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ABSTRACT

The significance of signal-dependent noise is discussed in
~ general. Particular emphasis is placed on the specific type of
multiplicative noise which is present in the density variations in
a photographic emulsion,

A theoretical treatment of the effect of multiplicative noise
on signal detection and signal discrimination problems is presented.
It is found that for the detection of a known signal in the presence
of multiplicative Gaussian noise, the optimum processing of a sampled

message is obtained by generating the test statistic given by

2 i o)

Where the known signal is described by the N values {ui}, the sampled
message is described by {Si}’ and u, is the background level when no
signal is present. When the multiplicative noise is described by
Poisson statistics, the optimum test statistic is found to be

N

A=ZI s, . loge(ui/uo)'

j=1 *

When discriminating between two signals,'{sli} and'{szi}, the optimum

test statistics become

=
i

't =2
7
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for multiplicative, Gaussian statistics and

A= E S, . Loge(uli/uéi)
for Poisson statistics.

An investigation of the limitations of these theoretical models
is presented. ‘Two-dimensional signal fields in the presence of multi-
plicative noise are simulated in a computer and processed for optimum
signal detection according to the two dgrived methods. These results
are compared to the results of processing according to the assumption
ofistationary noise statistics. This comparison reveals that modest
improvements (20-30%) in the detection rate are obtained when the
signal-dependent nature of the noise statistics are considered. The
effects of signal-to-noise ratio, signal structure, and changing
background level are also investigated.

An example of optimum signal discrimination using circles
and squares as signals in multiplicative noise is reported. An improve-
ment in the percentage of correctly identified signals is again observed
when the proper test statistic is used.

A coherent optical processing moﬁel that can be used to con-
ceptualize the spectral characteristics of a message containing noise

described by any arbitrary form of signal dependence is proposed.

Finally, two examples of signal filtering in the presence of

signal-dependent noise are included. The first concerns the processing



of a real star field to determine the location of weak stars. The
second is an illustration of the signal information contained in the

noise spectrum of a message recorded on a common photographic f£ilm.

¢ -



CHAPTER 1
INTRODUCTION

The aim of sbience, in at least one sense, is the understanding
of the nature of the real world based on simplified, artificial models.
The laws and relationships that evolve from these idealized models
are approximations. For most real world processes, the simplexr models
must be altered slightly or supplemented as the precision of the measure-
ments on the process is improved. Frequently, there is a trade-off
between the utility of these simplified models and the accuracy of more
complex ones.

While this philosophical picture is, itself, an elementary
model of the nature of science, it is a useful one for appreciating the
significance of research on signal-dependent noise. Consider the
results of a measurement on some physical system. Define these results
as a message that contains some signal, which is of interest, and some
noise, which is not. (This approach is more fully explained in Chapter
2.) When incorporating this message into some mddel, the easiest |
approach is to ignore the presence of the noise altogether. While this
approximation can be justified for most messages there are, of course,
many processes that require an accounting of the noise. The next level

of complexity is to assume that noise is an independent factor and can



be added to the model accordingly. Again, considering the simplicity
of the approximation, this assumption is remarkably satisfactory in
explaining most cases involving noise.

As expected, however, there are still many physical processes
for which the concept of independent noise is inadequate. In most
cases, one must decide whether the benefits of a more accurate model can
justify the additional complication of letting the noise depend in some
way on the signal., In practice, only a few isolated problems have been
treated using noise that is signal dependent.l"4

The motivation for the study presented here stems from a real
problem in which it was decided that the independent noise assumption
was inadequate. The problem involved the detection of faint star
" images recorded on a photographic plate. It was soon discovered that
very little information is available concerning the practical problems
involved in applying the principles of detection theory to two dimen-
sional signals recorded on photographic fiim. Furthermore, the
existing techniques for optimum signal detection are based on signals
recorded in the presence of additive, signal-independent, stationary
noise. Unfortunately, the noise statistics for photographic film do
not obey this model. For these reasons, a study ﬁas begun with the
three-fold intent of :; (1) developing a better understanding of the
significance of signal-dependent noise, (2) deriving statistical tests

for the optimum detection of signals recorded on photographic film, and

(3) exploring the practical limitations of these tests.



One of the difficulties in working with signal-dependent noise
is the lack of appropriate mathematical tools. A result of this is
that solutions tend to be highly specialized. Parameters, such as the
type of noise distribution, the nature of the signal, and the type of
message processing desired, all affect the validity and usefulness of
the solution. Consequently, a decision was made to study the general
tools and techniques appropriate to an entire class of problems, rather
than to concentrate on a specific system to obtain results which are of
little or no value in a slightly different applicaticn. This approach
could best be realized by simulating two-dimensional signal detection
problems on a computer. Using this method, it was possible to answer
the relevant questions without introducing additional, extraneous param-
" eters.

A typical problem to which the tools developed in this study
might be applied is that of data storage on photographic film. Tech-
niques for recording signals on film and retrieving the unprocessed
message by sampling the resulting film density are well known. The
performance of a system of this type is usually limited by one's ability
to rétrieve the original signal from the sampled, noisy message.
Assuming that the noise statistics of the recordiﬁg medium are known,
questions which must be answered to determine the performance of any
proposed system include the following. (1) What is the optimum test
statistic to be used in determining the presence of a signal (code

symbol})? (2) What is the effect of the signal structure and size on



its detectability? (4) What is thé significance of a change in the
noise statistics? (5) What is the loss in assuming additive, signal-
independent noise statistics? And, (6) What is the effect of adding a
constant background level to the film? These are among the questions

this study is attempting to answer.



CHAPTER 2

SOME PROPERTIES OF SIGNAL-DEPENDENT NOISE

The purpose of this chapter is not to present a comprehensive
study of multiplicative noise but simply to review a few of the con-
cepts and definitions which will be helpful in following the later

theoretical developments in this report.

Signal-Independent Noise Versus Signal-Dependent Noise

Definition of Noise

In general, noise is only defined in the context of an experiment.
Consider, for example, a recording of density variations as a function
of location on a grainy photographic emulsion. If the desired measure-
ment is an estimate of the mean background density, then the graininess
is a source of noise. If one is studying the properties of film granu-
larity, however, then the variations in the mean background level become
the noise source.

To avoid this ambiguity, it is necessary to exercise some
care in making a generalized definition of noise. If one begins by
hypothesizing the existence of a signal--even though its functional
form may be unknown--then the noise can be defined as that which alters
the measurement of the hypothesized signal. Thus, for a simple one

dimensional message function, s{x), and a hypothetical signal, u(x},



it is always possible to write
s(x) = u(x} + n(x)

where n(x) is the noise.

Although n(x) is typically a raﬁdom process, it is also possible
to haﬁe n(x) deterministic. In either case, the distribution of values
of n(x) can be described by some joint probability density function,
pn(ﬁ), where n = (n(x;), n(x ),—-n(xN) ) is a complete set of N sample
readings of n(x). In the case of a deterministic n(x), pn(ﬁ§ is simply
a multidimensional delta function. It should also be noted that pnfﬁj

may depend in some way on the presence of the signal s(x).

. Signal Independent Noise

The preceding definition of noise may seem awkward. This, of
course, is due to its generality. Fortunately, there are several simpli-
fying conditions that can frequently be applied to this model.

A fundamental assumption which will be used throughout this

study is that of independent noise samples. This condition states that

none of the sampled noise values, n(xi), depend on the values of any
other samples, {n(xj)}. This condition permits the joint probability
density function for n(x) to be written as the product of the probability
density functions of the individual noise samples, for example,

N
Pn(n) =i£1. Pni (n(xi))-



The physical origins of this condition will be discussed at
greater length in the section on Spectral Characteristics in this
chapter.

A second major assumption is that of stationarity. A random

process is said to be stationary if the statistics of the process
are unaffected by a translation of the origin; In the case of n(x),
which is assumed to consist of independent samples, stationarity
simply means that

pni(n(xi)) = phj(n(xj)) all i, j.

Therefore, the joint probability distribution can be written as

MORN NChIN

where N is the number of sample points of n(x).

Ergodicity is another fundamental assumption which is of parti-
cular importance in the measurement, or estimation, of distribution
functions. If a function is ergodic its statistics can be determined
from a single, infinitely long, sample whereas averages over an ensemble
of samples are normally required. Although this property is infre-
quently required in this study it will be assumed true for all station-
ary processes unless otherwise stated.

The conditions of stationarity and ergodicity of a noise source

are extremely powerful and are usually assumed to be true.



An additional property of noise is that of signal dependence.

If the noise statistics are unaffected by the presence (or absence)
of the signal then the noise is said to be signal independent. This
property is necessary, but not sufficient, to permit the simplifi-

cations made for stationary and ergodic processes.

Signal Dependent Noise .
The issue of signal dependence is the crux of this study. Al-
though the rewards gained in terms of a simpler noise model are good
incentives for making the signal independent noise assumption, it is
not unreasonable to expect that any system limited by noise originating
at the signal source will have some signal dependence in the noise. The
seriousness of this approximation depends not only on the nature of the
dependence but on the use to which the model will be applied. Forx
example, most phototubes have relative constant noise properties over
low or moderate light levels, while for very high light levels, the de-
tector noise increases with increased light. Fortunately, this is of
justifiably little concern since at these high light levels the noise
characteristics can usually be ignored. For other detectors such as
photomultipliers and photographic emulsion this problem is not so
easily dismissed.
The treatment of signal dependent noise is very difficult since

it is neither stationary nor ergodic. In the general case, one knows

only that

s(x) = u(x) + n(x)



and that
n = n(x,s(x))

There are, of course, many possible functional forms of

nx,sx)) . For example, a common type of dependence is
n(x) = [uE)]? . n'(x) u(x)> 0

where p is some real number and n'({x) is a noise process which does

not depend on u(x). A noise process of this form is frequently referred
to as multiplicative noise. For the remainder of this report, however,
the term multiplicative noise will refer specifically to the case where
p = %. That is, a signal will be said to be in the presence of multi-

plicative noise if the measured message, s(x), can be expressed as
3
s(x) =ux) + [ulx)]® . nx)

where n(x) is now a stationary, signal independent random process. The
motivation for concentrating on this particular relationship will be
discussed further in the section Physical Origins in this chapter.

Two important, frequently used properties of this type of
multiplicative noise are (1) the mean, or expected value, of s(x) is

given by

E {s(x)} = ux) + [u(x)]% .. E{n(x))}

and (2) the variance, cfz, is given by
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2 =

vhere k is a proportionality constant determined by the noise souwrce.
The term '"additive noise'" will be used here as shorthand for
stationary, signal independent no;se. The use of the descriptors
additive and multiplicative can be misleading but they are commonly
used in practice and will be retained here. To help appreciate the
qualitative difference between additive and multiplicative noise, Fig.
1 shows a gaussian signal in the presence of the two different noise
types. In (A) the variance of the noise is constant for all x whereas
in (B) the variance increases as u(x) increases. In both cases, the

mean value of the noise is zero.

SIGNAL

u(x)
' X
"ADDITIVE" NOISE "MULTIPLICATIVE" NOISE

w N\ (®)

s{x) s(x)
X

f(x) = s(x) + n(x) £{x) = s(x) + [s(x

T

' X

. n(X)

Fig. 1. Comparison of Additive and Multiplicative Noise.
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Probability Distributions

Common Single-Variable Distributions

So far, the form of the probability density function P, has
been left arbitrary. Although there are an infinite number of possible
distributions, only a few are commonly used in practice. The three
distributions which will be used in this study are among the most common.s’6
They are the Gaussian (or normal), the Poisson, and the log normal dis-
t}ibutions. |

The Gaussian distribution is the most common. For a signal
given by s(x) = u(x) + n(x) the signal is said to obey Gaussian statis-

tics at the point X, if

1
V270 2

p(slx) ) = oxp [~} (s(x,) - ulx;) )2/02]
It should be noted that for the processes being considered in this study,
it will be necessary to restrict this distribution to positive values
of s(xo). The significance of this fundamental limitation is disgussed
in Chapter 5, Conclusions.

The Poisson distribution is given by

s (x,)
s ) oy Contey ) a2y
o
where o is an arbitrary proportionality constant. This distribution

frequently occurs in many natural processes and is particularly important

in photomultiplier and photographic film noise.
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The third distribution of interest in this study is the log

normal distribution. This is given by
p, (s(x,)) = explpg(s(x,))]

where pG(s(xo)) is a Gaussian distribution. Detailed studies of these
statistical forms are available in many texts. .

Fig. 2 shows a comparison of these three functions along
with plots of typical messages (s{(x) = u, + n(x) ) with statistics
determined by each of the three distributions.

