intervaltree @ file:///Users/ktietz/demo/mc3/conda-bld/intervaltree_1630511889664/work 

ipykernel==5.5.6 

ipython @ file:///C:/ci/ipython_1593446240034/work 

ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work 

isort @ file:///tmp/build/80754af9/isort_1628603791788/work 

jedi @ file:///C:/ci/jedi_1606914470086/work 

Jinja2 @ file:///opt/conda/conda-bld/jinja2_1647436528585/work 

jsonschema @ file:///Users/ktietz/demo/mc3/conda-bld/jsonschema_1630511932244/work 

jupyter-client==7.1.2 

jupyter-core==4.9.2 

keyring @ file:///C:/ci/keyring_1629321701302/work 

kiwisolver @ file:///C:/ci/kiwisolver_1612282446297/work 

lazy-object-proxy @ file:///C:/ci/lazy-object-proxy_1616529300868/work 

Markdown==3.3.7 

MarkupSafe @ file:///C:/ci/markupsafe_1621528313524/work 

matplotlib @ file:///C:/ci/matplotlib-suite_1613408055530/work 

mccabe==0.6.1 

mistune==0.8.4 

mkl-fft==1.3.0 

mkl-random==1.1.1 

mkl-service==2.3.0 

nbconvert==5.6.1 

nbformat @ file:///tmp/build/80754af9/nbformat_1617383369282/work 

nest-asyncio==1.6.0 

networkx @ file:///tmp/build/80754af9/networkx_1598376031484/work 
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numpy==1.19.5 

numpydoc @ file:///tmp/build/80754af9/numpydoc_1605117425582/work 

oauthlib==3.2.2 

olefile==0.46 

packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work 

pandocfilters @ file:///opt/conda/conda-bld/pandocfilters_1643405455980/work 

paramiko @ file:///opt/conda/conda-bld/paramiko_1640109032755/work 

parso==0.7.0 

pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work 

pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work 

Pillow @ file:///C:/ci/pillow_1625663293114/work 

pluggy @ file:///C:/ci/pluggy_1633715371909/work 

prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1633440160888/work 

protobuf==3.19.6 

psutil @ file:///C:/ci/psutil_1612298125479/work 

ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-

none-any.whl 

pyasn1==0.5.1 

pyasn1-modules==0.3.0 

pycodestyle @ file:///home/ktietz/src/ci_mi/pycodestyle_1612807597675/work 

pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work 

pyDeprecate==0.3.2 

pydocstyle @ file:///tmp/build/80754af9/pydocstyle_1621600989141/work 

pyflakes @ file:///home/ktietz/src/ci_ipy2/pyflakes_1612551159640/work 

Pygments @ file:///opt/conda/conda-bld/pygments_1644249106324/work 

pylint @ file:///C:/ci/pylint_1627536908981/work 

pyls-black @ file:///tmp/build/80754af9/pyls-black_1607553132291/work 

pyls-spyder @ file:///tmp/build/80754af9/pyls-spyder_1613849700860/work 

PyNaCl @ file:///C:/ci/pynacl_1595009245871/work 

pyOpenSSL @ file:///opt/conda/conda-bld/pyopenssl_1643788558760/work 

pyparsing @ file:///tmp/build/80754af9/pyparsing_1635766073266/work 

pyreadline==2.1 

pyrsistent @ file:///C:/ci/pyrsistent_1600141799440/work 

PySocks @ file:///C:/ci/pysocks_1605305839978/work 

python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work 

python-jsonrpc-server @ file:///tmp/build/80754af9/python-jsonrpc-server_1600278539111/work 

python-language-server @ file:///tmp/build/80754af9/python-language-server_1607972495879/work 

pytz==2021.3 

PyWavelets @ file:///C:/ci/pywavelets_1601658410782/work 

pywin32==305 

pywin32-ctypes==0.2.0 

PyYAML==5.4.1 

pyzmq==25.1.2 

QDarkStyle==2.8.1 

QtAwesome @ file:///tmp/build/80754af9/qtawesome_1637160816833/work 

qtconsole @ file:///opt/conda/conda-bld/qtconsole_1643819126524/work 

QtPy @ file:///opt/conda/conda-bld/qtpy_1649073884068/work 
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requests @ file:///opt/conda/conda-bld/requests_1641824580448/work 

requests-oauthlib==1.3.1 

rope @ file:///opt/conda/conda-bld/rope_1643788605236/work 

rsa==4.9 

Rtree @ file:///C:/ci/rtree_1618421017076/work 

scikit-image==0.17.2 

scipy @ file:///C:/ci/scipy_1597675683670/work 

six @ file:///tmp/build/80754af9/six_1644875935023/work 

snowballstemmer @ file:///tmp/build/80754af9/snowballstemmer_1637937080595/work 

sortedcontainers @ file:///tmp/build/80754af9/sortedcontainers_1623949099177/work 

