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ABSTRACT 

 

The contents of this manuscript are a modification of the following publication: 

Shane Jordan, Ronald Driggers, Orges Furxhi, Patrick Leslie, Col Cavanaugh, Kyle Renshaw, 

Eddie Jacobs, "Comparison of scene contrast temperature in mid-wave infrared and long-wave 

infrared," Opt. Eng. 62(11) 113107 (27 November 2023) 
 

Infrared imagers are used for many applications, these include target acquisition (both target search 

and target identification), threat warning, aircraft detection, and pilotage. Scene contrast 

temperature (SCT) describes the radiometric temperature associated with the dynamic range of an 

imager and is an important factor in the performance of all of these applications; it can be just as 

important in the performance of the sensor in an application.  A few examples are: 1) a high scene 

contrast with clutter can increase the difficulty of target search, 2) a high scene contrast with 

image-based navigation can enhance the performance of location estimation, and 3) high scene 

contrast with mobility sensors can enhance the performance of a rotorcraft pilotage system. 

SCT is influenced by the range of radiance in the scene; the temperature and emissivity of each 

object in a scene determines this range. The range of radiance in a scene is dependent on the 

band in which the imager is sensitive because blackbody emission and emissivity both vary with 

spectrum. This work investigates the differences in SCT between the mid-wave infrared (MWIR) 

and long-wave infrared (LWIR) spectra in different environments and conditions. In daytime 

conditions, SCT is found to be greater in MWIR, and SCT is found to be higher in LWIR in 

nighttime conditions. Cloudy conditions during the daytime decrease SCT regardless of band, 

and rainy conditions are found to dramatically decrease SCT regardless of band. The effects of 

these spectral differences are extrapolated to imaging performance in a pilotage scenario.  



9 

 

 

Chapter 1 Introduction 
 

For any application that an infrared imaging system is used for, both the resolution and the 

sensitivity of these systems dictate their performance. The resolution of the system is determined 

by the total blur in the system; low resolution is manifested as a loss of contrast in higher spatial 

frequency components of an image. Sensitivity is determined by the noise in a system; high 

sensitivity systems can discern very small differences in radiance from different parts of the scene, 

while these small differences get “washed out” by random noise in low sensitivity systems. The 

capacity of an imager to efficiently convey information to the user is a combination of resolution 

and sensitivity.  

The task difficulty for an infrared imager is determined by the scene. Scenes with small variations 

in radiance necessitate high sensitivity imagers. Scenes with small features, such as a scene which 

is very far away, necessitate high resolution imagers. The size of the features in the scene are 

entirely dependent on the application, but the variation in radiance between those features, the 

scene contrast, is partially dependent on the wavelengths at which the imager is sensitive; 

blackbody emission and emissivity both vary with wavelength. 

For scenes with high scene contrast, dynamic range is set such that small variations, such as noise, 

in measured radiance result in small variations in display luminance. This results in a high-quality 

image as these scenes have large variations in emitted signal. For scenes with low scene contrast, 

when the scene dynamic range is stretched across the display dynamic range, small variations in 

measured radiance and noise become apparent. A very sensitive imager is able to stretch this 

dynamic range to discriminate very small variations in emitted signal from the scene before noise 

begins to drown out these variations. 
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Mid-wave infrared (MWIR) and long-wave infrared (LWIR) imagers are capable of sensing light 

emitted by objects that are at temperatures corresponding to earth conditions (~300K). The subject 

of this study is Scene Contrast Temperature (SCT), which is a measure of the dynamic range of a 

scene in terms of equivalent blackbody temperature for these emissive infrared wavelength bands. 

These thermal sensors need to be sensitive enough to pick up very small variations in scene 

radiance  due to slight differences in temperature throughout the scene. Since these variations differ 

between bands, this study investigates the extent of these differences. Additionally, the 

propagation of these differences to the ultimate performance of an imager is investigated. 
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Chapter 2 Background 

 

 

2.1 Radiometry and Planck’s Curve 

 

Light exists on a spectrum of electromagnetic radiation, which travels as waves at different 

wavelengths. This spectrum includes radio waves, microwaves, and infrared light at the longer end 

of the spectrum, and ultra-violet, x-rays, and gamma rays at the shorter end of the spectrum. Figure 

2.1 shows the electromagnetic spectrum over a range of wavelengths from meters down to 

femtometers.  

 

Figure 2.1: The electromagnetic spectrum [1]. Public Domain. 

 

Light travels in waves but can also be represented as photons. Photons are individualized packets 

of electromagnetic energy, with energy dependent on the wavelength of the photon. The energy in 

a singular photon is as follows: 
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𝐸 =  
ℎ𝑐

𝜆
 [ 𝐽] (1) 

Where h is Planck’s constant (6.626E-34 J-s), c is the speed of light in a vacuum (3E8 m/s), and λ 

is the wavelength of the photon. Electromagnetic flux is associated with the total photon flux and 

is primarily measured in Watts (J/s) over all spectra, where shorter, more energetic wavelengths 

contain more Joules per photon. In order to describe sources of light, it is first important to describe 

the radiometry and units associated with the spread of light. Table 1 reports the primary units 

which describe sources and terminals of light. 

Table 2.1: Radiometry units 

Name Unit Explanation 

Watt 𝐽

𝑠
 

Flux – amount of energy per 

unit time 

Intensity 𝑊

𝑠𝑟
 

Flux per steradian exiting a 

source 

Exitance 𝑊

𝑚2
 

Total flux exiting the surface 

area of a source 

Emittance 𝑊

𝑚2
 

Flux emitted from the surface 

area of a source 

Irradiance 𝑊

𝑚2
 

Total flux incident on a 

terminal 

Radiance 𝑊

𝑚2 − 𝑠𝑟
 

Flux per steradian per unit 

area 

Electro-optic/infrared (EO/IR) sensors are designed to observe sources of light in the visible and 

infrared bands. The dominant source of light in the visible and infrared bands is blackbody 

radiation, the random emission of photons due to thermal energy. All objects emit blackbody 

radiation in accordance with Planck’s law, which governs the radiance of a thermal source as a 

function of wavelength and temperature. The general form of Planck’s Law is as follows: 



13 

 

 

𝐿𝜆 =
2ℎ𝑣5

𝑛2𝑐3

1

𝑒
ℎ𝜈

𝑘𝐵𝑇 − 1

 (
𝑊

𝑐𝑚2𝑠𝑟𝜇𝑚
) (2) 

Where n is the refractive index, λ is the wavelength in microns, ν is the frequency of the light in 

Hz, k is the Boltzmann constant (1.38E-34 J/K), and T is the temperature of the object. There are 

two important attributes of Planck’s law: radiance increases monotonically with temperature 

regardless of wavelength, and the peak emission wavelength decreases as a function of 

temperature, defined by Wien’s law is as follows:  

𝜆𝑝𝑒𝑎𝑘 =
2898

𝑇
  [𝜇𝑚] (3) 

Figure 2.2 is a depiction of Wien’s law within Planck’s law. The wavelength at which the 

blackbody emission curve peaks at lower and lower wavelengths with increasing temperature. 

 

Figure 2.2: Planck’s and Wien’s Law (dotted line represents Wien’s law) 
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EO/IR sensors sense wavelengths integrated in “bands”. Wavelength bands are usually defined by 

windows in the atmosphere where emission at a given wavelength can pass through the atmosphere 

without being absorbed. Figure 2.3 depicts the atmospheric windows – visible (VIS) from 0.4 to 

0.7 microns, near-infrared (NIR) from 0.7 to 1.1 microns, shortwave-infrared (SWIR) from 1.1 to 

1.7 microns, midwave infrared (MWIR) from 3 to 5 microns, and longwave infrared (LWIR) from 

8 to 14 microns. 

 

Figure 2.3: Atmospheric transmission spectrum [1]. Public Domain. 

 

The bands can be further categorized into reflective and emissive bands. The wavelengths emitted 

by the sun define which bands are reflective, as they reflect off terrestrial objects and can be 

detected by EO/IR sensors. The sun peaks in the visible wavelength band and has detectable signal 

on earth out to the MWIR. 
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Figure 2.4: Solar Radiance Curve 

 

The wavelengths emitted by the cooler objects on earth define the emissive bands. For a terrestrial 

object with a temperature around 300K, radiance peaks in the LWIR around 10 microns in 

accordance with Wien’s law and emits detectable radiation out to the MWIR. 

