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ABSTRACT 

The significance of signal-dependent noise is discussed in 

general. Particular emphasis is placed on the specific type of 

multiplicative noise which is present in the density variations in 

a photographic emulsion. 

A theoretical treatment of the effect of multiplicative noise 

on signal detection and signal discrimination problems is presented. 

It is found that for the detection of a known signal in the presence 

of multiplicative Gaussian noise, the optimum processing of a sampled 

message is obtained by generating the test statistic given by 

N „ u. - u 
A = E s? . — -

i=l 1 ui 

Where the known signal is described by the N values {u^}, the sampled 

message is described by {s^}, and Uq is the background level when no 

signal is present. When the multiplicative noise is described by 

Poisson statistics, the optimum test statistic is found to be 

N 
A = z s . log (u./u ) 

1=1 

When discriminating between two signals, {s.^} and the optimum 

test statistics become 

A ? 2 "r 1 1  ̂
• A . *si ' ̂ u . ~ u ) 

1=1 21 . 11 

viii 



for multiplicative, Gaussian statistics and 

N 
A = £ s. . logeCuu/u2i) 

1=1 

for Poisson statistics. 

An investigation of the limitations of these theoretical models 

is presented. Two-dimensional signal fields in the presence of multi­

plicative noise are simulated in a computer and processed for optimum 

signal detection according to the two derived methods. These results 

are compared to the results of processing according to the assumption 

of stationary noise statistics. This comparison reveals that modest 

improvements (20-30%) in the detection rate are obtained when the 

signal-dependent nature of the noise statistics are considered. The 

effects of signal-to-noise ratio, signal structure, and changing 

background level are also investigated. 

An example of optimum signal discrimination using circles 

and squares as signals in multiplicative noise is reported. An improve­

ment in the percentage of correctly identified signals is again observed 

when the proper test statistic is used. 

A coherent optical processing model that can be used to con­

ceptualize the spectral characteristics of a message containing noise 

described by any arbitrary form of signal dependence is proposed. 

Finally, two examples of signal filtering in the presence of 

signal-dependent noise are included. The'first concerns the processing 
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of a real star field to determine the location of weak stars. The 

second is an illustration of the signal information contained in the 

noise spectrum of a message recorded on a common photographic film. 



CHAPTER 1 

INTRODUCTION 

The aim of science, in at least one sense, is the understanding 

of the nature of the real world based on simplified, artificial models. 

The laws and relationships that evolve from these idealized models 

are approximations. For most real world processes, the simpler models 

must be altered slightly or supplemented as the precision of the measure­

ments on the process is improved. Frequently, there is a trade-off 

between the utility of these simplified models and the accuracy of more 

complex ones. 

While this philosophical picture is, itself, an elementary 

model of the nature of science, it is a useful one for appreciating the 

significance of research on signal-dependent noise. Consider the 

results of a measurement on some physical system. Define these results 

as a message that contains some signal, which is of interest, and some 

noise, which is not. (This approach is more fully explained in Chapter 

2.) When incorporating this message into some model, the easiest 

approach is to ignore the presence of the noise altogether. While this 

approximation can be justified for most messages there are, of course, 

many processes that require an accounting of the noise. The next level 

of complexity is to assume that noise is an independent factor and can 

1 
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be added to the model accordingly. Again, considering the simplicity 

of the approximation, this assumption is remarkably satisfactory in 

explaining most cases involving noise. 

As expected, however, there are still many physical processes 

for which the concept of independent noise is inadequate. In most 

cases, one must decide whether the benefits of a more accurate model can 

justify the additional complication of letting the noise depend in some 

way on the signal. In practice, only a few isolated problems have been 

treated using noise that is signal dependent 

The motivation for the study presented here stems from a real 

problem in which it was decided that the independent noise assumption 

was inadequate. The problem involved the detection of faint star 

images recorded on a photographic plate. It was soon discovered that 

very little information is available concerning the practical problems 

involved in applying the principles of detection theory to two dimen­

sional signals recorded on photographic film. Furthermore, the 

existing techniques for optimum signal detection are based on signals 

recorded in the presence of additive, signal-independent, stationary 

noise. Unfortunately, the noise statistics for photographic film do 

not obey this model. For these reasons, a study was begun with the 

three-fold intent of : (1) developing a better understanding of the 

significance of signal-dependent noise, (2) deriving statistical tests 

for the optimum detection of signals recorded on photographic film, and 

C3) exploring the practical limitations of these tests. 
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One of the difficulties in working with signal-dependent noise 

is the lack of appropriate mathematical tools. A result of this is 

that solutions tend to be highly specialized. Parameters, such as the 

type of noise distribution, the nature of the signal, and the type of 

message processing desired, all affect the validity and usefulness of 

the solution. Consequently, a decision was made to study the general 

tools and techniques appropriate to an entire class of problems, rather 

than to concentrate on a specific system to obtain results which are of 

little or no value in a slightly different application. This approach 

could best be realized by simulating two-dimensional signal detection 

problems on a computer. Using this method, it was possible to answer 

the relevant questions without introducing additional, extraneous param­

eters . 

A typical problem to which the tools developed in this study 

might be applied is that of data storage on photographic film. Tech­

niques for recording signals on film and retrieving the unprocessed 

message by sampling the resulting film density are well known. The 

performance of a system of this type is usually limited by one's ability 

to retrieve the original signal from the sampled, noisy message. 

Assuming that the noise statistics of the recording medium are known, 

questions which must be answered to determine the performance of any 

proposed system include the following. (1) What is the optimum test 

statistic to be used in determining the presence of a signal (code 

symbol)? (2) What is the effect of the signal structure and size on 



its detectability? (4) what is the significance of a change in the 

noise statistics? (5) What is the loss in assuming additive, signal 

independent noise statistics? And, (6) What is the effect of adding 

constant background level to the film? These are among the questions 

this study is attempting to answer. 



CHAPTER 2 

SOME PROPERTIES OF SIGNAL-DEPENDENT NOISE 

The purpose of this chapter is not to present a comprehensive 

study of multiplicative noise but simply to review a few of the con­

cepts and definitions which will be helpful in following the later 

theoretical developments in this report. 

Signal-Independent Noise Versus Signal-Dependent Noise 

Definition of Noise 

In general, noise is only defined in the context of an experiment. 

Consider, for example, a recording of density variations as a function 

of location on a grainy photographic emulsion. If the desired measure­

ment is an estimate of the mean background density, then the graininess 

is a source of noise. If one is studying the properties of film granu-
* 

larity, however, then the variations in the mean background level become 

the noise source. 

To avoid this ambiguity, it is necessary to exercise some 

care in making a generalized definition of noise. If one begins by 

hypothesizing the existence of a signal—even though its functional 

form may be unknown—then the noise can be defined as that which alters 

the measurement of the hypothesized signal. Thus, for a simple one 

dimensional message function, s(x), and a hypothetical signal, u(x), 

5 
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it is always possible to write 

sCx) = u(x) + n(x) 
t 

where n(x) is the noise. 

Although n(x) is typically a random process, it is also possible 

to have n(x) deterministic. In either case, the distribution of values 

of n(x) can be described by some joint probability density function, 

Pn(n), where n = (n(xi), n(x —n(x^) ) is a complete set of N sample 

readings of n(x). In the case of a deterministic n(x), Pn(n) is simply 

a multidimensional delta function. It should also be noted that Pn(n) 

may depend in some way on the presence of the signal s(x). 

Signal Independent Noise 

The preceding definition of noise may seem awkward. This, of 

course, is due to its generality. Fortunately, there are several simpli­

fying conditions that can frequently be applied to this model. 

A fundamental assumption which will be used throughout this 

study is that of independent noise samples. This condition states that 

none of the sampled noise values, nCx^), depend on the values of any 

other samples, {n(x^)}. This condition permits the joint probability 

density function for n(x) to be written as the product of the probability 

density functions of the individual noise samples, for example, 

_ N 

Pn(n> •" Pn. CnCx^). 
1=1 1 1 



The physical origins of this condition will be discussed at 

greater length in the section on Spectral Characteristics in this 

chapter. 

A second major assumption is that of stationarity. A random 

process is said to be stationary if the statistics of the process 

are unaffected by a translation of the origin. In the case of n(x), 

which is assumed to consist of independent samples, stationarity 

simply means that 

Pn Cn(x.)) = (nCx.)) all i, j. 
i j J 

Therefore, the joint probability distribution can be written as 

Pn® = 

where N is the number of sample points of nfx). 

Ergodicity is another fundamental assumption which is of parti­

cular importance in the measurement, or estimation, of distribution 

functions. If a function is ergodic its statistics can be determined 

from a single, infinitely long, sample whereas averages over an ensembl 

of samples are normally required. Although this property is infre­

quently required in this study it will be assumed true for all station­

ary processes unless otherwise stated. 

The conditions of stationarity and ergodicity of a noise source 

are extremely powerful and are usually assumed to be true. 
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An additional property of noise is that of signal dependence. 

If the noise statistics are unaffected by the presence (or absence) 

of the signal then the noise is said to be signal independent. This 

property is necessary, but not sufficient, to permit the simplifi­

cations made for stationary and ergodic processes. 

Signal Dependent Noise 

The issue of signal dependence is the crux of this study. Al­

though the rewards gained in terms of a simpler noise model are good 

incentives for making the signal independent noise assumption, it is 

not unreasonable to expect that any system limited by noise originating 

at the signal source will have some signal dependence in the noise. The 

seriousness of this approximation depends not only on the nature of the 

dependence but on the use to which the model will be applied. For 

example, most phototubes have relative constant noise properties over 

low or moderate light levels, while for very high light levels, the de­

tector noise increases with increased light. Fortunately, this is of 

justifiably little concern since at these high light levels the noise 

characteristics can usually be ignored. For other detectors such as 

photomultipliers and photographic emulsion this problem is not so 

easily dismissed. 

The treatment of signal dependent noise is very difficult since 

it is neither stationary nor ergodic. In the general case, one knows 

only that 

s(x) = uCx) + n(x) 
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and that 

n = n(x,s(x)) 

There are, of course, many possible functional forms of 

n(x,s(x)) . For example, a common type of dependence is 

n(x) = [uCx)]p . n1 Cx) u(x)> 0 

where p is some real number and n'(x) is a noise process which does 

not depend on u(x). A noise process of this form is frequently referred 

to as multiplicative noise. For the remainder of this report, however, 

the term multiplicative noise will refer specifically to the case where 

p = h. That is, a signal will be said to be in the presence of multi­

plicative noise if the measured message, s(x), can be expressed as 

s(x) = u(x) + OCx}]*5 ; n(x) 

where n(x) is now a stationary, signal independent random process. The 

motivation for concentrating on this particular relationship will be 

discussed further in the section Physical Origins in this chapter. 

Two important, frequently used properties of this type of 

multiplicative noise are (1) the mean, or expected value, of sfx} is 

given by 

E {s(x)} a: u(x) + [u(x)]'* .. E{n(x)} 

and (2) the variance, is given by 
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CF£2 = k . u(x) 

where k is a proportionality constant determined by the noise source. 

The terra "additive noise" will be used here as shorthand for 

stationary, signal independent noise. The use of the descriptors 

additive and multiplicative can be misleading but they are commonly 

used in practice and will be retained here. To help appreciate the 

qualitative difference between additive and multiplicative noise, Fig. 

1 shows a gaussian signal in the presence of the two different noise 

types. In (A) the variance of the noise is constant for all x whereas 

in (B) the variance increases as u(x) increases. In both cases, the 

mean value of the noise is zero. 

SIGNAL 

u ( x )  

X 

"ADDITIVE" NOISE "MULTIPLICATIVE" NOISE 

s(x) s(x) 

f(x) = s(x) + n(x) f(x) « s(x) + [s(x)]1/2 . n(x) 

Fig. 1. Comparison of Additive and Multiplicative Noise. 
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Probability Distributions 

Common Single-Variable Distributions 

So far, the form of the probability density function pn has 

been left arbitrary. Although there are an infinite number of possible 

distributions, only a few are commonly used in practice. The three 

S 6 
distributions which will be used in this study are among the most common. * 

They are the Gaussian Cor normal), the Poisson, and the log normal dis-

tributions. 

The Gaussian distribution is the most common. For a signal 

given by s(x) = u(x) + n(x) the signal is said to obey Gaussian statis­

tics at the point Xq if 

ps(s(*0) ) = 1 c'xp [-h (sCxo) - uCxo) )2/cr2] . 
/2tto2 

It should be noted that for the processes being considered in this study, 

it will be necessary to restrict this distribution to positive values 

of s(xQ). The significance of this fundamental limitation is discussed 

in Chapter 5, Conclusions. 

The Poisson distribution is given by 

PSOCX
0) ) = <*p C-°U CX

Q) 3 ] C 

where a is an arbitrary proportionality constant. This distribution 

frequently occurs in many natural processes and is particularly important 

in photomultiplier and photographic film noise. 
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The third distribution of interest in this study is the log 

normal distribution. This is given by 

P sC sCx o))- exp[p GCsCx o))] 

where PQ(S(Xq)) is a Gaussian distribution. Detailed studies of these 

statistical forms are available in many texts. * 

Fig. 2 shows a comparison of these three functions along 

with plots of typical messages (s(x) = Uq + n(x) ) with statistics 

determined by each of the three distributions. 

It is of interest to note that in the limit as u -*• t o 

all three distributions become identical. 

It should also be pointed out that the poisson and log normal 

distribution are inherently non-stationary. Only in the Gaussian 

case is it possible to write a distribution function for the noise 

contribution which does not change as u(x) changes. In particular, 

the noise variance, A2, is a function of Uq, for the Poisson and log 

normal distributions. 

Multi-Variable Distributions 

When dealing with signal detection problems, one must know not 

only the distribution of noise values at a single point, but also the 

joint probability density function for the entire signal array. If 

the signal consists of k discrete points labeled s^, s^, 

(s^ = s(x^), s2 = s^), etc.), and if the noise values at each of 



Stx) 

(A) CB; 

Fig. 2. Comparison of Gaussian, Poisson and Log Normal Noise Distributions. 

