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Abstract 

 In 2019, a paper called Leveraging Thermal Imaging for Autonomous Driving (Miethig et 

al., 2019) examined the use of thermal cameras for the purpose of aiding self-driving cars. In this 

article, an overview of different scenarios in which a thermal camera could add to the safe 

detection of objects was given. Of these listed objects, humans in the road pose arguably the 

greatest detection risk of all. While Leveraging Thermal Imaging for Autonomous Driving gives 

a great overview of thermal sensing and the use for automated driving, this report will dive 

deeper into the detection of a defined critical safety target, and how thermal camera performance 

plays a role in this detection to support Miethig’s claim on the benefits of thermal cameras.  

Parameters such as system Modulation Transfer Function (MTF), Noise Equivalent Temperature 

Difference (NETD), Signal to Noise Ratio (SNR) will be assessed to validate that a specific 

thermal imager will work for its intended purpose of human detection. 
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Introduction 

Self-driving cars are a rapidly developing technology that has the potential to 

revolutionize transportation. One of the key challenges in developing self-driving cars is the 

ability to perceive the environment safely and reliably. This has already proven difficult for 

automated driving, as there have been several notable accidents in the industry which involve 

humans on the road. Miethig et al. lists incidents involving a Tesla striking stationary vehicles, 

and a retrofitted vehicle operated by Uber striking a pedestrian. Additionally, since the 

publication of Miethig’s paper, other high-profile cases such as a vehicle operated by Cruise 

dragging a pedestrian have been in headlines. While thermal cameras are certainly not the fix-all 

solution to these incidents, they can provide critical context to a scene where other sensors may 

fall short. 

Most self-driving cars to date come equipped with a wide array of sensors which help the 

vehicle perceive the environment in different ways. Each sensor has its own respective role to 

play in perception but must also fuse with other sensor information to provide full context of the 

scene. Figure 1 below is taken from Leveraging Thermal Imaging for Autonomous Driving 

(Miethig et al., 2019) which shows the typical sensors found on an autonomous car and the 

functions they serve. Different sensors in the table can have the same function as other 

modalities since better performance is achieved through sensor fusion. 
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Figure 1: Different Sensors and Their Benefits (Miethig et al., 2019) 

 Long wave Infrared cameras can add to these already existing modalities by providing 

better object and pedestrian detection in adverse conditions such as night-time driving and 

certain weather conditions which may make sensors such as LiDAR not usable. However, to 

know how much benefit an LWIR camera can add to the vehicle, it is important to characterize 

its individual performance to verify that it can aid in the detection of objects and humans.  

This paper discusses the use of thermal cameras for self-driving cars and outlines the 

performance of current available automotive grade sensors to support the claims made in 

Miethig’s 2019 paper. This paper begins by defining a use case for automotive thermal cameras, 

and then uses this as a baseline metric to compare against actual camera performance. After a use 
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case has been defined, a commercially available automotive-grade thermal imager will be 

selected for analysis to determine whether it can meet the needs of a self-driving car. The 

analysis will be broken down into four separate sections: system specifications (lens, sensor, 

electronics), radiometry (resolution and sensitivity), performance modeling in Night Vision’s 

Integrated Performance Model (NV-IPM), and image processing techniques. Finally, the paper 

will conclude if the selected camera meets a self-driving car's needs and reviews the challenges 

and limitations of using thermal cameras for automotive purposes. 

Automotive Use Case 

Visible cameras depend on some external light source which reflects off the target and 

shines on to the sensor. During the night, this light source either needs to be some street lighting 

or the vehicle’s headlights. Thermal cameras, on the other hand, are ideal for self-driving cars 

during dusk, night and dawn as they can provide clear images of people and objects in complete 

darkness. 

 For this paper, the vehicle will operate on a highway or higher-speed road outside of a 

city. This is because in most cities, the speed limit is much lower which can allow for other 

modalities such as LiDAR and visible cameras to have more time for detection of humans. This, 

combined with more visible light due to streetlamps, makes thermal imagers less necessary 

inside cities. The operating speed will be set to 65 miles per hour, or 29 meters per second. 
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 The most critical detection for an automotive thermal camera will be a small human 

which is on the road. The human will be defined as 1.52 meters tall and 0.53 meters wide. Other 

critical features are defined in Table 1: 

Target Variable Value 

Height 1.52 m 

Width 0.53 m 

Characteristic Dimension 0.89 m 

Target Temperature 37 C 

Background Temperature 15 C 

Table 1: Target Variables 

 Given the target and operating speed, a minimum distance for detection can be defined. 