 

Figure 2.5: 300K Blackbody Radiance Curve 
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Sensing electromagnetic radiation in different bands provides valuable information about the 

world around us. The radiation contained within each of these bands has different properties, and 

imaging different bands yields different information. The band that provides the optimal 

information is not always the same between different applications, and choosing a band which 

provides the most information about a given scene is one of the most important decisions when 

designing an EO/IR sensor.  

 

 

2.2 Infrared Imaging 

EO/IR systems are designed to convey information contained in a scene to a user. This 

information originates from the scene, where photons are either reflected or emitted by the 

objects in the scene. Information is not contained in the photons themselves, but in the spatial 

variations in radiance caused by variations in depth, temperature, irradiance, and material. The 

progression of information through a system is shown in Figure 2.6. Photons must first pass 

through the atmosphere to the optics, where they are imaged to a detector. When photons strike a 

detector, electrons are sent into the electronics of the system which are processed and displayed 

as an image. Each of these steps results in both a loss in spatial resolution of the information, and 

a loss of sensitivity to small variations in radiance. 
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Figure 2.6: Progression of information through an EO/IR system. 

The resolution of a system is defined by the modulation transfer function (MTF). The MTF of a 

system describes loss of contrast in the resulting image as a function of spatial frequency of the 

scene. More contrast is lost at higher spatial frequencies, and less contrast is lost at lower spatial 

frequencies. There is an MTF associated with each element of the system, and each MTF is 

multiplied together resulting in a system MTF. Optics create a blur in the system due to 

diffraction (blur proportional to the ratio of the wavelength and the diameter of the aperture) and 

aberrations. Detectors create another blur due to spatial quantization of detector elements and 

sampling frequency limitations due to this quantization. Low resolution is manifested as a blur in 

the resulting image. 

 

Figure 2.7: Higher-resolution image (left) and lower-resolution image (right) 
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Figure 2.7 depicts an image of a scene with high resolution, and a corresponding scene with low 

resolution. The low-resolution image is seen as blurry, as there is no longer contrast in the higher 

spatial frequency components of the image. The contrast in the low spatial frequency components, 

such as the contrast between the sky and the ground, stays constant. 

Sensitivity describes the smallest change in radiance from a scene that can be detected by the 

system. Sensitivity is degraded through both loss of signal and generation of noise. As the signal 

from the scene passes through the atmosphere and the optics, a portion of the photons are scattered, 

reflected, or absorbed and this signal is lost. Once the transmitted photons strike the detector, a 

certain percentage (determined by the quantum efficiency (QE) of the detector) of photons 

generate electrons which subsequently fill up a capacitor “well.” The electronics of the system 

send a signal to the display to display a gray value corresponding to the number of electrons 

detected in the well.  

There are constant random variations (noise) in the signal detected by the electronics. First, the 

photons generated by a single element of the scene follows a Poisson distribution; the random 

variation in photons generated corresponds to the square root of the mean photons generated. The 

detector generates dark current due to thermal energy contained in the sensor; this also follows a 

Poisson distribution and has noise corresponding to the square root of the electrons of dark current. 

Reading the electrons from the detector to the electronics generates a baseline level of noise as 

well. Total noise is calculated by taking the root sum square of each individual noise source.  

Basic gain in an EO/IR system multiplies the number of electrons captured in a well. This is useful 

when the strongest signal in a scene does not come close to filling the well; multiplying this signal 

stretches the dynamic range of the imager across the display such that smaller signals result in 

greater gray levels in the resulting image. It should be noted that the noise electrons are multiplied 
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as well as the signal; when the small dynamic range is stretched, noise is amplified. Another way 

to influence the dynamic range of an EO/IR system is the offset level. For scenes with a minimum 

signal level that is not close to zero, a new “zero” can be set where a certain number of electrons 

in the well correspond to black on the display.  

Signal-to-noise ratio (SNR) is a good measure of whether a feature in a scene can be discerned or 

not. Low SNR indicates high noise and low signal; it is difficult to distinguish between random 

variations in detected signal and real variations in signal. High SNR indicates low noise and high 

signal resulting in a clean image. 

 

Figure 2.8: Higher SNR image (left), lower SNR image (right) 

Figure 2.8 depicts an image of a scene with high SNR, and a corresponding scene with low SNR. 

In the high SNR image on the left, it is possible to distinguish between small differences in signal 

(e.g. the trunks of the trees and the background). In the low SNR image on the right, large 

differences in signal can still be distinguished between (e.g. the sky and the mountains) but smaller 

differences are drowned out by the noise. The image on the left has higher sensitivity. 

One model used to calculate and predict the performance of infrared systems is Night Vision 

Integrated Performance Model (NVIPM). NVIPM uses the Targeting Task Performance (TTP) 
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metric to calculate the probability of detection, recognition, and identification of a target at range. 

TTP takes both the resolution and sensitivity of an imager into account to determine the 

performance. The equation for TTP is as follows [1]: 

𝑇𝑇𝑃 =  ∫ [
𝐶𝑇𝐺𝑇

𝐶𝑇𝐹𝑠𝑦𝑠(ξ)
]

1
2

 

ξ𝑐𝑢𝑡

ξ𝑙𝑜𝑤

[𝑐𝑦𝑐𝑙𝑒𝑠] (4) 

Where ξcut and ξlow bound the spatial frequencies present in the scene, CTFsys(ξ) is the system 

contrast threshold function, and CTGT is the contrast of the target. The CTF of the system describes 

which frequencies can make it through the system and be detected by the human eye. CTFsys(ξ) is 

as follows: 

𝐶𝑇𝐹𝑠𝑦𝑠(ξ) =  
𝐶𝑇𝐹𝑒𝑦𝑒(ξ)

𝑀𝑇𝐹(ξ)
(1 +

𝛼2𝜎2(ξ)

𝑆𝐶𝑇2
)

1
2

 [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] (5) 

Where CTFeye(ξ) is the naked eye contrast threshold function (this varies from person to person) 

and MTF(ξ) is the modulation transfer function of the system, which describes the spatial 

frequencies passing through the imager. The second half of equation 2 describes noise relative to 

dynamic range and is governed by the scene contrast temperature (SCT) of the system. σ(ξ) is the 

noise filtered by the display in Kelvin-root seconds and α is a proportionality factor (169.6 root-

Hertz). SCT is controlled by the gain and offset level of the imager; lowered SCT generally leads 

to increased contrast at the expense of partial saturation and an increase in relative noise.  

The other important part of the TTP equation, CTGT, is governed by the following equation: 

𝐶𝑇𝐺𝑇 =
∆𝑇𝑅𝑆𝑆

2𝑆𝐶𝑇
 [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] (6) 
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For any kind of search/targeting/identification application, ΔTRSS is the root sum squared contrast 

in terms of equivalent blackbody temperature. SCT governs the contrast of the target relative to 

the entire dynamic range of the display. 

TTP also has been shown to correlate with perception of general image quality. For applications 

such as pilotage, where the quality of the entire image is necessary for navigation, TTP has been 

shown to function as a figure of merit. For an application without a target such as pilotage, CTGT 

is set to 1 [5]. 

2.3 What is Scene Contrast Temperature? 

Scene Contrast Temperature (SCT) describes the global variation of the radiance in a scene (within 

the field of view (FOV) of a system) in radiometric terms for thermal imagers. Vollmerhausen and 

Jacobs define SCT as “the delta radiometric temperature in the scene needed to generate the 

average display luminance when minimum luminance is zero [2]”. This definition is consistent 

with the fact that the thermal image arises from small variations in temperature and emissivity 

within the scene that rides on a large background radiance. SCT can usually be estimated as the 

temperature corresponding to half of the dynamic range of the display, although this is false for 

scenes with irregular statistical distributions of radiance. In simple terms, SCT varies with the 

highest and lowest radiometric signature in the scene and rises with a larger range of temperatures 

within the FOV. 

Interestingly, a scene with a large spread of object temperatures does not necessarily have a large 

SCT. Gain and offset level can be used to set dynamic range independently of the signals in the 

scene, leading to SCT independent of the scene, but this typically loses information in the process 

and is not standard practice. Instead, gain and level are set such that the coldest object in the scene 

is at the bottom of the dynamic range and the warmest object in the scene is at the top of the 
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dynamic range, leading to SCT reflecting the actual range of temperatures in the scene. It is 

important to note that for scenes including the sky, dynamic range can be expanded using non-

linear techniques and the definitions no longer apply as described.   