(A) Compares probability distributions for variable with mean and standard deviation 
given by uQ. (B) illustrates typical message samples. 
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these points are statistically independent, then it is possible to 

express the joint probability density function pg Cs^, s2 s^) 

as the product of the individual functions p (s.). 
5 • «L 
X 

In the case of a stationary process, the Gaussian distribution 

for a k dimensional signal becomes simply 

Pi & = {(2i£z~')h exp Csi _ "p2/"2]' 

= tiki?'2 exP [ S** Csi _ "i323 

k 
Z 
i=l 

In the case of a signal in the presence of noise which is signal 

dependent, the Gaussian model becomes 

P; \N, C 2TTO72 y" • exP CSi-upVo.2] 
X=1 X 1=1 

Similarly, the Poisson distribution becomes 

k _ c. 
p- (s) = n e"aui[aui] i 

i=l T1 
i 

These expressions will be used to derive optimum signal detection 

techniques in Chapter 3. 

Spectral Characteristics 

White Noise 

The frequency spectrum is an important tool in the study of 

signal processing. The spectral analysis of deterministic signals is 
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extremely fundamental and is presented in many elementary textbooks. 

When noise (statistical uncertainty) is present, it is of interest to 

examine the power spectral density. Qualitatively, this is a measure 

of the noise power density per unit frequency interval. For a real 

stationary random process s (x), the power spectral density Pg(f) is 

given by 

PsCf) « 
n , -j27rfXj 
R
ssCx)e J dx 

where R (x) is the ensemble autocorrelation function, i.e., 

Rss(x) = E{s(x()s(x1 + x)} 
co 
t 

s"(x1 )s(x' + x)p fs(x'), s(x1 + x)) . 
ss 

d(s(x1 ))d(s(x' * x)) 

The term "white noise" can now be defined as any noise process 

which has a constant Ps(f) for all f of interest. Or, a process for 

which the autocorrelation function is effectively a delta function. 

It should be noted that the power spectral density function Pg(f) also 

contains the signal power spectrum as an ind., jnt additive function. 

Effects of Signal Dependent Noise 

The preceding expressions were based on the assumption that the 

autocorrelation function is independent of shifts in the x origin. 

The autocorrelation is still easily defined for a nonstationary (signal 
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dependent) random process as 

Rss(xr X2^ = e^sCx1).SCX2D> 

Unfortunately, the simple picture of the power spectral density being 

the Fourier transform of R is now lost. This problem will be further 

touched on in the section "Simple Filtering" in Chapter 3. 

Physical Origins 
r 

Probability Theory 

If the probability that an event occurs on any given trial is 

p, then the probability, Pn(k), that the event occurs k times in n 

trials is given by 

,, ̂  -n., k n-k 
PnQO = (k)p q 

k!(n-k)! 

The Poisson Theorem states that if 

ni k n-k -p q q = 1-p 

n > > 1 and p < < 1 

then Pn(10 caw t>e approximated by 

no B e~npCnp)k 
PnCI° k! 

This is the well-known Poisson distribution and has the properties 

E{k> «= np 
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and 

Var {k} = a2 = np 

If in addition to the above restrictions, we also have 

np » 1, the DeMoivre-Laplace Theorem may be used to give 

P_00 - 1 expt-Ji(k-np)2/npq] 
/2nnpq 

This is a Gaussian distribution with the properties 

E{k} = np 

and 

Var {k} = npq - np . 

It is significant that this Gaussian distribution is simply a 

special case a Poisson process and that both distributions are possible 

models for the same physical process. 

Photomultiplier Tube 

A familiar example of the many applications of these theorems 

is the photomultiplier tube. If a PM tube has an integrating time 

constant T, then the current is proportional to the number of electrons, 

k, which arrive during the interval T. By subdividing T into many 

intervals AT, each interval becomes an event, and the probability of an 

electron arrival during that interval is p = ctAr where a is the average 
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number received per unit time. The number of events, n, is given by 

x/Ax, By making Ax sufficiently small, the two constraints, n » 1 

and p « 1 can be satisfied. Thus, the probability of measuring a 

photomultiplier tube current of i at some sample time is 

P„U) = 
-err, 
e (orQ 

Tv * il 

If ax » 1 the distribution becomes Gaussian. 

The mean and variance for both distributions is i = o.2 = ax . 
l 

Clearly, the noise statistics for this process are a function 

of the signal level. 

Photographic Film 

The noise characteristics of a signal recorded on a photo­

graphic emulsion are exceedingly complex. However, it is possible 

to make remarkably good predictions of some simple properties through 

the use of a very elementary model. If the density measured in a 

sample area, A, on an emulsion can be assumed proportional to the 

number of exposed grains in A, then the problem becomes analagous to 

the photomultiplier tube example. If E is the average number of 

developed grains per unit area (proportional to exposure) then the 

distribution of density values can be expressed by 

-EA,n..D 
p (D) = — ^ ) 
rA w D1 

As the exposure (or sample area) is increased, the quantity EA 

increases and the distribution becomes gaussian with D = EA = . 
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Since the recorded signal, u(x), is proportional to E J.t is ppssible 

to approximate the variance of the recorded message as a^2(x) = k u(x). 

This property will be used extensively in Chapter 3. 

A review of the many studies of photographic film noise tends 

to suggest that no single simple model will ever give good results 

7' 8 
under all conditions. ' Although the above model is admittedly crude, 

the results have been found to give reasonably good agreement with 

most empirical measurements. In any case, it is a far better model 

than assuming the grain noise statistics to be entirely independent of 

the signal density as is frequently done. 



CHAPTER 3 

PROCESSING METHODS 

For signals in the presence of multiplicative noise, as well 

as for stationary processes, there are many types of processing that are 

of interest. In this chapter, theoretical developments for three 

different processing problems are given. They are 1) filter theory, 

2) signal detection, and 3) signal discrimination. It is assumed 

that the reader already has some familiarity with these subjects/* Al­

though the majority of this report is concerned only with these three 

subjects, it should not be concluded that these are the only cases where 

the presence of non-stationary noise is of potential concern. This 

chapter is limited to these subjects only because it is felt that a 

contribution to the existing literature can be made in these areas. 

Signal Detection 

Statement of the Problem 

Consider the following typical signal detection problem. An 

encoded message is stored as a one-dimensional (for simplicity) array 

on a photographic emulsion. The code is binary with a "1" being in­

dicated by the presence of a signal pulse u'(x). A typical form for 

u'(x) would be a rectangle—band limited by the recording optics and the 

photographic medium. A "0" is indicated by the absence of a signal 

20 
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pulse. The signals are recorded only at intervals of Xq where Xq is 

slightly larger than the width of the pulse. A typical message segment 

is shown in Fig, 3. 

Fig. 3. Typical Binary Message Segment. 

The pulse, u1(x) can only occur at centers 
given by nxQ. s(x) is always > 0. 

Note that the message, s(x), contains noise, n£x), and a back­

ground density, Uq, in addition to the signal pulses, s(x-nxQ). The 

background density can be incorporated either into the noise or into 

the signal. Unfortunately, either choice can lead to some notational 

difficulties. To minimize these problems, the following definition 

will be used 

u(x) s u' (x) + Uq 

Both u(x} and u'(x) will be used throughout the remainder of this 

discussion. 
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What is now desired for this problem is a detection scheme. 

For computational convenience, assume that s(x) has been sampled at a 

rate such that the noise samples are independent but no signal aliasing 

has occurred. Suppose the signal, consists of a set of N samples 

(s^, s^ . • .s^) for each interval nxQ ± xq/2. We now wish to process 

these N values in each interval in a way that permits the fewest wrong 

decisions as to whether the intended symbol was a "0" or a "l". 

General Solution ' . 

To find an optimum solution to this problem, we would like to 

compare 

P (H |{s.}) = Prob [u1 (x-nxQ) occurred | given that {s^} was received] 

to 

P CHC|{ s^}) = Prob [u1(x-nxQ) did not occur j given that {s^} was 

received] 

In general, it is not possible to write simple, analytic expres­

sions for these probabilities. However, with the aid of Bayes1 Theorem, 

the expressions can be rearranged into something easier to handle. 

Bayes* Theorem gives the relationship between two conditional probabil­

ities as 

P(A|B) P(B) = PCB|A) P(A) 

Using this relationship, the desired probabilities become 
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and 

p<Hoi{V> - Spr • p "V 1 V 

To eliminate the unknown probability P({s^}), evaluate the 

ratio of PCH^^s^}) and P(HQ|{S^}). This gives no loss of information 

since the desired decision will be based on which of the two situations 

was roost likely to have occurred. 

P(Hi!-Csi>D =- P(Hx) ^ P({si}|HiD 

PCtgTiTTT PciTT * PCliTTprr 

Note that PCHX) and PC^0) are apriori probabilities and are 

constant for any given system. "Ihus, 

, A(„xo) 

«,CH0|csi}3 pc{si}|Ho: 

The quantity A(nxQ) can, in principle, be evaluated for any 

hypothetical signal location. The higher the value of ACnxQ), the more 

likely it is that a signal Cpulse} occurred at nxQ. The choice of a 

threshold value of A(nxQ) for making a decision is a problem in decision 

theory which is discussed in Chapter 4. 

Solutions for Three Different Noise Distributions 

The evaluation of A(nxQ) depends on the probability distribution 

of the noise. If, for example, one makes the common assumption that 
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the noise is stationary, independent and aussian, the needed probabil­

ities become 

N 
Z 

'o i=l 
parity = c 2~2 ) N / 2  e xp (vvV 1  • ( A si ) N  

and 
N 

= CjJS-z-J exp [-k E (s -U )2/a 2] . (As.)N 

i=l 

Solving for the ratio of these probabilities, one obtains 

ACnx0) " exP {25V.E, [2si(uo"ui3 * ui2 " uo2]J 
O 1=1 

or 

log [ACnx )] = jiy _E SjU! - ̂  E C^2- u 2) 
O 1=1 O 1=1 

Note that the only term in this expression which depends on the 
N 

measured message values is £ s.u.'. The second term is a bias term 
i=l 1 1 

which is constant for a, given u(x) and a constant background. 

"ITie bias term has the effect of normalizing the measurement 

to remove the signal energy as a variable. This is important in decision 

theory and in applications where more than one type of signal is present, 

but in this simple example it is of little significance. 

The significance of this result is that if the measured message 

s Cx) is convloved with the known signal shape and evaluated at x = nxQ 

the value obtained is proportional to the probability that u'(x -



was actually present. This development can be recognized as a 

derivation of the matched filter.*® It should be remembered, however, 

that this result—as well as the use of the matched filter—is only an 

optimum process when the noise is stationary and independent. 

Consider the case where the distribution of message values, s^ 

is determined by poisson statistics. The conditional probabilities 

are now 

N e aUi[au.]si 
P({s. ) |hj » n 1  

1 1 i=i V 

«• "au i* i s • 
N e o[au ] l 

PC(Si>|H0) - n j-f— 
1=1 X 

where a is a normalizing constant given by a = u0/<*02 • With the 

poisson distribution the mean and variance are equal. This makes 

normalization by a necessary since few real process variables have 

this property. 

The ratio of these probabilities, A(nxQ), is 

A(nx ) = n e^^i-1^ [u./u ]si 
i=l 

or 

N N 
log[A(nxo)] = Z si . logCu.j/u^ - E au! 

i=l i=l 

Comparing this result to that obtained for stationary noise it 

is seen that both contain a bias term and a processing signal which is 
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convolved with s fx) and evaluated at x = nx . The fundamental difference 
o 

between the two noise cases is in the structure of the processing signal. 

The significance of these differences in structure has been investi­

gated experimentally and is discussed in Chapter 4. 

Finally, consider the case where the noise is Gaussian distri­

buted but has a variance which is proportional to the signal level, 

u(x). That is, 

a . 2  =  l e u .  
i x 

The proportionality constant can be determined from a knowledge of the 

variance aQz of the background in the presence of the signal. 

a 2 = ku or, k = CJ 2/u 
o o * o o 

a.2 = . u. 
1 uo 

The ratio of probabilities for a Gaussian process with a signal 

dependent variance is given by 

N 
A(nx ) = H (a/a.) • exp {-h [(s.-u^2/^2 - Cs±-u )2/a 2]} 

i=l 

Using the above expression fora^, one obtains 

A(nv> K/Û k • exp tsi2( Jr- -1)+ Vvv>]> 
o i 

or, 

N . N u! u N 
log A(nx ) « -h S log (u./u 1 + -—r E s.2fcp) - g- E u! 

° i=l 10 zao i=l 1 i /tTo i=l 1 
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Here again are bias terms and a convolution term. This time, 

however, the processing signal is not convolved with the message 

directly but with s^2. 

Shown below is a comparison of optimum signal detection tech­

niques for the three different noise distributions. 

Multiplicative 
Gaussian 

2a 2 *uj/ui} 
o 

u 
*SEl0g(u./tl ) + V"2gu• 

x' 2a * l 
o 

Decision Theory 

Test statistics for three different noise distributions have 

been developed. These tests, when applied to a received message, yield 

values which are proportional to the probability that one of the signals 

was present at the message point in question. The problem of taking 

these statistical values and selecting a threshold for making the best 

decision as to whether or not the signal was there has not been dis­

cussed. Although this study is primarily concerned only with detection 

processing, a few of the principles of decision theory are presented 

here as an aid in understanding the processing methods. 

Fig. 4 illustrates the schematic relationship between decision 

theory and detection theory in the monitoring of some arbitrary system. 

Quantity 
Stationary 
Gaussian Poisson 

Message used 
in processing 

{si} 
{si} 

Processing 
signal 

_ ^ {u.} 
a * x 
o 

{logO^/up) 

Bias terms Z(u.2-u 2) Ea(u.-u ) 
2oq2 " o X O' 
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SYSTEM MONITOR 

STATE u(x) 

COST c(u,H) <r 

MESSAGE 

s(x) = u(x) + n(x) 

RESPONSE (H) C<-

DETECTION 

> 
(X) 

AND > 
(X) 

PROCESSING 

V 

A(x)  

o
 11 S3 
V DECISION 

S3
 

II H
 

Ac 

Fig. 4. Schematic Diagram of Decision Theory Model. 