Sphinx==4.2.0 

sphinxcontrib-applehelp @ file:///home/ktietz/src/ci/sphinxcontrib-applehelp_1611920841464/work 

sphinxcontrib-devhelp @ file:///home/ktietz/src/ci/sphinxcontrib-devhelp_1611920923094/work 

sphinxcontrib-htmlhelp @ file:///tmp/build/80754af9/sphinxcontrib-htmlhelp_1623945626792/work 

sphinxcontrib-jsmath @ file:///home/ktietz/src/ci/sphinxcontrib-jsmath_1611920942228/work 

sphinxcontrib-qthelp @ file:///home/ktietz/src/ci/sphinxcontrib-qthelp_1611921055322/work 

sphinxcontrib-serializinghtml @ file:///tmp/build/80754af9/sphinxcontrib-

serializinghtml_1624451540180/work 

spyder @ file:///C:/ci/spyder_1616775991046/work 

spyder-kernels==2.2.0 

tb-nightly==2.11.0a20220816 

tensorboard-data-server==0.6.1 

tensorboard-plugin-wit==1.8.1 

testpath @ file:///tmp/build/80754af9/testpath_1624638946665/work 

textdistance @ file:///tmp/build/80754af9/textdistance_1612461398012/work 

three-merge @ file:///tmp/build/80754af9/three-merge_1607553261110/work 

tifffile==2020.10.1 

toml @ file:///tmp/build/80754af9/toml_1616166611790/work 

toolz @ file:///tmp/build/80754af9/toolz_1636545406491/work 

torch==1.8.0+cu111 

torchaudio==0.8.0 

torchmetrics==0.8.2 

torchvision==0.9.0+cu111 

tornado @ file:///C:/ci/tornado_1606942379977/work 

tqdm @ file:///opt/conda/conda-bld/tqdm_1647339053476/work 

traitlets @ file:///C:/ci/traitlets_1632759765830/work 

typed-ast @ file:///C:/ci/typed-ast_1624953776872/work 

typing_extensions @ file:///opt/conda/conda-bld/typing_extensions_1647553014482/work 

ujson @ file:///C:/ci/ujson_1611259572767/work 

urllib3 @ file:///opt/conda/conda-bld/urllib3_1643638302206/work 

watchdog @ file:///C:/ci/watchdog_1612471247473/work 

wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work 

webencodings==0.5.1 

Werkzeug==2.0.3 

win-inet-pton @ file:///C:/ci/win_inet_pton_1605306197271/work 

wincertstore==0.2 

wrapt==1.12.1 
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yapf @ file:///tmp/build/80754af9/yapf_1615749224965/work 

zipp @ file:///tmp/build/80754af9/zipp_1633618647012/work 

 

The code was then ran using the Spyder API. 

 

The code used to load the data and train the model is hinet_arch.py. 

 

 

Hinet_arch.py 

HINet: Half Instance Normalization Network for Image Restoration 

 

@inproceedings{chen2021hinet, 

  title={HINet: Half Instance Normalization Network for Image Restoration}, 

  author={Liangyu Chen and Xin Lu and Jie Zhang and Xiaojie Chu and Chengpeng Chen}, 

  booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops}, 

  year={2021} 

} 

''' 

# Load required libraries 

import torch 

import torch.nn as nn 

import torch.optim as optim 

from torch.utils.data import TensorDataset, DataLoader 

import numpy as np 

import h5py 

import matplotlib.pyplot as plt 

 

def force_cudnn_initialization(): 

    s = 32 

    dev = torch.device('cuda') 

    torch.nn.functional.conv2d(torch.zeros(s, s, s, s, device=dev), torch.zeros(s, s, s, s, device=dev)) 

 

# Define common layers used in HINet architecture 

def conv3x3(in_chn, out_chn, bias=True): 

    layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias) 

    return layer 

 

def conv_down(in_chn, out_chn, bias=False): 

    layer = nn.Conv2d(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias) 

    return layer 

 

def conv(in_channels, out_channels, kernel_size, bias=False, stride = 1): 

    return nn.Conv2d( 

        in_channels, out_channels, kernel_size, 

        padding=(kernel_size//2), bias=bias, stride = stride) 

/tmp/build/80754af9/zipp_1633618647012/work
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## Supervised Attention Module 

class SAM(nn.Module): 

    def __init__(self, n_feat, kernel_size=3, bias=True): 

        super(SAM, self).__init__() 

        self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias) 

        self.conv2 = conv(n_feat, 3, kernel_size, bias=bias) 

        self.conv3 = conv(3, n_feat, kernel_size, bias=bias) 

 

    def forward(self, x, x_img): 

        x1 = self.conv1(x) 

        img = self.conv2(x) + x_img 

        x2 = torch.sigmoid(self.conv3(img)) 

        x1 = x1*x2 

        x1 = x1+x 

        return x1, img 

 

# Define HINet Architecture 

class HINet(nn.Module): 

 

    def __init__(self, in_chn=4, wf=64, depth=3, relu_slope=0.2, hin_position_left=0, hin_position_right=4): 

        super(HINet, self).__init__() 

        self.depth = depth 

        self.down_path_1 = nn.ModuleList() 

        self.down_path_2 = nn.ModuleList() 

        self.conv_01 = nn.Conv2d(in_chn, wf, 3, 1, 1) 

        self.conv_02 = nn.Conv2d(in_chn, wf, 3, 1, 1) 