This will be the shortest distance to the target where the Automated Vehicle (AV) still has 

enough time to brake and avoid a collision. The worst-case braking scenario for a small car is 

132 feet, or ~40 meters at 26 m/s (Consumer Reports 2023). Using simple kinematic equations, 

the braking deceleration can be found: 

𝑣𝑓
2  =  𝑣𝑖

2  +  2 ∗ 𝑎 ∗ 𝑑 

(0 𝑚/𝑠)2  =  (26 𝑚/𝑠)2  +  2 ∗ 𝑎 ∗ (40 𝑚) 

𝑎 =  
−676

𝑚2

𝑠2  

80 𝑚
 

𝑎 =  −8.45 
𝑚

𝑠2
 

With this value for vehicle deceleration, the minimum distance to prevent collision at the defined 

operating speed can be found using the same kinematic equation: 
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(0 𝑚/𝑠)2  =  (26 𝑚/𝑠)2  +  2 ∗ (−8.45 
𝑚

𝑠2
) ∗ 𝑑 

𝑑 =  
−841

𝑚2

𝑠2  

−8.45 
𝑚
𝑠2

 

𝑑 ≈ 50 𝑚 

Using a worst-case reaction time (the time it takes from the capture of the image to target 

detection through analysis) of 0.5 s, this puts the minimum distance to prevent collision at 50 m 

+ 14.5 m (reaction distance) = 64.5 m. 

 Now that a use case has been defined, a thermal imager can be selected to benchmark 

performance against. This will help to ensure that the thermal imager can meet the specific needs 

of this application. When selecting a thermal imager, it is important to consider factors such as 

the resolution, sensitivity, and frame rate. These factors all directly contribute to the camera's 

ability to detect the defined target and prevent a collision. 

Analysis 

 Currently, there are only a few vendors that manufacture automotive grade cameras. The 

two main contenders are FLIR and Magna (formerly known as Veoneer). Both vendors offer 

competitive pricing and performance, however FLIR's Boson 640 automotive camera was 

selected for this study because it offers several advantages over other cameras on the market. 

First, it has a high resolution of 640 x 512 pixels, which allows it to capture better resolution 

images even in low-light conditions. The array format combined with their standard 24-degree 

field of view lens makes it optimal for human detection. Finally, FLIR has a great track record 
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with reliability and weather proofing which makes it the desired manufacturer of LWIR camera 

systems. 

Overall, FLIR's Boson 640 automotive camera is a high-quality camera that offers several 

advantages over other cameras on the market. It is a good choice for businesses that are looking 

for a reliable and affordable camera for use in automotive applications. 

System Specification 

 The Boson 640 has standard specifications for consumer Long-Wave Infrared (LWIR) 

cameras such as 12 µm pixel pitch, F/1 lens, with an uncooled microbolometer sensor. However, 

what sets FLIR apart is their consistent performance and manufacturing which other vendors end 

up comparing their product to. Table 2 below outlines the useful specifications of the Boson 640 

which will be used later for analysis. 

Specification Value 

Format 640 x 512 

Pixel Pitch 12 µm 

FOV 24° 

F/# 1 

Focal Length 21.5 mm (Estimated) 

Bandwidth 8 µm - 14 µm 

Transmission 60% (Estimated) 

Quantum Efficiency 0.7 (Estimated) 

NETD 50 mK 
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Frame Rate 30 Hz 

Table 2: FLIR Boson 640 Parameters 

 With the necessary camera parameters defined above, it is now possible to assess the 

radiometry of this AV problem and determine whether this camera system is suitable for self-

driving cars. The camera must be able to capture enough signal in low-light conditions and 

withstand certain atmospheric attenuations to detect and identify humans on the road. To test 

this, the FLIR Boson 640 camera will be evaluated based on several metrics such as resolution, 

sensitivity, SNR, MTF, and NETD. 

Radiometry 

 Radiometry is the measurement of radiant energy and its interaction with the systems we 

design. It is a branch of optics that deals with the transfer of radiant energy between objects. This 

field of optics is important because it provides an understanding of how radiant energy interacts 

with matter (target and camera system). This understanding is essential for measuring how well a 

given system can perform under a variety of conditions. Radiometry, for this paper, will be 

broken down into two main sections – resolution and sensitivity.  

Resolution 

Resolution is a measure of how well a sensor can see small spatial details on an object 

(Driggers et al., 2012). The first step in assessing resolution is to determine how many pixels are 

on the target. If the target’s area is larger than the area of one pixel projected at the target 

distance, then the target is considered resolved. If the camera system passes the test for 
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resolvability, then system MTF can be looked at to determine how well this system can 

distinguish the defined target. 