In the system shown, only two possible states are considered. 

Either u(x) is present (hypothesis H = 1) or it is not (hypothesis 

H=0). Information about the system is detected by the monitoring 

unit and processed in some optimum manner to provide the statistic, 

A(x). The value of A at any point x is a measure of the probability 

that the correct hypothesis is either H = 0 or H = 1. Depending on 

the value of the threshold, A , one of the two hypotheses is accepted 
c 

and an appropriate response is made. 

In this simple two state system, four different situations 

are possible. They are (1) u(x) occurs and decision H = 1 is made 

(correct decision), (2) u(x) occurs and decision H = 0 is made (miss), 

(3) u(x) does not occur and decision H - 1 is made (false alarm), and 

(4) u(x) does not occur and decision H = 0 is made (correct decision). 
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A relative cost to the system, c(u,H) is assigned to each of four 

possible situations. The parameter u is either 1 or 0 depending on 

whether u(x) did or did not occur. 

It is now possible to find an optimum value for the threshold 

A£ . It is desired to select Ac so that the expected value of the 

cost of the system is a minimum. The expected cost is given by 

* 

EtcCUjS)} = C(0,0) . Prob (u=0, H=0) + 0(0,1) . Prob (u=0, H=l) 

+ C(1,0). Prob Cu=l, H=0) + CCl,!} Prob (u=l, H=l) . 

It is possible to find a minimum for this expression by using 

relationships similar to g ^ 
c 

* 

Prob (u=0, H-0) = p^ P(s
c(x)/u=0) d(s (x) ) 

where pQ is the a priori probability that u(x) will not occur and 

s (x) is some decision boundary in the multidimensional space spanned 
v 

by the message s(x)(See Chapter III <?f Ref. :9), Following this approach 

one-finds that the minimum cost is given by 

p(s^/u=l) pQ C(0,1) - C(0,CO = A 

pCsc/u=o) ~ I^po * Cd,0) -
c. 

Thus, Ac is an optimum decision threshold for the test statistic, 

Afx), based on the a priori signal occurrance probability and the rela­

tive costs of the four possible decision situations. 
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Detection Plots 

In evaluating the performance of a system such as shown in 

Fig. 4, it should be noted that only two parameters are required to 

characterize the four possible decision situations. The most commonly 

chosen parameters are the detection probability given by 

B = p(s00/u=l)ds(x) 

and the false alarm probability given by 
CO 

p 

a = p(s (x)/u=0)ds (x) 

Ai  >A,  

i- «  

Fig. 5. Typical Detection Curve. 

Plot p(H=l/u=l) versus p(H=0/u=0) as a function of A . Curve 
B is better performance than A. 
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The effectiveness of the monitoring system can be displayed 

by plotting detection and false alarm probabilities as a function 

of the decision threshold, A . Shown in Fig. 5 is a typical plot of 
c 

type used in this study. Each curve is the locus of points obtained 

as A is changed. Note that as the probability of detection is in-

creased by decreasing the threshold from A to A the probability 

of a correct decision when no signal is present (1 - a) decreases. 

The performance indicated by curve B is better than that of curve A. 

This may be due to a better processing method or it may simply repre­

sent the same receiver operating at a higher signal-to-noise ratio. 

The dotted straight line represents the worst case where decisions 

are made purely on the basis of chance. 

Signal Discrimination 

General Solution 

In theory, the problem of signal discrimination is exactly like 

the detection problem.. Conceptually, the two situations may be quite 

different. While signal detection decides whether a kncwn signal is 

present at a particular location or not, signal discrimination decides 
4 

which of two (°r more)known signals is present. Signal detection may 

be thought of as-the special case of signal discrimination where one 

of the two possible signals is the null signal,. 

Following the development pattern in the preceding section, 

consider the following two probabilities. 

PCH^/fs^}) = Prob[u^(xrnxo) occured/given that {s^} was received] 
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and 

P(H2|(S. }) = Prob [u (x-nx ) occurred (given that {s.} was received] X A O 1 

where ' 

UjCx) = u^x} - uQ 

and 

u^(x) = u2(x) - Uq 

are the two possible signals occurring at locations given by nxQ. 

The ratio of these probabilities is formed and found to be 

P(H1|{si}) P({si}|Hi) 
— — — *  c e  

PCH1|{si» PC{si>|H1) 
= A (nxQ) 

Again, A(nxQ) is a test statistic which depends on the noise 

distribution and can be calculated for a received message {s^}. In 

actually making the decision as to which of the signals was present, 

decision theory is used to establish some optimum threshold value for 

A (nxQ) . 

Solutions for Three Different Noise Distributions 

Solutions for Afnx ) are obtained in the same manner as for the 
o 

signal detection case. Thus, without repeating the expressions given 

for the detection case, the results for the same three noise distribu­

tions are as follows. 
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or, 

or 

(i) Stationary noise 

A(nxo) = exp{^i2 E [CSj^-Uj.)2- (s.-u.,. J2]} 
O X»1 

1 N 1 N 

log[A(nx )] = —?. 2 S-C^i-u .) Z (u,?-u ?) 
o i=l 1 11 2a 2i=l 11 

o 

(ii) Poisson noise 

N , . 
ACnxo) - e'aluli~u2ij[uu/u2i]si 

N N 
log[ACnxo)] ̂  Si.log[uu/u2i] -

aQ2 

(iii) Multiplicative Gaussian noise (cr.2 = — . u^) 
o 

A(nx0D = n C~ ̂  exp{^2 [(Si^^Vuji- . ] ) 
1=1 ll o 

log[A(nx ) = -% E logfs /s ) I s 2 i) 
1=1 o 1=1 2i li 

u N 

- 2 5 - 2 *  £uli-u2i' 
O 1=1 

Shoum below is a comparison of these results.according to their 

use in a discrimination problem. 
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Quantity 
Stationary 
Gaussian Poisson 

Multiplicative 
Gaussian 

Message used 
in processing 

Processing 
signal 

1 
uogcuu/u2i)> shf J.1 Z(J0 u2i uXi o 

Bias Terms 

u 
o 

The results in this and the preceding section were applied to 

a range of signal detection and discrimination problems. This work 

and its significance are discussed in Chapter 4. 

Filter Theory 

Optical Filtering Analogy 

The analogy between electrical and optical systems has been 

11 12 
studied extensively in recent years. ' The use of coherent light, 

made practical by the discovery of the laser, has provided motivation 

for much of the exchange between electrical and optical theories. This 

analogy has proven to be of mutual benefit to both sciences. In partic­

ular,.the exploitation of coherent optical processing was greatly 

facilitated by the existence of the appropriate analytic tools in 

electrical systems analysis. Similarly, the ability to observe and 

manipulate such things in optics as frequency and power spectra has 

provided insight to the study of classical filter theory. 
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The electrical-optical analogy can be best appreciated by 

referring to Fig. 6. Fig. 6 illustrates a typical coherent optical 

image forming system. 

Briefly, if the field to the right of plane P, is given by 

u+(x^,y^) = Uj CptjjyjD • "then the optical equivalents 

to the system in Fig. 3-A are given by: 

Electrical ?.aA... 
+ 

Complex input signal u^t) Complex field u^ (x^yp 

Complex output signal u2(t) ++ Complex field u3(x3,y3) 

Filter frequency spectrum HCtu) •*-*• Exit pupil transmission H2(x2,y2) 

Signal power spectrum pss0»0 •*-*" Observed intensity I2(x2Jy23 

System impulse response h(t} -*-»• Point spread function 

for point source at Uj (0 ,0) 

Noise Analogy 

The optical system shown in Fig. 6 is usually applied only to 

coherent incident fields. When incoherent light is used, the system 

is generally reformulated so that intensity (|uCx,y)|2) becomes the 

linear variable. In the context of the coherent system, however, in­

coherent light takes on a different significance. It plays the role 

of additive, uncorrelated noise. 
* 

Assuming this to.be true, it is then possible to express any 

message as the sum of a signal and a noise.term as defined in Chapter 2 
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U.CH 

hCt) 

u 

hCt) 

y. L 

X, / 
1 1 

X* 
-z 

/ 
I/ 

<— -f —> «—f—si *—f —5 
/ 

+£ -f > 

P. P* f3 

Fig. 6. Comparison of Optical and Electrical Systems. 

(A) Passive system characterized by impulse response, h(t). u^t) 

and u0(t) are the input and output signals (B} Optical equivalent 
to A. UjCxi, yi) is incident complex field and ti(x2, yi), H2(XI, y2) 
are amplitude transmittion functions. 
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by 

uJCx^) = ucohCxl"yl) + uincCVyl5 

= [ucohCxl')'l3 + uIncCxl'yl)]-

As discusscd in Chapter 2, it is possible to have noise which is not 

everywhere uncorrelated. This'means that u? is, in fact, 
XILC X X 

partially coherent. While partially correlated noise is not an un­

reasonable physical assumption (all real noise sources as well as 

real field disturbances have some small correlation length), this 

report will continue to be restricted to the case of independent noise 

samples. 

It is also possible to have noise (u^nc) which depends on the 

+ + + -
signal Note that u^ is given by u1 = u^ . t^. Thus if the 

signal is defined as some feature in the amplitude screen, t^, then 

u?nc> which has also passed through the screen, will be modulated by 

tj^ and given noise statistics which are dependent on the signal. If, 

on the other hand, the signal information is contained in 

and t^(x^,y^) is a clear aperture (or, perhaps, a field stop) then 

the noise, u^nc» will not be influenced by the presence of the signal 

+ 
u , . 
coh. 

The field in plane p2 is described by the Fourier transform 

of the field in plane p^ Thus, the intensity distribution, ̂ 2^x2'y2^ * 

^(x^y,,)!2 is proportional to the power spectral density, Pu u . 

l 1 
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Physically, p£ contains the power spectrum from ̂ obCx^y^) plus 

contributions from u. (x y-,). If u. Cx^y,) is stationary, the 
mc x x inc x i 

simple relationships discussed in the section "Spectral Characteristics" 

in Chapter 2 apply. If uincCxi>Vj[) *s effectively uncorrelated, then 

the intensity distribution I2^x2#^r2^ un^orm the n°i-se is de­

scribed as "white". 

It is, however, in the case where the noise is not stationary 

that this model is of greatest benefit. Although the intensity (P ) 

in the p„ plane is uniform for u. uncorrelated, there may still be r2 mc 

some information in the amplitude distribution u2^x2*^2^ frequency 

spectrum) before it is squared. If u^ncCx2*y^) is considered to be 

the product of an uncorrelated uniform intensity field, )u7 Cx.,y.)I2, 
inc j, x 

and an aperture with transmission given by then the problem 

can be solved by the application of optical partial coherence theory. 

For the conditions given in this problem the Zernike-Van Cittert 

Theorem states that the field in the p„ plane from u? (x^yj will r 2 mc 11 

be partially coherent and that the coherence function will be pro-

X2 y2 
portional to T(— , —r- ), which is the Fourier transform of t. (x. ,y.) 

f  f  X X X  

obtained by irradiating the aperture t^ with coherent light. 

If, for example, the noise is signal dependent (the signal in­

formation is contained in the aperture t^(x^,y^) and u^ consists of 

ucoh + uinc' t*ien *t Possible to filter out the signal spectrum from 

ucoh ex"txact information about the signal due to the 

partial coherence of the noise spectrum in the p^ plane. Partial 

coherence theory also states that this information can be observed in 

the Pg plane through the proper choice of filters in the p^ plane. 
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Thus, for a signal in the presence of signal dependent noise, more 

information about the input signal can potentially be extracted 

from the filtered signal than if the noise were signal independent. 

t 

Multiplicative Noise Model 

As this report is concerned almost exclusively with the type 

of noise generated by a Poisson process, it is of interest to deter­

mine what the equivalent optical system for such a process would be. 

In the Gaussian approximation to the Poisson process, it is 

clear that the noise can be considered as a stationary noise source 

modulated by the square root of the signal. That is, in terms of 

the notation used for a general message, 

s(x) = u(x) + nfx) 

where n(x) = (u(x))% • n1 (x) and n* (x) is a stationary noise distribu­

tion. Under these conditions, both the mean and variance of s(x) 

are proportional to u(x). 

This process can be simulated by the system shown in Fig. 3 if 

ucoh(xl5 = 

uT (x,) = n' (x) 
mc v  1 J  ^ J  

and 

t^xp = cuc*m 

Under these conditions,•the' incident message is then given by 

"l0*!5 = Cucoh + "InP t(xl} 
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= UC^2) + Cu(x1))d . n'C^) 

This system is now a possible model for a Poisson process with mean 

value and variance equal to u(x),. 



CHAPTER 4 

EXPERIMENTAL RESULTS 

All of the experiments performed in this study have certain 

features in common. They are concerned with some form of noisy signal 

array. The array is sampled and the data are then processed by 

several different methods. Conclusions are then drawn by comparing 

the results of these different processing methods. 

The majority of the experiments deal with the problem of 

signal detection. Part of this emphasis is because it appears that this 

is the area of greatest promise for the application of the signal 

dependent noise model and part is because many of the results can be 

applied directly to other processing problems. 

Experimental Methods 

Computer Simulation 

The greatest potential application of this work is probably 

in the processing of signals stored on a photographic emulsion. It 

would seem reasonable, therefore, to perform the experimental work 

on photographic emulsions. Unfortunately, there are some complicating 

factors that make such a plan impractical. These factors stem from 

the nature of the noise in photographic emulsions. As discussed in 

Chapter 2, Physical Origins of Noise Distributions, the simple multi­

plicative noise model is, at best, an approximation. Most of the 

41 
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questions about the signal dependent noise processing methods in­

volve questions of degree of improvement. As this degree is 

typically small it was felt that the large uncertainties introduced 

by statistical variations in a photographic emulsion could not be 

tolerated. For example, differences between the stationary Gaussian 

and the multiplicative Gaussian models might be observed but it is 

doubtful that a distinction could be made between the multiplicative 

Gaussian and the multiplicative Poisson distributions. As photo­

graphic film is not the only possible medium for application of these 

theories, it was decided that these more subtle distinctions should 

be measured and that the complicating factor of noise distributions 

in a photographic emulsion could better be left as the subject of a 

separate study. 