It is of interest to note that in the limit as u, > o
all three distributions become identical.

It should also be pointed out that the poisson and log normal
distribution are inherently non-stationary. Only in the Gaussian
case is it possible to write a distribution function for the noise
contribution which does not change as u(x) changes. In particular,
the noise variance, ¢?, is a function of us for the Poisson and log

normal distributions.

Multi-Variable Distributions

When dealing with signal detectién problems, one must know not
only the distribution of noise values at a single point, but also the
joint probability density function for the entire signal array. If
the signal consists of k discrete points labeled 51’ Sy =" Spo

(s1 = s(xl), s, = s(xz), etc.)}, and if the noise values at each of



(s - S
R ) GAUSSIAN ’
{
l
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» .
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Fig. 2. Compé.rison of Gaussian, Poisson and Log Normal Noise Distributions.

(A) Compares probability distributions for variable with mean and standard deviation
given by u . (B) illustrates typical message samples.
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these points are statistically independent, then it is possible to
express the joint probability density function pg(}l, S, === sk)
as the ?roduct of the individual functions Ps.(si)'

In the case of a stationary process, the Gaussian distribution

for a k dimensional signal becomes simply

e ko3 ,
p; () = _H] {55z exp [-% (s; - u;)%/0?]}
i=
1 k/2 -1k )
= (2~m2)k exp [ 26Z.2 (s; = ;7]
i=

In the case of a signal in the presence of noise which is signal
dependent, the Gaussian model becomes
k

- 1 1 k
P-5) =N (5ip)¥. exp [Z
i=1 i i=

A (s;-u;)2/0.2]

1
Similarly, the Poisson distribution becomes

py (8) =1 e %% [au; 151
=1 si!

1

These expressions will be used to derive optimum signal detection

techniques in Chapter 3.

Spectral Characteristics

White Noise
The frequency spectrum is an important tool in the study of

signal processing. The spectral analysis of deterministic signals is
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extremely fﬁndamental and is presented in many elementary textbooks.
When noise (statistical uncertainty) is present, it is of interest to
examine the power spectral density. Qualitatively, this is a measure
of the noise power density per unit frequency interval. For a real
stationary random process s(x), the power spectral density PS(fJ is

given by
. (-]

- ~-j2rfx
Ps(f) = Rss(x)e dx

-

 where Rss(x) is the ensemble autocorrelation function, i.e.,

R s (x) E{s(x')s(x' + x)}

u

Sxs(xt + D P (5D, sGxt X))

- d(s(x'))d(s(x' * x))

The term "white noise'" can now be defined as any noise process
which has a constant PS(f) for all £ of interest. Or, a process for
which the autocorrelation function is effectively a delta function.

It should be noted that the power spectral density function Ps(f) also

contains the signal power spectrum as an ind., :nt additive function.

Effects of Signal Depéndent Noise
The preceding expressions were based on the assumption that the
autocorrelation function is independent of shifts in the x origin.

The autocorrelation is still easily defined for a nonstationary (signal
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dependent) random process as

R (x)5 X,) = E{s (x;).5(x,))

Unfortunately, the simple picture of the power spectral density being
the Fourier transform of Rss is now lost. This problem will be further

touched on in the section "Simple Filtering' in Chapter 3.

Physical Origins

’

Probability Theory
If the probability that an event occurs on any given trial is
p, then the probability, pn(k), that the event occurs k times in n

trials is given by

K n-k
GIPa

nil k n-k
"kKnky) P4 q

p, (k)

1-p

The Poisson Theorem states that if

n>>1 and p<<1
then pn(k) can be approximated by

-np k
Py (k) = _e.____ig_?ﬂL

This is the well-known Poisson distribution and has the properties

E{k} = np
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and
var {k} = 02 = np

If in addition to the above restrictions, we also have

np >> 1, the DeMoivre-Laplace Theorem.may be used to give

P (k) = exp[-3%(k-np)2/npq]

vY2npq

This is a Gaussian distribution with the properties
E{k} = np

and

var {k} = npq = np .

It is significant that this Gaussian distribution is simply a
special case a Poisson process and that both distributions are possible

models for the same physical process.

Photomultiplier Tube

A familiar example of the many applications of these theorems
is the photomultiplier tube. If a PM tube has an integrating time
constant v, then the éurrent is proportional to the number of electrons,
k, which arrive during the interval t. By subdividing t into many
intervals At, each interval becomes an event, and the probability of an

electron arrival during that interval is p = aAt where a is the average



number received per unit time. The number of events, n, is given by
t/At. By making At sufficiently small, the two constraints, n >> 1
and p << 1 can be satisfied. Thus, the probability of measuring a

photomultiplier tube current of i at some sample time is

-0T i
P (i) = e -!C‘.‘.T!
T il
If at >> 1 the distxribution becomes Gaussian.
The mean and variance for both distributions is i= Gi2==aT .

Clearly, the noise statistics for this process are a function

of the signal level.

Photographic Film

The noise characteristics of a signal recorded on a photo-
graphic emulsion are exceedingly complex. However, it is possible
to make remarkably good predictions of some simple properties through
the use of a very elementary model. If the density measured in a
sample area, A, on an emulsion can be assumed proportional to the
number of exposed grains in A, then the problem becomes analagous to
the photomultiplier tube example. If E is the average number of
developed grains per unit area (proportiénal to exposure)} then the

distribution of density values can be expressed by

b (D) = e-EA(EA)D
A D!
As the exposure (or sample area)is increased, the quantity EA

increases and the distribution becomes gaussian with D = EA = UDZ .

18
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Since the recorded signal, u(x), is proportional to E _it is possible
to approximate the variance of the recorded message as oDZ(x) =k u(x).
This property will be used extensively in Chapter 3.

A review of the many studies of photographic film noise tends
to suggest that no single simple model will ever give good results
under all <:c>ndi't:ions.7'-’8 Although the above model is admittedly crude,
the results have been found to give feasonably good agreement with
most empirical measurements. In any case, it is a far better model

than assuming the grain noise statistics to be entirely independent of

the signal density as is frequently done.



CHAPTER 3
PROCESSING METHODS

For signals in the presenée of multiplicative noise, as well
as for stationary processes, there are many types of processing that are
of interest. 1In this chapter, theoretical developments for three
different processing problems are given. They are 1) filter theory,
2) signal detection, and 3) signal discrimination. It is assumed
that the reader already has some familiarity with these subjectsﬁ; Al-
though the majority of this report is concerned only with these three
subjects, it should not be concluded that these are the only cases where
the presence of non-stationary noise is of potential concern. This
chapter is limited to these subjects only because it is felt that a

contribution to the existing literature can be made in these areas.

Signal Detection

Statement of the Problem

Consider the following typical signal detection problem. An
encoded message is stgred as a one-dimensional (for simplicity) array
on a photographic emulsion. The code is binary with a "1'" being in-
dicated by the presence of a signal pulse u'(x). A typical form for
u' (x) would be a rectangle--band limited by the recording optics and the

photographic medium. A "O" is indicated by the absence of a signal

20
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pulse., The signals are recorded only at intervals of X, where X is
slightly larger than the width of the pulse. A typical message segment

is shown in Fig. 3.

ASCX)
{ | 0 0 ! o
. A weny
DD_JV\WW\M [ )
X X
" 1 1 T T T ¥ > = 'Y- >
) Xo 1Xe 3Xe Y4Xa SXo 6Xa /s /2

Fig. 3. Typical Binary Message Segment.

The pulse, u'(x) can only occur at centers

given by nx . s(x) is always > O.

Note that the message, s(x), contains noise, n(x), and a back-
ground density, us in addition to the signal pulses, s(x-nxo). The
background density can be incorporated either into the noise or into
the signal. Unfortunately, either choice can lead to some notational
difficulties. To minimize these problems, the following definition

will be used

u(x) £ u'(x) + u

Both u(x) and u'(x) will be used throughout the remainder of this

discussion.
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What is now desired for this problem is a detection scheme.
For computational convenience, assume that s(x) has been sampled at a
rate such that the noise samples are independent but no signal aliasing
has occurred. Suppose the signal,'{si}, consists of a set of N samples

(sl, Sy v - .sN) for each interval nx_* xo/2. We now wish to process

o
these N values in each interval in a way that permits the fewest wrong

decisions as to whether the intended symbol was a "O" or a "1",

General Solution b
To find an optimum solution to this problem, we would like to

compare

P (Hl1{si}) Prob [u'(x-nxo) occurred | given that'{si} was received]

to

P (H‘o'l{'si})

Prob [u'(x-nxo) did not occur | given that {si} was

received]

In general, it is not possible to write simple, analytic expres-
sions for these probabilities. However, with the aid of Bayes' Theorem,
the expressions can be rearranged into something easier to handle.
Bayes' Theorem gives the relationship between two conditional probabil-

ities as

P(A|B) P(B) = P(B|A) P(A)
Using this relationship, the desired probabilities become

P
P, |{s; D) = %{%ﬁ P({s;}H))
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and

| P(H)) .
p(Hol{si}) = ?TTEITT . P (s;} | H)

To eliminate the unknown probability P[{si}), evaluate the
ratio of P(Hll{si}) and P(Ho]{si}). This gives no loss of information
since the desired decision will be based on which of the two situations

was most likely to have occurred.

pcul!{si}) _ P - P({si}lHlj

PH (s, 1) PO P({s;1[H))

Note that P(qu and P(HO) are apriori probabilities and are

constant for any given system. Thus,

P [{s;1) _ P(s;}[H)

P(Ho|{si}) P({si}|H0)

= A(nxo)

-

The quantity A(nxo) can, in principle, be evaluated for any
hypothetical signal location. The higher the value of A(nxo), the more
likely it is that a signal (pulse) occurred at nx,. The choice of a
threshold value of A(nxo) for making a decision is a problem in decision

theory which is discussed in Chapter 4.

Solutions for Three Different Noise Distributions
The evaluation of A(nxo) depends on the prcbability distribution

of the noise. If, for example, one makes the common assumption that
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the noise is stationary, independent and aussian, the needed probabil-

ities become

PUs;HH) = (5 W2 exp [k (5,-1;)2/0 21 . (as)"
‘0

i

(I B

1

and

it ™=

P({si}|Hb) = ( 5;%—2-)N/2 exp [-% (si—uojzlcoz] . (Asi)N
)

Solving for the ratio of these probabilities, one obtains

A(nx ) = exp {5———

or

[ R

N
= ‘ut -
log [Anxp)] = 557 B 5% -5z

(u.2- u 2)
1 o 1 * °

1

Note that the only term in this expression which depends on the
measured message values is_gl siui. The second term is a bias term
which is constant for a.gi;;n u(x) and a constant background.

The bias term has the effect of normalizing the measurement
to remove the signal energy as a variable. This is important in decision
theory and in applications where more than one type of signal is present,
but in this simple example it is of little significance.

The significance of this result is that if the measured message

s(x) is convloved with the known signal shape and evaluated at x = nx,

the value obtained is proportional to the pfobability that u'(x - nxo)
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was actually presént. This development can be recognized as a
derivation of the matched filter}I)It should be remembered, however,
that this result--as well as the use of the matched filter--is only an
optimum process when the noise is stationary and independent.

Consider the case where the distribution of message values, 54
is determined by Poisson statistics. The conditional probabilities

are now
N e'““i[aui]si
P({s.}|H) =1 57T
i=1 i
. N e auo[uuo]si
P({Si}lﬂo) =1 s, 1
i=1 i

. where a is a normalizing constant given by o = uo/oo2 . With the

Poisson distribution the mean and variance are equal. This makes

normalization by o necessary since few real process variables have
this property.

The ratio of these probabilities, A(nxo), is

A(nx) =‘H1-e-a(ui-uo)[ui/uo]si
i=

or

N
- 1
s; - log(ui/uo) L ou}

log[A(nx )] =
i=1 i=1

1

[ B4

Comparing this result to that obtained for stationary noise it

is seen that both contain a bias term and a processing signal which is
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convolved with s(x) and evaluated at x = nx . The fundamental difference
between the two noise cases is in the structure of the processing signal.
The significance of these differences in structure has been investi-
gated experimentally and is discussed in Chapter 4.

Finally, consider the case where the noise is Gaussian distri-
buted but has a variance which is proportional to the signal level,

u(x). That is,

.2 = ku.
i i

The proportionality constant can be determined from a knowledge of the

variance 002 of the background in the presence of the signal.

2 - - g 2
o ku or, Kk % /uo

The ratio of probabilities for a Gaussian process with a signal

dependent variance is given by

N
A(nx,) =i£1 (o,/05) - exp {-% [(si-uijzlci? - (si-uo)z/coz]}

Using the above expression foroi, one obtains .