For the purposes of a self-driving car, a resolved target (i.e. more than one pixel on 

target) is not enough of a qualifier when looking at a camera system. An explanation as to why 

more than one or two pixels is needed will be given in a later section, but for now, the number of 

pixels will be calculated. To start, the individual pixels need to be projected out towards the 

target location. This can be done in the following equation: 

𝐴𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑  =  𝐴𝑃𝑖𝑥𝑒𝑙 ∗
𝑅2

𝑓2
 

where R is the range to the target and f is the focal length of the camera. Plugging in the known 

values results in the following: 

𝐴𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑  = (0.012 𝑚𝑚)2 ∗
(64,500 𝑚𝑚)2

(21.5 𝑚𝑚)2
 

𝐴𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑  = 1,296 𝑚𝑚2 

 This represents the area of one pixel at the location of the target. Next, the area of the 

target will be calculated and the number of pixels on said target can be found: 

𝐴𝑇𝑎𝑟𝑔𝑒𝑡  =  (1,520 𝑚𝑚)(530 𝑚𝑚)  =  805,600 𝑚𝑚2 

𝑛𝑝𝑖𝑥𝑒𝑙𝑠  =
 805,600 𝑚𝑚2

1,296 𝑚𝑚2
 =  621 𝑝𝑖𝑥𝑒𝑙𝑠 
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For this camera system, at the desired target location there are 621 pixels on the target. 

This is more than enough to be considered resolved, and give enough buffer to assess recognition 

and identification, which will be discussed in a later section. Next, the system MTF will be 

calculated to determine how well it can resolve the target. 

 Many different attributes in a camera system will all contribute to system MTF, which is 

a measure of how well a camera can resolve certain spatial frequencies. For this paper, three 

main contributing factors will be assessed: optics, detector, and atmosphere. There are, of course, 

other contributors, such as electronics, display, human eye (still required for labeling and training 

data), etc. Optics MTF, for this analysis, will assume diffraction-limited optics, which is the 

fundamental maximum MTF an optic can have. Detector MTF is a function of pixel shape and 

size. Assuming a square pixel shape, smaller pixel sizes will result in better MTF over spatial 

frequencies. Finally, atmosphere MTF is a measure of attenuation as light travels through it. It is 

a function of range, altitude, and atmospheric turbulence (referred to as Cn^2). For this paper, a 

low Cn^2 value – which is indicative of a turbulent condition – will be used as a worst-case 

scenario. The following chart (generated from an MTF calculator given in OPTI 613) shows how 

each individual MTF, as well as total overall MTF, performs over spatial frequencies. 
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Figure 2: System MTF Functions 

 The component with the lowest MTF is considered the limiting MTF of the system. In the 

case for this camera, the limiting MTF is shown to be from the optics of the camera. Since the 

optics were modeled to be diffraction-limited, the only ways to improve MTF is to either change 

wavelength or increase the aperture size. For this paper, these variables will be considered fixed, 

as changing them for mass production will be costly. Additionally, since the limiting component 

is the optics, any aberrations or alignment issues with the lens will worsen MTF and have a 

direct impact on system MTF. In a later section of this paper, a Boson 640 camera will be used to 

measure MTF and gauge how close to diffraction-limited the optics really are. 

 The final check for resolution is to determine if the system is sampling limited. A system 

is undersampled if: 

𝑓# ∗ 𝜆

𝐷𝑝𝑖𝑡𝑐ℎ
 <  2 
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If the wavelength is taken to be 11 µm (The average of the band limits), this equation comes out 

to be: 

1 ∗ 11 𝜇𝑚

12 𝜇𝑚
=  0.92 

This shows that the system is undersampled and will need to move in space for supersampling. 

For LWIR cameras on a self-driving car, this will not be a problem as the system is only needed 

when the car is in motion. 

Sensitivity 

 Sensitivity encompasses a wide variety of metrics such as NETD, SNR, and Minimum 

Resolvable Temperature (MRT), which is sensitivity as a function of resolution. Overall, 

sensitivity is a measure of how well a camera system can measure changes in radiant energy. 

NETD is already given in the specifications table above as 50 mK, so there is no need to 

calculate this value. However, in a later section, NETD will be measured on a sample camera to 

see how close to 50 mK a real sample gets. 

 To show how sensitivity evolves over distance, power on the detector and corresponding 

SNR will be plotted below. SNR over distance will be calculated using NV-IPM’s SNR probe, 

which factors in system NETD (in this case 50 mK) and source contrast. As for power on the 

detector, an equation can be put together to get power as a function of range. This can be done by 

starting at the camera level and then projecting out towards the target. To start, it will be 

assumed that all of the power that falls on the aperture will make it to the detector, after 

accounting for lens transmission.    
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𝑃𝐷𝑒𝑡   =  𝑃𝐴𝑝𝑡  ∗ 𝑅𝛺 

 However, power on the aperture can be described as the source intensity multiplied by 

the solid angle subtended by the aperture. Target intensity is a contrast intensity, which is the 

difference between the source intensity and background intensity at that same distance. 