The best alternative medium that would permit the study of 

small differences in the processing methods was the computer. Through 

the use of the computer one could guarantee the nature of the noise 

distribution, the independence of the noise samples, the signal dis­

tribution, and an accurate knowledge of all other parameters used in 

any given experiment. Furthermore, the use of the computer for 

simulating data fields proved to be many times faster than recording a 

field on film and sampling with a densitometer. The latter method was 

successfully attempted, however. The results were processed by the 

computer and, except for the difficulties mentioned above, such a tech­

nique proved entirely feasible. 

The computer used throughout this study was Control Data Corpor­

ation's model CDC 6400. 
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SIMULAT Program 

A program was written in Fortran (extended version) to 

accomplish the task of taking a given signal shape, bandlimiting 

it, sampling it, reproducing an-array of these signals on a back­

ground and adding noise according to some desired distribution. The 

program had to be altered frequently to accommodate the requirements 

of a particular experiment, such as in the simulation of circularly 

symmetric, non-separable signals, but the basic outline of the SIMULAT 

program remained unchanged. 

A flow chart showing the essential features of SIMULAT is 

shown in Fig. 7. A copy of the actual program (used for producing 

bandlimited square signals in the presence of Gaussian multiplicative 

noise) is included as Appendix I. 

There are several potential difficulties in simulating a 

signal field. First, all data are sampled. This is necessary regard­

less of whether the field is an actual densitometer trace of a photo­

graphic film or the output of a computer program because the processing 

methods have all been designed to be implemented on a digital computer. 

Sampling the final field, however, raises other problems. 

The signals must be bandlimited or potentially valuable information 

might be lost during the sampling process. Furthermore, it is desir­

able to keep the number of sample points per signal low to keep the 

time required to process the field of signals low. As these are 

two dimensional signals, a signal requiring only five sample points 
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( START ) 

DEFINE CONTINUOUS 
SIGNAL u (x,y) 

c 

FIND FOURIER TRANSFORM 
OF uc(x,y) 

GENERATE UNIT BANDLIMITED 
SAMPLED SIGNAL u'(m,n) 

IN FIELD OF SIZE NSUBX, NSUBY 

ADD BACKGROUND u AND 
o 

NOISE TO FIELD SAMPLE POINTS 

STORE ON 
MAGNETIC TAPE 

REPEAT TO OBTAIN 
ARRAY NSIGX, NSIGY * 

OF SIGNALS 
IF FINISHED 

( STOPj 

Fig. 7. Flow Chart for SIMULAT Computer Program 

This program is used to simulate a field of bandlimited, 
sampled signals in the presence of noise of a known distribution. 
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in one dimension will require a total of twenty-five sample points in 

two dimensions. This is also the size of the processing signal that 

must be convolved with the signal array. Since some arrays contain 

approximately 105 points it is important to keep the size of the 

processing signal relatively small. Thus, it is necessary to exercise 

some care in bandlimiting the continuous signal u (x,y) and in select-
c 

ing the sample 

these quantiti 

spacing and field size. The relationship between 

tes is shown in Fig. 8. 

The bandlimiting process is actually accomplished by assuming 

that the given signal u (x,y) is periodic (not an unreasonable 

approximation since u (x,y) typically occurs in large arrays). By 
c 

doing this, the signal spectrum can then be expressed as a sampled 

spectrum. Such a spectrum is not only easier to handle in the computer 

but it greatly facilitates reconstruction of the bandlimited signal 

u1 (m,n). 

The sample interval is normalized to unity. This establishes 

jnal frequency component at one-half to avoid aliasing, 

scale is determined by the scale of the signal which is 

field size, NSUBX. For most of the experiments, the 

the maximum si 

The frequency 

limited by the 

7 units in one 

field size, NSUBX, was 20 units and the signals ranged from 3 to 

dimension. Larger signals and field sizes means less 

signal distortion due to bandlimiting but more sample points to 

process. As t 

the distortion 

le signal shape for most experiments is somewhat arbitrary, 

is relatively unimportant.. 
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Fig. 8. Analysis of Signal Bandlimiting and Sampling Operation. 

Given signal u (x), it transform U (f) is bandlimited so that 
the signal u'(m) can cbe sampled. The dotted samples and transforms 
are a result of the computer representation. 
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Fig. 9 illustrates the results of SIMULAT for a 4 x 4 square 

in a 20 x 20 field. The unit sampled field may be repeated as many 

times as desired before adding the background and noise. 

The noise, which is added to each sample point, is generated 

in the computer to give the desired distribution. The CDC 6400 

computer supplies a sequence of random numbers uniformly distributed 

between 0 and 1 on demand. These numbers can be converted to a Gaussian 

distribution by the following transformation.^ 

x1-xQ = a. (-2 log^ypJs . cosC27ry2) 

X2"X0 = C"2 loseyl^ * sinC2iry2) 

where y , y are a pair of uniformly distributed random numbers and 
1 2 

x2 are the new pair of independent, Gaussian distributed numbers. 

The distribution has a variance given by a2 and a mean value of XQ. 

The specific method used for implementing this transformation 

and adding the noise value to the signal plus background can be seen 

in the SIMULAT program list in Appendix I. This approach allows 

the use of either stationary or multiplicative Gaussian distributions. 

Although Poisson noise was not used in the SIMULAT routine, 

tests were made using the log normal distribution—which is closely 

related to the Poisson distribution. The log normal distribution is 

easily generated by taking the loge of x^, x2 in the above expressions. 
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-to 

Fig. 9. Unit Bandlimited Signal Matrix From SIMULAT. 

Signal is 4 x 4 square in 20 x 20 field bandlimited to permit 

unit sample interval. 
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Signal Detection 

Processing Programs 

In the experiments to determine the effects of multiplicative 

noise on signal detection methods, four different processing procedures 

were employed. Although separate computer programs were written to 

implement each of the methods, all of them followed the same general 

procedure illustrated by the flow chart in Fig. 10. The four programs 

are AVERAGE, MATCHED, MULTIPL, and POISSON. All the programs involve 

the convolution of some processing signal sp(m,n) with the message 

function, s(m,n). For the AVERAGE program the processing signal has 

unit amplitude over the domain of the hypothetical signal. This is 

the easiest and most common type of signal processing. The MATCHED 

program uses the definition of the signal itself as a weighting 

function. This is the classical matched filter and provides optimum 

processing when the noise is Gaussian distributed, additive and in­

dependent. The MULTIPL and POISSON programs use the optimum pro­

cessing signals derived in Chapter 3. A copy of the MULTIPL program 

listing is included as Appendix II. 

An important feature of these programs is that the message 

is read from magnetic tape on demand from the processing program. 

This keeps the required storage capacity of the computer at reasonably 

low level and permits arbitrarily long messages. Many experiments 

were run with messages of 80,000 words in length (100 x 800 matrix 

of samples). Processing on the CDC 6400 computer'typically required 
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Fig. 10. Schematic Flow Chart for Typical Processing Program. 
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15 seconds of CPU time fox the 80,000 word messages. Variation in 

processing time between the four programs was less than ten percent. 

There were, typically, ten times as many independent hypothet­

ical signal locations at which no signal was present as there were 

locations of actual signals. Messages with 80,000 words, for example, 

contained 200 signal locations and about 2500 other locations that 

were tested but had no signal present. 

The value of the test statistic A, at each location was compared 

sequentially with as many as forty different threshold values--ranging 

from 10_1 to 105—to cover a wide range of decision levels. 

The bias values (see section on Signal Detection in Chapter 3) 

were calculated differently for each of the four programs. Their 

inclusion is of little importance in most of the experiments. 

A typical printed output of a processing program is shown 

in Appendix III. 

Typical Comparison of Processing Methods 

In an experiment of this type there are many parameters which 

must be specified. In particular, the signal type, noise distribution, 

background level, and signal-to-noise ratio all affect the results. 

While each of these parameters will be discussed, this section will 

be restricted to an experiment where the number of signals present 

is varied to determine the number needed for statistical validity. The 

rest of the variables are held constant.. The procedures used are 

typical of those used'in subsequent experiments. 
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The signals used were squares three sample units in dimension 

and bandlimited to avoid signal aliasing. The domain of the pro­

cessing signal was chosen to be a 5 by 5 array of sample points. Points 

outside this region were all less than one percent of the peak signal 

value. Descriptions of the processing signals for the MATCHED program 

Cwhich is also a description of the known signal), and the AVERAGE, 

MULTIPL and POISSON programs are shown below. 

MATCHED AVERAGE 

.0 .03 .03 .03 .0 1.0 1.0 1.0 1.0 1. 

.03 .93 .96 .93 .03 1.0 1.0 1.0 1.0 l.i 

.03 .96 .99 .96 .03 1.0 1.0 1.0 1.0 1. 

.03 .93 .96 .93 .03 1.0 1.0 1.0 1.0 1. 

.0 .03 .03 .03 .0 1.0 1.0 1.0 1.0 1.' 

MULTIPL POISSON 

.0 .03 .03 .03 .0 .0 .03 .03 .03 .0 

.03 .48 .49 .48 .03 .03 . 66 .67 .77 .03 

.03 .49 .50 .49 .03 .03 .67 .69 .67 .03 

.03 .48 .49 

CO •
 .03 .03 . 66 .67 . 66 .03 

.0 .03 .03 .03 .0 .0 .03 .03 .03 .0 

The size of the message was varied for each of three different 

runs. The first run contained 50 signals and 691 test locations not 

containing signals. The second run had 200 signals and 2821 test 

locations and the third.run had 400 signals and 5642 test locations. 
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The noise in all three cases was Gaussian distributed with a 

variance proportional to the mean signal level. Specifically, if 

u(m,n) is a description of the known signal (see MATCHED above) 

then the message at a signal location is given by 

s(m,n) = u(m,n) + n(m,n) 

where 

u(m,n) = u'(m,n) + Uq 

The background, Uq, was given by 

u = 1.0 
o 

and the signal dependent noise variance by 

oQz (m,n) » u(m,n) 

The purposes of this experiment are to see what effect, if any, 

the multiplicative noise model might have on a typical signal detection 

problem and to see what changes occur in these results as the number 

of signals tested is increased. 

Using the detection curve discussed in Chapter 3 (see Fig. 6) 

the results of processing the 50, 200, and 400 signal messages using 

a matched filter based on independent Gaussian noise are shown in Fig. 

11. 

Note that in order to increase the graphical resolution, the 

detection curves are plotted on a log-log scale. The'scale in the 

vertical direction extends a full decade more to.reflect the increased 
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Fig. 11. Results of MTACHED Signal Detection on Different 
Message Sizes. 

Processing parameters are identical for the three curves. 
Differences are due to inadequate numbers of signals for good statistical 
results. 
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precision due to the presence of ten times as many test locations 

without signal as with signals. 

Before evaluating the statistical errors due to inadequate 

numbers it is first necessary to consider how well the plotted curves 

reflect what happened in the actual experiment. Fig. 12 shows 

an enlarged section of two typical detection curves. The solid 

connecting lines are purely hypothetical. Because of the nature of 

the digital computer processing, however, the points plotted for the 

different threshold values are essentially error free. Since the 

curves must be monotonically decreasing, the connecting line must lie 

somewhere between the dashed, rectangular error limit lines. Re­

calling that the coordinates can assume only a finite number of dis­

crete Values, the dotted line is a possible curve which might be 

obtained in the limit of a continuous range of threshold values. Thus, 

the ability to "resolve" two experimental curves can be determined 

by looking for overlap in the rectangular error limits between the 

plotted points. 

Returning to the question of error due to insufficient statistics 

two conclusions can now be drawn from the curves shown in Fig. 11. 

First, the agreement between curves is much worse at the ends 

than at the center. This is reasonable since only a small number of 

samples are involved in establishing these points. Second, to establish 

a curve over a reasonable range with a precision limited only by the 

errors due to the finite.number of threshold values (sample points) used 

it is necessary to use a minimum of several hundred signals in the ex--

periment. 
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Fig. 12. Error Limits for Experimental Detection Curves. 

Detection curve A can be said to be unequivocably better than 
B for this experiment over any range not containing any overlap area. 
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Before becoming resigned to the use of large numbers of signals, 

however, it should be noted that this analysis is only for establishing 

the absolute performance of one detection method applied to a message 

described by a particular set of noise statistics. If the goal is 

simply to find the relative performance under two different experimental 

conditions then the requirement on the number of samples needed is 

reduced. 

Consider, for example, the relative performance of processing 

under the assumption of independent, Gaussian statistics {MATCHED 

program), processing assuming multiplicative Gaussian (MULTIPL), and 

multiplicative Poisson (POISSON) noise statistics. The results of 

these three programs applied to the message field containing only 50 

signals is shown in Fig. 13. Because all of the methods are looking 

at the same noise values, it is possible to conclude that MATCHED 

and POISSON processing are essentially equal and that MULTIPL pro­

cessing gives superior results for the parameters used in this one 

short experiment. 

Finally, for a more convincing comparison of the three 

"optimum" signal detection methods plus processing by taking a simple 

average over the signal domain (AVERAGE program), the results of all 

four programs based on 400 signals is shown in Fig. 14. The dotted 

line represents the curve that would be obtained if decisions were 

made purely on a random basis. 
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Fig. 13. Comparison of MATCHED, MULTIPL, and POISSON Processing for 
50 Signals. 

Relative performance is comparable to that obtained for much 
larger field sizes. 
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Conclusions based on the curves in Fig. 14 are: (1) all 

three "optimum" methods give better results than simple averaging, 

(2) matched filters based on independent Gaussian statistics and on 

multiplicative, Poisson statistics give essentially equal results, 

and (3) use of the matched filter based on multiplicative, Gaussian 

noise yields an improvement over the other methods. The magnitude 

of the improvement for the MULTIPL processing over the MATCHED pro­

cessing is that for a given percentage of signals correctly detected, 

the false alarm rate will be about 25-30% lower for the MULTIPL 

processing on this type of message. 