N u
Anxg) =1, [uy/u;Ts . exp {"5532 [s;2C f 1) 4 u,(uy-u )]}

or,

N N u! u N

= - 1 2¢.3y _ _O '
log A(nxo) = %_E log (ui/uo) + 53;2 E s (ui) EEZE- ouy

i=1 i=1 i=1
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Here again are bias terms and a convolution term. This time,
however, the processing signal is not convolved with the message
directly but with siz.

Shown below is a comparison of optimum signal detection tech-

niques for the three different noise distributions.

Stationary Multiplicative
Quantity Gaussian Poisson Gaussian
Message used ‘ : ' 5
in processing {si} {si} {si}
Processing 1l 1 .
signal aoi {u;} {1°g(ui/uo)} 26,2 {u,/u.}
1 uo 1
Bias terms TR ECuiz-uoz) Zo(u,-u ) rlog(u,/u) + 5——piu,
o .

Decision Theory

Test statistics for three different noise distributions have
been developed. These tests, when applied to a received message, yield
values which are proportional to the probability that one of the signals
was present at the message point in question. The problem of taking
these statistical values and selecting a threshold for making the best
decision as to whether or not the signal was there has not been dis-
cussed. Although this study is primarily concerned only with detection
processing, a few of the principles of decision theory are presented
here as an aid in understanding the processing methods.

Fig. 4 illustrates the schematic relationship between decision

theory and detection theory in the monitoring of some arbitrary system.



SYSTEM MONITOR

DETECTION
MESSAGE

STATE u(x) > AND
s(x) = u(x) + n(x) PROCESSING

l'J\(x)

H=0 DECISION
RESPONSE (H) { e

H=1 | A0S A,

COST c(u,H) <

Fig. 4. Schematic Diagram of Decision Theory Model.

In the system shown, only two possible states are considered.
Either u(x) is present (hypothesis H = 1) or it is not (hypothesis
H=0). Information about the system is detected by the monitoring
unit and processed in some optimum manner to provide the statistic,
A(x). The value of A at any point x is a measure of the probability
that the correct hypothesis is either H = O or H = 1. Depending on
the value of the threshold, Ac, one of the two Hypotheses is accepted
and an appropriate response is made.

In this simple two state system, four different situations
are possible., They are (1) u(x) occurs and decision'H = 1 is made
(cdrrect decision), (2) u(x) occurs and decision H = 0 is made (miss),
(3) u(x) does not occur and decision H = 1 is made (false alarm), and

(4) u(x) does not occur and decision H

O is made (correct decision).
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A relative cost to the system, C(u,H) is assigned to each of four
possible situations. The parameter u is either 1 or O depending on
whether u(x) did or did not occur.

It is now possible to find an optimum value for the threshold
A . It is desired to select Ac so that the expected value of the

Cc

cost of the system is a minimum. The expected cost is given by

B{C[uls)} = C(0,0) . Prob (u=0, H=0) + C(0,1) . Prob (u=0, H=1)

+ C(1,0). Prob (u=1, H=0) + C(1,1) Prob (u=1, H=1) .

It is possible to find a minimum for this expression by using

relationships similar to sc(x)

Prob (u=0, H=0) = P, J . p(sc(x)/u=0) d(s(x))

- 0

where P, is the a priori probability that u(x) will not occur and
sc(x) is some decision boundary in the multidimensional space spanned
by the message s(x)(Seeé Chaptexr III of Ref.'9}. Following this approach

ona finds that the minimum cost is given by

p(si/u=1) p, c(o,1) - c(0,0)
p(s_/u=0) ~ I-p, ° TW,0) - c@,D

n
e

Thus, Ac is an optimum decision threshold for the test statistic,
A(x), based on the a priori signal occurrance probability and the rela-

tive costs of the four possible decision situations.
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Detection Plots

In evaluating the performance of a system such as shown in
Fig. 4, it'should be noted that only two parameters are required to
characterize the four possible decision situations. The most commonly

chosen parameters are the detection probability given by

B = J p(s (x)/u=1}ds (x)

Sc

and the false alarm probability given by

oo

a = J p (s (x)/u=0)ds (x)

T

o 0.5 I.o

Fig. 5. Typical Detection Curve.

: " Plot p(H=1/u=1) versus p(H=0/u=0) as a function of Ac. Curve
B is better performance than A. )
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The effectiveness af the monitoring system éan‘be-&isplayed
by plotting detection and false alarm probabilities as a function
of the decisiqn threshold,_Ac. Shown in Fig. 5 is a typical plot of
type used in this study. Eéch curve is the locus-of points obtained
as A, is changed. Note that as the probability of detection is in-
creased by decreasing the threshold from Acl to Aczrthe probability
of a correct decision when no signal is present (1 - &) decreases,
The performance indicated by curve B is better than that of curve A.
This may be due to a better processing method or it may simply repre-
sen? the same receiver operating at a higher signal-to-noise ratio.
. The dotted straight line represents the worst case where decisions

are made purely on the basis of chance.

Signal Discrimination

General Solution

In theory, the problem of signal discrimination is exactly 1like
the detection problem.. Conceptually, the two situations may be quite
different. While signal detection decides whether a knowmn signal is
présent at a particular location or not, signalldiscrimination decide§
wﬁich of two (or more)known signals is present. Signal detection may
be thought of as-the special case of signal discriminatéon where one
of the two possible signals is the null signal.

Following the development pattern in the preceding section,

consider the following two probabilities.

P(Hll{éi}) = Prob[u;(i}nio) occured/given that'{si} was received]
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and
. | ] . .
P(Halfsi}) = Prob [uz(x-nxo) occurred |given that {si} was received]

where !
]
ul(x) = u;l(x) - u

and

n

ué(x) ﬁz(x) - u,

are the two possible signals occurring at locations given by nx, .

The ratio of these probabilities is formed and found to be

P(H_ |{s.}) P({s.}|H)
—2 1. A2 )
P(H,[{s;D P({s;}[H,)

Again, A(nxo) is a test statistic which depends on the noise
distribution and can be calculated fof a received message'{si}. In
actually making the decision as to which of the signals was present,
decision theory is used to establish some optimum threshold value for

A{nxo).

Solutions for Three Different Noise Distributions

Solutions for A(nxo) are obtained in the same manner as for the
signal detection case. Thus, without repeatiﬁg the expressions'given
for the deieption case, the results for the same three noise distribu-

tions are as follows.:
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(i) Stationary noise

N

Ax ) = exb{5512,21 [(si-uli)z-(si-uzi)zl}
0 i=

or,

N
1 |
loglAlnxy)] = G2 2 55 (uy5-up;) = ——

(ii) Poisson noise

N
_ ~a{u,.-u,.) S
A(nxo) = E e 11 "2i [uli/uZi] i

i=1

or
N

N .
log[A(non] =i=1 Si'log[uli/uZi] - aiil (pli-uZi)

—
=

0
u_ uiJ

(iii) Multiplicative Gaussian noise (oiz
o

S2i0.% Y%
1 G517 explgg= [(s;-up3)%/uy;-(5;-uy,)%/uy; 1)

N
A(nxo) = I 3
1i

i=

or,

N u
_ o
log[A(nx ) = %iil log(sy3/5,5) * 5332

osi? Gt )
i=1 2i 1i
) u, N

—_— ¥ (u .=u _)
2
) 200 i=1 1i 2i

Shown below is a comparison of these results.according to their

use in a discrimination problem,
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Stationary Multiplicative
'Quantity Gaussian Poisson Gaussian
Message used
in processing (Si) (si) (5{5
Processing 1. . u 1 1
~signal =2 {ug -usl {log(uli/uZi)} o2l T TR
o o] 2i 1i
. 1
Bias Terms 52 2(u§i—u§i) @l (uy;-u,;) %Elog(sli/SZi)
o
: u
‘ .Y,
7,2 Fly57a)

The results in this and the preceding section were applied to
a range of signal detection and discrimination problems. This work

and 'its significance arc discussed in Chapter 4.

Filter Theory

Optical Filtering Analogy
The analogy between electrical and optical systems has been

11,12 The use of coherent light,

studied extensively in recent years.
made practical by the discovery of the laser, has provided motivation
for much of the exchange between electrical and optical theories. This
analogy has proven to be of mutual benefit to both sciences. In partic-
ular, the exploitation of coherent optical processing was greatly
facilitated by the existence of the appropriate analytic tools in
electrical systems analysis. Similarly, the ability to observe and

manipulate such things in optics as frequency and power spectra has

provided insight to the study of classical filter theory.
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The elecprical-optical analogy can be best appreciated by
referring to Fig. 6. ﬁig. 6 illustrates a typical coherent optical
image forminglsystem.

Briefly, if the field to the right of plane P, is given by
u+(x,,y,) = u; (x;5¥;) - ty(x;,y;) then the optical equivalents
to the system in Fig. 3-A are éiven by:

Electrical Optical
Complex input signal u1(t) Complex field uI (xl,yl)
Complex output signal uz(t) Complex field uS(xs,yS)
Filter frequency spectrum H(w)

Exit pupil transmission H2(x2’y2)

Signal power spectrum Pss(m) Observed intensity Iz(xz,yzj

ORE R

~ System impulse response h(t) Point spread function us(xs,ys)

for point source at ul(0,0)

Noise Analogy

The optical system shown in Fig. 6 is usually applielonly to
ccherent incident fields. When incoherent light is used, the system
is generally reformulated so that intensity ([u(x,y)]zJ becomes the
linear variable. 1In tﬁe context of the coherent system, however, in-
coherent light.takes.on a different significance. It plays the role
of additive, uncorrelated noise.

Assuming this to.be true, it is then possible to express any

message as the sum of a signal and a noise.texm as defined in Chapter 2
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(A)

ut)
) u, () TRES
/ 1 hw
t
Y 3
. (B)
. - Y, LI : e 29 Y
54.0"'5') % Xa T ’ X
| thu‘j.) H'x.(x‘:‘jl) uatx3l.j$)
— £ ___3k;——-F —— f -—%ﬁﬁr—--F-—€>

P, F. Fa

Fig. 6. Comparison of Optical and Electrical Systems.

(A) Passive system characterized by impulse response, h(t). ul(t)

and u,(t) are the input and output signals (B) Optical equivalent
to A.%u;(xy, y1) is incident complex field and tj(x3, y1), Ho(x1, ¥2)

are amplitude transmittion functions.



by

+ + +
ul(xl’yl) = ucoh(xlayl) + uinc(xl’yl)

As discussed in Chapter 2, it is possible to have noise which is not

. - + . .
everywhere uncorrelated. This means that uinc(x ) is, in fact,

1271
paftially coherent. While partially correlated ﬁoise is not an un-
reasonable physical assumption {all real noise sources as well as
real field disturbances have some small correlation length), this
report will continue to be restricted to the case of independent noise
samples.

| It is also possible to have noise (u;n;) which depends on the
signal (uZoh)' Note that uI is given by uI = u1 . tl. Thus if the
signal is defined as some feature in the amplitude screen, tl’ then
u;nc’ which has also passed throughlthe screen, will be modulated by
t; and given noise statistics which are dependent on the signal. If,
on the other hand, the signal information is contained in u;oh(xl’yl)

and tl(xl,ylj is a clear aperture (or, perhaps, a field stop) then

the noise, u;nc’ will not be influenced by the presence of the signal

u+
coh’

The field in plane P, is described by the Fourier transform
of the field in plane P,- Thus, the intensity distribution, Iz(xz,yz)

|u2(x2,y2)l2 is proportional to the power spectral demsity, P . .
) 11

37
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Physically, Py contains the‘power spectrum from u:oh(xl’yl) plus
contributions from u;nc(il,yll. If u;nc(xl,yl) is stationary, the
simple relationships discussed in the section "Spectral Characteristics"
in Chapter 2 apply. If u;nc(xl,yl) is effectively uncorrelated, then
the intensity distribution Iz(xz,yz) is uniform and the noise is de=
scribed as ''white".

It is, however, in the éase where the noise is not stationary
that this model is of greatest benefit. Although the intensity (Puu)
in the P, plane is uniform for Us e uncorfelated, there may still be
some information in the amplitude distribution uz(xz,yz) {frequency

spectrum) before it is squared. If u;nc(xl,yl) is considered to be

the product of an uncorrelated uniform intensity field, |u;nc

(x;,y )12,
and an aperture with transmission given by tltxl.yl) then the problem
can be solved by the application of optical partial coherence theory.
For the conditions given in this problem the Zernike-Van Cittert
Theorem states that the field in the P, plane from uInc(xl,yl) will

be partially coherent and that the coherence function will be pro-
*2 Y2
portional to T(+— , —
Ag Ag
obtained by irradiating the aperture tl with coherent light.