Additionally, atmospheric transmission needs to be accounted for which will be found using 

Beer’s Law. 

𝑃𝐷𝑒𝑡   =  𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ∗ 𝛺 ∗ 𝜏𝑅  ∗ 𝑅𝛺 

While the target is in the resolved domain of this camera system, the target contrast intensity 

needs to be limited to the area of one pixel. To do this, the target radiance can be used in 

conjunction with the projected area of one pixel. 

𝑃𝐷𝑒𝑡   =  𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ∗ 𝐴𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 ∗
𝜋𝐷𝐴𝑝𝑡

2

4𝑅2
∗ 𝜏𝑅  ∗ 𝑅𝛺 

𝑃𝐷𝑒𝑡   =  𝐿𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ∗ 𝐴𝑑𝑒𝑡  ∗  
𝑅2

𝑓2
∗

𝜋𝐷𝐴𝑝𝑡
2

4𝑅2
∗ 𝜏𝑅  ∗ 𝑅𝛺 

𝑃𝐷𝑒𝑡   =  
𝐼𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡

𝐴𝑇𝑎𝑟𝑔𝑒𝑡
∗ 𝐴𝑑𝑒𝑡  ∗  

𝑅2

𝑓2
∗

𝜋𝐷𝐴𝑝𝑡
2

4𝑅2
∗ 𝜏𝑅  ∗ 𝑅𝛺 

If background radiance doesn’t change with distance, the above equation represents power on the 

detector over range. Simplifying this gives the following: 

𝑃𝐷𝑒𝑡 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑   =  
𝐼𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡

𝐴𝑇𝑎𝑟𝑔𝑒𝑡
∗ 𝐴𝑑𝑒𝑡  ∗

𝜋𝐷𝐴𝑝𝑡
2

4𝑓2
∗ 𝜏𝑅  ∗ 𝑅𝛺 

 

It’s important to note that this equation is only valid out until 1.608 km (where 𝐴𝑡𝑔𝑡  >

𝐴𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑃𝑖𝑥𝑒𝑙 ) because the target is resolved. After the resolved-unresolved crossover, the 

target contrast radiance is now captured in one pixel and incurs a 1/𝑅2 dependence: 
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𝑃𝐷𝑒𝑡 𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑   =  𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ∗ 𝛺 ∗ 𝜏𝑅  ∗ 𝑅𝛺 

𝑃𝐷𝑒𝑡 𝑢𝑛𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑   =  𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ∗
𝜋𝐷𝐴𝑝𝑡

2

4𝑅2
∗ 𝜏𝑅  ∗ 𝑅𝛺 

 Using the two equations found above for resolved and unresolved power on the detector, 

and the calculated values for SNR using NV-IPM, the following plot shows how the sensitivity 

of the camera system changes over range. 

 

Figure 3: Power and SNR of Detector Over Target Range 

 The red dotted line on the chart above represents the distance at which the target changes 

from resolved to unresolved – the Resolution Crossover. For AV purposes, this camera is no 

longer useful past the resolution crossover as the target is now smaller than one pixel – which 

can no longer be properly detected. In terms of performance, the Boson 640 appears to have 

plenty of SNR for this target at ranges far past the critical safety distance (indicated by the green 

dotted line). 



19 

 Even with resolution and sensitivity defined for the ideal camera, it’s hard to tell just how 

well this camera performs at the critical task of detecting humans. This is where performance 

modeling takes over. Data from the radiometric calculations done above can be fed into NV’s 

Integrated Performance Model to show the probability of task performance evolving over 

distance. 

Performance Modeling 

 NV-IPM is a comprehensive software package that is specifically designed to model a 

system’s ability to complete a task. For this paper, the tasks of detection, recognition, and 

identification will be modeled. Each level of performance requires a minimum number of pixels 

on a target to complete the task. For detection, one to two pixels can be used to judge whether 

some object is in the scene. Recognition requires three to four pixels on the target to determine if 

the object is human or something else. Finally, identification needs eight to nine pixels on target 

to find aspects of the human (Driggers et al., 2012). Identification is not necessary for AVs, as 

the main concern is finding humans in the road and not necessarily what the human is doing. 

However, it will be kept in the model to show if the camera can go above and beyond the basic 

need. 

 To start, a basic model for an uncooled microbolometer (found in NVIPM library) was 

used as a base. From there, data from Table 1 and Table 2 was input into the model to get 

statistics on task performance in the defined use case. The Target Task Performance (TTP) 

model was selected and iterated over a distance out to 1.6 km since this is the distance of the 



20 

resolution crossover. The following chart shows how an ideal camera would perform in the three 

tasks of detection, recognition, and identification.  