Effects of Signal-to-Noise Ratio 

In general, the effects of increasing the signal-to-noise 

ratio in a signal detection problem are easy to predict. If the 

noise is signal independent, the increase in noise will have no effect 

on the method of processing or the shape of the matched filter. The 

detection curve will be shifted in location but no other changes should 

be expected. In the case of signal dependent noise, however, the 

situation is potentially more difficult. In addition to the shift in 

the detection curve as shown in Fig. 15, the shape of the processing 

signal also changes indirectly. Although there is no mathematical 

dependence of signal shape on the noise variance, the restrictions of 

the message to all positive values means that the only realistic 

way to have signal-to-noise ratios much less than one is to reduce 

the amplitude of the signal relative to the'background level . 
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Fig. 14. Comparison of MATCHED, MULTIPL, POISSON, and AVERAGE 
Processing for a Large Signal Field. 

Results are based on the processing of 400 signal locations and 
5642 locations without signals. Dotted curve represents performance 
when decisions are made randomly. 



61 

AMP 

AMP 
?7.8 

AMP 

CD 
CO 

O 
2 

I <75* 

f-o 
UJ 

aE 70 
o o 

80 

?e eo so o 9 

% CORRECT S I G N A L  P R E S E N T  
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Ratios. 

Processing of 50 bandlimited Gaussian signals (a= /2~ ). The 
processing signal is defined over a 5 x 5 square. AMP is the value of 
the aussian signal at its center. The background level and noise 
variance are both equal to one. 
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As the processing signal is defined by 

sp(m,n) = u'Cm,n)/(u'(m,n) + uQ) 

it is clear that as the signal u*(m,n) becomes small compared to the 

background, Uq, the processing signal simply becomes proportional to 

the signal itself. This is the same as optimum processing in the 
•» 

presence of signal independent, Gaussian noise. This is to be expected 

since when the signal-to-background ratio is small the message level--

and hence the noise variance--is essentially constant. 

From this argument it can be seen that the greatest difference 

in performance between the MATCHED, MULTIPL and POISSON programs should 

come when the signal-to-background ratio is much greater than one. 

This is unfortunate for two reasons. First, it is difficult to obtain 

reliable statistical information in detection problems where the 

signal-to-noise ratio is high because of the very low error probabil­

ities, a and & (false alarm rate and miss rate). Secondly, this case 

is also the one of least importance in signal detection problems, as 

when the noise is very small, elaborate processing is not usually justi­

fied. 

For these reasons, most of the experiments discussed in this 

report have a signal-to-noise ratio of approximately unity. The band-

limited squares, for example, usually have unit amplitude and are re­

corded in the presence of noise with unit variance. 
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Effects of Signal Structure 

Because of the shape of the optimum filter for signal de­

tection changes according to the noise model, it is of interest to 

determine the dependence of signal shape on the effectiveness of 

different processing methods. The relationships between a known 

signal, u'(x), and the processing signal which were developed in 

Chapter 3 for the three noise distributions are repeated below for 

convenience. 

NOISE DISTRIBUTION PROGRAM 

GAUSSIAN, INDEPENDENT MATCHED 

GAUSSIAN, MULTIPLICATIVE MULTIPL 

POISSON, MULTIPLICATIVE POISSON 

One might expect to observe the greatest difference in per­

formance of the three methods when a signal is used that gives the 

greatest difference in the processing signals. The processing signals 

for the signal dependent noise models show the greatest distortion 

from the independent noise processing signal (u*(x)) when the known 

signal is large compared to the background, Uq. As discussed in the 

preceding section, however, the signals studied here will be restricted 

to those with magnitudes on the same order as the background. 

The least difference in methods should be observed when the 

known signal has no structure. That is, a signal with a constant 

PROCESSING SIGNAL 

u' (x) 

u'(x) 

l°ge 

u'fx) + u 
^ J o 

ju'Cx) + u0l 



64 

amplitude--but with an arbitrary domain—will transform into another 

constant amplitude signal over the same domain. Thus, the processing 

signals will be the same (except, possibly, for a difference in the 

bias level) for all three cases. Note that this does not necessarily 

mean that the processing programs will all give identical results. 

The MULTIPL program is operating on a message which has been squared. 

Although most of the experiments in this study were conducted 

with bandlimited, three unit wide squares, a series of bandlimited, 

Gaussian signals (width cr= f~2~ ) was also investigated. Three runs of 

50 Gaussian signals with amplitudes 2.0, 3.0 and 4.0 were processed 

and compared to the processing of SO, 3x3 bandlimited square signals. 

All four sets of data were recorded with the identical sequence of 

random noise values. 

The purpose of this experiment was to determine if the 

advantage in the signal dependent noise processing observed with the 

3x3 bandlimited squares is increased by the use of a signal with 

greater structure. A plot of the two basic signal shapes and their 

corresponding processing signal shapes is shown in Fig. 16. All 

signals are normalized to unity at the origin to permit a better 

comparison of their functional shapes. Note that the difference in 

the processing signals is greatest for the large amplitude Gaussian 

signal and least for the 3x3 bandlimited squares. Also, while 

the shape changes as a function of the amplitude of the Gaussian 

signal, this effect is relatively small compared to the differences 

due to the noise model. 
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(A) 3X3 HANDLEMITED SQUARE 
up(x) 

HULTIPI, 

r-a 

(B) iJi'iIJDLIMITED GAUSSIAN 

sp(x) 

MULTIPL 

POIoSON 

Fig. 16. Comparison of Processing Signal Shapes for Different Noise 
Models. 

All curves are normalized to unity. The description of the 
known signal is the same as the MATCHED processing shape. 



The results of processing these four sets of data were some­

what surprising. The detection curves for the 50 bandlimited squares 

were shown in Fig. 13 and are repeated here in Fig. 17 along with the 

curves for the SO Gaussian signals with an amplitude of 3.0. TTie 

relative performance of the four programs was essentially the same 

for all three sets of Gaussian signals—hence, only one is shown. 

The most unexpected result is that the Gaussian signals show less 

distinction between processing methods instead of more, as was pre­

dicted. One explanation for this is-that while there were nine nearly 

equally weighted points used in the definition of the bandlimited 

squares, most of the information about the presence of the Gaussian 

signal is concentrated in the single point at the origin. This is 

not important to the choice of the proper noise model to use for best 

detection, but it does mean that to obtain reliable statistical infor­

mation about their detectability, many more test signals are required 

than are required for the bandlimited squares. 

One conclusion does seem justified, however. The most important 

difference in optimum signal detection in the presence of multiplicative 

noise is not due to differences in the shape of the processing signals. 

This observation suggests that the advantage of the MULTIPL processing 

program which was observed in the section "Typical Comparison of 

Processing Methods", is due to the squaring of the message values before 
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Effects of Squaring Message 

The hypothesis that the primary benefit in processing accord­

ing to the multiplicative noise model comes in squaring the message 

amplitude before processing can be easily tested. A new processing 

program, SQUARED, was written that squared the message values as 

was done in MULTIPL, but then weighted all of the hypothetical signal 

values equally. This is equivalent to the AVERAGE program being applied 

to the squared message field. Any advantage over either the MATCHED 

or AVERAGE program demonstrated by the SQUARED program must be due 

only to the squaring operation. 

The MATCHED, AVERAGE, and SQUARED processing programs were 

applied to a message field containing 400 3x3 bandlimited square 

signals. The resulting detection curves are shown in Fig. 18. 

The detection curves show several interesting effects. First, 

the performance of the AVERAGE and SQUARED programs depend critically 

on the size of the area that is being averaged. For either of the 

two sizes used, however, the SQUARED program gives significantly 

better results than the AVERAGE program. When the averaged area was 

a 3 x 3 square the AVERAGE and MATCHED results are essentially equal 

and inferior to the SQUARED results. These observations confirm the 

hypothesis of the advantage of using a squared message field when in 

the presence of multiplicative noise and indicate that matching the 

processing signal shape exactly to the known signal is of minimal 

importance. 
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Fig. 18. Results of Processing by Averaging Squared Message Values. 

Results are based on the processing of 400 3x3 bandlimited 
square signals. Curves A and B averages over a S x 5 square. Curves 
C and D are averages over a 3 x 3 square. 
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Effect of Changes in the Background Level 

One of the problems that occurs when the signals are re­

corded on photographic emulsion is that the noise statistics change 

as the background density changes. This is true even when the in­

dividual signals are of low amplitude, and can be modeled by independent 

noise. The change in the background by itself can be compensated for 

by changing the bias term in the independent noise model but it is 

not clear what the effect of incorrectly estimating the new noise 

variance will be. 

This question was investigated by simulating a field of 300 

3x3 bandlimited square signals in the presence of multiplicative 

noise and with a changing background level. The exact field conditions 

were 

NOISE SIGNAL 
BACKGROUND u_ VARIANCE oQz AMPLITUDE 

o 

FIRST 100 SIGNALS 0.5 0.163 0.2 

SECOND 100 SIGNALS 0.75 0.200 0.2 

THIRD 100 SIGNALS 1.0 0.231 0.2 

These figures describe a field where the noise variance is everywhere 

given by 

aN2 (x) = 0.231 u(x) 

This field was processed by the four programs, AVERAGE, MATCHED, 
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MULTIPL and POISSON. The MULTIPL and POISSON program always used 

the correct estimate of background and variance while the MATCHED 

program assumed a variance of 0.2 for the entire field. The results 

are shown in Fig. 19. 

At first glance, the results appear inconclusive. In the 

regions of very low false alarm rate or very low miss rate the MULTIPL 
* 

and POISSON processing appear to offer an advantage over the MATCHED 

processing. This advantage decreases in the region where the false 

alarm and miss rates are more nearly equal. 

These observations are, in fact, predictable with the aid of 

some subtle arguments involving more decision theory than detection 

theory. Specifically, it can be shown that the effect of incorrectly 

estimating the noise variance is of no significance in a binary de­

cision when the decision threshold has been chosen to make the two 

events equally probable. As one event becomes increasingly more likely, 

an error in the predicted decision boundary occurs and a slight de­

crease in the detection rate for that threshold follows. A more 

thorough explanation of this effect is outside the scope of this report. 

It should suffice to note that the behavior observed in the detection 

curves in Fig. 19 is supportable by theory and represents the magnitude 

of improvement that might be expected by using a multiplicative noise 

model for this detection problem. 

Effects of Noise Distribution 

In all of the preceding experiments the noise in the message 

obeyed a truncated, Gaussian distribution with a variance proportional 
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Fig. 19. Results of Processing Message with Varying Background Level. 

Curves are based on 300 3x3 bandlimited square signals. 
Three different backgrounds were used, u =# 0.5, 0.75, 1.0. The noise 
variance was given by cr^2 (x) = 0.231 u (xj. 
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to the mean message level. The most frequently used distribution is 

illustrated in Fig. 20. While this is a reasonable model to apply 

to many physical processes, it is of interest to investigate the 

dependence of the processing methods proposed here to other noise 

distributions. 

Fig. 20. Typical Gaussian Distributions of Noise Values. 

The two curves are for (A) p(n./s. = 1.0) and (B) p(n. / s \  = 2.0) 
The variance is equal to s.. 11 1 x 

It would have been desirable to test the detection methods in 

the presence of pure Poisson noise. Because of the large number of 

points needed (approximately 100*000 each with different mean and vari­

ance) generating true Poisson noise would have been too costly. Instead, 

-a -I 
1 J 1 1 r- 1 r 

0 J 2 3 ^ 5 ' 6 7 
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it was decided to use log normal distributed noise which is easier to 

generate and bears a close resemblance to the Poisson distribution. 

A message containing 50 3 x 3 bandlimited square signals was 

recorded with a background equal to 1.0. The noise was log normal 

distributed with a variance equal to the mean signal level. The noise 

distribution for two points, s^ = 1 and s^ = 2, is shown in Fig. 21 

and should be compared with the truncated Gaussian distribution shown 

in Fig. 20. 

1 I I I 1 I I » 
0 J Z 3 f- 5 6 7 

Fig. 21. Typical Log Normal Distributions of Noise Values. 

The two curves are for (A) p(n./s. = 1.0) and (B) p(n./s. = 2.0) 
The variance is equal to s^. 1 

This field was processed and the.resulting detection curves 

are shown in Fig. 22. The obvious conclusions are CI) the MULTIPL 

processing is significantly inferior to the MATCHED and POISSON programs 
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Fig. 22. Detection Curves for Signals in the Presence of Log Normal 
Noise. 

Results are based on the processing of 50 bandlimited Gaussian 
signals of amplitude equal to 3.0 in noise with unit variance. 
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and (2) the MULTIPL performance is relatively worse in the region 

where a low false alarm rate is used. Both of these conclusions 

can be seen intuitively by a careful examination of Fig. 21. The 

probability of receiving a noise value when no signal is present that 

is many times larger than the average level when the signal is present 

is quite high. Squaring these message values accentuate this problem 

and makes the elimination of all false alarms very difficult. 

These results emphasize the importance of accurately knowing 

the noise statistics in a message before attempting to process. 

Signal Discrimination 

The theory of optimum signal discrimination is discussed in 

Chapter 3. It is mentioned there that the problem of discriminating 

between the occurrence of two (or more) known signals in the presence 

of noise can be considered as an extension of the general signal de­

tection problem. If brief, a field containing only two signals of known 

shape should be processed by convolving the message with a signal 

that is related to the difference of the two signals. More specifically, 

the optimum processing signal for Gaussian, stationary noise is 

spCm,n) = -~z [uiCm,n) - u2(m,n)] 
o 

and for multiplicative, Gaussian noise is 

. .u . ^ • ^ • 

sp(m,n) = -^-2- I U2(ra^n) " Ul (m,n) J 

where ui(m,n) and uaCm,n) are descriptions of the known signals. 
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An experiment was conducted using 100 bandlimited circles of 

a radius giving both signals an integrated area of 25. Hie signals 

had unit amplitude and were recorded in the presence of Gaussian, 

multiplicative noise with unit variance and background level. Cross 

sections of two signals are shown in Fig. 23 along with the optimum 

processing signals described by the equations above. 