)}, which is the Fourier transform of tl(xl,yl)

If, for example, the noise is signal dependent (the signal in-

formation is contained in the aperture tl(xl,ylj and uz consists of

u
coh

coh

+ u;nc’ then it is'possible to filter out the signal spectrum from
u and yet still extract information about the signal due to the
partial coherence of the noise spectrum in the P, plane. Partial

coherence theory also states that this information can be cbserved in

the P, plane through the proper choice of filtexs in the P, plane.



Thus, for a signal in the presence of signal dependent noise, more
information about the input signal can potentially be extracted

from the filtered signal than if the noise were signal independent.

Multiplicative Noise Model
As this report is concerned almost exclusively with the type
of noise generated by a Poisson process, it is of interest to deter-
mine what the equivalent optical system for such a process would be.
In the Gaussian approximation to the Poisson process, it is
clear that the noise can be considered as a stationary noise source
modulated by the square root of the signal. That is, in terms of

the notation used for a general message,
s(x) = u(x) + n(x)

where n(x) = (u(x))% . n'(x) and n'(x) is a stationary noise distribu-
tion. Under these conditions, both the mean and variance of s({x)
are proportional to u(x).

This process can be simulated by the system shown in Fig. 3 if

() = @G))*

fl

u;nc(xl) n' (x)

and

-

- 1
tl (xl) "' (U.(X))-ﬁ
Under these conditions, the incident message is then given by

. - -
uy () = (upgy +ouynl) txg)



uf(x)) = ulxy) + @07 L nt )

This system is now a possible model for a Poisson process with mean

value and variance equal to u({x).

40



CHAPTER 4
EXPERIMENTAL RESULTS

All of the experiments performed in this.study have certain
features in common. They are concerned with some form of noisy signal
array. The array is sampled and the data are then processed by
several different methods. Conclusions are then drawn by comparing
the results of these different processing methods.

The majority of the experiments deal with the problem of
signal detection. Part of this emphasis is because it appears that this
is the area of greatest promise for the application of the signal
dependent noise model and parf is because many of the results can be

applied directly to other processing problems.

Experimental Methods

Computer Simulation

The greatest potential appli;ation of this work is probably
in the proéessing of signals stored on a photographic emulsion. It
would seem reasonable, therefore, to perform the experimental work
on photographic emulsions. Unfortunately, there are some complicating
factors that make such a plan impractical. These factors stem from
the nature of the noise in photographic emulsions. As discussed in
Chapter 2; Physical Origins of Noise Distributioné;'the'simple multi-
plicative noise model is; at best; an approximation. Most of the

41
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questions about the signal dependent noise processing methods in-
volve questions of degree of improvement. As this degree is
typicaily small it was felt that the large uncertainties introduced
by statistical variations in a photographic emulsion could not be
tolerated. For example, differences between the stationary Gaussian
and the multiplicative Gaussian models might be observed but it is
doubtful that a distinction could be made between the multiplicative
Gaussian and the multiplicative Poisson distributions. As photo-
graphic film is not the only possible medium for application of these
theories, it was decided that thesec more subtle distinctions should
be measured and that the complicating factor of noise distributions
in a photographic emulsion could better be left as the subject of a
separate study.

The best alternative medium that would permit the study of
small differences in the processing methods was the computer. Through
the use of the computer one could guarantee the nature of the noise
distribution, the independence of the noise samples, the signal dis-
tribution, and an accurate knowledge of all other parameters used in
any given experiment. Furthermore, the use of the computer for
simulating data fields proved to be many times faster than recording a
field on £ilm and sampling with a densitometer. The latter method was
successfully attempted, however. The results were processed by the
computer and, except for the difficulties mentioned above, such a tech-
nique proved entirely feasible.

The'cdmputer used throughout this study was Control Data Corpor-

ation's model CDC 6400,
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SIMULAT Program

A program was writtén in Fortran (extended version) to
accomplish the task of taking a given signal shape, bandlimiting
it, sampling it, reproducing an-array of these signals on a back-
ground and adding noise according to some desired distribution. The
program had to be altered frequently to accommodate the requirements
of a particular experiment, such as in the simulation of circularly
symmetric, non-separable sigﬁals, but the basic outline of the SIMULAT
program remained unchanged.

A flow chart showing the essential features of SIMULAT is
shéwn in Fig. 7. A copy of the actual program (used for producing
bandlimited square signals in the presence of Gaussian multiplicative
noise) is included as Appendix I.

There are several potential difficulties in simulating a
signal field. First, all data are sampled. This is necessary regard-
less of whether the field is an actual densitometer trace of a photo-
graphic f£film or the output of a computer program because the processing
methods have all been designed to be implemented on a digital computer.

Sampling the final field, however, raises other problems,

The signals must be bandlimited or potentially valuable information
might be lost during the sampling process. Furthermore, it is desir-
able to keep the number of sample points per signal low to keep the
time required to process the field of signals low. As these are

two dimensional signals, a signal requiring only five sample points
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‘ DEFINE CONTINUQUS
SIGNAL uc(x,y)

FIND FOURIER TRANSFORM
OF uc(x,y)

f

GENERATE UNIT BANDLIMITED
SAMPLED SIGNAL u'(m,n)
IN FIELD OF SIZE NSUBX, NSUBY

v

ADD BACKGROUND u_ AND
NOISE TO FIELD SAMPLE POINTS

4

STORE ON
MAGNETIC TAPE

REPEAT TO OBTAIN
ARRAY NSIGX, NSIGY
OF SIGNALS

Fig, 7. Flow Chart for SIMULAT Computer Program.

This program is used to simulate a field of bandlimited,

sampled signals in the presence of noise of a known distribution.
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in one dimension will require a total of twenty-five sample points in

two dimensions. This is also the size of the processing signal that

must be convolved with the signal array. Since some arrays contain

|
approximately 109 points it is important to keep the size of the

processing signal relatively small. Thus, it is necessary to exercise
some care in bandlimiting the continuous signal uc(x,y) and in select-
ing the sample spacing and fiel& size. The relationship between

these quantitites is shown iﬁ Fig. 8.

The bandlimiting process is actuaily accomplished by assuming
thgt the given signal uc(x,y) is periodic (not an unreasonable
approximation since uc(x,y) typically occurs in large arrays). By
doing this, the signal spectrum can then be expressed as a sampled
spectrum, Such a spectrum is not only easier to handle in the computer
but it greatly facilitates reconstruction of the bandlimited signal
u'(m,n).

The sample interval is noxrmalized to unity. This establishes
the maximum signal frequency component at one-half to avoid aliasing.
The frequency scale is determined by the scale of the signal which is
limited by the| field size, NSUBX. For most of the experiments, the

field size, NSUBX, was 20 units and the signals ranged from 3 to

7 units in one dimension. Larger signals and field sizes means less

signal distortion due to bandlimiting but more sample points to

process. As the signal shape for most experiments is somewhat arbitrary,

the distortion is relatively unimportant.:
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Analysis of Signal Bandlimiting and Sampling Operation.

Given signal u_(x), it transform U_(f) is bandlimited so that
The dofted samples and transforms

are a result of the computer representation.

the signal u'(m) can “be sampled.
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Fig. 9 illustrates the results of SIMULAT for a 4 X 4 square
in a 20 x 20 field. The unit sampled field may be repeated as many
times as desired before adding the background and noise.

The noise, which is added to each sample point, is generated
in the computer to give the desired distribution. The CDC 6400
computer supplies a sequence of random numbers uniformly distributed
between 0 and 1 on demand. These numbers can be converted to a Gaussian

distribution by the following transformation.5

1
e
"

- 1
0 =9 (-2 1ogeyi)4 . cos(znyz)

)!s

>
I

~Xg = 0. (-2 logey1 . 51n(2wy2)

where Yys y2 are a pair of uniformly distributed random numbers and

Xy, X, are the new pair of independent, Gaussian distributed numbers.

2

The distribution has a variance given by o2 and a mean value of Xq e
The specific method used for implementing this transformation

and adding the noise value to the signal plus background can be seen

in the SIMULAT program list in Appendix I. This approach allows

the use of either stationary or multiplicative Gaussian distributions.
Although Poisson noise was not used in the SIMULAT routine,

tests were made using the log normal distribution--which is closely

related to the Poisson distribution. The log normal distribution is

easily generated by taking the loge of X35 X, in the above expressions.



48

3

\\Y

“-‘-——- s ey

N \L\

pavA L X
’ //ﬁ' 7o
-2
74
X

Lo

Fig. 9. Unit Bandlimited Signal Matrix From SIMULAT.

Signal is 4 x 4 square in 20 x 20 field bandlimited to permit
unit sample intexrval.
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Signal Detection

Processing Programs

In the experiments to determine the effects of multiplicative
noise on signal detection methods, four different processing procedures
were employed. Although separate computer programs were written to
implement each of the methods, all of them followed the same general
procedure illustrated by the fiow chart in Fig. 10. The four programs
are AVERAGE, MATCHED, MULTIPL, and POISSON., All the programs involve
the convolution of some processing signal sp(m,n) with the message
function, s(m,n)}. For the AVERAGE program the processing signal has
unit amplitude over the domain of the hypothetical signal. This is
the easiest and most common type of signal processing. The MATCHED
program uses the definition of the signal itself as a weighting
function. This is the classical matched filter and provides optimum
processing when the noise is Gaussian distributed, additive and in-
dependent, The MULTIPL and POISSON programs use the optimum pro-
cessing signals derived in Chapter 3. A copy of the MULTIPL program
listing is included as Appendix II.

An important fedture of these programs is that the message
is read from magnetic tape on demand from the processing program.
This keeps the required storage capacity of the computer at reasonably
low level and permits arbitrarily long messages. Many experiments
were run with messages of 80,000 words in length (100 x 800 matrix

of samples). Processing on the CDC 6400 computer:typically required



ENTER DEFINITION
OF SIGNAL U({M,N)
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CALCULATE BIAS CONSTANTS AND
PROCESSING SIGNAL SP(M,N)

. //ENTER MESSAGE MATRIX
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ENTER MORE
s(1,J)
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SELECT HYPOTHETICAIL SIGNAL

LOCATION M_,N_

4

EVALUATE A. (M_,N_)

WAS U(M,N)

NO

PRESENT?

NHITS(I) = NHITS(I) + 1

¥\

g,//////;S
MESSAGE

FINISHED

USE NHITS, NFA TO FIND
PERCENT SIGNALS DETECTED
AND PERCENT FALSE ATARMS

PRINT RESULTS

Fig. 10. Schematic Flow Chart for Typical Processing Program.
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15 seconds of CPU time for the 80,000 word messages. Variation in
processing time between the four programs was less than ten percent.

There were, typically, ten times as many independent hypothet-
i¢al signal locations at which no signal was present as there were
locations of actual signals. Messages with 80,000 words, for example,
contained 200 signal locations and about 2500 other locations that
were tested but had no signal present.

The value of the test statistic A, at each location was compared
sequentially with as many as forty different threshold values--ranging
from 1{)".1 to 10°--to cover a wide range of decision levels.

The bias values (gee section on Signal Detection in Chapter 3)
were calculated differently for each of the four programs. Their
inclusion is of little importance in most of the experiments.

A typical printed output of a processing program is shown

in Appendix III.

Typical Comparison of Processing Methods

In an experiment of this type there are many parametexrs which
must be specified. In particular, the signal type, noise distribution,
background level, and signal-to-noise ratio all affect the results.
While each of these parameters will be discussed, this section will
be restricted to an experiment where the number of signals present
is varied to determine the number needed for statistical validity. The
rest of the variables are held constant.. The procedures used are

typical of those used in subsequent experiments.
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The signals used were squares three sample units in dimension
and bandlimited to avoid signal aliasing. The domain of the pro-
cessing signal was chosen to be a 5 by 5 array of sample points. Points
outside this region were all less than one percent of the peak signal
value. Descriptions of the processing signals for the MATCHED program
(which is also a description of the known signal), and the AVERAGE,

MULTIPL and POISSON programs are shown below.