Temperature difference is not a perfect descriptor of the contrast in the scene as the emitted photons 

from an object are a function of both the temperature and the emissivity of the object. Blackbody 

equivalent temperature can be used as a descriptor, as it equates the radiance of each object to that 

of a blackbody emitter (with emissivity equal to 1); any level of radiance corresponds to a specific 

blackbody equivalent temperature. The standard deviation of the blackbody equivalent 

temperatures for each of the elements in a scene, 𝜎𝑇 in units of Kelvin, is an indicator of SCT and 

can be considered a local descriptor. For an imager viewing objects on the ground, the dynamic 

range is set according to the range of signals coming from the scene; this range correlates with  𝜎𝑇. 

For example, a scene with a normally distributed set of signals has 99.7% of the signal is within 

3𝜎𝑇 of the mean; if gain and level are set such that the dynamic range of the display is ~6𝜎𝑇, 0.3% 

of the scene is saturated and SCT = 3𝜎𝑇. For a display dynamic range set to 4𝜎𝑇, 5% of the scene 

is saturated but the overall sensitivity of the system increases. This trade off in display dynamic 

range (sensitivity vs information loss due to saturation) is generally an issue of personal preference 

for the user, but SCT increases monotonically with 𝜎𝑇; this trend is true regardless of the statistical 

distribution of signal across the scene. 

There is an argument to be made that the range of a set of equivalent blackbody temperatures is a 

better indicator of intrinsic SCT than the standard deviation of the set of equivalent blackbody 

temperatures. Range is directly analogous to SCT and represents the true range of radiance from 

the scene, however it does not account for outliers or trends within the dataset. For scenes with 

small areas with extremely high or extremely low radiance, the range would be larger than it should 
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be to realistically represent SCT in a real application, since these small areas would be allowed to 

be saturated. Additionally, if the dataset has a large range but almost all values are grouped around 

the mean, SCT would be set such that contrast is maximized for data near the meant. The standard 

deviation metric accounts for variations like this and is a better representation of SCT. 

While there are spatial characteristics of the scene which correspond to high clutter, the SCT 

describes the amplitude of the scene corresponding to the signals that compete with the target 

signature [4] when linear contrast stretching is based on global contrast. Some scenes with high 

SCT and many objects in the scene that are close to the target size would be considered “high 

clutter” scenes. For these scenes, 𝜎𝑇 can capture the clutter complexity. 

Figure 2.9 shows an example of two scenes with high and low 𝜎𝑇, and the effect of SCT on display 

sensitivity and saturation. For the scene with low 𝜎𝑇, a low SCT reveals differences in temperature 

with much higher contrast than a high SCT. For the scene with high 𝜎𝑇, a low SCT reveals 

temperature differences with extremely high contrast but loses information outside of the dynamic 

range due to saturation.  
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Figure 2.9: Images depicting effects of variation in SCT and 𝜎𝑇 (low SCT right, high SCT left, 

low 𝜎𝑇 top, high 𝜎𝑇 bottom) 

 

The definition of SCT is based on linear contrast stretching and the assumption of a display 

dynamic range as perceived by an observer. This definition is a global definition of SCT. 𝜎𝑇 is a 

local descriptor of scene contrast and depending on the scale, can be used to discuss the effect of 

clutter in the scene or the effect of the scene contrast in other applications such as pilotage, and 

GPS-denied image-based navigation. When discussing SCT or 𝜎𝑇 in the context of a scene, we are 

really discussing the variation in radiance within the scene. 

 

2.4 Importance of SCT 

 

Fluctuations in SCT cause variation in the dynamic range of the imager display. The larger the 

dynamic range is, the less apparent small changes in temperature are and the noise is less 

significant compared to the signal from the scene. 
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SCT influences the performance of different applications differently. High SCT and high  𝜎𝑇, can 

cause a reduction in performance for some sensor applications such as target detection in the wide 

field-of-view (WFOV) search task and target identification in the narrow field-of-view (NFOV). 

Low SCT and 𝜎𝑇 causes a reduction in performance in other sensor applications such as pilotage 

performance or GPS-denied, image-based navigation.  

Pilotage systems are designed to give operators enhanced situational awareness, especially at 

nighttime and in degraded visual environments. SCT provides a description of the scene contrast 

in conditions that pilots fly in, and the conditions can vary significantly.  The Targeting Task 

Performance (TTP) metric is designed to quantify the performance of a targeting system but is also 

used to quantify the performance of a pilotage system as a function of SCT [5]. This equation 

compares the noise in the system to the SCT. The TTP metric increases logarithmically with SCT 

at extremely low SCTs. 

A pilot can more easily distinguish between objects in the scene with high 𝜎𝑇 and therefore high 

SCT. Situational awareness is enhanced because when 𝜎𝑇 is much greater than the sensor noise, 

as this leads to a higher SCT and noise taking a very small part of the dynamic range of the display. 

This advantage due to increased SCT is “capped” once the noise is negligible compared to the 

dynamic range. Figure 2.10 shows a typical pilotage performance plot of TTP value as a function 

of SCT with four examples of possible pilotage images.   
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Figure 2.10: Typical Pilotage Sensor Performance Curve as a function of SCT. Example images 

correspond to dotted lines. 

 

There are four figures near the pilotage TTP plot where the SCT of the terrestrial part of the scene 

(not including the cold sky), is 0.2K in the upper left, 0.5K in the lower left, 1K in the lower right, 

and 3K in the upper right. Each example image corresponds to a single SCT and a resulting TTP 

value as indicated by each dotted line. The pilotage performance curve reduces with a lower SCT 

and, at some point, the TTP is low enough that it is not safe to fly.  

The second case where a high SCT and 𝜎𝑇 are desirable is a recent application when ground 

vehicles and aircraft are in GPS-denied conditions and images of thermal imagers (e.g., uncooled 

microbolometers) are compared to a world or regional image database.  These comparisons are 

used to pinpoint the location of the vehicle similarly to GPS. Image correlation and deep learning 

techniques in autonomous systems are methods used to make these comparisons.  In any of these 

cases, a higher scene contrast provides better signals to be compared to the image databases. 

Additionally, techniques like Simultaneous Localization and Mapping (SLAM) benefit from 

higher SCT and 𝜎𝑇 for similar reasons to pilotage and image-based navigation.  



27 

 

 

Opposite to pilotage and image-based navigation, low SCT in search and targeting is desirable. In 

search range performance literature [3,4], the target contrast seen by the sensor is: 

 𝑇𝑎𝑟𝑔𝑒𝑡 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
Δ𝑇𝑡𝑔𝑡

2𝑆𝐶𝑇
[7]  

where Δ𝑇𝑡𝑔𝑡 is the target differential signature in Kelvin. The target contrast equation implies that 

a larger SCT reduces the target contrast and makes the task of target detection and target 

identification more difficult when the target Δ𝑇𝑡𝑔𝑡 remains unchanged. For target identification 

performance estimates (in a narrow FOV), the apparent SCT is used. The apparent SCT is the SCT 

propagated through the atmosphere in a manner similar to the apparent target differential signature, 

Δ𝑇𝑡𝑔𝑡. The target and background within the FOV are adjusted to span the display dynamic range. 

Consider a target with a radiometric temperature difference of 1K, a 𝜎𝑇 of 5K (assuming a user 

preferring dynamic range of the display to span 6𝜎𝑇) leads to a SCT of 15K and a total dynamic 

range of 30K, with the target spanning 1/30th of the dynamic range. For a smaller 𝜎𝑇, the total 

dynamic range is smaller, allowing the target to span a larger portion of the total dynamic range. 

The two images in Figure 2.11 represent high and low SCT.  The image on the left has a low SCT 

and 𝜎𝑇 (less variation in scene equivalent blackbody temperature) and the image on the right has 

a high SCT and 𝜎𝑇.   
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Figure 2.11: Low SCT image (left) and the high SCT image (right) 

For a target of low signature, such as a small differential temperature, the target would be easier 

to find and identify in the left scene as it would span a greater percentage of the dynamic range of 

the display. SCT has a large influence in many applications and must be considered especially in 

extreme conditions. 

 

2.5 What influences SCT? 

The variation in radiance between different objects within a scene is affected by several factors. 

Variation in emissivity causes variation in emitted photons between objects that are the same 

temperature in emissive bands. Variation in reflectivity causes variation in reflected photons 

between objects with the same irradiance in reflective bands. For emissive bands, solar loading 

increases the variability in temperature between all objects due to differential absorptivity. For 

reflective bands, differential illumination throughout the scene (shadows) increases the variability 

in radiance as well.   