 

        prev_channels = self.get_input_chn(wf) 

        for i in range(depth): #0,1,2,3,4 

            use_HIN = True if hin_position_left <= i and i <= hin_position_right else False 

            downsample = True if (i+1) < depth else False 

            self.down_path_1.append(UNetConvBlock(prev_channels, (2**i) * wf, downsample, relu_slope, 

use_HIN=use_HIN)) 

            self.down_path_2.append(UNetConvBlock(prev_channels, (2**i) * wf, downsample, relu_slope, 

use_csff=downsample, use_HIN=use_HIN)) 

            prev_channels = (2**i) * wf 

 

        self.up_path_1 = nn.ModuleList() 

        self.up_path_2 = nn.ModuleList() 

        self.skip_conv_1 = nn.ModuleList() 

        self.skip_conv_2 = nn.ModuleList() 

        for i in reversed(range(depth - 1)): 

            self.up_path_1.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope)) 

            self.up_path_2.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope)) 

            self.skip_conv_1.append(nn.Conv2d((2**i)*wf, (2**i)*wf, 3, 1, 1)) 

            self.skip_conv_2.append(nn.Conv2d((2**i)*wf, (2**i)*wf, 3, 1, 1)) 
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            prev_channels = (2**i)*wf 

        self.sam12 = SAM(prev_channels) 

        self.cat12 = nn.Conv2d(prev_channels*2, prev_channels, 1, 1, 0) 

 

        self.last = conv3x3(prev_channels, in_chn, bias=True) 

 

    def forward(self, x): 

        image = x 

        #stage 1 

        x1 = self.conv_01(image) 

        encs = [] 

        decs = [] 

        for i, down in enumerate(self.down_path_1): 

            if (i+1) < self.depth: 

                x1, x1_up = down(x1) 

                encs.append(x1_up) 

            else: 

                x1 = down(x1) 

 

        for i, up in enumerate(self.up_path_1): 

            x1 = up(x1, self.skip_conv_1[i](encs[-i-1])) 

            decs.append(x1) 

 

        sam_feature, out_1 = self.sam12(x1, image) 

        #stage 2 

        x2 = self.conv_02(image) 

        x2 = self.cat12(torch.cat([x2, sam_feature], dim=1)) 

        blocks = [] 

        for i, down in enumerate(self.down_path_2): 

            if (i+1) < self.depth: 

                x2, x2_up = down(x2, encs[i], decs[-i-1]) 

                blocks.append(x2_up) 

            else: 

                x2 = down(x2) 

 

        for i, up in enumerate(self.up_path_2): 

            x2 = up(x2, self.skip_conv_2[i](blocks[-i-1])) 

 

        out_2 = self.last(x2) 

        out_2 = out_2 + image 

        return [out_1, out_2] 

 

    def get_input_chn(self, in_chn): 

        return in_chn 

 

    def _initialize(self): 

        gain = nn.init.calculate_gain('leaky_relu', 0.20) 
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        for m in self.modules(): 

            if isinstance(m, nn.Conv2d): 

                nn.init.orthogonal_(m.weight, gain=gain) 

                if not m.bias is None: 

                    nn.init.constant_(m.bias, 0) 

 

 

class UNetConvBlock(nn.Module): 

    def __init__(self, in_size, out_size, downsample, relu_slope, use_csff=False, use_HIN=False): 

        super(UNetConvBlock, self).__init__() 

        self.downsample = downsample 

        self.identity = nn.Conv2d(in_size, out_size, 1, 1, 0) 

        self.use_csff = use_csff 

 

        self.conv_1 = nn.Conv2d(in_size, out_size, kernel_size=3, padding=1, bias=True) 

        self.relu_1 = nn.LeakyReLU(relu_slope, inplace=False) 

        self.conv_2 = nn.Conv2d(out_size, out_size, kernel_size=3, padding=1, bias=True) 

        self.relu_2 = nn.LeakyReLU(relu_slope, inplace=False) 

 

        if downsample and use_csff: 

            self.csff_enc = nn.Conv2d(out_size, out_size, 3, 1, 1) 

            self.csff_dec = nn.Conv2d(out_size, out_size, 3, 1, 1) 

 

        if use_HIN: 

            self.norm = nn.InstanceNorm2d(out_size//2, affine=True) 

        self.use_HIN = use_HIN 

 

        if downsample: 

            self.downsample = conv_down(out_size, out_size, bias=False) 

 

    def forward(self, x, enc=None, dec=None): 

        out = self.conv_1(x) 

 

        if self.use_HIN: 

            out_1, out_2 = torch.chunk(out, 2, dim=1) 

            out = torch.cat([self.norm(out_1), out_2], dim=1) 

        out = self.relu_1(out) 

        out = self.relu_2(self.conv_2(out)) 

 

        out += self.identity(x) 

        if enc is not None and dec is not None: 

            assert self.use_csff 

            out = out + self.csff_enc(enc) + self.csff_dec(dec) 

        if self.downsample: 

            out_down = self.downsample(out) 

            return out_down, out 

        else: 
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            return out 

 

 

class UNetUpBlock(nn.Module): 

    def __init__(self, in_size, out_size, relu_slope): 

        super(UNetUpBlock, self).__init__() 

        self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True) 

        self.conv_block = UNetConvBlock(in_size, out_size, False, relu_slope) 

 

    def forward(self, x, bridge): 

        up = self.up(x) 

        out = torch.cat([up, bridge], 1) 

        out = self.conv_block(out) 

        return out 

 

class Subspace(nn.Module): 