MATCHED AVERAGE
.0 .03 .03 .03 .0 1.0 1.0 1.0 1.0 1.0
.03 .93 .96 .93 .03 1.0 1.0 1.0 1.0 1.0
.03 .96 .99 .96 .03 i.0 1.0 1.0 1,0 1.0
.03 .93 .96 .93 .03 1.0 1.0 1.0 1.0 1.0
.0 .03 .03 03 .0 . i.0 1.0 1.0 1.0 1.0
MULTIPL POISSON
.0 .03 .03 .03 .0 .0 .03 .03 .03 .0
.03 .48 .49 .48 .03 .03 .66 .67 77 .03
.03 .49 .50 .49 .03 .03 .67 .69 .67 .03
.03 .48 .49 .48 .03 .03 ﬂ66 .67 .66 .03
.0 .03 .03 .03 .0 .0 .03 .03 .03 .0

The size of the message was varied for each of three different
runs, The first run contained 50 signals and 691 test locations not
containing signals. The second run had 200 signals and 2821 test

locations and the third.run had 400 signals and 5642 test locations.
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The noise in all three cases was Gaussian distributed with a
variance proportional to the mean signal level. Specifically, if
u(m,n) is a description of the known signal (see MATCHED above)

then the message at a signal location is given by

u{m,n) + n(m,n)

[}

s(m,n)

where

H

u{m,n} = u'(m,n) + u

The background, u , was given by

u = 1,0
and the signal dependent noise variance by
002 (m,n) = u(m,n)

The purposes of this experiment are to see what effect, if any,
the multiplicative noise model might have on a typical signal detection
problem and to see what changes occur in these results as the number
of signals tested is increased.

Using the detection curve discussed in Chapter 3 (see Fig. 6)
the results of processing the 50, 200, and 400 signal messages using
a matched filter based on independent Gaussian noise are shown in Fig.
11.

Note that in order to increase the graphical resclution, the
detection curves are plotted on a'log-log'scale.‘ The scale in the

vertical direction extends a full decade more to.reflect the increased
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Fig. 11. Results of MTACHED Signal Detection on Different
Message Sizes.

Processing parameters are identical for the three curves.
Differences are due to inadequate numbers of signals for good statistical

results,
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precision due to the presence of ten times as many test locations
without signal as with signals,

Before evaluating the statistical errors due to inadequate
numbers it is first necessary to consider how well the plotted curves
reflect what happened in the actual experiment. Fig. 12 shows
an enlarged section of two typical detection curves. The solid
connecting lines are purely hypothetical. Because of the nature of
the digital computer processing, however, the points plotted for the
different threshold values are essentially error free. Since the
curves must be monotonically decreasing, the connecting line must lie
somewhere between the dashed, rectangular error limit lines. Re-
calling that the coordinates can assume only a finite number of dis-
crete Values, the dotted line is a possible curve which might be
obtained in the limit of a continuous range of threshold values. Thus,
the ability to "resolve'" two experimental curves can be determined
by looking for overlap in the rectangular error limits between the
plotted points.

Returning to the question of error due to insufficient statistics
two conclusions can now be drawn from the curves shown in Fig. 11.

First, the agreement between curves is much worse at the ends
than at the center. This is reasonable siﬁce only a small number of
samples are involved in establishing these points. Second, to establish
a curve over a reasonable range with a precision limited only by the
errors due to the finite.number of threshold values (sample points) used
it is necessary to use a minimum of several hundred signals in the ex-.

periment,
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Fig. 12. Exror Limits for Experimental Detection Curves.

Detection curve A can be said to be unequivocably better than
B for this experiment over any range not containing any overlap area.
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Before becoming resigned to the use of large numbers of signals,
however, it should be noted that this analysis is only for establishing
the absolute perfdrmance of one detection method applied to a message
described by a particular set of noise statistics. If the goal is
simply to find the relative performance under two different experimental
conditions then the requirement on the number of samples needed is
reduced.

Consider, for example, the relative performance of processing
under the assumption of independent, Gaussian statistics (MATCHED
program), processing assuming multiplicative Gaussian (MULTIPL), and
multiplicative Poisson (POISSON) noise statistics. The results of
these three programs applied to the message field containing only 50
signals is shown in Fig. 13. Because all of the methods are looking
at the same noise values, it is possible to conclude that MATCHED
and POISSON processing are essentially equal and that MULTIPL pro-
cessing gives superior results for the parameters used in this one
short experiment,

Finally, for a more convincing comparison of the three
Yoptimum'" signal detection methods Plus processing by taking a simple
average over the signal domain (AVERAGE p:ogram); the results of all
four programs based on 400 signals is shown in Fig. 14. The dotted
line represents the curve that would be obtained if decisions were

made purely on a random basis.
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| Conclusions'based on the curves in Fig. 14 are: (1) all
three "optimum'" methods gife better results than simple averaging,
(2) matched filters based on independent Gaussian statistics and on
multiplicative, Poisson statistics give essentially equal results,
and (3) use of the matched filter based on multiplicative, Gaussian
noise yields an improvement over the other methods. The magnitude
of the improvement for the MULTIPL processing over the MATCHED pro-
cessing is that for a given fercentage of signals correctly detected,
the false alarm rate will be about 25130%'lower for the MULTIPL

processing on this type of message.

Effects of Signal-to-Noise Ratio

In general, the effects of increasing the signal-to-noise
ratio in a signal detection problem are easy to predict. If the
noise is signal independent, the increase in noise will have no effect
on the method of processing or the shape of the matched filter, The
detection curve will be shifted in location but no other changes should
be expected. In the case of signal dependent noise, however, the
situation is potentially more difficult. In addition to the shift in
the detection curve as shown in Fig. 15; the shape of the processing
signal also changes indirectly. Although there is no mathematical
dependence of signal shape on the noise variance, the restrictions of
the message to all positive values means that the only realistic
way to haﬁe signal-to-noise ratios much.iess than‘one is to reduce

the amplitude of the signal relative to the background level.
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As the processing signal is defined by

sp(m,n) = u'(m,n)/(u'(m,n) + u)

it is clear that as the signal u'(m,n) becomes small compared to the
background, u,, the processing signal simply becomes proportional to
the signal itself. This is the same as optimum pfocessing in the
presence of signal independent: Gaussian noise. This is to be expected
since when the signal-to-background ratic is small the message level--
and hence the noise variance--is essentially constant.

From this argument it can be seen that the greatest difference
in performance between the MATCHED, MULTIPL and POISSON programs should
come when the signal-to-background ratio is much greater than one.

This is unfortunate for two reasoﬁs. First, it is difficult to obtain
reliable statistical information in detection problems where the
signal-to-noise ratio is high because of the very low error probabil-
ities, o and B (false alarm rate and miss rate)}. Secondly, this case

is also the one of least importance in signal detection problems, as
when the noise is very small, elaborate processing is not usually justi-
fied.

For these reasons, most of the experiments discussed in this
report have a signal—£o—noise ratio of approximately unity. The band-

limited squares, for example, usually have unit amplitude and are re-

corded in the presence of noise with unit variance.
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Effects of Signal Structure

Because of the shape of the optimum filter for signal de-
tection changes according to the noise model, it is of interest to
determine the dependence of signal shape on the effectiveness of
different processing methods. The relationships between a known
signal, u'({x), and the processing signal which were developed in

Chapter 3 for the three noise distributions are repeated below for

convenience.
NOISE DISTRIBUTION PROGRAM PROCESSING SIGNAL
GAUSSIAN, INDEPENDENT MATCHED u' {x)
GAUSSIAN, MULTIPLICATIVE MULTIPL u' (x)
u'(x) + u
o
POISSON, MULTIPLICATIVE POISSON log u' (x) + u,
e
u
(s}

One might expect to observe the greatest difference in per-
formance of the three methods when a signal is used that gives the
_greatest difference in the processing signals. The processing signals
for the signal dependent noise models show the greatest distortion
from the independent noise processing signal (u'éx)) when the known
signal is large compared to the background, u,- As discussed in the
preceding section, however, the signals studied here will be restricted
to those with magnitudes on the same order as the background.

The least difference in meihods should be observed when the

known signal has no structure. That is, a signal with a constant
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amplitude--but with an arbitrary domain--will transform into another
constant amplitude signal over the same domain. Thus, the processing
signals will be the same (except, possibly, for a difference in the
bias level) for all three cases, Note that this does not necessarily
mean that the processing programs will all give identical results.
The MULTIPL program is operating on a message which has been squared.

Although most of the experiments in this study were conducted
with bandlimited, three unit wide squares, a series of bandlimited,
Gaussian signals (width o= V2 ) was also investigated. Three runs of
50 Gaussian signals with amplitudes 2.0, 3.0 and 4.0 were processed
and comparéd to the processing of 50, 3 x 3 bandlimited square signals.
All four sets of data were recorded with the identical sequence of
random noise values.

The purpose of this experiment was to determine if the
advantage in the signal dependent noise processing observed with the
3 x 3 bandlimited squares is increased by the use of a signal with
greater structure. A plot of the two basic signal shapes and their
corresponding processing signal shapes is shown in Fig. 16. All
signals are normalized to unity at the origin to'permit a better
comparison of tﬁeir functional shapes. Note that the difference in
the processing signals is greatest for the large amplitude Gaussian
signal and least for the 3 x 3 bandlimited squares. Also, while
the shape changes as a function of the amplitude of the Gaussian
signal; this effect is .relatively small compared to the differences

due to the noise model,
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(A) 3X3 BANDLIMITED SQUARE

MULTIPL
POLS50N

(B) BANDLIMITED GAUSSIAN

sp(x)

Fig. 16. Comparison of Processing Signal Shapes for Different Noise
Models.

All curves are normalized to unity. The description of the
known signal is the same as the MATCHED processing shape.
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The results of processing these fouf sets of data were some-
what surprising. The detection curves for the 50 bandlimited squares
were sﬁown in Fig. 13 and are repeated here in Fig. 17 along with the
curves for the 50 Gaussian signals with an amplitude of 3.0. The
relative pexrformance of the four programs was essentially the same
for all three sets of Gaussian signals--hence, only one is shown.

The most unexpected result is that the Gaussian signals show less
distinction between processing methods instead of more, as was pre-
dicted. One explanation for this is-that while there were nine nearly
equally weighted points used in the definition of the bandlimited
squares, most of the information about the presence of the Gaussian
signal is concentrated in the single point at the origin. This is

not important to the choice of the proper noise model to use for best
detection, but it does mean that to obtain reliable statistical infor-
mation about their detectability, many more test signals are required
than are required for the bandlimited squares.

One conclusion does seem justified, however. The most important
difference in optimum signal detection in the presence of multiplicative
noise is not due to differences in the shape of the processing signals.
This observation suggests that the advantage of the MULTIPL processing
program which was observed in the section "Typical Comparison of
Processing Methods', is due to the squaring of the message values before

processing.
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Effects of Squaring Message

The hypothesis that the primary benefit in processing accord-
ing to the multiplicative noise model comes in squaring the message
amplitude before processing can be easily tested. A new processing
program, SQUARED, was written that squared the message values as
was done in MULTIPL, but then weighted all of the hypothetical signal
values equally. This is equivalent to the AVERAGE program being applied
to the squared message field. Any advantage over either the MATCHED
or AVERAGE program demonstrated by tﬂe SQUARED program must be due
only to the squaring operation.

The MATCHED, AVERAGE, and SQUARED processing programs were
applied to a message field containing 400 3 x 3 bandlimited square
signals. The resulting detection‘curves are shown in Fig, 18,

The detection curves show several interesting effects. First,
the performance of the AVERAGE and SQUARED programs depend critically
on the size of the area that is being averaged. For either of the
two sizes used, however, the SQUARED program gives significantly
better results than the AVERAGE program. When the averaged area was
a 3 x 3 square the AVERAGE and MATCHED results are essentially equal
and inferior to the SQUARED results. These observations confirm the
hypothesis of the advantage of using a squared message field when in
the presence of multiplicative noise and indicate that matching the
processing signal shape exactly to the known signal is of minimal

importance.
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Effect of Changes in the Background Level

One of the problems that occurs when the signals are re-
corded on photographic emulsion is that the mnoise statistics change
as the background density changes. This is true even when the in-
dividual signals are of low amplitude, and can be modeled by independent
noise. The change in the background by itself can be compensated for
by changing the bias term in tﬁe independent noise model but it is
not clear what the effect of incorrectly estimating the new noise
variance will be.

This question was investigated by simulating a field of 300
3 x 3 bandlimited square signals in the presence of multiplicative

noise and with a changing background level. The exact field conditions

were
NOISE > SIGNAL
) BACKGROUND u, VARIANCE 0, AMPLITUDE
FIRST 100 SIGNALS 0.5 0.163 0.2
SECOND 100 SIGNALS 0.75 0.200 0.2

THIRD 100 'SIGNALS 1.0 0.231 0.2

These figures describe a field where the noise variance is everywhere

given by
aN2 {(x) = 0.231 u(x)

This field was processed by the four programs, AVERAGE, MATCHED,
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MULTIPL and POISSON. The MULTIPL and POISSON program always used.
the correct estimate of background and variance while the MATCHED
program assumed a variance of 0.2 for the entire field. The results
are shown in Fig. 19.