Low SCT and 𝜎𝑇  correspond to conditions where there is not much thermal variation in the scene, 

such as after long periods of rainy or overcast weather.  High SCT and 𝜎𝑇 are caused by the sun 

beating the objects in the scene with high thermal capacities for long periods of time.  These objects 
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retain this solar loading over time and re-emit photons as a function of their temperature and 

emissivity. 

This study provides comparisons of mid-wave infrared (MWIR) and long-wave infrared (LWIR) 

𝜎𝑇, and indirectly SCT.  The distinction between MWIR and LWIR is very important because this 

decision is the only method that infrared system designers have to influence SCT.  

There are many factors which differentially affect scene contrast in MWIR and LWIR. The sun 

emits more photons in MWIR and less photons in LWIR. Objects reflect some amount of the 

MWIR photons from the sun, meaning MWIR has additional scene contrast at daytime due to solar 

reflections. Objects have wavelength dependent emissivities, and greater variation in object 

emissivities within a band create higher scene contrast in that band. Additionally, the apparent 

temperature difference between the sky and terrestrial objects is higher in LWIR than MWIR due 

to a lower path radiance in the LWIR than the MWIR, meaning that horizon contrast is greater, 

and reflections of the sky create higher contrast.  

This study provides data and analysis comparing SCT in MWIR and LWIR in several different 

conditions. These comparisons are performed “up close” such that the atmosphere between the 

sensor and the measured scenes has negligible transmission or path radiance degradation.   For 

longer sensor to scene paths, an ”apparent” SCT can be determined, but is beyond the scope of this 

study.  

 

2.6 Previous Research in SCT 

While there is not much work in the literature about quantifying the differences between MWIR 

and LWIR SCT, there are some small efforts that quantified clutter in the MWIR and LWIR as 

well as some anecdotal observations about SCT regarding pilotage.  In Vollmerhausen’s design 
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approach to pilotage sensors [7], in one exercise called FROSTY APACHE, the SCT contrast was 

observed over a period of frequent rain and snow.  The SCT was very low, and the background 

was washed out so that it was difficult to pilot an aircraft.  However, a benefit from the low 

background contrast was that the target acquisition performance of the targeting system was 

enhanced since warm targets in a washed-out background were easy to find and identify.  The 

targets “popped out” of the background imagery. 

At the Kyoto Technical University of Japan [8], researchers measured the SCT of city, forest, 

mountains, and the sky above the mountains over a period of 10 years.  The measurements were 

taken in all seasons and in various ambient conditions.  Their goal was to model infrared clutter, 

but the bands they selected were 2-3, 3-4, 4-5, and 8-14 micrometers, making it difficult to provide 

a direct MWIR to LWIR comparison.  The measurements showed that the 8-14 micrometers band 

had more spatial variance than any other band.  The 4-5 and 8-14 micrometer bands had consistent 

spatial variance in the forest regardless of cloud cover or time of day.  Also, each spectral band 

had one or two orders of magnitude difference in variance between daytime and night for most 

scenes. The purpose of the study was to quantify infrared background clutter.  They concluded that 

the emissive bands provide a Gaussian distribution, and the reflective bands provide a Poisson 

distribution in radiance. 

Georgia Tech Research Institute provided a study [9] that was intended to quantify background 

clutter [10] in the MWIR and LWIR.  They used radiometers on a helicopter looking down on the 

ground to obtain the data.  The spectral bands were 3-5 and 8-12 micrometers.  The purpose of the 

study was to quantify clutter in the two spectral bands and determine how weather, scene type, and 

measurement conditions changed the clutter.  Scenes were classified as open, tree line, or mixed.  

The classifications were insufficient because important properties of the scene were ignored, and 
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they used a low pass and high pass filter corresponding to the desired clutter sizes.  With these 

caveats, there were some useful observations from the effort.  The MWIR and LWIR data did not 

show the same behavior regarding spatial variances.  The diurnal data showed that both bands 

peaked in the middle of the day with solar reflections and solar loading.  The variations were less 

at night, but the variations for MWIR were more consistent than LWIR.  Overall, the data showed 

that LWIR variance was higher than MWIR, but that the MWIR was less susceptible to 

environmental changes.  There were no measurements in precipitation related to rain or snow. 

Thermal crossover occurs due to the natural diurnal cycle of ambient temperatures.  Solar loading 

causes objects to heat up during the day and objects in the scene retain different amounts of solar 

radiation.  After sunset, the air temperature drops, and the objects cool off while emitting their 

solar loaded energy.  Eventually, all objects are at similar temperatures and the scene has low 

contrast.  Thermal crossover is considered a “worst case” for pilotage systems that must use this 

contrast for terrain-following night flights.  For Vollmerhausen’s development of the TTP metric 

for pilotage performance involved a study [6], where backgrounds were segmented for two cases 

(boxes of interest): the horizon and below the horizon.  In the study, the standard deviation of the 

pixel values in the box were compared for the MWIR and LWIR spectral bands.  Thermal 

crossover was prevalent mainly for scenes that included the horizon.  The table below shows the 

results in terms of the LWIR to MWIR ratio of the standard deviation measurements. 

Table 1. Vollmerhausen and Bui Results from [6]. 

Image at Horizon 1 3 5 7 9 11 13 15 16 18 

LWIR/MWIR Ratio 2.5 2.6 3.5 2.4 5.3 2.8 1.8 2.3 2.0 3.5 

Image Below Horizon 2 4 6 8 10 12 14 17 19 20 

LWIR/MWIR Ratio 1.0 0.8 1.1 0.9 1.1 0.9 1.1 1.7 1.1 1.2 
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Images below the horizon tended to provide nearly equal contrast regardless of where the images 

were acquired.  These results did not agree with the results from [8], but the bands were quite 

different.  A larger factor is that Vollmerhausen and Bui compared the contrasts in equivalent 

blackbody temperatures and the Kyoto study compared contrast in radiance. A description of the 

comparison between equivalent blackbody temperature, radiance, and conversion to 

photons/second is provided later in this section.   

While the US Army used tree-to-ground contrast as the metric for providing useful imagery [6], 

the horizon is also another important aspect of pilotage that is critical to the pilotage functions.  

Note that the LWIR horizon contrast is typically much higher than in MWIR, but the main 

contributor to this large contrast is the path radiance of the sky (which is always much higher in 

equivalent blackbody temperature in the MWIR).  In fact, sometimes, the LWIR sky-to-ground 

contrast is a problem in pilotage in that it used a large portion of the scene dynamic range, making 

it hard to see the smaller contrast features in a scene.  In some pilotage systems, dynamic range 

compression techniques are used to reduce the sky-to-ground contrast in the presented imagery by 

stretching out the contrast on the ground and compressing the contrast in the sky. 

There is some work verifying the importance of SCT. At RDECOM CERDEC Night Vision and 

Electronic Sensors Directorate [11], researchers conducted human perception experiments to 

verify different metrics associated with SCT. The goal of the experiment was to compare images 

with different SCT and measure the perceived image quality. Experimenters adjusted the gain and 

offset level of different image sets, and mapped target contrast and TTP, two metrics which are 

shown to directly correlate with SCT, against perceived image quality. The data show that 

perceived image quality rises as target contrast and TTP are increased, and quickly falls off as 

features in the scene begin to saturate. As SCT rises, target contrast falls and TTP rises.  
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Chapter 3 Theoretical Calculations 

 

 

3.1 Contrast Calculations 

For a single scene containing a variety of features (trees, rocks, buildings, roads, etc.). Each of 

these objects are constantly emitting radiation in the infrared and absorbing sunlight during the 

daytime. These factors cause the temperature and therefore the radiometric output of each of these 

objects to vary throughout the day with sunlight and lack thereof. The temperature/emission of an 

object peaks in the middle of the day after an extended period of solar loading and is at its lowest 

at dawn. This varies from object to object and scene to scene due to differential absorptivities, 

emissivities, and solar irradiances.  

The actual emitted signal is due to a combination of actual temperature of the objects in the scene 

as described by Planck’s law, as well as the object emissivities. Higher temperature objects emit 

more photons, and higher emissivity objects emit more photons. Equivalent blackbody temperature 

describes the radiance coming from an object as equated to the radiance provided by a blackbody 

(with emissivity of 1) at an equivalent blackbody temperature. The equivalent blackbody 

temperature accounts for both the actual temperature and the emissivity of the object. Note that 

emissivity has a spectral component and can change between MWIR and LWIR. 