 

    def __init__(self, in_size, out_size): 

        super(Subspace, self).__init__() 

        self.blocks = nn.ModuleList() 

        self.blocks.append(UNetConvBlock(in_size, out_size, False, 0.2)) 

        self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) 

 

    def forward(self, x): 

        sc = self.shortcut(x) 

        for i in range(len(self.blocks)): 

            x = self.blocks[i](x) 

        return x + sc 

 

 

class skip_blocks(nn.Module): 

 

    def __init__(self, in_size, out_size, repeat_num=1): 

        super(skip_blocks, self).__init__() 

        self.blocks = nn.ModuleList() 

        self.re_num = repeat_num 

        mid_c = 128 

        self.blocks.append(UNetConvBlock(in_size, mid_c, False, 0.2)) 

        for i in range(self.re_num - 2): 

            self.blocks.append(UNetConvBlock(mid_c, mid_c, False, 0.2)) 

        self.blocks.append(UNetConvBlock(mid_c, out_size, False, 0.2)) 

        self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) 

 

    def forward(self, x): 

        sc = self.shortcut(x) 

        for m in self.blocks: 

            x = m(x) 
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        return x + sc 

 

 

if __name__ == "__main__": 

    CUDA_LAUNCH_BLOCKING=1 

    # Define empty torch array to load data into 

    data_in = torch.empty([5000, 3, 66, 277], dtype=torch.float32) 

    data_gt = torch.empty([5000, 3, 66, 277], dtype=torch.float32) 

    # Define path to dataset. 

    path = 'C:\\Users\\emnel\\Documents\\HINet-main\\datasets\\AE MAT Data Files' 

 

    # Parse the ground truth data (depends on how .mat file is saved) 

    gt_path = path+'\\AEtestGroundTruth.mat' 

    g = h5py.File(gt_path, 'r') 

    datagt1 = g.get('nVAE_LE1').value 

    datagt1 = np.array(datagt1) 

    datagt1 = torch.from_numpy(datagt1) 

    datagt2 = g.get('nVAE_LE2').value 

    datagt2 = np.array(datagt2) 

    datagt2 = torch.from_numpy(datagt2) 

    datagt3 = g.get('nVAE_LE3').value 

    datagt3 = np.array(datagt3) 

    datagt3 = torch.from_numpy(datagt3) 

     

    # Loop through .mat files in directory and parse .mat files. 

    for x in range(50): 

        # mat = scipy.io.loadmat(path+'\\AEtest'+x+'.mat') 

        fpath = path+'\\AEtest'+str(x+1)+'.mat' 

        f = h5py.File(fpath, 'r') 

        data1 = f.get('totVAE_1').value 

        data1 = np.array(data1) 

        data1 = torch.from_numpy(data1) 

        data_in[100*x:100*x+100, 0, :, :] = data1 

        data2 = f.get('totVAE_2').value 

        data2 = np.array(data2) 

        data2 = torch.from_numpy(data2) 

        data_in[100*x:100*x+100, 1, :, :] = data2 

        data3 = f.get('totVAE_3').value 

        data3 = np.array(data3) 

        data3 = torch.from_numpy(data3) 

        data_in[100*x:100*x+100, 2, :, :] = data3 

     

        data_gt[100*x:100*x+100, 0, :, :] = datagt1 

        data_gt[100*x:100*x+100, 1, :, :] = datagt2 

        data_gt[100*x:100*x+100, 2, :, :] = datagt3 

     

    # Shape data to fit through model without clipping 
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    data_in = data_in[:,:,0:64,0:272] 

    data_gt = data_gt[:,:,0:64,0:272] 

 

    # Shuffle input and ground truth data in parallel 

    indices = torch.randperm(data_in.size(0)) 

    data_in = data_in[indices,:,:,:] 

    data_gt = data_gt[indices,:,:,:] 

 

    # Split data into training and test sets (80/20 split) 

    train_in = data_in[0:4000,:,:,:] 

    test_in = data_in[4000:5000,:,:,:] 

    train_gt = data_gt[0:4000,:,:,:] 

    test_gt = data_gt[4000:5000,:,:,:] 

 

     

    # Create dataloader for trainig set 

    class SimpleCustomBatch: 

        def __init__(self, train_in): 

            transposed_data = list(zip(*train_in)) 

            self.inp = torch.stack(transposed_data[0], 0) 

            self.tgt = torch.stack(transposed_data[1], 0) 

            # custom memory pinning method on custom type 

            def pin_memory(self): 

                self.inp = self.inp.pin_memory() 

                self.tgt = self.tgt.pin_memory() 

                return self 

     

    def collate_wrapper(batch): 

        return SimpleCustomBatch(batch) 

 

    dataset_train = TensorDataset(train_in, train_gt) 

    train_loader = DataLoader(dataset_train, batch_size=25, collate_fn=collate_wrapper, 

                              pin_memory=True) 

 

    # Create dataloader for test set 

    class SimpleCustomBatch2: 

        def __init__(self, test_in): 

            transposed_data = list(zip(*test_in)) 

            self.inp = torch.stack(transposed_data[0], 0) 

            self.tgt = torch.stack(transposed_data[1], 0) 

            # custom memory pinning method on custom type 

            def pin_memory(self): 

                self.inp = self.inp.pin_memory() 

                self.tgt = self.tgt.pin_memory() 

                return self 

     

    def collate_wrapper(batch): 
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        return SimpleCustomBatch2(batch) 