At first glance, the results appear inconclusive. In the
regions of very low false alarm rate or very low miss rate the MULTIPL
and POISSON processing appear to offer an advantage over the MATCHED
processing. This advantage decreases in the region where the false
alarm and miss rates are more nearly equal,

These observations are, in fact, predictable with the aid of
some subtle arguments involving more decision theory than detection
theory. Specifically, it can be shown that the effect of incorrectly
estimating the noise variance is éf no significance in a binary de-
cision when the decision threshold has been chosen to make the two
events equally probable. As one event becomes increasingly more likely,
an exrror in the predicted decision boundary occurs and a slight de-
crease in the detection rate for that threshold follows. A more
thorough explanation of this effect is outside the scope of this report.
It should suffice to note that the behavior observed in the detection
curves in Fig. 19 is ;upportable by theory and represents the magnitude

of improvement that might be expected by using a multiplicative noise

model for this detection problem.

Effects of Noise Distribution
In all of the preceding experiments the noise in the message

obeyed a truncated, Gaussian distribution with a variance proportional
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to the mean message level. The most frequently used distribution is
illustrated in Fig. 20. While this is a reasonable model to apply
to many physical processes, it is of interest to investigate the

dependence of the processing methods proposed here to other noise

distributions.
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Fig. 20. Typical Gaussian Distributions of Noise Values.

The two curves are for (A) p(n /s = 1.0) and (B) p(ni/si = 2.0)
The variance is equal to ;-

It would have been desirable to test the detection methods in
the presence of pure Poisson noise. Because of the large number of
points needed (approximately 100,000 each with different mean and vari-

ance) generating true Poisson noise would have been too costly. Instead,
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it was decided to use log normal distributed noise which is easier to
generate and bears a close‘resemblance to the Poisson distribution.

A message containing 50 3 x 3 bandlimited square signals was
recorded with a background equal to 1.0, The noise was log normal
distributed with a variance equal to the mean signal level. The noise
distribution for two points, S; = 1 and s; = 2, is shown in Fig. 21

and should be compared with the truncated Gaussian distribution shown

in Fig. 20.

o o - e — m— N — -

‘N______
]

Fig. 21. Typical Log Normal Distributions of Noise Values.

The two curves are for (A) p(ni/si = 1.0) and (B) p(ni/si = 2.0)
The variance is equal to ;e

This field was processed and the.resulting detection curves
are shown in Fig. 22.. The obvious conclusions are (1) the MULTIPL

processing is significantly inferior to the MATCHED and POISSON programs
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Fig. 22. Detection Curves for Signals in the Presence of Log Normal
Noise.

Results are based on the processing of 50 bandlimited Gaussian
signals of amplitude equal to 3.0 in noise with unit variance.
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and (2) the MULTIPL performance is relatively worse in the region
where a low false alarm rate is used. ﬁoth of these conclusions
can be seen intuitively by a careful examination of Fig. 21. The
probability of receiving a noise value when no signal is present that
is many times larger than the average level when the signal is present
"is quite high. Squaring these message values accentuate this problem
and makes the elimination of all false alarms very difficult.

These results emphasize the importance of accurately knowing

the noise statistics in a message before attempting to process.

Signal Discrimination

The theory of optimum signal discrimination is discussed in
Chapter 3. It is mentioned there that the problem of discriminating
between the occurrence of two (o; more) known siénals in the presence
of noise can be considered as an extension of the general signal de-
tection problem. If brief, a field containing only two signals of known
shape should be processed by convolving the message with a signal
that is related to the difference of the two signals. More specifically,
the optimum processing signal for Gaussian, stationary noise is

sp(m,n) = gl—z [ur(m,n) - uz2(m,n)]
o

and for multiplicative, Gaussian noise is

Ly g L J
Sp(m’n) — 20'02 [ uz(m,n) - ul (mln)

vhere uil(m,n) and uz(m,n) are descriptions of the known signals.
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An experiment was conducted using 100 bandlimited eircles of
a radius giving both signals an integrated area of 25. The signals
had unit amplitude and were recorded in the presence of Gaussian,
multiplicative noise with unit variance and background level. Cross
sections of two signals are shown in Fig. 23 along with the optimum
processing signals described by the equations above.

Tﬁe MATCHED and MULTIPL programs were revised to handle the
signal discrimination problem. They were applied to the combined field
of bandlimited circles and squares and the resulting discrimination
curves are shown in Fig. 24,

Fig. 24 shows that processing on the assumption of multiplica-
tive noise does give fewer errors than the independent noise model.
The improvement is on the order of 10% fewer wrong decisions. This
appears to break down in the regions above 90% correct decisions for
either of the signal types but this is probably due to the small

number of samples (less than 10) involved in establishing these points.

Simple Filtering

The general topic of filtering as a method of processing is
much too broad to be covered comprehensively inla-study of this type.
The purpose of including this topic here is to present some simple
examples of signal processing in the presence of signal-dependent

noise by operating in the frequency domain.

Continuous Detection Filtering -
In the section, Signal Detection;rmeSSage fields are processed

to determine if a known signal is present at some specific location,
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Fig. 23. Optimum Signal Discrimination--Bandlimited Circles and Squares.

.Part A shows cross sections of the reconstruction of the band-
limited, sampled signals. Part B shows similar reconstructions of the
optimum processing signals for stationary and multiplicative, Gaussian
noise.
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fhis ig done by a convolution type of process where the convolution

is evaluated only at the locations of interest. If the location of
the known signal is not known it becomes necessary to evaluate the
convolution process for every point in the field. If the system under
consideration is defined in a way which preserves linearity (note

that the multiplicative, Gaussian noise model requires squaring the
message field) then this processing may be performed by a simple
filtering operation in the frequency domain. The filter is described
by the Fourier transform of the conveolving processing signal,

In the case of signal-independent noise, the matched filter is
just the coﬁplex conjugate of the Fouriexr transform of the signal it-
self. When the noise is multiplicative, Gaussian, or Poisson dis-
tributed, the filter becomes the complex conjugate of the Fourier
transform of the optimum processing signals derived in Chapter 3.

The interpretation of this filter is not so simple. Not only are

the Fourier transforms of the processing signals difficuit to find in
general, but they vary as a function of the noise level. To iilustrate
this effect, a one dimensional cosine wave was used as the object and
the matched filter was calculated for varying levels of multiplicative,
Gaussian noise. The results are shown in Fig. 25,

In the limiting case of the background, u., being much larger
than the signal, uck), it can be seen that thé filter becomes identical
to that used for signal-independent noise. As u, becomes small (for

this ekample it cannot be.less than u'(0) because'of the positive
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message restriction) the processing signal and its Fourier transform
depart markedly from the independent noise case. It should also be
remembered that the message being filtered in this example is s2(x)
where s(x) = u'{x) + u, * h(x).'

The principles of continuous filtering for optimum signal

14 A section of the

detection have been applied to a real problem.
sky that contained several weak star images was photographed on a
Kodak 103a-D photographic plate. The density profile from a poxrtion
of the plate was sampled and recorded on magnetic tape (approximately
20,000 readings). The field was then processed using the CDC 6400
computer by passing it through a matched filter for a weak star

image in the presence of multiplicative, Gaussian noise. The output
at each point in the field was compared to ten different threshold
values and an appropriate number was assigned to each. Contour lines
of equal probability of occurrence were then drawn on the digitized
outpué. The results are shown in Fig. 26.

Figures 4A and 4B are both processed fields. Fig. 4A has one
additional lower contour level. Fig. 4C is a contour plot of the~ '~
original field before processing with threshold levels which can be
compared to those in 4B. Note that some of the weaker spots in 4C
disappear in 4B whereas others are enhanced. This action is pre-
sumably the discrimination of weak signals from noise. Unfortunately,

due to the nature of the original field it is impossible to verify the

results.

82
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(A)
(B)
B ° .
® % T .
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Fig. 26. Continuous Optimum Signal Detection Filtering of a Star Field.

(A) Contours of equal probability that a star was present
centered at that point, (B). same output with lowest contour eliminated,
and (C) isodensity contours of original field.
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Bandpass Filtering

Filtering for purposes of detecting the presence of a known
signal is a relatively specialized problem. More commonly, the pre-
cise shape of the signal is unknown and the problem is to filter out
as much of the noise as possible while leaving the signal spectrum
relatively undistorted. When the noise is stationary, the filtexring
procedure is well established and, with the aid of the Fourier trans-
form, is easily conceptualized. When the noise is signal dependent
the situation is less clear.

In Chapter 3 a model was presented to aid in visualizing the
effects of operations in the frequency domain of a message containing
signal-dependent noise. To test the validity and usefulness of this
model, a simple message was recorded on Kodak 35 mm Tri-X film and
placed in a coherent optical filtering system similar to the one
illustrated in Fig. 6, Chapter 3.15 The object transparency, photo-
graphed in coherent light, is shown in Fig. 27-A. When this trans-
parency is placed in a coherent beam (He-Ne laser) the transmitted

amplitude can be written as

5. (X,Y) = u (x,y) + n, (x,y)

where u, is the ideal two-level signal. Tﬁe statistics of the trans-
mission noise, n,, are dependent on the signal level. Specifically,
if the film density is assumed to have a noise distribution which is
Gaussian and a variance.which is proﬁortional to.the mean density level;

then it can be shown that if the transmitted field, ut,_is described
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Fig. 27.. Comparison of Images in Signal-Dependent Noise.

All images are approximately 15X magnification.

Conditions are
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(A) incoherent illumination, (B) coherent illumination, and (C) coherent

illumination using noise spectrum only.
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then the variance of the field is given by

2 2 -2
0, 06y) = u o - U (XY)
where u is the transmitted field at zero density and u, is the

tmax t
expected transmission. With this noise distribution and the aid of

the Multiplicative Noise Model presented in Chapter 3, it is possible
to consider the transmitted field as the independent sum of the ideal
coherent, transmitted signal field and an incoherent field of
intensity given by otz (x,y). In the transfoxrm plane of the coherent
optical filtering system the signal transform is superimposed on the
partially coherent field from the noise term.

Figures 27-B and 27-C are recordings of the image plane for
two different pupil (filter plane) configurations. Figure 27-B is
the ordinary coherent image obtained by passing all spatial frequencies
in the £/10 system as shown in Fig. 28-A. Fig.l27—C is the image
obtained when a portion of the frequency spectrum containing no infor-
mation from the signal texrm is used. This filter condition is shown
in Fig. 28-B.

In comparing the photographs in Fig. 27, it is significént to
notice that the contrast-has reversed in Fig. 27-C.. ?his is due to the
use of light from the signal-dependent noise term only:which is de-

scribed by ctztx,y).
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This contrast reversal was not obtained for all pupils which
excluded the signal spectrum, Fo? lower noise frequencies this simple
model fypically breaks down due, apparently, to the exclusion of the
effects of phase noise in expreésing the transmitted field in terms
of film density. A more thorough study of these effects would be

desirable.

(A &

+ — v 000 Sam

Fig. 28. Illustration of Filter Plane Conditions.

(A) is the configuration used in obtaining the photograph in
Fig. 27-B (B) was used for Fig. 27-C.



CHAPTER 5
CONCLUSIONS

The first objective of this study was to develop a better
understanding of the significance of signal-dependent noise. While
all of the results presented here help to achieve this goal, the
section "Filter Theory'" (Chapter 3) and the experiment described
in "Bandpass Filtering" (Chapter 4) are of particular interest.

In Chapter 3, a method for simulating a message recorded in
noise of any arbitrary signal dependence by using a ccherent optical
imaging system was introduced. This method follows from the obser-
vation (first suggested by A. Lohmann in 1965) that the expression
for the mutual intensity of a partially coherent field is mathe-

matically equivalent to a noise autocorrelation function.l3

Thus,
white noise becomes equivalent to an incoherent field with an intensity
everywhere proportional to the noise variance. The Fourier Transform
of the incoherent field describes the noise spectrum. The power
spectrum of the message can be observed as the irradiance distribution
in the back focal plane of the first lens in the system.

The ekperiment reported in Chapter 4 illustrates both the

signal-dependent nature of film grain noise and the utility of the above

model in predicting the effects of signal-dependent noise in a simple

88
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bandpass filtering system. It shows that even though there is useful
information in the noise spectrum about the signal, care must be

taken in filtering the spectral components because the reverse contrast
of the "noise" image would norxrmally subtract from the contrast of the
"'signal' image.