The three ways SCT can be described are equivalent blackbody temperature (as it is reported in 

this study), watts (W), and photons per second (p/s).  Typical equivalent blackbody temperatures 

for the average background and a typical differential temperature of 1K is given in table 3.1. This 

differential temperature is converted into differential watts as well as differential photons per 

second. While this differential temperature could be referring to the target contrast or the scene 

contrast, the calculated radiometric differences are consistent.  
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Table 3.1: Comparison of radiometric units and contrast calculations 

Parameter LWIR MWIR 

Spectral Band 8 – 12 μm 3 - 5 μm 

Typical Background Temperature 300K 300K 

Typical Differential Temperature 1K (300-301K) 1K (300-301K) 

Typical Sensor NETD 40mK 40mK 

Background Emittance W/cm2 1.202E-2 W/cm2  6.21E-4 W/cm2  

Differential W/cm2 1.96E-4W/cm2  2.67E-5 W/cm2 

Background Emittance p/s-cm2 4.90E17 p/s-cm2 1.13E16 p/s-cm2 

Differential p/s-cm2 9.85E15 p/s-cm2 5.11E14 p/s-cm2 

 

For terrestrial scenes, the typical background in equivalent blackbody temperature is 300K for both 

MWIR and LWIR.  A typical contrast temperature is 1K in both MWIR and LWIR.  These 

quantities are useful when using a camera with a noise equivalent temperature difference (NETD) 

as given in the table (e.g., 40mK), so that a quick signal-to-noise (SNR) ratio is just the target 

contrast divided by the NETD, which for table 2 is SNR=25. 

The equivalent blackbody temperatures are converted to a “watt” based radiometry using Planck’s 

law.  These quantities are useful when working with power detectors or detectors that are specified 

with detectivity.  The typical contrast values in table 2 are converted to source emittance given in 

W/cm2.  The LWIR target contrast rides on a large background temperature power pedestal where 

contrast between objects is only a few percent of the overall power received from the average 

background signal. This means that the sensor must have deep wells and detect temperature 

differences based on small relative differences. LWIR has 8.6 times the target contrast in 

radiometric power than the MWIR for the same SCT. 
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For those working with photon counting detectors and cameras, the equivalent blackbody 

temperatures for the backgrounds and targets/objects can be converted to photon radiometry in 

emittance.  Table 3.1 notes the pedestal of the background as well as the target contrasts in the 

MWIR versus LWIR in p/s-cm2.  MWIR detectors usually have a smaller capacitor well for 

collection photo electrons due to the smaller background and contrast.  In this case, the number of 

photons collected in the LWIR is 19.3 times the photons collected in the MWIR.  The reason for 

the larger ratio is that photons in MWIR have more energy than photons in LWIR. 

 

Figure 3.1: Planck’s curve for emittance from a 300K equivalent blackbody in W/cm2 and p/s-

cm2. 

 

Planck's curve for a 300K equivalent blackbody background is shown in Figure 3.1.  For a given 

constant SCT near terrestrial temperatures, the contrast power in watts is just under 10X MWIR 

versus LWIR.  And, in photons per second, the ratio is just under 20X MWIR versus LWIR.  This 

is the reason that MWIR sensors for the same camera design (FOV, detector size, optics, etc.) 

require a detector integration time of between 10X and 20X longer than LWIR to achieve the same 

SNR. This limits MWIR in applications that need short integration times in low light scenarios. 
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3.2 Pilotage Performance 

This section shows the calculation of the performance of two sample staring array pilotage 

systems: a LWIR system and a MWIR system. The performance of these systems is calculated as 

a function of SCT. The specifications of these systems would be optimized for its particular 

application in practice, but this study does not discuss such optimizations. The imagers are set to 

be at a 40-degree FOV for a typical focal plane and have low noise. Table 3.2 outlines these 

specifications. 

Table 3.2: Sample pilotage system specifications 

Parameter LWIR System MWIR System 

Spectral Band 8 – 12 μm 3 – 5 μm 

F/# Varied Varied 

Focal Length 2.11 cm 2.11 cm 

Pixel Pitch 12 μm 12 μm 

Frame rate 60 Hz 60 Hz 

NETD 20 mK 20 mK 

 

SCT affects the noise parameters of the image as shown in Eq. 5. As scene contrast becomes 

closer to zero, noise in the sensor becomes more visible in the image and TTP drops. TTP is 

calculated in a pilotage context (target contrast = 1), using NVIPM for the MWIR and LWIR 

sensor at F/1 and F/2. 
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Figure 3.2: LWIR/MWIR TTP vs SCT in a pilotage context (Ctgt=1) for different F-numbers. 

 

Note the logarithmic scale on the x-axis of Figure 3.2. Above a threshold temperature, TTP does 

not increase with SCT. Below the threshold temperature, image quality suffers due to noise and 

TTP drops drastically. SCT is most important in this context when it is very low. A half-degree 

change in SCT when SCT is near zero can be the difference between good and bad pilotage. 

The diffraction blur for a F/2 MWIR system and a F/1 LWIR system is the same, resulting in the 

same TTP curve for these two systems. If system designers could design faster optics for a 

MWIR staring array, MWIR would perform better due to decreased diffraction blur as compared 

to LWIR. It should also be noted that a MWIR system would be required to integrate for much 

longer than a LWIR system to have a usable signal. There are various other practical limitations 
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to different system specs that are unique to either band, but this study does not discuss these 

limitations. 

MWIR and LWIR performance are very similar in this calculation; when NETD and blur are 

equalized, both bands perform similarly. Figure 3.3 shows the performance of the given (F/1) 

LWIR pilotage sensor as a function of SCT for different NETD values.  

 

Figure 3.3: LWIR pilotage sensor TTP vs SCT for various NETD values. 

In noisier (higher NETD) sensors, the point at which the TTP curve asymptotes is at higher SCT 

values. This is because the increased noise is large enough compared to the dynamic range at 

these SCT values to be visible. The noise of less noisy sensors remains small enough compared 

to lower SCT values to be invisible. At a high enough SCT, neither increased SCT nor decreased 

NETD increase the final TTP value. This stresses the importance of SCT and NETD in low SCT 

scenarios, but these factors do not matter to TTP past a certain threshold of SCT.  
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Chapter 4 Experimental Description 

 

 

4.1 Goal 

The goal of this experiment is to measure the intrinsic scene contrast of scenes in both MWIR 

and LWIR. These scenes are limited to the ground and do not include the sky. Scenes are varied 

in time (daytime vs nighttime), contents (urban vs rural), and weather (dry vs humid vs rainy). 

The dynamic range of our imagers is set to capture all levels of radiance coming from a scene, 

and this information can be used to calculate 𝜎𝑇. 𝜎𝑇 accurately reflects intrinsic scene contrast 

and indicates SCT in both bands for each of the measured scenarios. For each scenario, the ratio 

of MWIR 𝜎𝑇 to LWIR 𝜎𝑇  is calculated either as a function of time or as an average of all scenes. 

Equation 8 describes the calculation of this figure of merit (FOM). 

𝐹𝑂𝑀 =  
𝑀𝑊𝐼𝑅  𝜎𝑇

𝐿𝑊𝐼𝑅  𝜎𝑇

[8] 

When this figure of merit is above 1, 𝜎𝑇 is greater in MWIR, and when it is below 1, 𝜎𝑇 is 

greater in LWIR.  

 

4.2 Sensors 

Two cameras were used to obtain MWIR and LWIR data: a Telops SPARK M150 MWIR camera 

and a FLIR T1020 LWIR camera.  The camera specifications are provided in Table 3.  The cameras 

were converted to radiometers by using a large area blackbody calibration source.  To compare 

scene contrast between MWIR and LWIR, imagery was gathered in multiple scenes from the same 

perspective in both bands. The output of both cameras was set to be linear with temperature. 
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Table 4.1: System Information 

 FLIR T1020 Telops SPARK M150 

Band 8-12 μm (LWIR) 3-5 μm (MWIR) 

Format 1024x768 640x512 

Pitch 17 μm 15 μm 

FOV 34° x 24° 26° x 21° 

IFOV 0.58 mrad 0.71 mrad 

NETD <20 mK @ 30°C <20 mK @ 25°C 

F/# f/1.2 f/2.3 

 

 

4.3 Calibration 

Images were taken by the FLIR T1020 and Telops SPARK M150 mounted adjacently on the same 

tripod to minimize parallax. The FOVs were aligned such that both imagers were centered on the 

same scene. Auto-exposure and auto gain were disabled, and the dynamic range was set between 

the absolute maximum and minimum equivalent blackbody temperatures contained in the scene.  