 

    dataset_test = TensorDataset(test_in, test_gt) 

    test_loader = DataLoader(dataset_test, batch_size=25, collate_fn=collate_wrapper, 

                    pin_memory=True) 

     

    # Create an instance of your model 

    net = HINet( in_chn=3, wf=64, depth=3, relu_slope=0.2, hin_position_left=0, hin_position_right=4) 

 

    # Define loss function and optimizer 

    criterion = nn.MSELoss() 

    optimizer = optim.Adam(net.parameters(), lr=0.0005) 

 

    # Define the number of training parameters 

    num_epochs = 6 

    torch.cuda.empty_cache() 

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    net.to(device) 

    # Prepare arrays to save training and validation losses 

    val_loss = torch.empty(0,dtype=torch.float32) 

    val_loss = 0 

    trainingEpoch_loss = [] 

    validationEpoch_loss = [] 

 

    # Training loop 

    for epoch in range(num_epochs): 

        step_loss = [] 

        net.train() 

        for batch_ndx, sample in enumerate(train_loader): 

             

            # Get the batch and move it to the GPU 

            inputs = sample.inp.cuda() 

            target = sample.tgt.cuda()  

 

            # Forward pass 

            outputs = net(inputs) 

 

            # Compute the loss 

            loss = criterion(outputs[0], target) 

 

            # Backward pass and optimization 

            optimizer.zero_grad() 

            loss.backward() 

            optimizer.step() 

            step_loss.append(loss.item()) 

        trainingEpoch_loss.append(np.array(step_loss).mean()) 

        net.eval()  # Switch to eval mode for validation 



 

50 

 

#%%calculate validation loss 

        with torch.no_grad(): 

            for batch_ndx2, sample2 in enumerate(test_loader): 

                validationStep_loss = [] 

                test_out = net(sample2.inp.cuda()) 

                test_in = sample2.tgt.cuda() 

                validationLoss = criterion(test_out[0],test_in) 

                validationStep_loss.append(validationLoss.item()) 

            temp = np.array(validationStep_loss).mean() 

            validationEpoch_loss.append(temp) 

         

        # Print the train loss and validation for each epoch 

        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}, Val Loss: {temp.item()}') 

#%%     

    plt.plot(trainingEpoch_loss, label='train_loss') 

    plt.plot(validationEpoch_loss,label='val_loss') 

    plt.legend() 

    plt.savefig('TrainLossVsValLoss3.png', bbox_inches='tight') 

    plt.show 

    # Save your trained model if needed 

    torch.save(net.state_dict(), 'your_model3.pth') 

 

 

 

To load the saved model and evaluate the performance, run LoadModelPlot.py 
 

 

 

LoadModelPlot.py 

import torch 

import torch.nn as nn 

from torchmetrics.image import PeakSignalNoiseRatio 

import numpy as np 

import h5py 

import matplotlib.pyplot as plt 

 

# Define netork architecture 

def force_cudnn_initialization(): 

    s = 32 

    dev = torch.device('cuda') 

    torch.nn.functional.conv2d(torch.zeros(s, s, s, s, device=dev), torch.zeros(s, s, s, s, device=dev)) 

 

def conv3x3(in_chn, out_chn, bias=True): 

    layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias) 

    return layer 

 

def conv_down(in_chn, out_chn, bias=False): 
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    layer = nn.Conv2d(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias) 

    return layer 

 

def conv(in_channels, out_channels, kernel_size, bias=False, stride = 1): 

    return nn.Conv2d( 

        in_channels, out_channels, kernel_size, 

        padding=(kernel_size//2), bias=bias, stride = stride) 

 

## Supervised Attention Module 

class SAM(nn.Module): 

    def __init__(self, n_feat, kernel_size=3, bias=True): 

        super(SAM, self).__init__() 

        self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias) 

        self.conv2 = conv(n_feat, 3, kernel_size, bias=bias) 

        self.conv3 = conv(3, n_feat, kernel_size, bias=bias) 

 

    def forward(self, x, x_img): 

        x1 = self.conv1(x) 

        img = self.conv2(x) + x_img 

        x2 = torch.sigmoid(self.conv3(img)) 

        x1 = x1*x2 

        x1 = x1+x 

        return x1, img 

 

class HINet(nn.Module): 

 

    def __init__(self, in_chn=4, wf=64, depth=3, relu_slope=0.2, hin_position_left=0, hin_position_right=4): 

        super(HINet, self).__init__() 

        self.depth = depth 

        self.down_path_1 = nn.ModuleList() 

        self.down_path_2 = nn.ModuleList() 

        self.conv_01 = nn.Conv2d(in_chn, wf, 3, 1, 1) 

        self.conv_02 = nn.Conv2d(in_chn, wf, 3, 1, 1) 