It would be of interest to explore this model further by using
it to predict or measure the nature of the signal-dependence of grain
noise in other types of emulsions.

The second objective of this study is to derive statistical
tests for the optimum detection of signals recorded on photographic
film. The sections "Signal Detection' and "Signal Discrimination"
in Chapter 3 are addressed to this problem.

It was found that for the detection of a known signal in the
presence of multiplicative Gaussian noise, the optimum processing
of a sampled message is obtained by generating the test statistic

given by

Where the known signal is described by the N values'{ui}, the sampled
message is described by'{si} and u, is the background level when no
signal is present. When the multiplicative noise is described by

Poisson statistics, the optimum test statistic is found to be

A =L 5. . Loge(ui/go)
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When discriminating between two signals,-{sii} and'{szi}, the

optimum test statistics become

N
A=z s?. (2 -2
j=1 * 2i 1i

for Poisson statistics.

The work done in simulating signal detection problems indicates
that these tests do indeed yield improvements in the detection rate
when applied to systems with noise distributions of the type typically
found in photographic emulsions. It is possible to extend this study
to cover such problems as the optimum detection of signals with un-
known phase, the detection of signals of unknown location and
the estimation of signal parameters. Although solutions to these
problems for the case of multiplicative noise are not presently avail-
able in published form, they can be obtained by using the results of
Chapter 3 and paralleling the solutions already developed for additive,
signal-independent noise.

The last objective of this study is to eﬁplore the practical
limitations of these new tests. The computer-simulated ekperiments
in Chapter 4 were performed to determine under what conditions, if
any, the new processing methods would provide an.advantage over the

more commonly used methods which are based on additive, stationary noise.
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When a message is recorded in the presence of Gaussian, multi-
plicative noise, several conclusions can be reached. First, a
definite advantage over processing based on the signal-independent
noise assumption (on the order of 20-30% increase in the detection
rate) is observed for signals processed according to the Gaussian,
multiplicativg noise model. This advantage was observed using signals
recorded at a signal-to-noise ratio of approximately one. As the
signal-to-noise ratio is increased, the advantage increases slightly
but the need for sophisficated processing techniques is usually de-
creased. As the signal-to-noise ratio is decreased, all processing
methods tend to become equivalent. Little effect is obsexrved as
the structure of the known signal is changed. For the case of
Gaussian, multiplicative noise, it appears that the primary processing
advantage stems from the squaring of the received message-rather than
from the differences in the shape of the filters. This is an impor-
tant observation as it suggests that very nearly optimum performance
can be obtained by squaring the message and then using a simple average
over the signal as the test statistic.

When the tests are made on messages recorded in multiplicative
noise distributed according to log normal statistics, the results
change dramatically. Processing these data according to the multi-
plicative, Gaussian distribution assumption yields clearly inferior
results. The Gaussian, stationary processing and the Poisson, multi-
plicative processing gave essentially identical results. This presents

a paradox. Intuitively, if the Gaussian, multiplicative processing
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is used on a message recorde& Qith multiplicative noise, then it should
give better results than the Gaussian, stationary processing. This
argument is apparently false, however, as it cannot be supported
theoretically and is not observed experimentally.

These results provide evidence of the importance of knowing
the correct noise statistics before attempting to process. This is
particularly important when working with photographic film since the
associated grain noise statistics vary greatly as a function of film
type, exposure, development, method of measurement, and many other
parameters.

The brief experiment on signal discrimination served to
illustrate the technique. The conclusions derived from the signal
detection work are also applicable to the discrimination problem.

The results of,Chapter 4 can now be applied to any of a
large class of signal detection problems involving photographic
film. It is now clear that the noise statistics of any photographically
recorded message must be carefully measured. If the grain noise is
multiplicative and Gaussian distributed, the processing methods studied
here might (depending on other parameters in the specific problem) be
of significant value. If, on the other hand, the noise statistics
are found to be multiplicative and Poisson distributed it appears
that retention of the more frequently used, additive, signal-independent
noise assumption is likely to be justified.

The objectives.set. forth in the Introduction of this report

have been met. A better understanding of tﬁe'Signiﬁicdnce of signal-
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dependent noise has been developed, new optimum statistical tests

have been proposed for use on photographic films, and their limitations
have been eiplored. One specific application has been included as

an eiample. Studies of additional specific applications are re-

commended as the next area of activity.
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APPENDIX I

SIMULAT LIST
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120 FOUMAT {F10.0)
wRITE{A+12D) AMP
12% FURMAT {77% SLUNAL AMPLETULE AMP 10 #4FH.2/)
FNILKF ANULDE PARAMETERS
A5 <EAN{S. ] 10! bthuu.utth.fYPLl TYPED
130 FURMAT (2FjUlNZ2ALD)
wHITE lav129) PYPR], TVPE?-UzhHUuSIUMaO
13% FORHATII’[?OI"NUISE PAHAMETERSe//
2% TyYPE OF NUISE UISTHIBUTION®¢S5Xs2410/

90 2% MEAN HACKRGHUUNU LEVEL NEZEROD®eFB &/
A® STANDABD DEVIAIION AT DZERU SIGMAOR®yFR &4//7)
nNFLAGRN

CALCULATE NOISEY MEMHERS UF COMPUSITE MATRIX
READISs]16) NTAPEINKEC
95 136 FORMAT(1%4]13)
o wHITE(6¢137) NTAPEZNREC
137 FOHMAT (1HO#20K¢®UESCRIPTION UF COHPDSIIE MATRIX®//
2% HECORDED UN TAPE NUMHER #015,10A¢*HECUHD NUMHER ®413/)
CALL RANSET(2)
100 DO 139 le]eNSUHA
) V0 139 Je] sNSUHY
139 UHBLSM T4 ) =AMPUBLSM (] o 4 ¢DZERD
LUNST= (STGMAD®®2) /DZERD
NHOwx0
105 U0 150 Ma) sNSIGX

Py ]



110

115

PHOGRAWV

120

125

130

U0 150 T=isNSUBA
NRQ#aNROWe]

DO 150 NalwNSIGY
IFQINITI1)) L140e1964198B

140 O 168 Je] sNSUSY
SIGMASRCONST®ULLOM ([« )
IF (NFLAG,EQ.1) LU TO 142
141 KImUANF (1)
AZ=RANF ()
HNOISEme> ,#ALUGIAL)
A2mf,RI28XK2
. SEvnLAT  FOHTRAN EATENDED VEWSION 2,0/C 01/2R/770
UMEII SR S™ (1 0J) *SURT (SIGMAS®RNOISE) #COSTX2)
hFLAGEY
IFIpMIgYy Le2elssrled
182  LUMIJIsUR).SH(TeJ) *DURT (SIGMAS®RNOISE) #SINIRR)
hWFLAGRND
IFINMIIIY) Jalelése]aik
148 CUHTINUF
HUFFER ONT {111 tUOM(1) sDMINSUBY))
150 CUNTINUF
GV 10 200
196 wHITE(Ae19T7)
197 FORMAT(® gnU OF FILE VETECTEL UN BUFFEL®)
G0 TO 200
194 WRITE (he {99}
199  FOR4AT(# PARLTY ERHONH DETECTED ON SUFFEN®)
200 STop

END
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HKOGHAN

0S

15

an

25

30

K}

AD

A5

S0

S5

10
15

as

&0
a5

50
51
55
56

62
65

75

APPENDIX II

MULTIPL LIST

AULTIPL  FoRTRAN EATENOED VEHSION 2,0/C 01728770

PRUGRAM MULTIPLINPUTsOUTPUY s TAPESEINPUT»TAPES=QUTPUT s TAPE])
UIMENSTION LUMPAaR{S0) o THRESH{SO) ¢ IUISD) oNFA{S0) +NHTITS (50!
OIMENSTUN SU5e9) e5P (S5¢5)sDM{S4130)4pP (1230}

1HTEGER #LAOD

LUGICAL (00ICA¢LUL]ICH

COMMOMNZRFAUEM FRwURT JLENS o NSUBY o NFASNHITSe IDsNLEVEL o COMP AR g THRESH

CUMMON/ZROWUUTZNPTSY (DP ¢ HNMAK o INTERY o KCENTY 4LOG]CASLUGICH
READ ANl artiTE RUN NUMHERS
HEAN(Se]1n) NHULgidSIM
FORMAT (213}
nHITF{6435) RHUNIHSTM
FORMAT (1] v30A+9PHOCESSING ASSUMING MULTIPLICATIVE NOISE®///
I * RUN NIMBER ®913/7e INPUT DATA FHUM SIMULATION NUMHER ®+]3/77)
AEAD ANL «HITE INPUT DATA DESCHLIPTION '
REANLS42n) SIGLeSIG2eTYPELeTYPEZWULER,STUMA
FORVAT (4A10/72H10.0)
aRITE(6475) SIOLeSIGPeTYPEL TYPE22/UZERySIGMA
FORMAT (2nXsPLESCHIPTIUN OF INPUT UATA#//
1 ® TYPE nF SIGnAL=  @424A10/% TYPL OF NOJSE=  #42A10/
2 ® HACKGROUND UENSITY= UZEHD = ®4F5,3/
1 * sTanpaRl UEVIATION UF NUISEe SIGMAD = ®4F6,3/7)
READ aNu wR]ITE PHOCESSING INFOHMATION
HEAD(S5e3n) NSUdX oNSAMPX JNSUHY ¢ NSAMPY ¢ NHAR g MMAX
FORMAT (6T1I)
WRITE{6e25) NSUBKsNSAMPX 4NSUBY ¢yNSAMPY s MMAX s NMA X
FORMAT (PaX¢®PRUCESSING [NFORMAT]ON®//
NUMRER UF ROwS [N UNIT SIGNAL MATRIX- NSUHK = ®¢]3/
NUMHEG OF HUaS [N UATA MATRIx~ NSAMHX = #4137/
NUMRER UF CULUMNS [N UNIT SIGNAL MATRIXK= NSUBY = €913/
NUMAER OF COLUMNS IN DATA MATRlAw NSAMPY = ®,13/
NUMHBED OF ROWS IN PROCESSING SIONALe MMAX = @413/
NUMRER UF COLUMNS IN PROCESSING S]1GNALe NMAX = ®41377)
READ aNU wRITE NOISE ASSUMPTIONS

PAL D) -
sESS O

. HEAN{S,an) TYPEI s IYPE&SDZERDeSIGMAL

FORMAT(2A10/2F 1 0.0)

wWHITE(634S) TYPE3«TYPE&WDZERDSIGMAD
FORMAT (20X v®NOISE ASSUMPTIONS®//

1t * TYPE OF NOISE DISTRIRUTION ASSUMED= ® 2810/
2 ® QACKGROUNL OF NOISE ASSUMED= UZERD = #4F56,3/
4 ® GTANDARU DEVIATION OF NOISE ASSUMED~ SIGMAD B ®43F6e3/7)

READ AND WRITE SIGNAL PARAMETERS :

WHITE(6e50?

FORMAT (2nX9®S51GNAL DESCRIPTION®//)

00 58 M=]MMAX

READ(S5¢57) (S IMeN) yNo]l o NHAK)

FORMAT(1nF10.0}

ARITE(Ae6S) (S(MeN) om] sNMAX)

FORMAT (1nXe10Fde3)

CONTINUE

READ AND WRITE SIGNAL AMPL]ITUDE

READ(54.62) AMP

FURMAT (F10.0)

AR TELhyaS) AMP

FORMAT (/7% AMPLITUDE UF S5]IGNALS = e4F5,2/)

QUTPUT DISPLAY PARAYETERS

READ(5+7%) NLEVEL

FORUAT (1)

HEAN(S.TR) (TAHESH{T) o I=] oNLEVEL)
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&0

65

70

75

RO

as

Q0

95

lo0

105

120

125

76

RO

ns
ut

HH
Y

Q0

ay

Rk

Cc
kg

390

98

FORMAT (BF10.0)
N1=NLEVEL ¢!