 

 

Figure 4: NV-IPM TTP Metric over Distance 

 The ideal model performs well at the critical safety distance of 64.5 m, showing > 90% 

probability of task performance for detection and recognition. To make task performance a little 

more rigorous, and allow for safer modeling, the number of pixels on target was set to 7.5 for 

recognition (up from 4) and 13 for identification (up from 9). Table 3 shows the individual task 

performance probabilities for the three levels of discrimination at the critical safety distance. 

 



21 

Task Probability of Success 

Detection 98% 

Recognition 91% 

Identification 82% 

Table 3: Task Performance for Ideal Camera 

A 91% success rate is excellent, especially when combined with other modalities such as 

long-range LiDAR and RADAR. However, this is just for an ideal camera, whereas most real-

world cameras will come with some deficiencies and degradations which will hinder task 

performance. 

Lab Test Results 

 As a useful exercise, values such as MTF and NETD will be tested in a lab to verify how 

close a real Boson 640 camera gets to the designed values. If these metrics are, for whatever 

reason, worse than the ideal case defined in the specification sheet, then these lab-measured 

values will be fed into the NV-IPM model to compare how metrics such as recognition and 

identification change. 

 Both MTF and NETD were measured using a combination of an 8”x8” extended 

blackbody source and variable target collimator provided by CI Systems. The sample FLIR 

Boson 640 camera was placed on two Zaber rotation stages to allow for optical alignment and 

changing field positions as shown in Figure 5. 
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Figure 5: CI Systems Collimator and Blackbody (Left), FLIR Boson 640 Mounting (Right) 

For measuring MTF, two separate half-moon targets were used to measure MTF on the 

horizontal and vertical planes. These half-moons were tilted ~5 degrees off from the horizontal 

and vertical axes of the sensor to allow supersampling of the reticle edge. Using the collimator’s 

relay lens control, the reticle was projected out to 64.5 m to measure MTF at the critical safety 

distance. Figure 6 shows what the reticle looks like through the Boson camera. 
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Figure 6: 0F Vertical (top left), 0F Horizontal (top right), 0.8F Vertical (bottom left), and 0.8F 

Horizontal (bottom right) targets projected at 64.5 meters. 

 Edge spread functions and subsequent MTF curves were generated using a standard 

analysis suite called Imatest. Imatest’s SFR library was used on each grayscale image to get the 

most accurate MTF measurement from each image. The red boxes superimposed on each target 

in Figure 6 depicts the ROI used in Imatests’s MTF calculation. The following graph shows how 

lab measured MTF compares to the modeled system MTF above. 
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Figure 7: Lab Measured MTF On-Axis and at 0.8F 

 Figure 7 clearly shows that the sample camera deviates from the ideal camera – which is 

to be expected. This could either be from the optics not actually being diffraction-limited (either 

from manufacturing errors or material quality) or due to the system being sampling limited. 

While this paper primarily delves into finite target locations, it's important to note that a lot of 

cameras often prioritize focusing at infinity. However, this preference for infinite focus can lead 

to lower MTF values when capturing images at finite distances. Despite the factors contributing 

to the reduced MTF, now that resolution has been measured, the sensitivity parameter of NETD 

will be assessed. 

 NETD is also measured on the same CI systems setup, except the target used is a square 

through hole where the temperature of the source (shining through the square) is measured and 
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the temperature of the aperture blocking the rest of the source is measured. This allows for a 

differential temperature, between the source and collimator aperture, to be measured. Since the 

camera reports data in raw ADC counts, a signal transfer function is needed to convert from 

counts to mK. To do this, differential temperatures between the source and collimator aperture 

were found at different blackbody temperatures. At each source temperature, frames were 

averaged together to find mean ADC counts in both ROIs (source and aperture ROI). The slope 

of this response curve is known as the Signal Transfer Function (SiTF). Figure 8 shows 

measured mean ADC counts vs. blackbody temperature.  

  

Figure 8: NETD Target (left) and corresponding SiTF graph (right) 

 With a signal transfer function measured, the random spatiotemporal noise (𝜎𝑡𝑣ℎ) can be 

found. This is done by taking consecutive flood filled images of a uniform blackbody source and 

analyzing the 3D noise present in this dataset. For this paper, an image analysis software called 

ImageJ was used which has a 3D noise analysis routine. Additionally, if the SiTF slope is 
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known, ImageJ will output 𝜎𝑡𝑣ℎ in mK. Surprisingly, the resulting 𝜎𝑡𝑣ℎ measured in the lab came 

out to 42 mK, which is close to the higher tier of cameras offered by FLIR. 