The MATCHED and MULTIPL programs were revised to handle the 

signal discrimination problem. They were applied to the combined field 

of bandlimited circles and squares and the resulting discrimination 

curves are shown in Fig. 24. 

Fig. 24 shows that processing on the assumption of multiplica­

tive noise does give fewer errors than the independent noise model. 

The improvement is on the order of 10% fewer wrong decisions. This 

appears to break down in the regions above 90% correct decisions for 

either of the signal types but this is probably due to the small 

number of samples (less than 10) involved in establishing these points. 

Simple Filtering 

The general topic of filtering as a method of processing is 

much too broad to be covered comprehensively in a study of this type. 

The purpose of including this topic here is to present some simple 

examples of signal processing in the presence of signal-dependent 

noise by operating in the frequency domain. 

Continuous Detection Filtering • 

In the'section, Signal Detectionj message fields are processed 

to determine if a known signal is present at some specific location. 
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optimum processing signals for stationary and multiplicative, Gaussian 
noise. 



79 

O 
UJ 

O 
LU 
I— 
UJ 
Q 

cn 
LU 

o 

2: 
o 

UJ 
0 
or 
LU 
01 

7 

?5 -! 

70 - : 

go -

50 -

0 

MULTIPL 

MATCHED 

RANDOM 

T **' 

• -• 

50 30 
j 

HO 
I 

75 97 

PERCENT SQUARES DETECTED 

Fig. 24. Discrimination Curves for Bandlimited Circles and Squares. 

Results of process 100 bandlimited.circles.and 100 bandlimited 
squares—all of equal signal energy—in the presence of multiplicative, 
Gaussian noise. Approximate signal-to-noise ratio is one. 



80 i 

This is done by a convolution type of process where the convolution 

is evaluated only at the locations of interest. If the location of 

the known signal is not known it becomes necessary to evaluate the 

convolution process for every point in the field. If the system under 

consideration is defined in a way which preserves linearity (note 

that the multiplicative, Gaussian noise model requires squaring the 

message field) then this processing may be performed by a simple 

filtering operation in the frequency domain. The filter is described 

by the Fourier transform of the convolving processing signal. 

In the case of signal-independent noise, the matched filter is 

just the complex conjugate of the Fourier transform of the signal it­

self. When the noise is multiplicative, Gaussian, or Poisson dis­

tributed, the filter becomes the complex conjugate of the Fourier 

transform of the optimum processing signals derived in Chapter 3. 

The interpretation of this filter is not so simple. Not only are 

the Fourier transforms of the processing signals difficult to find in 

general, but they vary as a function of the noise level. To illustrate 

this effect, a one dimensional cosine wave was used as the object and 

the matched filter was calculated for varying levels of multiplicative, 

Gaussian noise. The results are shown in Fig. 25. 

In the limiting case of the background, Uq, being much larger 

than the signal, u(.x), it can be seen that the filter becomes identical 

to that used for signal-independent noise. As Uq becomes small (for 

this example it cannot be.less than u'(0) because'of the positive 
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Uq is the background level. The' signal is given by 

' fx) = s cos (2TT£ X) . 
o o 
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message restriction) the processing signal and its Fourier transform 

depart markedly from the independent noise case. It should also be 

remembered that the message being filtered in this example is s2(x) 

where s(x) = u' (x) + Uq + n(x). 

The principles of continuous filtering for optimum signal 

detection have been applied to a real problem.A section of the 

sky that contained several weak star images was photographed on a 

Kodak 103a-D photographic plate. The density profile from a portion 

of the plate was sampled and recorded on magnetic tape (approximately 

20,000 readings). The field was then processed using the CDC 6400 

computer by passing it through a matched filter for a weak star 

image in the presence of multiplicative, Gaussian noise. The output 

at each point in the field was compared to ten different threshold 

values and an appropriate number was assigned to each. Contour lines 

of equal probability of occurrence were then drawn on the digitized 

output. The results are shown in Fig. 26. 

Figures 4A and 4B are both processed fields. Fig. 4A has one 

additional lower contour level. Fig. 4C is a contour plot of the— 

original field before processing with threshold levels which can be 

compared to those in 4B. Note that some of the weaker spots in 4C 

disappear in 4B whereas others are enhanced. This action is pre­

sumably the discrimination of weak signals from noise. Unfortunately, 

due to the nature of the original field it is impossible to verify the 

results. 
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Fig. 26. Continuous Optimum Signal Detection Filtering of a Star Field. 

(A) Contours of equal probability that a star was present 
centered at that point, (B) same output with lowest contour eliminated, 
and (C) isodensity contours of original field. 
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Bandpass Filtering 

Filtering for purposes of detecting the presence of a known 

signal is a relatively specialized problem. More commonly, the pre­

cise shape of the signal is unknown and the problem is to filter out 

as much of the noise as possible while leaving the signal spectrum 

relatively undistorted. When the noise is stationary, the filtering 

procedure is well established and, with the aid of the Fourier trans­

form, is easily conceptualized. When the noise is signal dependent 

the situation is less clear. 

In Chapter 3 a model was presented to aid in visualizing the 

effects of operations in the frequency domain of a message containing 

signal-dependent noise. To test the validity and usefulness of this 

model, a simple message was recorded on Kodak 35 mm Tri-X film and 

placed in a coherent optical filtering system similar to the one 

illustrated in Fig. 6, Chapter 3.*^ The object transparency, photo­

graphed in coherent light, is shown in Fig. 27-A. When this trans­

parency is placed in a coherent beam (He-Ne laser] the transmitted 

amplitude can be written as 

st(x,y) = ut(x,y) + nt(x,y) 

where u^ is the ideal two-level signal. The statistics of the trans­

mission noise, n , are dependent on the signal level. Specifically, 
v 

if the film density is assumed to have a noise distribution which is 

Gaussian and a variance.which is proportional to the mean density level, 

then it can be shown that if the transmitted field, u^., is described 
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All images are approximately 15X magnification. Conditions are 
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illumination using noise spectrum only. 
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by 

u 
t 

u 
tmax 

then the variance of the field is given by 

ot2Cx,y) « u 
2 2 
tmax 

- ut(x,y) 

where u 
tmax 

is the transmitted field at zero density and is the 

expected transmission. With this noise distribution and the aid of 

the Multiplicative Noise Model presented in Chapter 3, it is possible 

to consider the transmitted field as the independent sum of the ideal 

coherent, transmitted signal field and an incoherent field of 

intensity given by at2 (x,y). In the transform plane of the coherent 

optical filtering system the signal transform is superimposed on the 

partially coherent field from the noise term. 

two different pupil (filter plane) configurations. Figure 27-B is 

the ordinary coherent image obtained by passing all spatial frequencies 

in the f/10 system as shown in Fig. 28-A. Fig. 27-C is the image 

obtained when a portion of the frequency spectrum containing no infor­

mation from the signal term is used. This filter condition is shown 

in Fig. 28-B. 

notice that the contrast has reversed in Fig. 27-C.. This is due to the 

use of light from the signal-dependent noise term only'.which is de­

scribed by at2(x,y). 

Figures 27-B and 27-C are recordings of the image plane for 

In comparing the photographs in Fig. 27, it is significant to 
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This contrast reversal was not obtained for all pupils which 

excluded the signal spectrum. For lower noise frequencies this simple 

model typically breads down due, apparently, to the exclusion of the 

effects of phase noise in expressing the transmitted field in terms 

of film density. A more thorough study of these effects would be 

desirable. 

(A) 

A/ Bv/mm 

J— ry 1000 /mm 

CJx 

Fig. 28. Illustration of Filter Plane Conditions. 

(A) is the configuration used in obtaining the photograph in 
Fig. 27-B (B) was used for Fig. 27-C. 



CHAPTER 5 

CONCLUSIONS 

The first objective of this study was to develop a better 

understanding of the significance of signal-dependent noise. While 

all of the results presented here help to achieve this goal, the 

section "Filter Theory" [Chapter 3) and the experiment described 

in "Bandpass Filtering" (Chapter 4) are of particular interest. 

In Chapter 3, a method for simulating a message recorded in 

noise of any arbitrary signal dependence by using a coherent optical 

imaging system was introduced. This method follows from the obser­

vation (first suggested by A. Lohmann in 1965) that the expression 

for the mutual intensity of a partially coherent field is mathe-

13 
matically equivalent to a noise autocorrelation function. Thus, 

white noise becomes equivalent to an incoherent field with an intensity 

everywhere proportional to the noise variance. Hie Fourier Transform 

of the incoherent field describes the noise spectrum. The power 

spectrum of the message can be observed as the irradiance distribution 

in the back focal plane of the first lens in the system. 

The experiment reported in Chapter 4 illustrates both the 

signal-dependent nature of film grain noise and the utility of the above 

model in predicting the effects of signal-dependent noise in a simple 

88 
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bandpass filtering system. It shows that even though there is useful 

information in the noise spectrum about the signal, care must be 

taken in filtering the spectral components because the reverse contrast 

of the "noise" image would normally subtract from the contrast of the 

"signal" image. 

It would be of interest to explore this model further by using 

it to predict or measure the nature of the signal-dependence of grain 

noise in other types of emulsions. 

The second objective of this study is to derive statistical 

tests for the optimum detection of signals recorded on photographic 

film. The sections "Signal Detection" and "Signal Discrimination" 

in Chapter 3 are addressed to this problem. 

It was found that for the detection of a known signal in the 

presence of multiplicative Gaussian noise, the optimum processing 

of a sampled message is obtained by generating the test statistic 

given by 

N u. -u 
A = Z s? . ——-

i=l 1 Ui 

Where the known signal is described by the N values {u^}, the sampled 

message is described by ts^} and uq is the background level when no 

signal is present. When the multiplicative noise is described by 

Poisson statistics, the optimum test statistic is found to be 

N 
. A = E -s. . log (ii./u ) 

i=l 1 e i o 
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When discriminating between two signals, ^s2i^* 

optimum test statistics become 

N l 1 
A = £ s? . C — — ) 

i=l x U2i Uli 

for multiplicative, Gaussian statistics and 

N 

A °±h Si ' l0geCuH/U2i3 

for Poisson statistics. 

The work done in simulating signal detection problems indicates 

that these tests do indeed yield improvements in the detection rate 

when applied to systems with noise distributions of the type typically 

found in photographic emulsions. It is possible to extend this study 

to cover such problems as the optimum detection of signals with un­

known phase, the detection of signals of unknown location and 

the estimation of signal parameters. Although solutions to these 

problems for the case of multiplicative noise are not presently avail­

able in published form, they can be obtained by using the results of 

Chapter 3 and paralleling the solutions already developed for additive, 

signal-independent noise. 

The last objective of this study is to explore the practical 

limitations of these new tests. The computer-simulated experiments 

in Chapter 4 were performed to determine under what conditions, if 

any, the new processing methods would provide an advantage over the 

more commonly used methods which are based on additive, stationary noise, 
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When a message is recorded in the presence of Gaussian, multi­

plicative noise, several conclusions can be reached. First, a 

definite advantage over processing based on the signal-independent 

noise assumption C°n the order of 20-30% increase in the detection 

rate) is observed for signals processed according to the Gaussian, 

multiplicative noise model. This advantage was observed using signals 

recorded at a signal-to-noise ratio of approximately one. As the 

signal-to-noise ratio is increased, the advantage increases slightly 

but the need for sophisticated processing techniques is usually de­

creased. As the signal-to-noise ratio is decreased, all processing 

methods tend to become equivalent. Little effect is observed as 

the structure of the known signal is changed. For the case of 

Gaussian, multiplicative noise, it appears that the primary processing 

advantage stems from the squaring of the received message rather than 

from the differences in the shape of the filters. This is an impor­

tant observation as it suggests that very nearly optimum performance 

can be obtained by squaring the message and then using a simple average 

over the signal as the test statistic. 

When the tests are made on messages recorded in multiplicative 

noise distributed according to log normal statistics, the results 

change dramatically. Processing these data according to the multi­

plicative, Gaussian distribution assumption yields clearly inferior 

results. The Gaussian, stationary processing and the Poisson, multi­

plicative processing gave essentially identical results. This presents 

a paradox. Intuitively, if the Gaussian, multiplicative processing 
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is used on a message recorded with multiplicative noise, then it should 

give better results than the Gaussian, stationary processing. This 

argument is apparently false, however, as it cannot be supported 

theoretically and is not observed experimentally. 

These results provide evidence of the importance of knowing 

the correct noise statistics before attempting to process. This is 

particularly important when working with photographic film since the 

associated grain noise statistics vary greatly as a function of film 

type, exposure, development, method of measurement, and many other 

parameters. 

The brief experiment on signal discrimination served to 

illustrate the technique. The conclusions derived from the signal 

detection work are also applicable to the discrimination problem. 

The results of„Chapter 4 can now be applied to any of a 

large class of signal detection problems involving photographic 

film. It is now clear that the noise statistics of any photographically 

recorded message must be carefully measured. If the grain noise is 

multiplicative and Gaussian distributed, the processing methods studied 

here might (depending on other parameters in the specific problem) be 

of significant value. If, on the other hand, the noise statistics 

are found to be multiplicative and Poisson distributed it appears 

that retention of the more frequently used, additive, signal-independent 

noise assumption is likely to be justified. 