 

        prev_channels = self.get_input_chn(wf) 

        for i in range(depth): #0,1,2,3,4 

            use_HIN = True if hin_position_left <= i and i <= hin_position_right else False 

            downsample = True if (i+1) < depth else False 

            self.down_path_1.append(UNetConvBlock(prev_channels, (2**i) * wf, downsample, relu_slope, 

use_HIN=use_HIN)) 

            self.down_path_2.append(UNetConvBlock(prev_channels, (2**i) * wf, downsample, relu_slope, 

use_csff=downsample, use_HIN=use_HIN)) 

            prev_channels = (2**i) * wf 

 

        self.up_path_1 = nn.ModuleList() 

        self.up_path_2 = nn.ModuleList() 

        self.skip_conv_1 = nn.ModuleList() 
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        self.skip_conv_2 = nn.ModuleList() 

        for i in reversed(range(depth - 1)): 

            self.up_path_1.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope)) 

            self.up_path_2.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope)) 

            self.skip_conv_1.append(nn.Conv2d((2**i)*wf, (2**i)*wf, 3, 1, 1)) 

            self.skip_conv_2.append(nn.Conv2d((2**i)*wf, (2**i)*wf, 3, 1, 1)) 

            prev_channels = (2**i)*wf 

        self.sam12 = SAM(prev_channels) 

        self.cat12 = nn.Conv2d(prev_channels*2, prev_channels, 1, 1, 0) 

 

        self.last = conv3x3(prev_channels, in_chn, bias=True) 

 

    def forward(self, x): 

        image = x 

        #stage 1 

        x1 = self.conv_01(image) 

        encs = [] 

        decs = [] 

        for i, down in enumerate(self.down_path_1): 

            if (i+1) < self.depth: 

                x1, x1_up = down(x1) 

                encs.append(x1_up) 

            else: 

                x1 = down(x1) 

 

        for i, up in enumerate(self.up_path_1): 

            x1 = up(x1, self.skip_conv_1[i](encs[-i-1])) 

            decs.append(x1) 

 

        sam_feature, out_1 = self.sam12(x1, image) 

        #stage 2 

        x2 = self.conv_02(image) 

        x2 = self.cat12(torch.cat([x2, sam_feature], dim=1)) 

        blocks = [] 

        for i, down in enumerate(self.down_path_2): 

            if (i+1) < self.depth: 

                x2, x2_up = down(x2, encs[i], decs[-i-1]) 

                blocks.append(x2_up) 

            else: 

                x2 = down(x2) 

 

        for i, up in enumerate(self.up_path_2): 

            x2 = up(x2, self.skip_conv_2[i](blocks[-i-1])) 

 

        out_2 = self.last(x2) 

        out_2 = out_2 + image 

        return [out_1, out_2] 
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    def get_input_chn(self, in_chn): 

        return in_chn 

 

    def _initialize(self): 

        gain = nn.init.calculate_gain('leaky_relu', 0.20) 

        for m in self.modules(): 

            if isinstance(m, nn.Conv2d): 

                nn.init.orthogonal_(m.weight, gain=gain) 

                if not m.bias is None: 

                    nn.init.constant_(m.bias, 0) 

 

 

class UNetConvBlock(nn.Module): 

    def __init__(self, in_size, out_size, downsample, relu_slope, use_csff=False, use_HIN=False): 

        super(UNetConvBlock, self).__init__() 

        self.downsample = downsample 

        self.identity = nn.Conv2d(in_size, out_size, 1, 1, 0) 

        self.use_csff = use_csff 

 

        self.conv_1 = nn.Conv2d(in_size, out_size, kernel_size=3, padding=1, bias=True) 

        self.relu_1 = nn.LeakyReLU(relu_slope, inplace=False) 

        self.conv_2 = nn.Conv2d(out_size, out_size, kernel_size=3, padding=1, bias=True) 

        self.relu_2 = nn.LeakyReLU(relu_slope, inplace=False) 

 

        if downsample and use_csff: 

            self.csff_enc = nn.Conv2d(out_size, out_size, 3, 1, 1) 

            self.csff_dec = nn.Conv2d(out_size, out_size, 3, 1, 1) 

 

        if use_HIN: 

            self.norm = nn.InstanceNorm2d(out_size//2, affine=True) 

        self.use_HIN = use_HIN 

 

        if downsample: 

            self.downsample = conv_down(out_size, out_size, bias=False) 

 

    def forward(self, x, enc=None, dec=None): 

        out = self.conv_1(x) 

 

        if self.use_HIN: 

            out_1, out_2 = torch.chunk(out, 2, dim=1) 

            out = torch.cat([self.norm(out_1), out_2], dim=1) 

        out = self.relu_1(out) 

        out = self.relu_2(self.conv_2(out)) 

 

        out += self.identity(x) 

        if enc is not None and dec is not None: 
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            assert self.use_csff 

            out = out + self.csff_enc(enc) + self.csff_dec(dec) 

        if self.downsample: 

            out_down = self.downsample(out) 

            return out_down, out 

        else: 

            return out 

 

 

class UNetUpBlock(nn.Module): 

    def __init__(self, in_size, out_size, relu_slope): 

        super(UNetUpBlock, self).__init__() 

        self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True) 

        self.conv_block = UNetConvBlock(in_size, out_size, False, relu_slope) 

 

    def forward(self, x, bridge): 

        up = self.up(x) 

        out = torch.cat([up, bridge], 1) 

        out = self.conv_block(out) 

        return out 

 

class Subspace(nn.Module): 

 

    def __init__(self, in_size, out_size): 

        super(Subspace, self).__init__() 

        self.blocks = nn.ModuleList() 

        self.blocks.append(UNetConvBlock(in_size, out_size, False, 0.2)) 

        self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) 