Before taking scene imagery, the two sensors were calibrated such that they both had the same 

baseline for equivalent blackbody temperature. Two programmable blackbodies (model BB6 from 

True Colors Infrared Imaging) were positioned such that they were both in the FOV of the MWIR 

and LWIR cameras and were set to temperatures near the highest and lowest equivalent blackbody 

temperatures contained in the scene.  
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Each possible gray level in both LWIR and MWIR images were plotted along their respective 

equivalent blackbody temperatures.  The relationship provided in Figure 4.1 was considered the 

System Intensity Transfer Function (SITF).   

 

Figure 4.1: Linear relationship of equivalent blackbody temperature to gray level. 

 

Data from the measured scenes were exported into python in .jpeg (8-bit) format, and areas-of-

interest were chosen such that the content of the LWIR scenes match the content of the MWIR 

scenes.  

Each area-of-interest is converted into a list of pixel values, and the SITF is applied to the pixel 

values such that they are converted into equivalent blackbody temperatures, resulting in a list of 

equivalent blackbody temperatures. These lists are used to calculate the 𝜎𝑇 of each scene. Figure 

4.2 shows the two resulting histograms of the conversion of a scene into a list of equivalent 

blackbody temperatures. These histograms illustrate that there are slight differences between the 
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different bands in each scene statistically, and these slight differences are what drive the difference 

in 𝜎𝑇 and ultimately SCT. 

 

Figure 4.2: Resulting histograms from analysis of a single scene comparison between LWIR 

(left) and MWIR (right) 

 

4.4 Conditions 

 

To investigate the effects of daytime, a diurnal experiment was conducted where the FLIR 

T1020 and TEL-7958 acquired images every five minutes for 24 hours. This experiment 

occurred on a clear day, with the blackbodies in the FOV of the imager for each image taken.  

The data collection took place in Tucson, Arizona where the climate was high desert in the 

month of May.  

Data was collected in both rural and urban scenes to get a wide variety of content. Rural scene 

included dry vegetation and rock formations, while urban data included a wide variety of man-

made structures and objects. For each rural and urban scene, nighttime and daytime imagery was 

collected for both the LWIR and MWIR. Data was also collected on a cloudy day so that it could 

be compared to data collected on a clear day. 
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Data was collected in a humid environment in Orlando, Florida in the month of November 

(~60% humidity). Again, the content of the scenes was separated into urban and rural content. 

Rural scenes, however, contain more foliage and plant life in a humid swampy environment in 

Florida. 

Lastly, data was collected during and after a long period of rainfall in Tucson, Arizona in 

December. There are a variety of weather conditions during this period (heavy rain, light rain, 

cloudy, partly cloudy, sunny). 

 

4.5 Sources of Error 

There are several imperfections in this study which cause error. This section discusses the extent 

of these errors. Due to the nature of the calculation being done, small errors in the image or in the 

method of calculation become insignificant after taking the standard deviation of the image, and 

averaging trends over multiple images. 

Matching the content between the LWIR and MWIR scene by choosing a similar areas-of-interest 

is the largest source of error in this study, as there is parallax between the two images, as well as 

differences in FOV. For a set of sample images, attempting to choose the same areas-of-interest 

over multiple trials created an average of a 1% error in 𝜎𝑇. Great care is taken with each image to 

minimize this error such that it does not affect the overall trend of the data. 

The paint used on the blackbodies used has a typical emissivity of above 0.98, therefore an 

emissivity of 1 is used and the maximum error associated with this imperfect emissivity is 

calculated. The error in the equivalent blackbody temperature of the temperature of the blackbody 

source is at maximum (for an emissivity of 0.98) 0.44% of the absolute temperature in LWIR and 

0.185% of the absolute temperature in MWIR. The error in the temperature of the blackbodies 
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propagates to a 𝜎𝑇 error in each data set. For a scene with 𝜎𝑇 = 3, the maximum error in 𝜎𝑇 is 0.8% 

in LWIR and 0.34% in MWIR. 

Another small source of error is the quantization of radiance levels; radiance is measured by both 

sensors and converted to gray levels as read by the computer. 8-bit imagery (256 gray levels) 

provides enough dynamic range such that error is insignificant. The statistical trends are well 

sampled using this dynamic range. 

Fixed pattern noise differences between the two cameras create a small amount of error. Noise in 

both cameras is captured by imaging a uniform source at a very low SCT. 

 

Figure 4.3: Noise depiction (MWIR left, LWIR right) 

 

Fixed pattern noise can be calculated by averaging many frames and taking the standard 

deviation of the average frame. This fixed pattern noise is 54 mK in the MWIR sensor and 83 

mK in the LWIR sensor. The noise is too small to make a significant change in the statistical 

distribution of measured radiance throughout a scene. 

When calculating 𝜎𝑇, increased magnitude of the variations in radiance within the dynamic range 

would increase 𝜎𝑇 but would not ultimately affect SCT. It is important to consider this change in 

radiometric output relative to the total dynamic range in both bands. Since radiometric output is 

not linear with temperature, the change in signal between two objects in a scene relative to the 
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whole dynamic range is not linear over all temperatures. Figure 4.4 depicts the relationship 

between relative contrast within a dynamic range. 

 

Figure 4.4: Percentage of dynamic range vs contrast temperature, SCT=10K. 

For a scene with a normal SCT of 10K, the percentage of dynamic range occupied by a contrast 

between two objects is linear in both LWIR and MWIR over all contrast temperatures possible in 

the scene. At much higher temperatures, this linearity does not continue. Figure 4.5 depicts the 

same relationship at a much higher SCT of 50K. 
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Figure 4.5: Percentage of dynamic range vs contrast temperature, SCT=50K. 

When calculating 𝜎𝑇 for typical terrestrial scenes where SCT does not vary this much, this non-

linearity may be ignored and 𝜎𝑇 is still a good indicator of SCT.  
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Chapter 5 Experimental Results 

 

5.1 Diurnal 

The SCT and 𝜎𝑇 change with ambient temperature, sun angle, time, and the attempt of all objects 

in the scene to achieve thermal equilibrium. The sun irradiance and the sun angle have a large 

effect on both LWIR and MWIR scene contrast due to objects differentially heating up with 

different amounts of solar illumination and differences in absorptivity. The result of large 

variations in SCT due to absorbed sunlight is sometimes called solar loading.  In addition to solar 

loading, a significant amount of contrast in the MWIR is due to solar reflections with differential 

reflectivities and differential amounts of solar illumination reaching different objects.  In the 

LWIR, almost all radiance seen during the day is due to the emitted light.  In the MWIR, the 

radiance seen during the day includes reflected solar illumination which can be a significant 

contribution to the overall SCT.  Reference [12] shows for a sandy surface, the MWIR solar 

reflections can be 20% to 30% of the SCT signature. 

To provide a measure of the diurnal effects, the FLIR T1020 and TEL-7958 were set up to take an 

image of the same scene every 5 minutes for 24 hours.   Samples of the diurnal scenes are shown 

in Figure 5.1.  The top images are in MWIR, and the bottom images are in LWIR.  The left side 

images were taken at daytime, and on the right side were images taken at nighttime. Boxes show 

the areas that were used in the image analyses.  The camera positions were static, and the areas 

taken in the MWIR and LWIR corresponded to the same scene area. 
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Figure 5.1: Sample diurnal imagery (MWIR top, LWIR bottom; daytime left, nighttime right), 

boxes show area analyzed. 

 

Figure 11 shows the 𝜎𝑇 for MWIR and LWIR over a period of 24 hours for the scenes shown in 

Figure 5.1.  The diurnal cycle started and ended at 3:20pm.  The orange plot corresponds to the 

MWIR 𝜎𝑇 and the dashed blue dots correspond to the LWIR  𝜎𝑇.  The data was taken from April 

8 – April 9 in Tucson, Arizona and the conditions were sunny, clear sky and dry. The maximum 

temperature on April 8 was 29 C and the maximum temperature on April 9 was 31 C. The humidity 

ranged between 9% and 32%.  
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Figure 5.2: MWIR vs LWIR scene contrast over a 24-hour diurnal cycle. 