The objectives.set forth in the Introduction of this report 

have been met. A better'understanding of the significance of signal-



dependent noise has been developed, new optimum statistical tests 

have been proposed for use on photographic films, and their limitations 

have been explored. One specific application has been included as 

an example. Studies of additional specific applications are re­

commended as the next area of activity. 
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SIMULAT LIST 

SIMULA! FORTRAN ExTtNQEU VERSION 2.0/C 01/28/70 10 

PROGRAM cIHULAT 1 INPUT,OUTPUT»TAPE5«INPUT,TAPE6*0UTPUT•TAPE 1> 
UI MENS I ON UbLbM(2]f21)tCM(10)«CN<lo),0M(2t1lS(22t22) 

C oEAO AhO «tUTE PARAMETERS FOR UNIT SIGNAL CELL 
REAR(5*In) NUMdLRtNSUUXfNSUrtY 

10 FORMAT <U3) 
"HITE(6*15' NUMBER,NSUBXTNSUBY 

is FORMATOHI»40*»* SIMULATION NUMBER •TI3////2OX»*OESCRIPTION OF UNI 
lT SIGNAL CELL*//* NUMdER OF ROWS NSURX NUMBER OF COLUMNS 
? NSURY 11 3//) 

C UESCrtlBE NON-BANDLIHITEO SIbNAL 
HEAO(5.2ft) SI01.SlG2.X0.Y0 

20 FORMAT(2Al0f2Fl0>0) 
WRITE C6»?5>5IGl»;>lG2«X0.Y0 

25 FORMAT(lH0i20X,«ObSCRIPTION OF SIGNAL BEFORE BANDLIMITING*// 
P* TYPE OF SICNAL*«5X*2A10/» SIGNAL CENTEK AT XO •*»F5.l»bXt 
1«Y0 »*,F*.l//» 
UO 30 Maj.NSUbX 
00 30 N«l*NSUbY 
RMbM 
RNarvt 
SlM«N)»0, 

30 1FCABSIRM-X0).LT.I.S.ANO,ABS<HN-YO».LT.1.5) S(M»N)«1. 
W«ITE<6»14> 

34 FORMATllMOt* SAMPLEO DESCRIPTION OF S(XtV)*//) 
00 36 M«f»NSUbX 
*RITE t6-»l5) <S<M*N),N«1 .NSUBY) 

35' FORMAT(/QXI2LF6.2> 
36 CONTINUE 
C DESCRIBE COEFFICIENTS OF SPECTRUM OF S(M»N> 

HEAD(5T4FT) LIMX.LIMY 
40 FORMATC2T3) 

*RITEI6t45> LIMX»LIMY 
*5 FORMAT(//1M0«20X»*SIQNAL SPECTRUM PARAMEIERS*// 

J« HIGHEST HAHMONIC IN COLUMN DIRECTION LIMX»*»I3/ 
?* HIGHEST HAHMONIC IN ROW DIRECTION LIMY>**13//) 
HSUBXBNSLJBX 
00 50 M»i«LlMX 

50 CM(M)«3./20.»SIN(3.*3.I416«RM/RSUBX)/<3.*3.1416»RM/RSUBX) 
CM0«3./2fW 
WRITE C6t«i5> CMOFCM 

55 FORMAT(• HARMONIC COEFFICIENTS IN COLUMN DlRECT10N*//(Fe«4>) 
RSljRY*NSlIB* 
00 60 N«i«LIMY 
HN«N 

60 CN(N)bCM(N> 
CNOaCMO 
WRITE<6»f.5> CNO»CN 

65 FORMATI//* HAHMONIC COEFFICIENTS IN ROW UIRECTI ON*//(FB.4)J 
C CALCULATE UNIT HANDLIMITED SIGNAL MATRIX 
C SIGNAL lb HEAL. EVEN. ANU SEPARABLE 

FACTRX»6.2b32/NSUb< 
FACTRY«6.2B32/NSUUY 
WRITE <6*A9) 

69 FORMAT(///20X»»OEi>C«IPTION OF UNIT BANULIMITEO SIGNAL MATRIX*/) 
00 H6 M«itNSUBX 
HM«H 
00 FLO N«F»NSBDY ^ A «•' * 

94 
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RSURY-WSLLBY 
00 60 N«I«LIMY 

*5 HNbm 
60 CN(M)«CH(N» 

CNOBCHO 
W*ITE<6»A5> CNOICN * 

65 FORMAT{//• HAHMONIC COEFFICIENTS IN How 01RECTION*//(FB«4)) 
50 C CALCULATE UNIT HANOLlMITEO SIGNAL MATRIX 

C SIGNAL lb REALT EVEN* ANO SEPARABLE 
FACTRX«6.2B32/NSUdX 
FACTRV«6.2B3^/NSuaY 
WRITE(6»A9> 

55 69 FORMAT(///20X»*0E5CRIPTI0N OF UNIT BANDLIMITEO SIGNAL MATRIX*/) 
00 F)6 H«I»N5UU* 
RHBM 
00 80 N«L»NSUUY 

PROGRAM SlMULAT FORTRAN EXTENDED VERSION 2.0/C 01/28/70 10 

RN«N 
60 SUMX«0. 

DO 70 l«f»LlMX 
PI«I 

70 SUM<»SllM)t*CM (I) *COS (FACTRX* (RM-XO)*RI ) 
C IF SCX.Y) IS SYMHETRlCi 00 LOOP 71 CAN RE SKIPPED 

65 SUMYBO. 
00 71 Joi.LI^Y 
RJ»J 

71 SUmy»SIIHV*CH| JI «COS (F ACTRY* (RN-YO) *RJ» 
HO UdLSM(M,Kj)B (CMU*2.«SUHX) •<CN0«2,«SUHY) 

70 wRITE<6»FL5> (UHLSH<MiN),N»1,NSU8Yi 
65 F0RMAT(/«;Xt21F6.2) 
86 CONTINUE 
C FNTEH PARAMETERS OF COMPOSITE MATRIX 

WtAni5«li 0> f.blUAiNSltiY 
75 UO F0t)MAT(?T3> 

*«ITEU»115> NSlUX.NSlGY 
115 KOWMAT (///<?0*»»P*HAMETERS OF COMPOSITE MATRIX*// 

?• NUMHFM OF UUWS OF SI ONALb NSIbX**tI3/ 
1* MUMHFH OF COLUMNS OF SIONALS NSIGY«*»13//) 

HO RtAiH5.)?0> A*H 
120 F OHMA T (M 0 i 0 I 

"*lTE<*tl2b) Amm 
12b FUHMAT<//* MUNAL AMPLITHOE AMP a •tFb.g/) 
C FNLTP NOISE PARAMETERS 

85 -tfcA()(«). 1101 SlliM«U»Il̂ tHOf fYPEl t TYPE? 
UO FORMAT (?F)U«0/£A10) 

"RITE (Ml 3b) (YPtl» TTPE? «OZeHO» SKjMaO 
13b FORMAT<///20***NUlSE PARAMETERS*// 

?• TYPE OF NOISE UlSTHldUTION*«SAi2AJ 0/ 
90 1* MEAN HACKGHOunU LEVEL 0^ER0n*tF8,4/ 

4* STANflADD UEV1AII0N AT DZERO SIGMAOS*»F8.4///) 
f*FLAG»0 

C rALCULAft NOISEY MEMbEHS UF COMPOSITE MATRIX 
READ <5t 116' MAPtiNHtC 

95 13b FORMAT (I*>t 13) 
*RITE C6»137) NTAHfciNREC 

13/ FORMATtlM0»20*»*UtSCHIPTI0N OF COMPOSITE MATRIX*// 
?• RECORDFO ON TAPE NUMBER ••I5«10Xt*HECURQ NUMUEH *»I3/) 
CALL RANSEH2) 

100 DO ]39 I•1»NSUdX 
UO 139 J«1tNSUMY 

139 UdLSMCI»J>»AMP»UWLSM«I.J1»OZERO 
CONST* «STGMA0«*2)/D2EH0 
NHOWAO 

J 05 00 150 HaltNSIGX 



UO ISO I»i»NS<JWA 
NMO*«NROW»l 
OO 150 N.lfNSlGY 
|F«INITCft) 14Q»1V<,»19B 

110 1 * 3  «tO ] 4* Jb1«N S U 4 Y  
SIGMASBCONS T"UaLbM(IT J) 
IFINFLAG.EO*1) BO TO 142 

141 XIIHINF(L) 
*2*RANF<?) 

US HN0ISE«-?.*AL0G(A1» 
a2«A.R??«X2 

PHOG«AK SfviitAT FORTRAN EXTkNDEO VERSION 2,0/C 0I/2H/70 

• JiURT (SIGMAS*KN0ISE)«C0S<X2) 
*»FLA(i*l 

142 « 1 *4 » 144 
120 I *2 UMfJ>»«JH|.SMCl»JMS>UHT<SlC,MAS*RN0ISM«SlNU2> 

»,F(. 
I F t m t J U  141 » 144 » 144 

144 conriMUF 
MUFFEB OllT < 1 * 1) IUH(1) tOM<MSUUY) ) 

125 1*0 CONTINUF 
tfO TO ?0n 

19ft *HITE (#1.197) 
I9f FO»MAT(« £hU OF ULE. 0ETEClEU ON bUFFEO*) 

GO TO ?00 
130 19« <*HI TE TFIT 1 99 T 

19V FORMAT(• PARITY trtHOP UETECTfcD ON bUFFEO*) 
i»00 STOP 

END 



APPENDIX II 

MULTIPL LIST 

PKOGRAf fULTJPL FORTRAN EXTENDED VEHSIO* 2.0/C 0I/2H/70 

PHURRAM MUU T I PLUNPUT.OUTPUT* TAPES"INPUT.TAPE6»0UTPUT.TAPEI» 
ULMFNSIOM LUWPAK(5o> .THRESH <50) *IU(50).NTA(50)TNMLTS(50> 
.11 MANSION I TB.B) »SP 5) .0M(5» 130) »PP (130) 
I'JTEGtR FL"G 

OS LOGICAL | 0'>lCAtLUtiICH 
COHMOH/HF AuE* .L'ENS.NSUB Y.NFA.NHITSt ID.NLEVEL tCOMPAh« THRESH 
COMMON/ROWOUl/lSPTiiY.OP.NMAX, INT£HY,^CENT* »LOGlCA»LOGlC» 

C WE AO AhlS uHlTt HUN NUMBERS 
^£AnC6.l«) NWUr.tHSjM 

10 10 FORMATt?l3> 
»RHF(«..i5» NHUN»MS1H 

15 FORMAT«1 Ml•30A»»>JHOCtSSlNG ASSUMING MULTIPLICATIVE NOISE*/// 
I * RUN NUMBER **13/* INPUT DATA FROM SIMULATION NUMHEH •»I3//I 

C REAO ANL> «HI IE INPUT OATA DESCRIPTION 
15 HEAn(5.2n) SI61.SIG?. FYPEL TTYPE2.0ZFR»SI«iMA 

?0 FORMAT (4A1U/2HO.O) 
•«MITE(6.?S) SH>ltbIG?.TYPEl.TYPE2.UZER.SlGHA 

?.b FORMAT(2nX.*UESCHlPTION OK INPUT UATA«// 
1 * TYPF nF SIGNAL- *.2A10/* T1 PL OF NOISE- *»2A10/ 

20 P * HACKGDOtiNU UENSITY- UZEHO » *.F6,3/ 
1 • STANDARD UEWIAFIOH OF NOISE- SIGHAO • •«F6.3//) 

C PEAO bNO *HI Tfc PROCESSING INFORMATION 
HEAD (5.3(1) NSURFX.NSAMPX.NSUHT .NSAKPY.NHAXfHMAX 

30 FORMAT C8T3) 
25 KHITE(<S»15> NSUbX tNSAMPX »NSUUY » NSAMPY (MMAX.NHAK 

35 FORMAT(?nX»*PHOCESSING INFORMATION*// 
1 • NUMRF.B UF R0«S IN UNIT SIGNAL MATRIX- NSUHX • **13/ 
? • NUHREO OF HO«S> IN UATA MATRIA- NSAMPX • *.13/ 
1 • NUMHEP OF COLUMNS IN UNIT SIGNAL MATRIX- NSUBY • **13/ 

"JO 4 • NUMREO OF COLUMNS IN DATA MAT«LA- NSAMPY « *»I3/ 
5 • NUMRED OF HOWS IN PROCESSING SIGNAL- MMAX • *.13/ 
*, • NUMBER OF COLUMNS IN PROCESSING SIGNAL- NMAX • *»I3//) 

C REAO ANU nrKITE NOISE ASSUMPTIONS 
. REAnt5*4r>) TyPE3» 1YPE4.DZEH0.SIGMA0 

35 AO FORMAT(2A10/2F10.0) 
ITE <6.*5' TYPE3.TYPE4.DZER0.SIGMAO 

«5 FORMAT(2rtX»"NOlSE ASSUMPTIONS*// 
\ * TYPE OF NOISE DISTRIBUTION ASSUMED- ««2A10/ 
7 * BACK6B0UNU OF NOISE ASSUMEO- OZERO « *tF6.3/ 

40 Y * STANDARD DEVIATION OF NOISE ASSUMED- SJGMAO • »»F6«3//) 
C READ AND WHITE SIGNAL PARAMETERS 

*HITE<6.«;0> 
50 FORMAT(2nX«*SlGNAL DESCRIPTION*//) 

DO 56 M«ifMMAX 
45 REAO(5*5l) CSlMfN)»N»1iNMAX) 

51 FORMAT(InFlOiO) 
"RITE <6t«;S) tS(MtN) »N«1 tNMAX) 

55 FORMAT(loXtlOFa.3) 
56 CONTINUE 

50 C READ AND MRITE SIGNAL AMPLITUDE 
READ(5.69) AMP 

FC2 FORMAT(FIO.O) 
*H1TEU.A5> AHP 

#.5 FORMAT (///« AMPLITUDE OF SIGNALS • **F5.2/) 
55 C OUTPUT DISPLAY PARAMETERS 

READ(5.7<;) NLEVEL 
75 FORMAT (ID 

REAn(5*7«,) (lriHESM(I> . I•! tNLEVED 

97 
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76 FORMAT(BF10.0) 
60 N1«NLEVEL* 1 

UO 77 
77 I'M I) •! 
C CALCULATF HI AS AN0 SPIM»N> FOR MULTIPLICATIVE PROCESSING 

rt IA S1 • 0 • 
65 M!AS2«'>. 

|;0 HO M«i »MMAK 
1)0 flO N»i »NMAX 
SP(MfN1 •4MH»5(M,N)/<AMP»S«M»N) •O^EHOI 
BUS1*H1 flSl*ALOG<l.*AMP»S(M,N)/OZEHO) 