U0 77 Imy,N]
try=1
CALCULATF BIAS aNU SP(MeN) FUR MULTIPLICAYIVE PROCESSING
AlAsi=n,

nlAg2mn,

GO RO Mmy ¢MMAX

B0 A0 Nmy ¢NMAX

SP{MeN)maMF®S(MyN) / (AMP#S (MyN) +DZEKD)
Hl1AS]1an]AS]¢aLOGIL,saMPES (MyN) /DZERD)
dIAGZ2uRIAS2¢S5 (MeN) @ pMP

b]ASEBIAG]*SIGMAURE2.6]1A52DLERD

DU AS 1s{,M.EVEL

COMPAR(I1 w2+ *{SIuHAD®®2) ®ALOGITHRESHI{TI} }*B]AS
WRITEtRerT) BlAS

FORMAT (& ATAS a®eFB,4///720%,
> *DESCHIPTION OF PHOCESSING SIGNALY SP{MIN) 8z

WHITE (Aen8) (SP(MeN) yMNE] ¢ NMAX)
FURMAT (InXelO(FLl0ea)/)
CUNT INUE

nEF IKE TARGET LOCATIUNS
“EADIS.9n) INTERAYINTERY WNCENTRA4NCENTY
FURMAT t412)
AFTTELR105) INTERAGINTERYsNCENTX¢NCENTY

FURMAT (/0 ROW SHACIHNG 0OF HYPOTHETICAL SIGNAL LOCATIONS INTEHAR
2 %413/% FOLUFMN SPACING OF HYPOTHETICAL SIGNAL LOCATIONS INTERY =
Y %el3/% pOw SPACING UF ACTUAL SIGNALS NCENTX = ®#,13/

4 ® COLUMN SKACING OF ACTUAL SIGNALS NCENTY = #,13////7)

U 100 Ie]oNl

NFA(IY1aQ

AHITSITY=0O
CALCHLATE LIMITS FUuP INTEGER VaklaWLLES
IMInmt
Jrilne]
[MARBNSAMPAwMMARY]
JHAXaNSAMPYaRMAKS ]
APTSYSNSAMPYelfiMANS )
vlz)
SET WP INITIAL OENSITY mATH]X
RWNKT=R]
DU 2130 Ke]sMMAR
BO 330 Im}eNSaMpPY
CALL HFADREN
DMIKsT)=NENS
NROweMMp y
NHOENROW, ] = (MMAXeNCENT X))
LOGICHm,FALSE,
10GICA IS TRUE IF ROW CONTAINS ANY HYPOTHETICAL SIGNALS
LOGICA= {MRUZINTERAG INTERK +EQNHO)
IF{,NOT, | DUICAY WU TO 420 .
1ouICe IS THUE IF HOw CONTAINS ANY ACTUAL SIGNALS
LOGICHAR (NRU/NSUHAONSUHX (EW o NRO)
FOHM LOUP TU PROCESS EACH COLUMN
00 405 JmJMINoJMAR
1COLnJUaNCENTY
IF (oNOT, (TCOL/INTERYSINTEHRY ,EQG.ICULY) GO TO 405

KRls JuJMIpe]
KemK] eNMaX=]
PERFNRM CUNVOULUTION OPERATION ON EACH SAMPLE POINT
VP (K1) =0,
L5=]
LlxM}
LZ2aMMA X
FLAGEO
ul 400 L=bLlisl2
KSwmy
Ul 395 KeKlire
DPSUMRSP (K5 1LS) SUM (| s R) se?
DPIKYI)I=DP (A1) *LPSUM



133

135

140

145

150

SUBHOUTINE

0S

10

15

20

25

3¢

35

99

VL AYEKSe] '
400 LS=[ 5] :

IF (M1 En,lsURFLAG.EW,]1) .GO TU 405
FLAGRY

Li=y

LdeM]=]

GO 10 39n

605 CONTINUE

- 4la CALL ROwnUT
420

UC 440 lal NSAMPY
CALL REAREN
440 DM{M]e1)nDENS
NHOWSNROWe 1
500 MlEM]e]aM] /A MMAXOMMAX
NRORNROWs 1= (MMAXSNCENTX)
LOGICRuFALSE. .
c LOLICA 15 THUE IF HOw CONTAINS ANY HYPOTHETICAL SIGNALS
LOGICAx {NRUZINTERX® [NTERX <EQeNRO)
IF(.NOT L 0GICA) LU TO 420
[ o .0GICH S TRHUE IF ROW CONTAINS ANY ACTUAL SIGNALS
LOGICRe {(NRU/NSUBA®NSUHX ,EQeNRD}
GO 10 370
1000 S7T0p 1
EnD
REANEN FORTRAN EXTENUED VEHSION 2,0/C 01/72R/70 12+

10

20
21

22

23

26

25

5]

an
4n

5n

e

SU9ROUTINE READEN
COMMONZRFAUEN/KWURT s UENS s NSUBY s NFAINHI TS IOsNLEVEL ¢ COMPAR s THRESH
DIMENSTUN CUMPARISO)} « THRESH{S0) 10 (50) ¢NFALSO) ¢NHITS(50)
OIMENSTION LS50 sPHCNFA(R0)

IF (KWDKTaNSUHY] aU044i10010

SUFFER Tn tlel) (V1) 4D INSUAY))

IFQUNIT YY) 30420950

wHITE thep])

FURMAT (/2777 TR e lHNsdA 4oL AMDA CO ¢ TXySCOMPARS 4B+ ONHITSP o bR ONFASy
P OXJ#PFHCENT MISSESe 33X #PERCENT FALSE ALARMS®/5X,GHeas8e 5x,

7 YHERPRBQeRB Ak YrREO RS aads 7L GHOSRGACA SHASISR T |4 SEa0RTE0S
AR ALy JAHERRRORSRERRORG//)

N1mNLEVEL+]

00 22 Imy4h]

Ot1)ymNHITSII)

HPRCNFA(IYanNFALL)

L0 23 I=14nLEVEL

JENLEVEL+]1=]

DEJI=ED LY SD I ]

PHCNFA(J)=PRCNFALJ} «PHCNFALJ®])

UNOTaD ()}

PRCNOTwPRCNFALL)

DO 24 JmyeNl

D(Iymil.uDfl)/UNUT)Y®]1 00,

PRCNFA (1) xPRCNFA(L) /PRCNOT®100,

WHITE(Ae2S) (LULL) ¢NHITS (1) oNFAL(LY D) syPRCNFA(1) ¢ THRESHIT)
2 COMPAR(Y)eIaleNl)

FURMAT (Sxoel303 7K1 134 7R eI30114sFTe2018%XeF7.2/15X41PE9.2¢5K+0PFT.2)
sTop 2

KWOKT=]

VENSaD{KwDKT)

GO 10 90

PRINT 51

FORMAT (s PARITY ERROR IN TAPE OF DENSITY REAODINGS #)

60 10 20

KWDKTmKWNKT o]

HETURMN

END
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15

10

15

20

65
75

Ao
w5
94

99
100

SUBROUTINE ROWQUT
CUOMMON/RFAUVEN/KWURT yUENS s NSUBY oNFASNHITS e JOWNLEVEL ¢+ COMPAR s THRESH
CUOMMON/ZROWOU T /NP ESY DP 4 NMAX y INTERY o NCENTY ¢ LOGICAWLOGICH
LDIMENSTION UPLL130)sNFALSD) oNHITSIS0) +ID(50) ¢ COMPARISO) ¢ THRESH(S0)
LOGICAL (OGICAsLUGICH

DO 100 Is)enNPTSY

IF L, NOT.| OGICA) GV TO 100

1COLmT=NCENTY

IF L NOT . (TCOLZINIERY®INTERY ,EQ.1COL)} GO TO 100
IF{LOGICAANU« ICUL/NSUBY®NSUHY EWs 1COL) GO TO 65
nLUFaw]

GO 7O 718

KLUE=]

DO BO Jui NLEVEL

IF(DP (1) «COMPAR(J)} 95,80¢8p0 *

CONTINUE

IF{KLUE) 9U9100+99

NFA[{J)uNFALJY *]

GO TO 100

NHITS (J)eNHITS (J) *]

CUNTINUE

RETURN

END



APPENDIX IIIX

MULTIPL OUTPUT.

PROCESSING ASSUMING MULTIPLICATIVE NOISE

RUN NUMYER 19
IKPUT DATA FRUOM SIHULATION NUMBER 15

DESCRIPIInNN OF INPUT uATA

TYPE OF SIGNAL= 3X3 dANULIM SQUARE

TYPE OF NOISF~- MULTIPLICATIVE

BACKGROUND DFNSITY=  DZFH0 = 500

STANDARD UEVIATION OF NO1SEe  SInMAD = 163

PROCESSING INFARMATION

NUMBER OF KOwWS IN UNIT SIGNAL MATRIX= NYUHX = 20
NUMBER OF RU®S IN DATA MATH[X= NSAMPA = 400

NUMBER OF COLUMNS IN UNIT SIGNAL MATRIR= NSUHY a 20
NUMBER OF COLUMNS IN DATA MATRIX= NSAFPY 3 100
NUHBER OF ROWS IN PROCESSING SIGNAL= MMAX = S
NUMBER OF COLUMANS IN PHOCESSING StGNAL~- NMAX = 5

NOISE ASSUMPTINNS
TYPE OF NOISE DISTRIBUTINN ASSUMER= MULTIPLICATIVE

BACKGHOUND OF NOISE ASSUMEV= DZIFRU = «500
STANDARD DEVIATION OF NOISE ASSUMFD=- siuMag = +163

SI6NaL UESCRIPTIUN

0.000 «03n «030 « 030 0.000

=+ 030 «¥in + 360 « 930 2030
« 030 «960n 950 « 700 +»030
«030 «93n « 960 L 1] 030
04000 «03n «33n « 030 0.000

AMPLITUDE OF SIGNALS = «20
BlAS = «9721

DESCRIPTINN oF PROCESSING SIGNALe SPIMN)

0.0000 .0119 0119 «0119 0.,0000

« 0119 2711 2725 2711 w0119

«0}119 2778 « 2837 2775 «0119

«0119 2711 «27T7H 2711 20119

0.0000 _.0119 +0119 20119 040000

ROw SPACING nF HYPOTHET[CAL SI1GNAL LUCATIONS INTERKS S

COLUMN SPACING OF HYPOTHFTICAL SIGNAL LOCATINNS INTERY = 5
ROW SPACING 0F ACTUAL SInNALS NCENTX = H
COLUMN SPACING OF ACTUaL SIGNALS NCENTY = A

- 101
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N LAMDA C COMPAR NKITS NFA PERCENT MISSES  PERCENT FALSE ALARHMS
[T 11 Sieansese saaeasaghe [T X1 L] [T LT 1] S¢sdensatssned (I X I TIITR Y10 4 J
1 0 "ge 0400 100,00
1.00E=-01 ¥ 1.3
2 0 57 0 22463
1.50€=01 o7 <00
3 | 56 0 18,56
2,50E«01 «ad °00
* 0 47 1400 14,506
4,00E=0U1 Q2
5 1 30 100 11.21
6,50E=C] .13
6 o 40 2.00 .06
1:00E«QO 07
7 1 12 2.00 6.21
1,45E+00 «Q9
8 -0 11 3,00 Sed5
Z.OOEOUO len]
9 ] 1 3,00 457
2.80F+00 1)
10 1 9 3,00 3,78
3.90L+00 lend
.11 0 16 4,00 3.14
S.50L*00 lend
12 4 5 4,00 2.00
T450E 00 1«08
13 3 5 6400 1,64
l.qu'.ol | Y, L]
14 k] 7 9,00 1,28
laabied) 1411
15 o 2 12.00 .19
2.,00ke0] . 1.13 y
16 1l 2 12400 64
2,80t +0] 115 :
1T 3 4 13.00 «50
3.?°t‘nl l.‘1
18 6 - 1 16,00 21
5.50E¢01 1449
19 2 1 22,00 14
7-5“[‘.."1 1.20
20 2 0 24.00 .07
1.00F su2 172
21 H 1 26,00 Q7
1. ASL+02 1.74
22 0 0 2R.00 0,00
2.00F+02 J25
23 2 0 28,00 0.00
2.8nke42 127
>4 0 0 30,00 0,00
3,90E+32 129
?5 . () 304,00 0,00
S,50E+012 1a11 )
26 . ) 34,00 0,00
T.50F+02 1.3
27 3 f IH. 00 0,00
1,00E403 1+24
28 7 o 44,00 0,00
1,45E+03 Yo
29 2 ] 51,00 0400
2,00F+03 1«78
a0 'S n 53,00 D.00
. 2.80Fe03 l1edd
11 . 0 57,00 0,00
3, 90E+23 lea1
32 L) [ 61400 0.00
5,5n0E*n3 143
13 k| 0 65.00 0,00
7.50F 03 1445
34 A )] 68,00 0.00
1,00ke0& , et
15 5 0 712,00 0,00
1.5nF+04 1448
16 2 0 T7.00 0,00
2.50E004 1451
a7 5 ] 79,00 0,00 .
8,00k *04 154
1A 2 o 84,00 n.00
. 66,5004 . 1e%6
19 3 Q Bﬁ.on 0.00
1.00E05 1459
40 11 0 89,00 . ) 0400
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