 

    def forward(self, x): 

        sc = self.shortcut(x) 

        for i in range(len(self.blocks)): 

            x = self.blocks[i](x) 

        return x + sc 

 

 

class skip_blocks(nn.Module): 

 

    def __init__(self, in_size, out_size, repeat_num=1): 

        super(skip_blocks, self).__init__() 

        self.blocks = nn.ModuleList() 

        self.re_num = repeat_num 

        mid_c = 128 

        self.blocks.append(UNetConvBlock(in_size, mid_c, False, 0.2)) 

        for i in range(self.re_num - 2): 

            self.blocks.append(UNetConvBlock(mid_c, mid_c, False, 0.2)) 

        self.blocks.append(UNetConvBlock(mid_c, out_size, False, 0.2)) 
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        self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) 

 

    def forward(self, x): 

        sc = self.shortcut(x) 

        for m in self.blocks: 

            x = m(x) 

        return x + sc 

 

if __name__ == "__main__": 

    # Load data as before 

    data_in = torch.empty([5000, 3, 66, 277], dtype=torch.float32) 

    data_gt = torch.empty([5000, 3, 66, 277], dtype=torch.float32) 

    path = 'C:\\Users\\emnel\\Documents\\HINet-main\\datasets\\AE MAT Data Files' 

 

    gt_path = path+'\\AEtestGroundTruth.mat' 

    g = h5py.File(gt_path, 'r') 

    datagt1 = g.get('nVAE_LE1').value 

    datagt1 = np.array(datagt1) 

    datagt1 = torch.from_numpy(datagt1) 

    datagt2 = g.get('nVAE_LE2').value 

    datagt2 = np.array(datagt2) 

    datagt2 = torch.from_numpy(datagt2) 

    datagt3 = g.get('nVAE_LE3').value 

    datagt3 = np.array(datagt3) 

    datagt3 = torch.from_numpy(datagt3) 

 

    for x in range(50): 

        fpath = path+'\\AEtest'+str(x+1)+'.mat' 

        f = h5py.File(fpath, 'r') 

        data1 = f.get('totVAE_1').value 

        data1 = np.array(data1) 

        data1 = torch.from_numpy(data1) 

        data_in[100*x:100*x+100, 0, :, :] = data1 

        data2 = f.get('totVAE_2').value 

        data2 = np.array(data2) 

        data2 = torch.from_numpy(data2) 

        data_in[100*x:100*x+100, 1, :, :] = data2 

        data3 = f.get('totVAE_3').value 

        data3 = np.array(data3) 

        data3 = torch.from_numpy(data3) 

        data_in[100*x:100*x+100, 2, :, :] = data3 

     

        data_gt[100*x:100*x+100, 0, :, :] = datagt1 

        data_gt[100*x:100*x+100, 1, :, :] = datagt2 

        data_gt[100*x:100*x+100, 2, :, :] = datagt3 

 

    data_in = data_in[:,:,0:64,0:272] 
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    data_gt = data_gt[:,:,0:64,0:272] 

    GroundTruth = data_gt[0:99,:,:,:] 

    GroundTruthAvg = torch.empty([3, 64, 272], dtype=torch.float32) 

    GroundTruthAvg[0,:,:] = data_gt[0,0,:,:]  

    GroundTruthAvg[1,:,:] = data_gt[0,1,:,:]  

    GroundTruthAvg[2,:,:] = data_gt[0,2,:,:]  

     

     

    # Specify the path to your saved model 

    PATH = 'C:\\Users\\emnel\\Documents\\HINet-

main\\basicsr\\models\\archs\\your_model.pth' 

     

    # Create an instance of your model 

    net = HINet( in_chn=3, wf=64, depth=3, relu_slope=0.2, hin_position_left=0, hin_position_right=4) 

     

    # Load the state dictionary from the saved file (loaded the trained model weights into the architecture) 

    net.load_state_dict(torch.load(PATH)) 

     

    # Set the model to evaluation mode 

    net.eval() 

 

    with torch.no_grad(): 

        # Select the data to be evaluated 

        test_in1 = data_in[0:99,:,:,:] 

        # Run the input data through the model 

        a = net(test_in1) 

        test_out1 = a[0] 

         

        test_in2 = data_in[1000:1099,:,:,:] 

        b = net(test_in2) 

        test_out2 = b[0] 

        test_in3 = data_in[2000:2099,:,:,:] 

        c = net(test_in3) 

        test_out3 = c[0] 

        test_in4 = data_in[3000:3099,:,:,:] 

        d = net(test_in4) 

        test_out4 = d[0] 

        test_in5 = data_in[4000:4099,:,:,:] 

        e = net(test_in5) 

        test_out5 = e[0] 

     

    # Calculate mean images to test against network output 

    avg_in1 = torch.mean(data_in[0:99,:,:,:], dim=0) 

    avg_in2 = torch.mean(data_in[1000:1099,:,:,:], dim=0) 

    avg_in3 = torch.mean(data_in[2000:2099,:,:,:], dim=0) 

    avg_in4 = torch.mean(data_in[3000:3099,:,:,:], dim=0) 

    avg_in5 = torch.mean(data_in[4000:4099,:,:,:], dim=0)     
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    psnr = PeakSignalNoiseRatio() 