 The measured values for MTF and NETD outlined above can now be fed back into the 

system performance model to see whether the deviations found in a real camera affect the 

probability of performing a task. Figure 9 outlines the original ideal model and superimposed the 

new performance model with updated MTF and NETD. 

 

Figure 9: Comparison of Ideal Model and Lab Measured Model 

 The two models have almost identical results and perfectly overlap in Figure 9. It’s 

possible that the slight degradation in MTF has little to no impact on the model, or the improved 
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NETD value canceled out any impacts from a lower MTF. Table 4 shows how the levels of 

discrimination for both models perform at 64.5 m. 

Task Ideal Model 

Probability of Success 

Lab Measured Model 

Probability of Success 

Detection 98.69% 98.69% 

Recognition 91.26% 91.25% 

Identification 82.08% 82.07% 

Table 4: Task Performance for Ideal Camera and for Lab Measured Model 

 Even though measuring resolution and sensitivity in the lab appears to not have an impact 

compared to the ideal model in this case, it is still an important exercise to always verify 

parameters in the lab. This ensures that the camera is indeed performing as intended and no other 

degradations need to be factored into the model. 

 Now that important camera performance metrics have been defined and analyzed, there is 

one last step to produce an image for the vehicle. This final step is image processing which takes 

a raw image (produced given the metrics outlined above) and processes it in some way to better 

extract the desired features in that image. 

Image Processing  

 There are many ways to process a raw image which can extract or accentuate different 

desired features. These different methods can also range in complexity from simple spatial 

filtering to more advanced machine learning algorithms. For the purposes of this report, a 

bilateral filter will be used to show how features in an image can either be corrected or amplified 

to further increase target contrast.  
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 One of the main benefits of bilateral filters is that they can smooth out noise and other 

non-uniformity while preserving edges—it is a filter in both space and intensity. This is an 

important distinction from the typical gaussian filter, because an automated vehicle’s perception 

model will rely on sharp contrast of objects with respect to the background radiation. If a spatial 

gaussian filter was used with targets in the image, it would smooth out target edges and make it 

hard to detect where a target boundary begins and ends.  

 To define a bilateral filter, it is important to first start with the typical gaussian filter. Just 

like the name suggests, this filter is used to convolve a gaussian profile centered on some pixel 

within a defined pixel neighborhood. A Gaussian filter takes on the form shown in the equation 

below. 

𝑓(𝑝𝑖𝑗 − 𝑘𝑖𝑗) =
1

2𝜋𝜎2
 𝑒

−[(𝑝𝑖−𝑘𝑖)2+(𝑝𝑗−𝑘𝑗)
2

]

𝜎2  

Where 𝑘𝑖 and 𝑘𝑗 represent the i and j row/column index of the center pixel, and similarly 𝑝𝑖 and 

𝑝𝑗 represent the row/column index of the pixel under operation. The parameter 𝜎 defines the 

width of the gaussian profile and is important to fine tune for your specific purpose. A large 𝜎 

will apply a higher weighted average to pixels farther away from the center pixel. This will 

create a more spatially averaged image, but critical features in the image may be blended with 

the background or lost all together. Conversely, a 𝜎 which is too small will leave undesired noise 

in the image because pixels further away from the center pixel will be unaffected. 
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 Next, the bilateral filter comes into play by creating a gaussian profile in the intensity 

domain of a pixel neighborhood and multiplying that by the spatial domain filter, this relation is 

shown below (Durand et al., 2002): 

 

𝐽 =  𝑓(𝑝𝑖𝑗 − 𝑘𝑖𝑗)𝑔(𝐼𝑖𝑗 − 𝐾𝑖𝑗) 

The intensity gaussian filter looks the same as the spatial filter, but instead of applying a 

weighted average to a pixel based on the distance away in space, it applies a weighted average 

based on the difference in intensity (in reference to the center pixel). Additionally, the 𝜎 now 

changes the width of the gaussian profile in intensity, which means a higher 𝜎 will “smooth” 

intensities which are further away from the center pixel’s intensity value. A 𝜎 parameter which is 

too high will not preserve sharp changes in contrast, resulting in loss of boundaries along targets. 

The overall function of a bilateral filter can be seen in Figure 10, where a spatial kernel is cut off 

along the boundary of intensity values which preserves the sharp edge but smooths out noise. 

 

 

Figure 10: Bilateral Filtering in Space and Intensity (Durand etl. al, 2002) 
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 This filter can be used effectively with thermal images to smooth out issues like residual 

fixed pattern noise or shot noise while possibly sharpening contrast along the boundaries of a 

target. To show this effect, Figure 11 contains two photos of the same scene, visible and thermal. 