 

During this nighttime, LWIR 𝜎𝑇 is always higher than MWIR 𝜎𝑇 , where the ratio of MWIR 𝜎𝑇 to 

LWIR 𝜎𝑇 is roughly 2/3rds through the night.  The other aspect of night 𝜎𝑇 is that for both MWIR 

and LWIR it seems to decrease as the heat of the objects bleeds off towards ambient as the night 

continues.  The lowest 𝜎𝑇  appears just before dawn. During the daytime when the sun is shining, 

increased radiance variability in the MWIR due to solar reflections increases 𝜎𝑇 in MWIR but not 

MWIR. During a brief period of clouds, 𝜎𝑇 equalizes for MWIR and LWIR. Figure 5.3 depicts the 

ratio of MWIR 𝜎𝑇 to LWIR 𝜎𝑇 as a function of time. 
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Figure 5.3: Diurnal FOM (Eq. 8) as function of time. 

 

The FOM indicates that there is a consistently large advantage in LWIR 𝜎𝑇 at nighttime, whereas 

MWIR 𝜎𝑇 has an advantage at daytime only when shadows/clouds aren’t present. 

 

5.2 Rural 

Sample images of scenes from the rural data collection are shown in Figure 5.4. The upper images 

are MWIR, and the lower images are LWIR. On the left side are images taken at daytime, and on 

the right side are images taken at nighttime. Boxes are drawn to illustrate the FOV of the LWIR 

used in analysis to provide the same scene content as the MWIR sensor. 

 



51 

 

 

 

Figure 5.4: Sample rural imagery (MWIR top, LWIR bottom; daytime left, nighttime right), 

boxes indicate area analyzed. 

 

30 sets of four images are analyzed in rural conditions. The images include both MWIR and LWIR 

imagery as well as day and night conditions.  The 𝜎𝑇 of the scene in the MWIR is plotted against 

the 𝜎𝑇  in the LWIR for each MWIR/LWIR pair is plotted and shown in Figure 5.5. The diagonal 

line provides a plot location where the MWIR and LWIR signatures are equivalent.  The data 

points above the line corresponded to greater LWIR contrast and data points below this line 

corresponded to greater MWIR contrast. 
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Figure 5.5: Rural scene 𝜎𝑇 distribution for daytime and nighttime 

 

The data show greater 𝜎𝑇 in MWIR at daytime and greater 𝜎𝑇 in LWIR at nighttime. The figure 

of merit (Eq. 8) is averaged over all nighttime scenes and averaged over all daytime scenes and 

reported in Table 5.1.  

Table 5.1: FOM (Eq. 8) results for rural scenes. 

 Daytime Nighttime 

FOM 1.224 0.729 

 

 

5.3 Urban 

Sample images of the urban scenes are shown in Figure 5.6. The upper images are MWIR, and the 

lower images are LWIR. The left side are images taken at daytime and the right side are images 

taken at nighttime. Boxes are drawn to illustrate the FOV of the images used in analysis and 

correspond to the same regions of the image in both the MWIR and LWIR.  The scenes collected 
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include manmade park features, buildings, roads, windows, lamp poles, etc.  All urban scenes are 

outside; no inside imagery is used. 

 

 

Figure 5.6: Sample urban imagery (MWIR top, LWIR bottom; daytime left, nighttime right), 

boxes indicate area analyzed. 

 

The day and night results are plotted in Figure 5.7 for both MWIR and LWIR.  The diagonal 

reference is also included in the plot.  There was also an opportunity to obtain daytime results 

with heavy cloud overcast one day and urban data was obtained for overcast cloud conditions.   
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Figure 5.7: Urban scene 𝜎𝑇 distribution for daytime, nighttime, and daytime with clouds 

 

Again, the data show greater 𝜎𝑇 in MWIR at daytime and greater 𝜎𝑇 in LWIR at nighttime. 

During a cloudy daytime, 𝜎𝑇 is more equal between the two bands but there is still a slight 

advantage in MWIR due to sunlight coming through the clouds. The distribution is more 

irregular than rural scenes because of the variation in content between different urban scenes. 

The figure of merit (Eq. 8) is averaged over all nighttime scenes and averaged over all daytime 

scenes and reported in Table 5.2. 

Table 5.2: FOM (Eq. 8) results for urban scenes. 

 Daytime Cloudy Daytime Nighttime 

FOM 1.296 1.138 0.743 
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5.4 Humid Environment 

Data is taken in both humid rural scenes and humid urban scenes. To do this, the sensors were 

taken to Orlando, FL during a sunny, humid week in November. Sample images of the scenes 

used are shown in Figure 5.8. The upper images are MWIR, and the lower images are LWIR. 

Urban scenes are shown on the left and rural scenes are shown on the right.  

 

Figure 5.8: Sample humid urban imagery (MWIR left, LWIR right). 

 

The humid MWIR/LWIR results are plotted in Figure 5.9. Rural results are plotted on the left 

and urban results are plotted on the right. For both plots, the diagonal reference is also included.  
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Figure 5.9: Humid rural scene 𝜎𝑇 distribution 

 

The data show greater 𝜎𝑇 in MWIR in rural scenes and slightly greater 𝜎𝑇 in MWIR in urban 

scenes. The figure of merit (Eq. 8) is averaged over all rural scenes and averaged over all urban 

scenes and reported in Table 5.3. 

Table 5.3: FOM (Eq. 8) results for humid scenes. 

 Urban Rural 

FOM 1.235 2.006 

 

5.5 Precipitation 

Data is taken during a long period of rainfall, and for a long period thereafter in which the 

conditions return to normal. The scene used is the same one used for the diurnal data. Figure 5.10 

shows 𝜎𝑇 as a function of time during a full day of rainfall. 
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Figure 5.10: LWIR vs MWIR 𝜎𝑇 during rainfall. 

 

Figure 5.10 shows that 𝜎𝑇  is extremely low during rainfall, as rain cools off all objects in the 

scene to roughly the same temperature, resulting in largely uniform radiance from the scene. 

Interestingly, at nighttime after the rainfall stops, a spike in LWIR 𝜎𝑇 is seen. This implies that 

as objects dry off, contrast increases in the LWIR faster than in the MWIR. Figure 5.11 shows 𝜎𝑇 

return to normal over a few days after this long period of rain. Figure 5.10 shows a “zoomed-in” 

view of 22-Dec, the first day shown in Figure 5.11. 
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Figure 5.11: LWIR vs MWIR 𝜎𝑇 over time during and after rainfall. 

 

The first day after rainfall shows some slight 𝜎𝑇 recovery, but it remains hampered due to clouds 

and intermittent showers. During the second and subsequent days after rainfall, solar loading 

occurs during a large portion of the day and 𝜎𝑇 returns to the normal cycle. The figure of merit 

(Eq. 8) is calculated as a function of time for the period of 22-Dec to 26-Dec in Figure 5.12. 
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Figure 5.12: FOM (Eq. 8) as function of time during and after rainfall. 

 

The FOM shows much greater peak advantages in MWIR during a sunny day than during the 

diurnal test, this advantage bleeds off as time moves on. Great spikes in the FOM are seen at the 

beginning of each daytime, and this is due to a spike in solar reflection which has not heated the 

objects in the scene sufficiently yet. As solar loading takes place, this spike in MWIR advantage 

slowly decreases until the following night.  
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Chapter 6 Discussion 

 

 

Time of day, climate, environment, temperature, conditions, and spectral band all play a large role 

in both MWIR and LWIR 𝜎𝑇 and SCT.  Time of day and year influence the amount of solar 

radiation striking the objects in the scene.  This radiation differentially heats up objects with 

different emissivities, reflectivities, and thermal masses resulting in different 𝜎𝑇 and SCTs.  

Reflectivity and emissivity are a function of wavelength and therefore also vary between MWIR 

and LWIR.  

The diurnal data showed that the band which has a higher SCT is dependent on daytime.  Day 𝜎𝑇 

were higher in the MWIR and night 𝜎𝑇 were higher in the LWIR.  The ratio of MWIR/LWIR night 

𝜎𝑇 was about 0.6 for the entire night.  The night 𝜎𝑇 ranged from 1K to 2K in the MWIR and from 

1.7K to 3K in the LWIR.  In both MWIR and LWIR cases, 𝜎𝑇 reduced as the night progressed and 

was lowest just before dawn. During the daytime, 𝜎𝑇 became greater in MWIR due to solar 

reflections increasing the amount of photons coming from the scene. The ratio of MWIR/LWIR 

day 𝜎𝑇 ranged from 1.2-1.4 for most of the day but dipped down to around equal during periods 

of clouds or shadows. 