     

    # Calculate and print the PSNR for the input, mean image, and network output. 

    psnr_in1 = psnr(test_in1,GroundTruth) 

    psnr_avg1 = psnr(avg_in1,GroundTruthAvg) 

    psnr_out1 = psnr(test_out1,GroundTruth) 

    print(psnr_in1) 

    print(psnr_avg1) 

    print(psnr_out1) 

  

    psnr_in3 = psnr(test_in3,GroundTruth) 

    psnr_avg3 = psnr(avg_in3,GroundTruthAvg) 

    psnr_out3 = psnr(test_out3,GroundTruth) 

    print(psnr_in3) 

    print(psnr_avg3) 

    print(psnr_out3) 

    

    psnr_in5 = psnr(test_in5,GroundTruth) 

    psnr_avg5 = psnr(avg_in5,GroundTruthAvg) 

    psnr_out5 = psnr(test_out5,GroundTruth) 

    print(psnr_in5) 

    print(psnr_avg5) 

    print(psnr_out5) 

     

#%% Plotting the results 

plt.rc('xtick', labelsize=25)  

plt.rc('ytick', labelsize=25)  

 

 

f, axarr = plt.subplots(3,3,figsize=(46,46), tight_layout=True) 

plt.setp(axarr, xticks=[0,25,50,75], xticklabels=[0, 20, 40,60], yticks=[0, 0.25, 0.5, 0.75,1], yticklabels=[-20, -10, 

0, 10, 20]) 

 

temp1 = axarr[0,0].imshow(test_in1[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap = 

'Greys') 

axarr[0,0].set_title("Noisy Image", size = 50) 

axarr[0,0].set_xlabel("depth [mm]", size = 30) 

axarr[0,0].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp1, orientation='vertical', ax=axarr[0,0], fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[0,0].text(50, -0.15, "PSNR=18.76 dB", size=42, ha="center") 

 

temp2 = axarr[0,1].imshow(avg_in1[0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap = 

'Greys') 

axarr[0,1].set_title("Mean Image", size = 50) 

axarr[0,1].set_xlabel("depth [mm]", size = 30) 
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axarr[0,1].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp2,orientation='vertical', ax=axarr[0,1],fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[0,1].text(50, -0.15, "PSNR=38.52 dB", size=42, ha="center") 

 

temp3 = axarr[0,2].imshow(test_out1[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap 

= 'Greys') 

axarr[0,2].set_title("Network Output", size = 50) 

axarr[0,2].set_xlabel("depth [mm]", size = 30) 

axarr[0,2].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp3,orientation='vertical', ax=axarr[0,2],fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[0,2].text(50, -0.15, "PSNR=50.22 dB", size=42, ha="center") 

 

temp4 = axarr[1,0].imshow(test_in3[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap = 

'Greys') 

axarr[1,0].set_xlabel("depth [mm]", size = 30) 

axarr[1,0].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp4,orientation='vertical', ax=axarr[1,0],fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[1,0].text(50, -0.15, "PSNR=26.77 dB", size=42, ha="center") 

 

temp5 = axarr[1,1].imshow(avg_in3[0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap = 

'Greys') 

axarr[1,1].set_xlabel("depth [mm]", size = 30) 

axarr[1,1].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp5,orientation='vertical', ax=axarr[1,1],fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[1,1].text(50, -0.15, "PSNR=46.40 dB", size=42, ha="center") 

 

temp6 = axarr[1,2].imshow(test_out3[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap 

= 'Greys') 

axarr[1,2].set_xlabel("depth [mm]", size = 30) 

axarr[1,2].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp6,orientation='vertical', ax=axarr[1,2],fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[1,2].text(50, -0.15, "PSNR=56.90 dB", size=42, ha="center") 

 

temp7 = axarr[2,0].imshow(test_in5[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap = 

'Greys') 

axarr[2,0].set_xlabel("depth [mm]", size = 30) 

axarr[2,0].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp7,orientation='vertical', ax=axarr[2,0],fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[2,0].text(50, -0.15, "PSNR=40.70 dB", size=42, ha="center") 
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temp8 = axarr[2,1].imshow(avg_in5[0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap = 

'Greys') 

axarr[2,1].set_xlabel("depth [mm]", size = 30) 

axarr[2,1].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp8,orientation='vertical', ax=axarr[2,1],fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[2,1].text(50, -0.15, "PSNR=56.41 dB", size=42, ha="center") 

 

temp9 = axarr[2,2].imshow(test_out5[0,0,:,:], extent=[0,100,0,1], aspect=100, vmin=-0.82, vmax = 0.93, cmap 

= 'Greys') 

axarr[2,2].set_xlabel("depth [mm]", size = 30) 

axarr[2,2].set_ylabel("x [mm]", size = 30) 

cbar_int = f.colorbar(temp9,orientation='vertical', ax=axarr[2,2],fraction=0.046, pad=0.04)  

cbar_int.ax.tick_params(labelsize=25) 

axarr[2,2].text(50, -0.15, "PSNR=62.29 dB", size=42, ha="center") 

 

# Save the figure 

plt.savefig("example.png",bbox_inches="tight") 

----------------------------------------------------------------------------------------------------------------------------- --------------- 
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