 

 
 

 
Figure 11: (Top) Visible Spectrum Image of Targets in a Scene,  

(Bottom) Thermal Image of Targets in a Scene 

 

Reflections 

Noise or  

Reflections 
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 The thermal image shown in Figure 11 already has some processing such as non-

uniformity correction done to it as this is performed before the image is saved out. However, the 

red boxes outline reflections from the targets off the smooth concrete. Additionally, the blue box 

highlights possible fixed pattern noise or additional reflections which are hard to make out. 

These features in this raw image are undesirable to a vehicle’s perception system, as it may 

mistakenly track an object that is not there, which can create safety concerns. 

 A bilateral filter was then applied to this raw thermal image with specific spatial and 

intensity gaussian widths. Figure 12 shows the results of this process with the bottom image 

containing little to no reflections, and less overall variation in the background. 

 

 

Reflection

Noise or  

Reflections 
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Figure 12: (Top) RAW Thermal Image of Targets in a Scene, 

(Bottom) Processed Thermal Image of Targets in a Scene 

 

 With sharper target contrast and less overall background variance, this processed image 

can boost a perception model’s probability of detection. It’s hard to say by how much exactly 

without running an entire training set and analyzing the results, but it is reasonable to expect a 

couple percentage points increase in probability of task completion. 

 Having established the essential metrics defining a thermal camera and outlining their 

impact on system performance, this paper can proceed to delve into a detailed discussion on the 

actual benefits of integrating a thermal camera into a self-driving car. This exploration provides 

insight into how such technology can enhance the capabilities and safety of autonomous driving 

systems as described in Leveraging Thermal Imaging for Autonomous Driving. 



33 

Discussion 

This section of the paper revolves around the discussion of results obtained from the 

radiometric calculations and performance models previously presented, which help inform the 

investigation into automotive Long-Wave Infrared (LWIR) cameras for self-driving cars as 

outlined in Leveraging Thermal Imaging for Autonomous Driving. One of the key challenges in 

developing self-driving cars is the ability to perceive the environment safely and reliably.  

On top of the automated vehicle collisions mentioned in Miethig’s paper, In 2021 alone, 

the US had nearly 43,000 reported fatal car accidents. Of these 43,000 incidents, 7,388 were fatal 

to pedestrians (IIHS, 2023). This is the motivation behind the automotive use case defined above 

and mentioned in Miethig’s paper. Night-time driving presents a large risk to vulnerable road 

users, such as pedestrians, because the main source of information (visible light) is missing. The 

reliance on other modalities such as LiDAR, RADAR, and LWIR sensors becomes necessary as 

they either come equipped with their own light source (LiDAR and RADAR) or rely on targets 

in the scene to be the light source (LWIR). Naturally, each modality has its own problems that 

need to be designed around.  

Thermal cameras are a promising technology for the task of night-time detection, and as 

the data in the previous section suggests, they are a good candidate for Vision Zero safety 

(Vision Zero SF. 2023) in environments with little to no visible light. Specifically, FLIR’s Boson 

640 camera appears to be well-qualified to meet the demands of automotive safety. This may 

come as no surprise to those familiar with FLIR as this company has set the standard for LWIR 
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cameras over time, so much so that other commercial vendors will package Boson sensors into 

their own camera system. 

As stated previously, two main companies produce LWIR cameras for automotive 

purposes – FLIR and Magna. This may be because FLIR and Magna have already cornered the 

market, but it may also be due to the complexity of manufacturing an automotive-hardened 

camera that doesn’t inflate the cost of vehicles. Uncooled microbolometers have been around for 

decades but have previously been limited to military purposes which usually have much higher 

budgets for cameras. Whatever the reason for limited suppliers may be, since FLIR is an industry 

leader, and has readily available information on their cameras, the Boson 640 camera was 

selected. 

As far as basic resolution and sensitivity for this camera system go, FLIR has designed a 

reliable product that closely matches its outlined specifications. With a 640x512 array, 12 µm 

pixel pitch, 24-degree lens option, and 30 Hz frame rate, the Boson 640 has more than enough 

resolution performance to detect vulnerable road users at, and far past, the critical safety distance 

of 64.5 m. To match this, the Boson sensor also has a good sensitivity of 50 mK NETD and 

meets the required contrast SNR over the desired distances.  