70 "0 dIASZ«HlAS2*S(M»N)»AMP 
Ul AS»BIA<il#SIQMA0*»g»81 AS2*D^ERO 
00 R5 I»f(NLEVEL 

H5 C0MPAH(I)»a.»<SiuH4o»»2)»AL0G(THHtSH«I)MB1AS 
*RlTE<Atf*7> HlAS 

75 H7 FORMAT(• flIAS •*tf8,*///20X. 
? »nESCRlPTION OF PROCESSING SIGNALt SPiM*N4«//> 

_ UO R9 tMMAX 
*RITE C.»BflMSP(M»N) »M»1 tNMAX) 
FORMAT(JnX*10(F1U.*)/J 

RO PV CUM INiIE 
C NEFLNT TAHGET LOCATIONS 

*fc.AD(5t9ft) IM£HX»INTEH*,NCENT*«NCENTY 
90 format(4 13) 

*PI TE <FCT05> iNTErtA,INTERYFNCENTXTNCENTY 
ML> FORMAT (//• RO* SPACING OF HYPOTHETICAL SIGNAL LOCATIONS JNTtH*« 

3 •I13/* r O L U f N  SPACING OF HYPOTHETICAL SIGNAL LOCATIONS INTEHY > 
1 #t13/« BO* SPACING OK ACTUAL SIGNALS NCENTX • *.13/ 
4 • COLUMN SPACING OF ACTUAL SIGNALS NCENTY « «.I3////J 
I)U 100 I • I • N1 

90 NFA<I»«O 
100 KHITS(I)»0 
C CALCULATE LIMITS FUP INTEGER VAFCLAHLTS 

IMIN«J 
JHlN»l 

95 lMA*»NSAUP*»t*M# A* 1 
JMA X aNS A MP Y-NM AX • 1 
NPTSY«NSftMPY-NMAA»J 
Wl*l 

C s t T  UP INITIAL OENSITY MATRIX 
1 0 0  

00 330 K.ltMHA*. 
00 330 I•T•NSAMPY 
CALL RFAnFN 

330 0MFK(I)»NENS 
105 HRORFCMMAG 

NROSNROH «1-(MMAX *NCENI X) 
LOGICR-.FALSE. 

C | OGICA IS THUE IF R0<* CONTAINS ANY HYPOTHETICAL SIGNALS 
LOGICA* UIRO/lNrLHX*INTERX.EO.NRO) 

110 IF(,NOT.(ObICA) GO TO *?0 
C IOGICH IS TRUE IF HO* CONTAINS ANY ACTUAL SIGNALS 

L0GICH"(NR0/NSUHX«NSUHX.EU,NR0) 
c  FORM LOOP ro  PROCESS EACH COLUMN 
370 00 405 J.JMIN,JMAA 

MS ICOL«J-NrENTY 
IKT.NOT.(ICOL/IN1£HY*INIE«*.EO.ICOL)) GO TO *05 
M«J-JMIM*I 
K2«K1•NMftX-1 

C PERFORM CONVOLUTION OPERATION ON EACH SAMPLE POINT 
120 0P<K1)*0. 

LS«l 
Ll«Ml 
L2»MMAX 
FLAGBO 

125 390 00 400 L«LL»L2 
*S*l 
UO 395 K.KltK£ 
OPSUM»SP(KS»LS>*UM(LiH) 
OP CM J »0P <M > *OPSUM 
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13'» 
ton LS»I_S*I • 

if (Hl*Eo,l•OH.FLAG.tU»1) GO TO 40b 
FLAQal 
Ll«l 

135 L2«M1-1 
GO TO 39r> 

405 CONTINUE 
41() CALL MOWnUT 

420 UO 440 IbI»NSAMPY 
140 CALL REAnEN 

440 OM<Ml*T)tinENS 
NHOwaNROV*l 

500 
NROaNPOW*1-(MMAA»NCENTX) 

1*5 LOGICR"<FALS£. 
C L O b l C A  is THUE IF HO* CONTAINS ANY HYPOTHETICAL SIGNALS 

LOGICAA(MRU/1NTEHX# JMTERX•EQINFLO) 
lF(.NOT.LOGlCA) OU TO 420 

C I.O&ICB THUE IF R0« CONTAINS ANY ACTUAL SIGNALS 
ISO LOGICHa(NRU/NSUUA*NSUHX.EU*NR0> 

GO TO 370 
1000 STOP 1 

END 

SUBROUTINE KEnntN FORTRAN LXTENDED VfHSlON 2,0/C 0|/ZFL/70 12» 

SUBROUTINE REAUEN 
COHHON/MFAUEN/KHU^TtlJENS.NbUBY.NFA.NHlTS»IO»NLEVELtC0MPAH» THRESH 
DIMENSION COFPAH (T>0) « THRESH (50 ) I IU (SO) TNF-A (SO) .NHI TS (50) 
DIMENSION U (SO) t PKCNF A (<>0) 

05 IF (KWDKT.NBUTIY) 4U«4»*10 
10 BUFFER In (1*1) (0(1) ,l)INSUrtV) ) 

IFDINLTTF)) 30»2O»5O 
?0 TE (F>»7L) 
21 FORMAT(/////7*flHN,HXf«LAMlJA C*t7X,«COMPAR»»BX«*NHITS»•bX»«NfA*t 

10 •? dX,»PFHr£M Ml SSES*t 3X»•PERCENT FauSE ALARHS*/5X ,%«••••• , 5X » 
1 <}«••••••••• 14 A , 7X f 15A.5H**««* t 7Xtl4H*•••••*••• 

N1«NLEVEL*1 
00 22 I"i»Nl 

15 0(1laNHlTStl) 
22 PHCNFA(I)aNFA<I) 

tO 23 I»1*NLEVtL 
J«NLEVFL*1-I 
U(J)cD(J)«U(J*1) 

20 2J PHCNFA(J)a^RCNVA(J)*PHCNFA(J*1 I 
UNOT«D(H 
PHCNOT«PPCNFA(1) 
00 ?4 I«l»Nl 
0(I)B(1..D(I)/UNOT)«100. 

25 ?4 PRCNF A(l)aPRCNFA(I)/PHCNO t *100• 
h«ITE(6*?S) (lu(l) tNHlTSCl) .NFAd) »D(I) » PRCNFA (1 > » THRESH (I) , 

9 COMPAH(T)»Ial»Nl) 
25 F0RMAT(5*,I3i37AfI3f7X,I3»11A,F7.2t14X.F7.2/15X*lPE9.2»bX.0PF7.2> 

STOP 2 
30 30 KWOKTaJ 

40 UENSAN(KWDKT) 
GO TO 90 

50 PHINT 51 
51 FORMAT (« PAH ITY ERROR IN TAPE OF DENSITY REAOINGS •) 

35 GO TO ?0 
90 rtWDKT"KwriKT*l 

RETURN 
END 
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SUbrtOUfJNE HOkouT FOHTRAN EXTENOEO VERSION 2.0/C 01/28/70 12* 

SUBROUTINE HO«OUl 
COMMON/RrAUEh/K"UK?,UENS.NSUBYfNFA»NhlTS»IO»NLEVEL»COMPAK»THHESH 
COMHON/RowOUI/NHT&r«OP«NHAX(lNTEKYfNCENTYtLOGICA*LOOlCe 
UlMfTNSION UP (130) »NFA (50)tNHlTS(SO)»ID(S0) ,COMPAfl(SO> t THRESH (50) 

)5 LOGICAL t,0(3lCA«LO(»ICH 
00 100 I sitNpTSY 
IFt.NOT.l OGICA) 00 TO 100 
ICOL«I-NCEMY 
If «,NOT. (ICOL/INltHYMNTEHY.EQ.lCOU ) GO TO 100 

10 IF<L0GrCH.ANU.ICUL/NSU8Y*NSUaY.E0.lC0Ll GO TO 65 
*LUE«-I 
GO TO 75 

AS KLUE"1 
75 00 HO J«F,NLEVEL 

IS IF(0P(1).C0HPAH(J)) 95I80»80 ' 
MO CONTINUE 
•*5 IF(KLUE) 9B • 100 t99 
9H NFA(J)bNFA(J)*1 

GO TO 100 
20 99 NMITS(J) «NHn S (J) • 1 

100 CONTINUE 
RETURN 
END 



APPENDIX III 

MULTIPL OUTPUT. 

PROCESSING ASSUMING MULTIPLICATIVE NOISE 

RUN NUMUEH ]9 
INPUT DATA FHOM SIMULATION NUMBER 15 

DESCRIPTION OF INPUT UAfA 

TYPE OF SIGNAL- 3X3 BANULIM SQUARE 
TYPE OF NOISF- KULTIPLICATIVE 
BACKGROUND DFNSlTY- U/F.JO a ,<00 
STANDARD OF VI AT ION OF NOISE- SIfiMAO • .163 

PROCESSING INFORMATION 

NUMBER OF KOMS IN UNIT SIGNAL MATRIX- NMJHX » 20 
NUMBER OF ROfcS IN DATA MATRIX- NSAMPX « 400 
NUMBER OF COLUMNS IN UNIT SIGNAL MATRIX- NSUHV • 20 
NUMBER OF COLUMNS IN DATA MATRIX- NSAfPr a 100 
NUMBER OF MOWS IN PROCESSING SIGNAL- WMAX • 5 
NUMBER OF COLUMNS IN PHOCESSING STGNAL- NMAX a 5 

NOISE ASSUMPTIONS 

TYPE OF NOISE DISTRIBUTION ASSU^En- MULTIPLICATIVE 
BACKGROUND OF NOISE ASSU«EU- DZFRU « .S>00 
STANDARD DEVIATION OF NOISE ASSUMrn- SlbMAO * .163 

SIGNAL OESCRIPTIUN 

o.ooo .030 .030 .030 0.000 
.030 • 930 .960 .9J0 .030 
.030 .960 .990 .Vt>0 .030 
.030 • 9.30 .960 .930 .030 
0.000 .030 .03" .030 0.000 

AMPLITUDE OF SIGNALS <= 

BIAS a .97?! 

. 20  

DESCRIPTION OF PROCESSING SIGNAL* SP(MIN) 

0.0000 
.0119 
.0119 
.0119 
0.0000 

.0119 

.2711 

.2775 

.2711 

.0119 

.0119 
,277b 
,<J83 7 
,277b 
,011V 

.0119 

.2711 

.2775 

.2711 

.0119 

0.0000 
.0119 
.0119 
.0119 
0,0000 

ROK SPACING OF HYPOTHETICAL SIGNAL LOCATIONS INTEHXa 5 
COLUMN SPACING OF HYPOTHFTICAL SIPNAL LOCATIONS INTEHY * 5 
ROW SPACING (IF ACTUAL SIGNALS MCENTX a H 
COLUMN SPACING OF ACTUAL SIGNALS NCtNTY a I) 
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H LAPDA C COMPTR NHIT 
••••• ••••••••• ••••••••• • ••• 

1 
1.00E-01 .•5 

2 
1.50E-Q1 • *7 

3 
2.50E-01 • 40 

* 
• 40 

* .00E-G1 .92 
5 

.92 
6.50E-01 .05 6 .05 

7 
t.00E*00 • 47 
l.45E*00 >Q9 

8 LK 0 
2.00£«U0 l.nl 9 l.nl 

2.a0F*00 l.r>3 
10 

J.90FC*00 l.n4 
11 

S.50b*00 l.FT6 
12 

7.50E*01> l.nn 
13 

1.0 OF. * 01 1 .*9 
14 

i.»SE*^l l.U 
15 

2.0«t*ei 1.13 
16 

2,eo* *oi 1.15 
IT 

3.90t*01 1.17 
IB 

5.50E«01 1.19 
19 2 

7.50f.»<il 1 .?0 
20 2 

1 . OOF 1 .?2 
21 2 

1.45t*J2 1 .?4 
22 0 

2•OOF* 02 i.?5 
?3 2 

2.eot*'i2 L.»7 
J>4 0 

3.90E*-1? 1 .?9 
75 * 

5,S0E«I'2 I.11 
26 * 

7.50F.*02 1 .-43 
27 b 

1.00E*U3 1.14 
28 7 

1.45E*03 1 .16 
29 2 

2.OOE *03 1 .IB 
30 4 
. 2,eoF*oj o

 
•4 *
• 

31 4 
3.90E«<)3 1.41 

32 4 
5.5nE*Q3 1 .43 

33 3 
7,50F.*03 1 .45 

34 4 
I.OOFC'O* 1.46 

35 5 35 
1.5 0F*0* l.*n 

36 2 
2.50E*04 l.^i 

37 5 
•,00FC*04 1 #*4 

38 2 
6,50K*04 1 .«A 

39 3 
L.00E*05 1.19 

11 40 11 

PEWCEMT HISSES PERCENT FALSE ALAHHi 
•••••••••••••• •«#•••••»§•••• 

0.00 100.00 

0.00 22.63 

0,00 18.56 

1.00 14.56 

1.00 11.21 

2.00 9.06 

2.00 6.21 

3.00 5.35 

3.00 4.57 

3.00 3.76 

4.00 3.14 

4.00 2.00 

6.00 1.64 

9.00 1 .28 

12.00 .79 

12.00 .64 

13.00 .50 

16.00 .21 

22.00 .1* 

24.00 .07 

26.00 .07 

28.00 0.00 

26.00 0.00 

30.00 0.00 

30.00 0.00 

34.00 0.00 

3H.00 0.00 

44.00 0.00 

51 .00 0.00 

51.00 0.00 

57.00 0.00 

61.00 0.00 

65.00 0.00 

6B.00 0.00 

72.00 0.00 

77.00 0.00 

79.00 0.00 

A*.00 n.oo 

A6.00 0.00 

69.00 0.00 

UFA 

•84 

57 

56 
47 

30 

40 

12 

11 

1) 

9 

16 

5 

5 

7 

2 

2 

4 

1 

1 

0 

1 

0 

0 

0 

0 

0 

ft 

0 

0 

n 

o 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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