For all of the individual scene measurements in different conditions, Table 6.1 provides the ratio 

of MWIR 𝜎𝑇 to LWIR 𝜎𝑇 . N/A indicates that no data was taken in these conditions, but data taken 

in other conditions can be used to indicate the trend toward a condition with no data. 

Table 6.1: Average FOM (Eq. 8) calculations for each set of individual scene data 

 Daytime Nighttime Cloudy Daytime 

Rural 1.224 0.729 N/A 

Urban 1.296 0.743 1.138 

Humid Rural 2.006 N/A N/A 

Humid Urban 1.235 N/A N/A 
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Data from rural scenes also indicate a clear difference between MWIR and LWIR 𝜎𝑇 at different 

times of day. In almost all daytime images analyzed, MWIR has a higher scene contrast than LWIR 

due to the additional solar reflections in the MWIR that contributed to the SCT and 𝜎𝑇.   The ratio 

in MWIR/LWIR during the day averaged over all scenes is 1.224.  The day 𝜎𝑇 ranged from 2K to 

6.5K in the MWIR and 1K to 6.5K in the LWIR. The night 𝜎𝑇 was significantly lower than day 

𝜎𝑇. At night, the LWIR 𝜎𝑇 was almost always larger than the MWIR 𝜎𝑇; the average ratio was 

0.729. The night 𝜎𝑇 ranged from 0.4K to 1.5K in the MWIR and 0.6K to 2K in the LWIR.   

In the urban environment, there were many man-made materials and structures that had even more 

emissivity and reflectivity variations than rural scene objects.  The data was spread more in the 

urban environment than the rural data, as expected.  However, the overall trends were the same; 

there is no significant jump in the average figure of merit from rural to urban at daytime or 

nighttime.  Day 𝜎𝑇 favored the MWIR slightly and night 𝜎𝑇 favored the LWIR.  The night MWIR 

𝜎𝑇 was generally slightly lower than LWIR 𝜎𝑇 by roughly the same ratio seen in the urban 

environment.  The day 𝜎𝑇 ranges were about the same as the urban 𝜎𝑇 and the night 𝜎𝑇 were higher 

than rural day 𝜎𝑇 One reason for this was the hot objects associated with buildings and 

infrastructure as well as windows that reflected the cold sky.   One interesting note was that when 

the day measurements were made with cloud cover, the LWIR and MWIR 𝜎𝑇 were much closer, 

suggesting that the reflectivities that allowed the cold sky to contribute were then reflecting clouds 

that were at the same equivalent blackbody temperatures in the MWIR and LWIR.  The cloud-

covered day 𝜎𝑇 were not as cold as the night, but not as high as sunny day 𝜎𝑇. 

In a humid environment, there was a change in both the atmosphere and the type of foliage that is 

native to the area. There were much more green trees and vegetation in the data collection point in 

Orlando, FL than in Tucson, AZ. The ratio of MWIR to LWIR 𝜎𝑇 is roughly the same in a humid 
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urban environment as it is in a dry urban environment. This is because the content of the scene is 

essentially the same since there is no significant amount of green foliage as compared to the dry 

urban scenes. To study the effects of a humid atmosphere on 𝜎𝑇 and SCT, this study should be 

repeated over longer ranges such that the atmosphere has a more significant effect on measured 

radiance. The ratio of MWIR to LWIR 𝜎𝑇 is much higher in a rural humid environment than a dry 

humid environment. It is possible that this is due to spectral reflectivity/emissivity properties of 

the foliage materials being more varied in the MWIR. The data collected, however, is not enough 

to provide concrete conclusions and this study should be repeated over multiple days to verify any 

findings. 

During heavy amounts of precipitation, 𝜎𝑇 was reduced in both MWIR and LWIR. Rainwater 

cooled everything in the scene to about the same temperature, meaning all radiance variation was 

due to variations in emissivity. 𝜎𝑇 was far lower in both bands, however during the daytime there 

was some diffuse sunlight which was reflected in MWIR but not LWIR. The ratio of MWIR to 

LWIR 𝜎𝑇 during rain/daytime starts between 1 and 1.5 and moves below 1 as the rain continues 

and the day fades. Interestingly, when the rain stops at nighttime, a spike is seen in LWIR 𝜎𝑇 but 

not MWIR 𝜎𝑇. During the days after rainfall, the cycle eventually returned to normal with greater 

𝜎𝑇 in MWIR at day and greater 𝜎𝑇 in LWIR at night. This data indicates possible trends in emissive 

band SCT during rainfall, but more data should be collected before any concrete conclusions are 

drawn.  

For pilotage and scene-based navigation at night, the LWIR has more contrast, so LWIR would 

generally be preferred.  Depending on the type of detector used, the LWIR provides roughly 15 

times the power scene contrast of the MWIR and the LWIR provides roughly 30 times the photon 

counting contrast of the MWIR. However, depending on the type of sensor used and its noise 
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properties, this difference in SCT between MWIR and LWIR at night may be inconsequential for 

pilotage performance. For a sensor with a high NETD, TTP drops off at a much higher SCT than 

a sensor with a low NETD. Figure 6.1 illustrates this point using the precipitation data (this data 

has the widest range of 𝜎𝑇), TTP is calculated as a function of SCT (SCT is assumed to be equal 

to 3𝜎𝑇 for the purposes of these calculations) for a low NETD MWIR sensor and a low NETD 

LWIR sensor. Figure 6.2 shows the same data on a shortened y-axis scale. 

 

Figure 6.1: Low NETD Pilotage Sensor TTP vs time over multiple days (using precipitation 

data) for LWIR/MWIR 

Even at extremely low SCT due to precipitation, the performance of a low-NETD sensor is not 

affected in a pilotage application. Figure 6.2 depicts the performance of a medium NETD sensor 

in the same conditions. 
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Figure 6.2 : Medium NETD Pilotage Sensor TTP vs time over multiple days (using precipitation 

data) for LWIR/MWIR 

For a medium NETD sensor, pilotage performance is hindered during times of low SCT, but still 

has usable performance. Figure 6.3 depicts the performance of a high NETD sensor in the same 

conditions. 

 

Figure 6.3: High NETD Pilotage Sensor TTP vs time over multiple days (using precipitation 

data) for LWIR/MWIR 
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For the high NETD sensor, performance of a pilotage system is hindered by a lot during times of 

extreme low SCT (precipitation). Additionally, there is some degradation during a normal 

nighttime with this large amount of noise. If SCT does become a factor during nighttime or periods 

of low SCT, LWIR is preferred over MWIR due to increased SCT at night. The performance of 

the LWIR sensor in this chart is nearly always better than the performance of the MWIR sensor 

due to the increased SCT during periods of low SCT. 

The data and analysis results show that the scene clutter is much lower during the night, so search 

and detection with hot vehicles and humans at night is much easier than the same task during the 

day in both the MWIR and LWIR bands.  Also, at night, clutter is smaller in the MWIR so 

searching for vehicles or humans at night would be easier in the MWIR, especially in the rural 

environment. During the day, clutter is smaller in the LWIR so searching for vehicles or humans 

would be easier with a LWIR sensor. 

In future work, SCT should further be studied in rainy and humid conditions, especially at longer 

ranges. Additionally, most of the time an imager is not looking only at objects on the ground; there 

is some amount of cold sky contained in an image for many applications. Ground contrast should 

also be studied when using dynamic range compression techniques for cold sky and it should be 

determined whether the colder sky in LWIR leads to decreased ground contrast.  
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Chapter 7 Conclusions 

 

 

The data and analysis presented suggest that MWIR has higher 𝜎𝑇 and SCT than LWIR in the 

daytime with sunny conditions.  They are about the same in cloud covered conditions.  At night, 

MWIR has less 𝜎𝑇 and SCT than LWIR by a rough factor of 2/3rds. Humidity in the atmosphere 

does not have a significant effect on SCT, but changes in foliage due to humidity may boost MWIR 

SCT. Rain significantly degrades SCT in both emissive bands; SCT is near equal between bands 

during rain at daytime. 

For pilotage and scene-based navigation in environments with low scene contrast, especially for 

sensors with high noise, slight improvements in scene contrast matter more than ever, meaning 

LWIR may be a safer choice.  While the night differences in SCT are not significant (roughly 

2/3rds), there may be other reasons to consider MWIR systems especially if the noise in the sensors 

used is low. 

For a targeting system, apparent target contrast is greater in LWIR at daytime and greater in MWIR 

at nighttime. Benefits from increased target contrast may not outweigh other benefits ascribed to 

choosing a specific band, but these conclusions are worth keeping in mind when designing EO/IR 

systems. 
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