What makes an even better justification for this camera is how close the camera performs 

against its design parameters, sometimes exceeding them. While there was a slight degradation 

in MTF, which may be due to the sample being focused on a different object distance, it was 

only a slight deviation, even off-axis. The surprising result of an improved NETD is a testament 

to the quality sensors that FLIR produces. The 50 mK specification is, in fact, a maximum value, 

so the camera only has to have a max 50 mK NETD. This sample camera measures only 2 mK 
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away from the higher price level of 40 mK NETD cameras. Typically, vendors will break out 

their cameras into different levels of NETD, since a 10 mK improvement in NETD exponentiates 

the difficulty of manufacturing the sensor and severely decreases the lot yield. If a large sample 

of cameras sold to an AV company had a maximum NETD of 50 mK, but mostly measured close 

to 40 mK, then the company would be getting a great deal on higher quality sensors. 

Due to the successful lab verification of this camera's resolution and sensitivity, the 

resulting performance model closely resembles the ideal case as shown in Figure 9. Any 

potential deviations from a manufactured camera have minimal impact on the model, thereby 

reinforcing its reliability and robustness. Since finding vulnerable road users in the scene is the 

most critical function for an LWIR sensor on a self-driving car, a very high probability of task 

completion is required for it to be a viable solution for low light operation. Particularly, 

recognition is the most important task, as the car needs to be able to tell that the target is a human 

(above the threshold of detection) or another creature. Both the ideal model and lab-measured 

model predict a 91% probability of success in recognition. By itself, this is already a promising 

threshold, but the vehicle needs to come as close to 100% as possible to avoid any critical safety 

event. This is where image processing can help boost probability of detection.  

 The previous section also outlines how a simple bilateral image processing technique can 

suppress undesired features and bring out human targets in the scene. With a possible increase in 

target contrast, this could potentially boost a camera’s probability of task completion. This, 

combined with sensor fusion of modalities such as RADAR or LiDAR can help close any 

possible gap in human detection and recognition. 
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While there are a lot of promising aspects of this camera, it is also important to note the 

challenges that these sensors will face. Because these sensors operate in the 8-14 µm range, their 

performance can be severely degraded in certain types of weather such as dense fog and humid 

rain. This is because water is an absorber in this bandwidth, which can drastically cut down on 

contrast SNR of a target. While Figure 3 shows that there might be some room for a decrease in 

SNR at 64.5 m, Figure 13 shows a possibly missed detection at what appears to be a relatively 

close range.   

 

Figure 13: Missed Detection of Thermal Image due to Weather (Miethig et. Al, 2019) 

Since these are fundamental limitations of the system (i.e. cannot be designed out of the 

camera), LWIR cameras should not be the only solution for night-time driving. Since every 

camera will have their fundamental limits, an emphasis on sensor fusion – the combination of 

multiple systems – should be used to counterbalance each unit’s limitations. 
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Conclusion 

 As self-driving cars start to become more of a reality and accessible to the public, more 

emphasis needs to be placed on how they can create a safer environment for all road users. In 

particular, the risk of operating at night needs to be mitigated for any level of vehicle autonomy. 

This is the point that Leveraging Thermal Imaging for Autonomous Driving makes, and this 

paper attempts to back up. LWIR cameras can really show their usefulness to the full stack of 

sensors in an autonomous vehicle. The analysis section of this paper clearly shows that these 

cameras have more than enough performance to help avoid critical safety events with vulnerable 

pedestrians. As such, any automotive company dealing in self-driving should include these 

sensors – at least until other modalities can provide the coverage that LWIR does. 

  



38 

References 

1. B. Miethig, A. Liu, S. Habibi and M. v. Mohrenschildt, "Leveraging Thermal Imaging for 

Autonomous Driving," 2019 IEEE Transportation Electrification Conference and Expo 

(ITEC), Detroit, MI, USA, 2019, pp. 1-5, doi: 10.1109/ITEC.2019.8790493. 

2. Driggers, Ronald G., et al. Introduction to Infrared and Electro-Optical Systems, Second 

Edition. Artech House, 2012.  

3. Palmer, J. M. & Grant, B. G. The art of radiometry. (SPIE Press, 2010).  

4. Grant, Barbara G. Field Guide to Radiometry. SPIE, 2011.  

5. Bartlett, Jeff S. “Cars, Suvs, and Trucks with the Best and Worst Braking Distances.” 

Consumer Reports, www.consumerreports.org/car-safety/best-and-worst-braking-

distances-a2960086475/. Accessed 14 March 2024.  

6. Durand, Fredo, Dorsey, Julie, “Fast bilateral filtering for the display of high-dynamic-

range images”, Proceedings of the 29th annual conference on Computer graphics and 

interactive techniques, July 2002, Pages 257–266, https://doi.org/10.1145/566570.566574 

7. “Fatality Facts 2021: State by State.” IIHS, May 2023, www.iihs.org/topics/fatality-

statistics/detail/state-by-state#deaths-by-road-user. 

8. Vision Zero SF, https://www.visionzerosf.org/. Accessed 17 March 2024.  

https://www.visionzerosf.org/

